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Abstract  20 

Crop modeling is affected by parameter uncertainty. We proposed a framework that 21 

integrates sensitivity, uncertainty and parameter calibration of crop models, to provide 22 

prediction intervals in place of single values for decision-makers to reduce 23 

management risks in agriculture. The framework includes four steps: 1) set prior 24 

distributions of parameters and collect measured data, 2) use Morris screening to find 25 

out sensitive parameters, 3) adopt Metropolis-Hastings within Gibbs algorithm to 26 

calculate posterior distributions of the sensitive parameters and model residual errors, 27 

and 4) analyze uncertainties propagation and their applications. The framework was 28 

firstly applied on 27 parameters of AquaCrop (version 6.1) on maize in four irrigation 29 

scenarios in arid Northwest China, given 5 time series and summary variables 30 

including canopy cover (CC), aboveground biomass (Bt), soil water content (SWC), 31 

daily evapotranspiration (ET) and final yield (Y) with 1458 measured data points of 32 

27 irrigation treatment-year combinations from 2012 to 2015. The results showed that 33 

water stress parameters in AquaCrop were more sensitive in severe drought situations 34 

than in full irrigation conditions. The parameter uncertainty brought more variation to 35 

simulated final yield than simulated time series variables of maize in arid Northwest 36 

China. Model residual error was found to be the major contributor to overall 37 

prediction uncertainty, and interannual variation and severe water stress increased its 38 

contribution. Adding high-quality measured data of time series variables into MCMC 39 

iterations can make the estimated parameters more reliable and more biologically 40 



 

 

significant. Medians of outputs using the framework were generally closer to the 41 

corresponding measurements when compared with the results of using trial and error 42 

method. Especially for SWC and Y, Nash–Sutcliffe coefficient (EF) improved from 43 

0.364 to 0.739 and from 0.055 to 0.415, respectively. The framework is 44 

straightforward to be applied to other crop models that can be run in batches. 45 

Key words: Morris method, Metropolis-Hastings within Gibbs, Markov Chain Monte 46 

Carlo (MCMC), Bayes' theorem, drought stress, AquaCrop 47 

1. Introduction 48 

Crop models are evolving from deterministic thought to uncertain theory in recent 49 

years, with a growing acknowledgement that the simulation results of crop models are 50 

greatly affected by various sources of uncertainty. The quantitative information on the 51 

reliability of crop model outputs should be carefully analyzed to provide a basis for 52 

decision-makers to conduct risk assessment in agricultural management. Wallach and 53 

Thorburn (2017) defined prediction uncertainty as to the sum of a bias plus a predictor 54 

uncertainty term in model structure, model parameters, and/or model inputs, and 55 

suggested that uncertainty assessment should be a standard part of crop models. 56 

Parameter uncertainty is a major source of prediction uncertainty in crop modeling 57 

(Wallach et al., 2012). Inferential statistics, including Frequentist statistics and 58 

Bayesian statistics, is a major branch in statistics dealing with the problem of 59 

parameter uncertainty (Ellison, 2004). Frequentist statistics treats crop models as 60 

fixed with input variables known. Model parameters (usually calibrated values) are 61 



 

 

used to run a specific model. The outputs obtained are a set of fixed values. This 62 

approach ignores possible errors in the input data and in the crop model itself. In 63 

contrast, Bayesian statistics treats crop models as random and chooses parameters 64 

from distributions randomly. It can provide a coherent framework for dealing with 65 

uncertainty and is becoming increasingly popular for estimating crop model 66 

parameters (Wallach et al., 2019). Tremblay and Wallach (2004) showed that 67 

Bayesian methods can perform better for parameter estimation than the least squares 68 

method from Frequentist statistics when the ratio between measured data amount and 69 

number of parameters is low. 70 

Markov Chain Monte Carlo (MCMC) methods, based on drawing values of 71 

parameters from approximated distributions and then correcting those draws to better 72 

approximate the target posterior distributions (Gelman et al., 2014), have been 73 

important in making Bayesian inference practical for quantifying parameter 74 

uncertainty. The Metropolis-Hastings algorithm, which generalizes the basic 75 

Metropolis algorithm, is one basic MCMC method. It builds up a chain of parameter 76 

vectors by taking a random walk with an acceptance/rejection rule to converge to the 77 

posterior distribution (Gelman et al., 2014). Gibbs sampling is another widely used 78 

MCMC algorithm that generates values for each parameter, in turn, using conditional 79 

probability distributions (Gilks et al., 1996). It has the advantage of not specifying 80 

proposal distribution but requires the knowledge of all the conditional distributions 81 

which is not always satisfied (Wallach et al., 2019). The Metropolis-Hastings within 82 



 

 

Gibbs algorithm, combining Metropolis-Hastings and Gibbs sampling, is an 83 

alternative approach on the condition that some of the conditional posterior 84 

distributions in a model can be sampled directly and some cannot (Gelman et al., 85 

2014). 86 

In the Metropolis-Hastings within Gibbs algorithm, the Metropolis-Hastings part 87 

generates the chain for parameters, using measured data and the latest residual 88 

variances; and the Gibbs part generates the chain for residual variances, using 89 

measured data and the latest estimated parameters (Wallach et al., 2012). When using 90 

the Metropolis-Hastings within Gibbs algorithm, it is necessary to choose a starting 91 

value, a proposed distribution, a total number of iterations, and a number of discarded 92 

iterations. How to choose these elements is currently an area of active research for 93 

crop modelers (Wallach et al., 2019). The choice of starting value is generally not 94 

very critical but the choice of the proposed distribution matters (Gilks et al., 1995). 95 

Wallach et al. (2012) used the Metropolis-Hastings within Gibbs algorithm to assess 96 

the posterior distributions of 15 model parameters and the residual error variances of 97 

leaf area index, aboveground biomass, and yield simultaneously. Recently, Gao et al. 98 

(2020) applied the Metropolis-Hastings within Gibbs algorithm to estimate posterior 99 

distributions for 3 parameters of the phenology model in DSSAT-CERES-Rice under 100 

ten different environments. The likelihood function usually adopts a normal 101 

distribution (Wallach et al., 2012; Gao et al., 2020). The inverse gamma distribution 102 

was adopted in Wallach et al. (2012) and the inverse Wishart distribution in Gao et al. 103 



 

 

(2020) to generate residual variances due to their properties of conjugate prior. 104 

One challenge for the application of MCMC algorithms to crop models is the huge 105 

computation cost caused by a large number of parameters (Wallach et al., 2019). It is 106 

efficient to give priority to parameters that have a large impact on the model outputs 107 

to reduce the number of parameters. Sensitivity analysis is an efficient way to 108 

recognize influential parameters (Lamboni et al., 2009, 2011; Tan et al., 2017). The 109 

screening methods and the variance-based methods are widely used global sensitivity 110 

analysis methods. The Morris method, which is based on the computation of the 111 

absolute mean elementary effect of individual parameter changes on the model output, 112 

is the most commonly used screening approach (Wallach et al., 2019). It is very 113 

effective to identify a few influential factors among a large set of parameters (Lu et al., 114 

2021). Studies have used the Morris method to distinguish the influential and 115 

non-influential parameters of AquaCrop under different climate-crop-soil 116 

combinations (Vanuytrecht et al., 2014; Lu et al., 2021). However, the results are not 117 

exactly the same due to different target output variables and various given conditions. 118 

Although methods of estimating parameter distributions have been extensively 119 

studied, a framework combining sensitivity analysis and uncertainty quantification for 120 

assessing crop model parameters is still lacking. More specifically, some issues 121 

remain to be solved:  122 

(i) Few such studies have focused on arid regions. How and to what extent the 123 

water stress, which often occurs in such an area, affects uncertainty in crop 124 



 

 

modeling is unclear. 125 

(ii) Most such studies involve only a few parameters. The application of MCMC 126 

algorithms to crop models, including a large number of parameters and model 127 

residual errors, remains a challenge. 128 

(iii) Uncertainty quantification based on measured time series variables (e.g., 129 

canopy cover, biomass accumulation, dynamic soil water content, and daily 130 

evapotranspiration) and summary variables (e.g., crop yield) simultaneously in 131 

crop modeling requires further study. 132 

(iv) Sensitivity analysis and uncertainty quantification in different irrigation 133 

scenarios are lacking. Irrigation is likely to be a significant factor that affects 134 

the sensitivity and uncertainty of crop model parameters in arid climate, which 135 

should be taken into account. 136 

The objective of this study is to develop a general framework to quantify 137 

uncertainty of crop model parameters in conjunction with model residual errors. The 138 

framework is firstly applied on 27 parameters of AquaCrop (version 6.1) on maize in 139 

four irrigation scenarios in arid Northwest China. Parameter uncertainties and their 140 

propagations to time series canopy cover (CC), biomass (Bt), soil water content 141 

(SWC), daily evapotranspiration (ET), and final yield (Y), are explored 142 

simultaneously. It is anticipated that this study can provide valuable insights into the 143 

application of MCMC algorithms to crop models with a large number of parameters, 144 

especially for uncertainty research under drought climates. The framework in this 145 



 

 

study is expected to be applied with other crop models and for the evaluation of other 146 

model outputs in other scenarios. 147 

2. Materials and methods 148 

2.1. Experiments and measurements  149 

The measured data came from the same database described by Ran et al. (2017, 150 

2018). The experiments that made up the database were conducted from 2012 to 2015 151 

at the National Field Scientific Observation and Research Station on Efficient Water 152 

Use of Oasis Agriculture in Wuwei of Gansu Province, which is located in an arid 153 

region of Northwest China (37°52′ N, 102°50′ E, at 1581 m elevation). The mean 154 

annual precipitation is 164 mm, pan evaporation approximately 2000 mm, and 155 

groundwater table below 25 m (1955-2005, Li et al. (2015)). Maize in this region is 156 

grown between April and September with one harvest per year. The details of soil 157 

physical and chemical properties for the 0-100 cm soil layer are shown in Table S1 158 

(see Supplementary material). 159 

The summary of irrigation treatments and measured variables of maize from 2012 160 

to 2015 is presented in Table S2. The measured data collected can be divided into two 161 

categories. The first group included daily ET measurements in a large fully irrigated 162 

field (300×200 m2) equipped with an eddy covariance (EC) system for each year from 163 

2012 to 2015. The second group included measurements of different plot irrigation 164 

treatments from 2012 to 2015, and the irrigation ranged from 3 to 7 applications per 165 

year. Overall, there were 27 irrigation treatment-year combinations in the database. In 166 



 

 

all cases, the application of fertilizers was enough to avoid nutrient stress. The 167 

measured data in the database was classified into four irrigation scenarios based on 168 

the irrigation and precipitation amount. They were Full Irrigation (SFI), Deficit 169 

Irrigation (SDI), Extreme Deficit Irrigation (SEDI), and All Irrigation (SAI) treatments 170 

(Table S2). The measured variables included in-season time series measurements of 171 

canopy cover (CC), aboveground biomass (Bt), soil water content (SWC), daily 172 

evapotranspiration (ET), and summary variable of final yield (Y). 173 

2.2. Description of the AquaCrop model 174 

AquaCrop is a water-driven dynamic crop model developed by FAO striking a 175 

balance among accuracy, simplicity, robustness and ease of use, and focuses on 176 

applications in arid regions where water is a key limiting factor in crop production 177 

(Steduto et al., 2009; Raes et al., 2009; Hsiao et al., 2009). The model consists of 178 

climate, crop, management, and soil modules. The core idea of AquaCrop is evolved 179 

from the crop water production function in FAO 33 (Doorenbos and Kassam, 1979), 180 

in which yield is calculated from evapotranspiration. To realize the processes of crop 181 

development and production, AquaCrop first simulates the daily green canopy cover 182 

(CC) including its expansion, ageing, and senescence. Then crop transpiration (Tr) is 183 

differentiated from soil evaporation (Es) by using a “Kc-ET0” approach based on CC. 184 

After that, daily aboveground biomass is calculated by multiplying Tr and the water 185 

productivity normalized for atmospheric demand and air CO2 concentrations (named 186 

WP*). Given the simulated biomass, crop yield is obtained with the help of the 187 



 

 

reference harvest index (HI0) but the complex partitioning of biomass among various 188 

organs is avoided. AquaCrop actually does not simulate the process of phenology like 189 

other agronomic crop models. The phenology is specified as inputs in thermal time 190 

(growing degree days) or calendar days by the users. Soil water stress affects the 191 

development of CC and alters HI0. AquaCrop also considers salt and nutritional stress, 192 

which is not the scope of this study. Our previous study has carefully described the 193 

calculation procedures in AquaCrop (Ran et al., 2018). More details can also be found 194 

in Raes et al. (2009, 2018). 195 

In this study, AquaCrop plug-in program (version 6.0), in which the calculation 196 

procedures are identical to AquaCrop standard window program (version 6.1), was 197 

used because of its accessibility for iterative runs by R (R Core Team, 2013). AquaCrop 198 

was run in thermal time mode. 199 

2.3. Description of the framework for quantifying uncertainties 200 

Four steps are included in the framework for quantifying uncertainties (Figure 1). 201 

Step 1. Initialization to set parameters of interest and collect measured data. 202 

A total of 27 parameters in AquaCrop are set as target parameters (listed in Table 1), 203 

which are treated as random variables. Their nominal values are cited from Ran et al. 204 

(2018). The lower and upper boundaries of the prior distribution for each parameter 205 

are defined as ±30% of the nominal values. However, some parameters (e.g., Tbase and 206 

Tupper) have their inherent ranges restricted in AquaCrop. Therefore, we have to 207 

modify the lower and upper boundaries for these parameters based on literature values 208 



 

 

and constraints in AquaCrop (Table 1). 209 

The time series variables of CC, Bt, SWC and daily ET, and summary variable of Y 210 

are simultaneously used to calculate posterior distributions. Data of weather, 211 

management, and initial soil water content are model inputs. 212 

Step 2. Sensitivity analysis to obtain sensitive parameters 213 

To reduce subsequent computational cost, the Morris method is adopted to identify 214 

influential factors among the 27 parameters. Crop yield is set as the target variable 215 

because of its priority for all crop models. The principle is to calculate a sensitivity 216 

index for each parameter and to select parameters with absolute mean effect (μ*) 217 

greater than 0.1 t ha-1. The threshold value of 0.1 t ha-1 is determined based on 218 

Vanuytrecht et al. (2014) and Silvestro et al. (2017), which is considered to be a 219 

reasonable value for deviations in yield assessment studies. 220 

The Morris method defines the elementary effect of the kth parameter for a set of 221 

parameter value scenarios Zi=(zi1,…, zik-1, zik, zik+1,…, ziK) as (Morris, 1991): 222 

      1 1 1 1 1 1i ik- ik ik+ iK i ik- ik ik+ iK
k i

f z ,..., z , z , z ,..., z f z ,..., z , z , z ,..., z
d Z




 
  ( 1 ) 223 

where f(Zi) is the model output (final yield in this study), Zi=(zi1,…,ziK) is the 224 

K-dimensional parameter vector, K is the number of parameters (K=27 in this study). 225 

Δ is a predetermined multiple of the grid spacing (i.e., size of grid jump).  226 

Then the absolute mean and the standard deviation of the elementary effects of 227 

dk(Zi) are calculated as (Morris, 1991; Campolongo et al., 2007): 228 
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where r is the number of trajectories. A high μk
* indicates a factor with an important 231 

influence on the output. σk estimates the ensemble of a factor's higher order effects, i.e. 232 

nonlinear effects and/or interfactor effects (Campolongo et al., 2007). 233 

The Morris method is implemented with the help of Morris function of sensitivity 234 

package in R with levels=6, a jump Δ=3 (following Morris's recommendation of 235 

levels/2), and a number of trajectories r=500, which follows Wallach et al. (2019) and 236 

Lu et al. (2021). Thus a total number N=14000 of model evaluations is performed 237 

(N=r×(K+1)). Furthermore, sensitivity analysis is implemented for each of the four 238 

irrigation scenarios.  239 

Step 3. Uncertainty quantification and posterior distributions. 240 

The main idea for uncertainty quantification is to use the Markov Chain Monte 241 

Carlo (MCMC) algorithm under Bayes' theorem. The sensitive parameters (θ) and 242 

model residual variance (σ2) of CC, Bt, SWC, ET, and Y are treated as random 243 

quantities and are assumed to be independent. All model residuals (ε) are assumed to 244 

be independent and identically distributed (iid) with normal distributions that have 245 

expectation 0 and variance σv
2. That is (Wallach et al., 2012), 246 

  vi vi vi
ˆM =M    ( 4 ) 247 

  20vi viid
~ N ,   ( 5 ) 248 



 

 

where Mvi and viM̂  are the ith measured and simulated value of variable v, 249 

respectively, v stands for CC, Bt, SWC, daily ET, or Y in this study. 250 

The basic equation for Bayesian parameter estimation is (Wallach et al., 2012): 251 

        2 2 2P , M P M , P P       ( 6 ) 252 

where P(θ,σ2|M) is posterior distribution given the observed values M. P(M|θ,σ2) is a 253 

likelihood. P(θ) and P(σ2) are prior distributions for θ and σ2, respectively. P(θ) is 254 

assumed a uniform distribution and the boundaries of each parameter are shown in 255 

Table 1.   



n

v
vP

1

22 1  , which is a commonly used non-informative prior 256 

distribution (Wallach et al., 2012).  257 

The specific approach used here is the Metropolis-Hastings within Gibbs algorithm 258 

(Wallach et al., 2012; Gao et al., 2020). It separates the estimation of parameters (in 259 

the Metropolis-Hastings step) from the estimation of the model residual error variance 260 

(in the Gibbs step). 261 

(i) In the Metropolis-Hastings step, posterior distributions of parameters are 262 

calculated as: 263 

      2 2P M , P M , P      ( 7 ) 264 

The likelihood function is assumed to have a normal distribution as (Wallach et al., 265 

2012):  266 
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where n is the number of measured variables (n=5 in this study), Nv is the number of 268 

samples for each measured variable. A logarithmic transformation for the measured 269 

data of CC, Bt, SWC, ET, and Y is conducted separately to stabilize the variances in 270 

these series. Function log1p in R is applied to the measured data to prevent applying a 271 

logarithm to 0 values. 272 

(ii) In the Gibbs step, the posterior distribution of residual variance is calculated 273 

using an inverse gamma distribution, i.e., σ-2 has a gamma distribution as: 274 

       212 21 v v

v
v v
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    ( 9 ) 275 

where Γ(αv) denotes the gamma function calculated at αv. 276 

The shape parameter (αv) and scale parameter (βv) of the gamma distribution for 277 

variable v are (Wallach et al., 2012): 278 
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To realize the above two sub-steps, a Markov chain of values (θ(1), σ2(1),…, θ(t), 281 

σ2(t),…, θ(m), σ2(m)) is iterated by taking random steps in parameter spaces due to the 282 

lack of analytical expressions for their posterior distributions. 283 

In the Metropolis-Hastings step, a proposal θ*(t+1)|θ(t) is drawn from a multivariate 284 

normal distribution: 285 

       * t+1 t t~ N ,tune     ( 12 ) 286 

where tune is a dynamic factor with initial value being set to 1, and it is multiplied by 287 



 

 

2 if the rejection rate is <0.65 and divided by 2 if >0.85 to make sure the final 288 

acceptance rate of the proposed θ*(t+1)|θ(t) around the recommended rate of 25% 289 

(Wallach et al., 2012); Σ is a diagonal matrix with the prior variances for each 290 

parameter on the diagonal, and the prior variance for uniform distribution is 291 

calculated as (upper boundary - lower boundary)2/12. 292 

After proposing a θ*(t+1), an acceptance ratio A(θ*(t+1), θ(t)) that decides whether to 293 

accept or reject the candidate is calculated as (Gelman et al., 2014): 294 
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Here, we have     1t * tP    =     1* t tP    because the proposal distribution is 296 

multivariate normal. In addition,   1* tP   =   tP   because the prior distribution is 297 

the same uniform distribution. 298 

Then generate a uniform random number . If     tt ,Au  1 , 299 

, otherwise, . 300 

In the Gibbs step, a value of σ2(t+1) is generated by sampling from the conditional 301 

distribution with the help of rgamma function in R and then taking the inverse. 302 

To obtain stable results, three chains with three different starting points (θ(0)) for 303 

each of the four scenarios (a total of 12 chains) are run in parallel on a workstation 304 

(Intel(R) Xeon(R) CPU 2.20 GHz, 12 Kernels). Each chain is iterated 300,000 times 305 

to make the convergence toward the posterior distribution. The test basis for whether 306 

 0 1u ,

   1 1 t * t=     1t t= 



 

 

the convergence has occurred is the upper limit of the Gelman criterion, which should 307 

be below 1.1, as calculated by the R coda package (Plummer et al., 2006). 308 

Autocorrelation of the chains of each parameter is checked with the acf function of R. 309 

The first half of each chain is eliminated to remove the effect of starting value, and 310 

then the remaining vectors in each chain are combined to give a single chain of 311 

450,000 vectors. Finally, the chains for different scenarios are thinned, keeping only 312 

one vector out of 1000 according to the results of effectiveSize function in coda 313 

package, to reduce autocorrelation, and 451 vectors of parameters are left. 314 

Uncertainties of Tbase and Tupper are not considered in this study owing to phenology 315 

being specified by users rather than simulated by AquaCrop. 316 

Step 4. Analysis and application.  317 

After obtaining the parameter sensitivity using the Morris method, its dependence 318 

on target variables and irrigation scenarios is explored. Next, posterior parameter 319 

distributions are compared under the four irrigation scenarios to investigate the 320 

influence of measurements. In particular, the difference of posterior KcTr,x caused by 321 

whether involving measured daily ET during the MCMC iteration is investigated to 322 

emphasize the importance of measured data of intermediate variables on posterior 323 

parameter distributions (Figure 6). Then the posterior parameter distributions are used 324 

to calculate the distributions of CC, Bt, SWC, ET, and Y. The percentages of measured 325 

values that fell in different percentile ranges of corresponding predictions are 326 

calculated. After that, the contributions of parameter uncertainty (varparm) and model 327 



 

 

residual variance (varmodel) to overall prediction uncertainty (varpred) for variable v are 328 

calculated using the following equations: 329 
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 ( 14 ) 330 

where θj is the jth parameter vector in the posterior distribution (Figure 3, j=1,...,451 331 

in this study), εvj is a sample with one element drawn from N(0, σvj
2 ) for each j, σvj

2 is 332 

the jth model residual variance in the posterior distribution (Figure 3). The difference 333 

between varpred and the sum of varparm and varmodel is a measure of the interaction 334 

between the variance due just to parameter uncertainty and the variance due just to 335 

model residual error (Gao et al., 2020). Finally, the medians of model outputs are 336 

compared with the previous parameterization results using the trial and error method 337 

based on the same measurements in Ran et al. (2017, 2018). 338 

2.4. Statistical analysis 339 

The performance of the crop model was assessed using six statistical indices. They 340 

were regression coefficient through the origin (b0), coefficient of determination (R2), 341 

root mean square error (RMSE), normalized root mean square error (NRMSE), Nash–342 

Sutcliffe model efficiency coefficient (EF), and Willmott's index of agreement (d). 343 

The formulas for these statistical indices can be found in Ran et al. (2020). The 344 

components of the framework, including data organization, crop model simulation, 345 

sensitivity analysis, uncertainty quantification, statistical analysis and plotting were 346 

programmed in R (please contact the corresponding author to access the code). 347 



 

 

3. Results 348 

3.1. Morris results based on final yield 349 

Parameter sensitivity varied with different irrigation scenarios (Figure 2). The 350 

number of sensitive parameters, based on the criteria of μ*>0.1 in this study, was 17, 351 

18, 20, and 18 out of 27 for SFI, SDI, SEDI, and SAI, respectively. On the other hand, the 352 

major influential parameters demonstrated some similarities among different 353 

scenarios. Parameters with important influence (μ*>0.1) for all scenarios were HI0, 354 

WP*, KcTr,x, CGC, CCx, GDDmin, Tbase, fcsoil, wpsoil, CDC, psen, cc0, Tupper, and pexpl. 355 

Parameters with negligible influence (μ*<0.1) for all scenarios were KcTrxle, Ksatsoil, 356 

colds, and roots. For SFI, SDI, and SAI, the top three sensitive parameters were HI0, WP*, 357 

and KcTr,x. For SEDI, however, the difference was evident. The wpsoil was the most 358 

sensitive parameter. In addition, Parameters related to water stress, e.g., psen, ppol, psto, 359 

and psens, became more sensitive in this scenario.  360 

3.2. Posterior distributions for sensitive parameters 361 

The acceptance rates of the proposed parameter vectors during the MCMC 362 

iterations for the four scenarios were 24.9%, 25%, 24.7%, and 24.9% (Table S3), 363 

which were close to the recommended rate of 25% (Wallach et al., 2012). 364 

Convergence diagnosis showed most values for each parameter as well as the 365 

multivariate value were below 1.1 (Table S3), which indicated that convergence 366 

toward the posterior parameter distribution had occurred. Some of the values were 367 

slightly above 1.1, but we examined graphs of each parameter versus iteration number 368 



 

 

and those indicated that it was reasonable to assume that all the Markov chains 369 

converged to the stationary distributions. 370 

The shapes and the ranges of posterior parameter distributions were highly related 371 

to the four different irrigation scenarios (Figure 3). Some medians of posterior 372 

parameters in SEDI, e.g. WP* and KcTr,x, were smaller than those in the other three 373 

scenarios, and some, e.g. fcsoil and GDDmin, were greater. On the other hand, the 374 

posterior parameter distributions showed some similarities among different scenarios. 375 

For example, the medians of HI0, CGC, CCx, and wpsoil were around 32%, 0.011, 376 

85%, and 7.65% for the four scenarios, respectively (Table S4). In addition, the 377 

posterior distributions of WP*, KcTr,x, CGC, and CCx were much narrower than the 378 

prior. The posterior distribution of HI0 was very similar to the prior. The posterior 379 

residual variances of CC, Bt, SWC, ET, and Y can be recognized as inverse gamma 380 

distributions, which was in line with the properties of conjugate prior. 381 

3.3. Prediction uncertainty 382 

The simulated time series variables of CC, Bt, SWC, and ET using the posterior 383 

parameter distributions in the SEDI scenario (only one treatment of 2013W3) are 384 

shown in Figure 4. Simulations of CC, Bt, SWC, and ET generally followed the trend 385 

of measured values, and they were better than the results in Ran et al. (2018) in this 386 

scenario. Most of the measured values were covered by or close to the 0th to 100th 387 

percentile band (Figure 4). However, for the other three scenarios (SFI, SDI, and SAI), 388 

the 0th to 100th percentile band did not cover all measured values (Figure S1-S12). 389 



 

 

The percentages of mean values of measured CC, Bt, SWC, and ET that fell in the 390 

25th to 75th percentile band were 4%-16% in SFI, SDI, and SAI scenarios, and they 391 

were 15%-62% in the 0th to 100th percentile band (Table 2).  392 

The simulated summary variable of Y using the posterior parameter distributions in 393 

the four irrigation scenarios is shown in Figure 5. The 25th to 75th percentile band 394 

and of 0th to 100th percentile band were much wider than those of the simulated time 395 

series variables. The percentages of mean values of measured Y that fell in the 25th to 396 

75th percentile band (33%-80%) and the 0th to 100th percentile band (89%-100%) 397 

were also much larger in SFI, SDI, and SAI scenarios (Table 2). However, the single 398 

mean value of measured Y was outside the 0th to 100th percentile band in SEDI 399 

scenario (Table 2, Figure 5). 400 

The sum of the variance due just to parameters (varparm) and the variance due just to 401 

model residual error (varmodel) was almost equal to the total variance (varpred) for each 402 

output variable (Table 3), which suggested that there was little interaction between the 403 

parameter uncertainty and the model residual error. For SFI, SDI, and SAI scenarios, 404 

more than 95% of the total prediction uncertainty of CC, Bt, SWC, ET, and Y came 405 

from model residual errors. For SEDI scenario, the ratios of parameter uncertainty and 406 

residual error uncertainty of the five target output variables to total prediction 407 

uncertainty varied from 0.1% to 24.1% and from 79.0% to 99.5%, respectively. 408 

Medians of simulated CC, Bt, SWC, ET, and Y using the posterior parameter 409 

distributions were generally closer to the measured values, when they were compared 410 



 

 

to simulations of pre-calibrated AquaCrop using the trial and error method in Ran et al. 411 

(2017, 2018). In particular, EF of the medians for SWC and Y increased from 0.364 to 412 

0.739 and from 0.055 to 0.415, respectively (Table 4). 413 

4. Discussion 414 

4.1. How to make prediction uncertainty a standard part of crop models? 415 

Probability distributions of model outputs are useful because they give information 416 

about if the results are sufficiently reliable. Although a growing acknowledgement 417 

and characterization of uncertainty in crop model predictions is dominant in recent 418 

years, many crop models themselves, such as AquaCrop, DSSAT, etc., currently have 419 

no module to handle uncertainty. Recently, Gao et al. (2020) created an R version of 420 

the phenology model in DSSAT to study the parameter uncertainties instead of using 421 

DSSAT itself. How to quantify the uncertainty of a large number of parameters in 422 

crop models is still a big challenge so far.  423 

The framework developed in this study integrating sensitivity and uncertainty 424 

algorithms can address this issue, provided that the target crop model can be run in 425 

batches with inputs and outputs. The framework uses R to modify the input files, 426 

invoke the execute program and read the output files of crop models. This process is 427 

repeated hundreds of thousands of times, which is necessary for MCMC iteration. 428 

This framework does not require the source code of crop models, therefore, it can 429 

theoretically be applied to any deterministic crop model which can be run in batches. 430 

The framework first uses the Morris screening to keep out non-sensitive parameters to 431 



 

 

reduce the number of parameters that need to be quantified for uncertainty. Then it 432 

adopts the Metropolis-Hastings within Gibbs algorithm to quantify the uncertainty of 433 

the remaining sensitive parameters.  434 

The first application of the framework on AquaCrop for maize in Northwest China 435 

showed that posterior variances of parameters were generally much smaller than the 436 

prior (Table S4). Especially for parameters like WP*, KcTr,x, and fcsoil, they are 437 

dozens to hundreds of times lower than the prior variances. The propagation of 438 

parameter uncertainty to output variables is also quantified. The results demonstrate 439 

that the framework is successfully implemented on AquaCrop in arid Northwest 440 

China, and is straightforward to be applied on other crop models in other 441 

environments. 442 

4.2. Why should sensitivity and uncertainty be conducted in given scenarios? 443 

Our sensitivity analysis results are partially different from previous studies 444 

(Vanuytrecht et al., 2014; Silvestro et al., 2017; Lu et al., 2021), especially for the 445 

parameters of HI0, WP*, and KcTr,x. The difference comes from the specific 446 

pre-defined ranges of these parameters. KcTr,x with a pre-defined range of 1.00-1.10, 447 

WP*, 30-35 g m-2, and HI0, 46-50% in Vanuytrecht et al. (2014) and Lu et al. (2021). 448 

HI0 with a range of 40-55% is pre-defined in Silvestro et al. (2017). The pre-defined 449 

ranges for these parameters are much wider in our study (Table 1).  450 

Parameter sensitivities also vary with the target model output. Yield is the variable 451 

of interest in this study. If the target variable changes to final aboveground biomass, 452 



 

 

WP*, rather than HI0, is the most sensitive parameter in the full irrigation scenario 453 

(data not shown). This is expected as the parameter of HI0 affects yield formation 454 

rather than biomass accumulation processes. 455 

In addition, the sensitivity analysis results of a same set of parameters and same 456 

target output in different irrigation scenarios are also different. For example, the 457 

sensitivity of water stress coefficients is generally low in full irrigation scenario while 458 

it is high in extreme deficit irrigation scenario (Figure 2). This is also expected 459 

because when the irrigation amount is enough to avoid water stress, the consequently 460 

related water stress coefficients would have no impact on the simulation of crop 461 

growth. Roux et al. (2014) also showed that uncertainty in a water stress parameter 462 

may lead to large uncertainty in water stress situations, but to little uncertainty in 463 

well-watered conditions. Furthermore, our results demonstrate that irrigation is a 464 

significant factor that affects the sensitivity and uncertainty of crop model parameters 465 

in arid climate, which should be carefully considered. 466 

Although it is impossible to derive a list of sensitive parameters that are universally 467 

valid for all scenarios (Vanuytrecht et al., 2014; Lu et al., 2021), overlaps of 468 

influential parameter subsets under different irrigation scenarios can serve as a guide 469 

for calibrating AquaCrop in other environments. HI0, WP*, KcTr,x are generally the 470 

most sensitive parameters, and one needs to give priority to calibrate these three 471 

parameters when using AquaCrop. HI0 determines how much biomass is allocated to 472 

crop yield. WP* controls how much biomass is produced from transpiration. KcTr,x 473 



 

 

affects how much transpiration occurs which is the basis for biomass calculation. The 474 

most sensitive parameter in extreme deficit irrigation scenario is wpsoil. It indicates 475 

that how much water in the soil can be used by crops is critical in extreme drought 476 

conditions. 477 

4.3. How important is the measured data to the posterior distribution? 478 

When the measured daily ET data is not used during the MCMC iterations, the 479 

posterior distribution of KcTr,x is close to 1.4. After adding the measured daily ET, 480 

however, the posterior distribution value of KcTr,x is distributed around 1.17 (Figure 6), 481 

which is more biologically significant and is closer to the measured value. It suggests 482 

that 1) incorporating measured data of intermediate variables has a significant 483 

influence on the posterior distributions of the parameters that directly associated with 484 

these variables, and 2) adding intermediate measured data makes the estimated 485 

parameters more reliable. There should be sufficient interactions among the 486 

components of a system that, unless the detailed characteristics of these components 487 

can be specified independently, many representations may be equally acceptable 488 

(Beven and Freer, 2001). Generally, the number of estimated parameters should be 489 

substantially fewer than the number of observations to avoid overfitting and 490 

consequently poor predictive quality (Tremblay and Wallach, 2004). Our study, going 491 

a step further, indicates that high-quality measured data of intermediate time series 492 

variables needs to be incorporated into MCMC iteration to obtain reliable posterior 493 

parameter distributions for process-based crop models. Furthermore, the posterior 494 



 

 

distributions of the parameters should be carefully analyzed according to their 495 

biological meaning and need to be compared with their measured values (if available) 496 

to avoid overfitting and equifinality. 497 

The measured data affects not only the posterior distributions of parameters but 498 

also the distributions of model outputs. For example, the distributions of CC, Bt, SWC, 499 

and ET of treatment 2013W3 in SEDI (Figure 4) are much different from those in SAI 500 

(Figure S9-S12, 2013W3). The reason is that the measured data used for the MCMC 501 

iteration in SEDI involves only one treatment of 2013W3, while the iteration in SAI 502 

scenario involves 27 treatments of four years and 2013W3 is just one of them. We 503 

also find that the distributions of CC, Bt, SWC, and ET of treatment 2013W3 in SEDI 504 

are much closer to the measured values than in SAI. It indicates that AquaCrop might 505 

have a problem to handle interannual variation.  506 

Although the percentage of mean measured time series values that fall in the 25th 507 

to 75th percentile band in SFI, SDI and SAI scenarios is relatively low, there are many 508 

intersections between error bars and confidence intervals (Figure S1-S12). 509 

Measurement error is also another important uncertainty source for crop modeling 510 

(Confalonieri et al., 2016), which is beyond the scope of this study. 511 

4.4. What can we learn from the posterior distribution? 512 

For some parameters (e.g., WP*, KcTr,x, CGC, and CCx), the posterior distribution is 513 

much narrower than the prior, which allows us to considerably narrow the possible 514 

range of values. However, for other parameters (e.g., HI0), the posterior distribution is 515 



 

 

similar to the prior. There is little information in the distribution that would allow us 516 

to reduce our initial uncertainty about these parameters. 517 

The posterior distributions of WP* for all the four scenarios are around 20 g m-2 518 

(Table S4), which is close to the value of 20.9 g m-2 that was derived using measured 519 

biomass and EC data from 2012 to 2015 in Ran et al. (2018). On one hand, it indicates 520 

that the method to derive WP* from the first derivative of the linear regression 521 

between measured biomass and the sum of normalized evapotranspiration in Ran et al. 522 

(2018), originated from Hsiao et al. (2009), can stand the proof. On the other hand, it 523 

seems feasible to obtain crop model parameters through algorithms. This does not 524 

necessarily mean that algorithms can replace measurements in model calibration. 525 

Parameters derived from measurements should be advocated in crop models, if 526 

available, to make the crop model outputs more reliable. We also found posterior 527 

distributions of soil parameters of fcsoil (close to 26%) and wpsoil (around 7%), two 528 

key parameters determining SWC, are away from their nominal values (30% and 529 

10%). The use of the posterior values of fcsoil and wpsoil does improve the accuracy 530 

of SWC simulation when compared with using their nominal values (Table 4). It gives 531 

us new information that nominal values of fcsoil and wpsoil may be inaccurate, which 532 

needs further study. 533 

The simulated results of AquaCrop are generally acceptable considering the 534 

multiple irrigation treatment-year combinations and the extremely arid climate in this 535 

study. However, model fitting to the measured data is partly unsatisfying. The 536 



 

 

decomposition of total prediction error into parameter uncertainty and model residual 537 

error shows that residual error makes the major contribution (Table 3). On one hand, it 538 

suggests that improving the internal calculation process of AquaCrop may lead to 539 

significant improvement in simulation accuracy rather than further calibrating the 540 

model parameters in this case. On the other hand, the reasons for the low contribution 541 

of model parameter uncertainty are different for different scenarios. For the full 542 

irrigation scenario (SFI), the low contribution occurs given the bands of simulated 543 

yield are wide and cover all the measured values. It indicates that for crop models like 544 

AquaCrop that intend to adopt a same set of parameters for all the four years rather 545 

than different sets of parameters for each year, extra uncertainty will be brought into 546 

model residual error to weaken the contribution of parameter uncertainty. In addition, 547 

for the extreme deficit irrigation scenario (SEDI), the low contribution occurs on the 548 

condition that the measured yield is outside the band of simulated yield. It suggests 549 

that severe water stress will bring greater variance to model residual error. The HI 550 

simulation that controls the yield formation process in AquaCrop under water stress 551 

conditions is poor and its improvement has been carefully studied in Ran et al. (2019). 552 

4.5. Limits and future challenges? 553 

Only one crop model, i.e. AquaCrop, is currently considered in the framework. 554 

More crop models should be involved in the future. Uncertainty of parameters related 555 

to phenology (e.g., Tbase and Tupper) in AquaCrop are not considered in this study 556 

because phenology is specified as input by users. However, phenology is generally an 557 



 

 

important source of uncertainty (Gao et al., 2020), which should be considered in crop 558 

models. In addition, the framework only considers the parameter uncertainty, and the 559 

uncertainties of input data and model structure should be involved in this framework 560 

in the future. How to quantify the uncertainties of input, parameter, and model 561 

structure simultaneously is a great challenge in crop modeling, and research is lacking 562 

on this topic. 563 

In this study, model residual errors are randomly generated from inverse gamma 564 

distributions under the assumption of independent and identically distributed with 565 

normal distributions. That means the covariances of residuals between variables are 566 

ignored. When covariances need to be considered, a common practice is to use inverse 567 

Wishart distribution to generate the variance-covariance matrix of residual errors 568 

(Gelman et al., 2014). However, the application of inverse Wishart distribution to 569 

handle residuals of multiple time series variables with nonhomogeneous data size is 570 

complicated and rarely reported in crop modelling. 571 

The main purpose of the framework in this study is to quantify prediction 572 

uncertainty instead of finding the optimal parameters, although the results show that 573 

the framework does improve the accuracy of simulations when compared to the trial 574 

and error method. For example, the medians of SWC and Y are closer to the 575 

measurements, with EF improved from 0.364 to 0.739 and from 0.055 to 0.415, 576 

respectively (Table 4). However, it is computationally expensive if one uses the 577 

framework to find the optimal parameters. The Metropolis-Hastings within Gibbs 578 



 

 

algorithm tends to move to a smaller error at each iteration, but can also move to a 579 

larger error with a certain probability, and does not specifically look for the minimum 580 

error (Gao et al., 2020). Studies showed that other methods, e.g. PEST, are much 581 

faster at optimizing parameter values (Ma et al., 2020). 582 

The purpose of sensitivity analysis in the framework is to quickly identify sensitive 583 

parameters among a large number of parameters to reduce subsequent computational 584 

costs. However, the Morris screening method is limited by the inability to quantify the 585 

source of variance. Adding the variance-based methods, like the new methodology in 586 

Lamboni et al. (2021), into the framework to perform dependent multivariate 587 

sensitivity is interesting. In addition, we set the boundaries of the parameters 588 

according to their biological meaning, add measured data of time series variables in 589 

the MCMC iterations, and compare the posterior distributions of the parameters to 590 

their measured values to avoid overfitting. However, one needs to carefully assess the 591 

overfitting issue when using the framework with one's own data. 592 

In the framework, 300,000 iterations are needed to make the Markov chains 593 

converge given 17-19 parameters, 5 target variables, and 1458 measured data of 27 594 

treatment-year combinations. Gao et al. (2020) found that 10,000 iterations are 595 

sufficient to make the chains converge for 3 parameters. More than 200,000 iterations 596 

were run for 15 parameters with 3 target variables in Wallach et al. (2012). The 597 

computation cost is the primary challenge for the application of the 598 

Metropolis-Hastings within Gibbs algorithm in the framework. Although we run 12 599 



 

 

chains in parallel for the four irrigation scenarios, it takes an average of 9.19 days to 600 

complete these chains with 300,000 iterations of each. The algorithm needs to be 601 

further improved to reduce the time to convergence. 602 

5. Conclusions 603 

We have developed a framework that integrates sensitivity, uncertainty and 604 

parameter calibration of crop models, and have demonstrated its application to 605 

quantify the uncertainties of parameters and model residual errors of AquaCrop on 606 

maize in arid Northwest China. The framework has the ability to select sensitive 607 

parameters from a large number of parameters, and can also clarify the difference in 608 

sensitivity of a parameter between well-watered conditions and extreme water stress 609 

situations. For crop models like AquaCrop that intend to adopt similar parameters 610 

across years, interannual variation and severe water stress cause extra uncertainty of 611 

residual error, and thereby weaken the contribution of parameter uncertainty to the 612 

total prediction uncertainty. The different propagation of parameter uncertainty into 613 

output time series variables and summary variable is found using the framework. 614 

High-quality measured data of intermediate variables help the framework to obtain 615 

more reliable posterior parameter distributions. The framework can also improve the 616 

simulations of AquaCrop when comparing with using the trial and error method. It 617 

would be straightforward to use the framework on other crop models under other 618 

scenarios.  619 

The framework only considers parameter uncertainty currently, but aims to quantify 620 



 

 

multiple uncertainties of input, parameter, and model structure simultaneously in the 621 

future, which is a great challenge in crop modeling and needs extensive study. In 622 

addition, adding the variance-based methods into the framework to perform 623 

dependent multivariate sensitivity is interesting. The overfitting issue should also be 624 

carefully assessed when one uses the framework. 625 
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Table 1 744 

Model parameters of interest for maize in the AquaCrop model that are treated as 745 
random variables. 746 

Description and unit 
Nominal 
value 

Prior 
distribution 

Abbrevi
ation 

Base temperature, °C 8 6.5-8.5(a) Tbase 
Upper temperature, °C 30 29-31(a) Tupper 
Minimum growing degrees required for full 
biomass production, °C/day 

12 8.4-15.6 GDDmin 

Canopy size of the average seedling at 90% 
emergence, cm2 

6.5 4.55-8.45 cc0 

Shape factor describing root zone expansion 1.3 1.1-1.5(a) roots 
Upper threshold for soil water depletion for leaf 
growth 

0.14 0.098-0.182 pexpu 

Lower threshold for soil water depletion for leaf 
growth 

0.72 0.504-0.936 pexpl 

Shape factor for Water stress coefficient for 
canopy expansion 2.9 2.03-3.77 pexps 

Soil water depletion threshold for stomatal 
control 

0.5 0.35-0.65 psto 

Shape factor for water stress coefficient for 
stomatal control 

6 4.2-7.8 pstos 

Soil water depletion threshold for canopy 
senescence 0.5 0.35-0.65 psen 

Shape factor for water stress coefficient for 
canopy senescence 

2.7 1.89-3.51 psens 

Soil water depletion threshold for failure of 
pollination 

0.75 0.525-0.975 ppol 

Minimum air temperature below which 
pollination starts to fail (cold stress), °C 10 7-13 colds 

Maximum air temperature above which 
pollination starts to fail (heat stress), °C 

40 30-45(a) heats 

Maximum canopy cover, % 90 70-100(a) CCx 
Crop coefficient when canopy is complete but 
prior to senescence 

1.20 1.0-1.4(a) KcTr,x 

Decline of crop coefficient as a result of ageing, 
nitrogen deficiency, etc., %/day 

0.3 0.21-0.39 KcTrxd 

Effect of canopy cover on reducing soil 
evaporation in late season stage 

50 35-65 KcTrxle 

Water productivity normalized for ET0 and CO2, 
g m-2 

20.9 14.63-27.17 WP* 



 

 

Reference harvest index, % 33.1  23-43 HI0 

Canopy growth coefficient 0.0115  
0.008055-0.
014959 

CGC 

Canopy decline coefficient 0.0052  
0.003616-0.
006716 CDC 

Soil field capacity, % 30 26-34(a) fcsoil 
Soil saturated water content, % 41 37-45(a) satsoil 
Soil water content at permanent wilting point, % 10 6-14(a) wpsoil 
Soil saturated hydraulic conductivity, mm d−1 500 350-650 Ksatsoil 
The nominal values are cited from Ran et al. (2018). The lower and upper boundaries 747 
of prior distribution for each parameter is obtained by ±30% nominal value. The prior 748 
distribution is assumed to be a uniform distribution.  749 
(a)means the lower and upper boundaries are modified based on literature values and 750 
regulations in AquaCrop. 751 
 752 



 

 

Table 2 

Percentages of mean values of measured data fell in the calculated 25th to 75th 
percentile band or 0th to 100th percentile band in the four irrigation scenarios. 

Scenarios Response 
variables 

Cases in 25th to 
75th percentile 
range (%) 

Cases in 0th to 
100th percentile 
range (%) 

SFI: Full Irrigation CC 15 62 
Bt 6 26 
SWC 6 19 
ET 4 15 
Y 80 100 

SDI: Deficit Irrigation CC 16 58 
Bt 4 23 
SWC 6 24 
ET 14 42 
Y 33 89 

SEDI: Extreme Deficit Irrigation CC 25 92 
Bt 0 60 
SWC 0 56 
ET 0 53 
Y 0 0 

SAI: All Irrigation CC 9 36 
Bt 6 17 
SWC 4 19 
ET 4 16 
Y 39 91 

CC, Bt, SWC, ET and Y represent time series canopy cover, aboveground biomass, 
soil water content, daily evapotranspiration and final yield, respectively.     



 

 

Table 3 

The variance of parameter estimations (varparm), model residual errors (varmodel) and 
predictions (varpred) derived for each response variable in the four irrigation scenarios. 

Scenarios 
Response 
variables 

varparm varmodel varpred 

SFI: Full 
Irrigation 

CC 426.8 (1.8%)(a) 22946.0 (96.7%) 23739.2  
Bt 6.5 (2.7%) 238.0 (99.7%) 238.8  
SWC 277.6 (0.6%) 46561.8 (99.8%) 46635.6  
ET 3.5 (0.8%) 451.2 (98.1%) 460.0  
Y 7.8 (1.7%) 442.5 (96.6%) 457.9  

SDI: 
Deficit 
Irrigation 

CC 1256.9 (0.3%) 503109.6 (100.1%) 502635.1  
Bt 8.1 (1.0%) 826.5 (100.2%) 825.0  
SWC 870.9 (0.5%) 188634.1 (99.6%) 189316.4  
ET 1.5 (3.9%) 37.6 (95.7%) 39.2  
Y 14.4 (0.6%) 2558.4 (99.9%) 2560.3  

SEDI: 
Extreme 
Deficit 
Irrigation 

CC 38.2 (24.1%) 125.2 (79.0%) 158.5  
Bt 0.6 (11.0%) 4.8 (89.2%) 5.4  
SWC 233.3 (10.2%) 2006.4 (88.0%) 2280.6  
ET 0.3 (8.5%) 3.0 (92.6%) 3.3  
Y(b) 0.5 (0.1%) 528.6 (99.5%) 531.1  

SAI: All 
Irrigation 

CC 1755.2 (0.3%) 512605.3 (99.4%) 515660.2  
Bt 8.8 (0.8%) 1054.2 (99.3%) 1061.3  
SWC 676.0 (0.3%) 201476.9 (99.8%) 201945.2  
ET 3.8 (0.6%) 642.8 (99.2%) 648.1  
Y 19.1 (0.4%) 4819.2 (99.3%) 4854.5  

CC, Bt, SWC, ET and Y represent time series canopy cover, aboveground biomass, 
soil water content, daily evapotranspiration and final yield, respectively. 
(a)The numbers in brackets represent the ratios of the variances of parameter 
estimations and model residual errors to the total variances of predictions. 
(b)Nv instead of Nv-1 is used to calculate the variance of Y in SEDI to avoid infinity 
value since there is only one measured value. Nv is the number of measurements. 
 
 
 



 

 

Table 4 

The goodness-of-fit between the medians of simulated canopy cover (CC), 
aboveground biomass (Bt), total soil water content in the 0–100 cm soil profile (SWC), 
daily evapotranspiration (ET), and yield (Y) using the 451 vectors of the posterior 
parameter distributions in the All Irrigation treatments scenario (SAI) and the 
measured data, and its comparison with the result using the trial and error method. 
Variable-Model n(b) b0 R2 RMSE NRMSE EF d 
CC-AquaCrop(median) 321 0.90 0.812 14.0  20.9 0.784 0.934 
CC-AquaCrop(a) 321 0.96 0.818 12.9  19.3 0.811 0.947 
Bt-AquaCrop(median) 219 0.97 0.931 1.742 16.8 0.931 0.982 
Bt-AquaCrop(a) 219 1.05 0.929 1.972 19.1 0.903 0.977 
SWC-AquaCrop(median) 178 0.98 0.744 24.1  11.1 0.739 0.923 
SWC-AquaCrop(a) 178 1.09 0.736 33.1  15.2 0.364 0.854 
ET-AquaCrop(median) 717 0.94 0.835 0.73  23.6 0.833 0.952 
ET-AquaCrop(a) 717 0.96 0.825 0.75  24.4 0.822 0.952 
Y-AquaCrop(median) 23 1.01 0.586 1.153 20.6 0.415 0.703 
Y-AquaCrop(a) 23 1.12 0.496 1.466 26.2 0.055 0.681 
(a)The simulated results of AquaCrop using the trial and error method based on the 
same measured data in this study are cited from Ran et al. (2017, 2018).  
(b)n, b0, R2, RMSE, NRMSE, EF, and d represent the number of measured samples, 
regression coefficient through the origin, coefficient of determination, root mean 
square error, normalized root mean square error, Nash–Sutcliffe model efficiency 
coefficient, and Willmott's index of agreement, respectively. b0, R2, EF, and d are 
unitless. The unit of RMSE for CC, Bt, SWC, ET, and Y is %, t ha-1, mm, mm d-1 and t 
ha-1, respectively. The unit of NRMSE is %. 

 



 

 

Figure 1 

 
Framework for quantifying uncertainty of crop model parameters. CC, Bt, SWC, ET, 
and Y represent canopy cover, aboveground biomass, soil water content, daily 
evapotranspiration, and final yield, respectively. Upper C.I. represents the upper 
confidence limits of the potential scale reduction factor. The test of convergence is 
conducted by the coda package in R. system2 is a function in R to invoke and run 
AquaCrop.  
 

 

Data: measured time series  CC, Bt, SWC, daily ET, and final Y
Method: Metropolis-Hastings within Gibbs
                tune (make sure acceptance ratio around 25%)

Step 1

Step 2

Data:  simulated final yield by AquaCrop
Method: Morris           
                Morris design: trajectories=500 , levels=6 , jump=3
Objectives: 
 obtain sensitive parameters

Sensitivity Analysis 

Step 3

Initialization 
Select parameters of interest: 
 lower and upper boundaries
 develop prior parameter distributions 

Collect measured data from field experiments:
 time series variables:  CC, Bt, SWC, daily ET
 summary variable:  Y 

Crop model

Run simulations 
on local 
workstation 
using R:
 system2(
"ACsaV60.exe",
 timeout = 10)

Simulation 
outputs:
 daily CC
 daily Bt

 daily SWC
 daily ET
 final yield 

Uncertainty Quantification

Objectives: 
 generate posterior distributions from half of 3 chains
 thin the chain: 1 vector out of 1000
 finally left 451 vectors of parameters 

Step 4

Analysis and Application 

 Clarify the dependence of parameter sensitivity on target variables and  scenarios
 Identify the influence of measurements on posterior distributions under the 4 irrigation scenarios
 Calculate the percentage of measured values that fell in different percentile ranges 
 Quantify the contribution of each source of uncertainty
 Compare with the previous parameterization results of using the trial and error method

AquaCrop plug-in: 
version 6.0
ACsaV60.exe

Chain 1
Chain 2
Chain 3

300,000 iterations each chain
Convergence test: Upper C.I. <1.1

Parallel independent  processFour pre-defined irrigation scenarios
SFI: Full Irrigations
SDI:Deficit Irrigations
SEDI:Extreme Deficit Irrigation
SAI: All Irrigation TreatmentsSAI: All Irrigation TreatmentsAll Irrigation Treatments



 

 

Figure 2 

 

HI0

WP*

KcTr,x

CGC

CCx

GDDmin

Tbase

fcsoil

wpsoil

CDC

psen

cc0
heats

KcTrxd

Tupperpexpl

satsoil

pexps

pexpu

colds

psto roots

ppol

KsatsoilpsenspstosKcTrxle

HI0

WP*

KcTr,x

wpsoil

CCx

CGC

Tbase

GDDmin

psen

CDC

fcsoil

ppol

cc0

heats

psto

KcTrxd

pexpl

Tuppercolds

pexpspsens pstos

satsoil

pexpurootsKsatsoilKcTrxle

wpsoil

HI0

WP*

CGC

fcsoil

Tbase

psen

ppol

KcTr,x

CDC

psto

cc0

GDDmin
CCxpsens

pexpl Tupper

pexps

pstos

pexpu

heats

roots
KcTrxd

satsoil
Ksatsoil
colds

KcTrxle

HI0

WP*

KcTr,x

CGC

CCx

wpsoil
Tbase

GDDmin

fcsoil
psen

CDC
cc0

heats

ppol

KcTrxd

Tupper

pexplpsto

satsoil

colds

pexps pexpupsens

pstosrootsKsatsoilKcTrxle

SFI: Full Irrigations SDI: Deficit Irrigations SEDI: Extreme Deficit Irrigation SAI: All Irrigations

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0

0.5

1

1.5

0.1

µ*



1

2

3

µ*

SAI: All Irrigation TreatmentsSAI: All Irrigation SFI: Full Irrigation SDI: Deficit Irrigation SEDI: Extreme Deficit Irrigation 

0.1 0.1 0.1 0.1



 

 

Results of the Morris method obtained with AquaCrop for the four irrigation scenarios. μ* and σ represent average Morris mean effects and the 
square root of variance. The method is implemented with a grid including 6 levels per factor, a jump equal to 3, and 500 trajectories. The 
meaning of parameter abbreviation is shown in Table 1.  



 

 

Figure 3 
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Posterior distributions of the sensitive parameters and model residual standard error (sigma) for canopy cover (CC), 
biomass (Bt), soil water content (SWC), daily evapotranspiration (ET) and final grain yield (Y) in the four irrigation 
scenarios. The colored lines represent the corresponding medians. The black dotted lines represent the lower and 
upper boundaries of the prior distribution for each parameter. The sigma for each variable is generated from inverse 
gamma distribution after logarithmic transformation of the measured values.  



 

 

Figure 4 

 
Simulated and measured canopy cover (CC), biomass (Bt), soil water content (SWC), 
and daily evapotranspiration (ET) for the treatment of 2013W3 in Extreme Deficit 
Irrigation scenario (SEDI).  
DAP is days after planting. 
Black dots with error bars represent measured values with ±1 standard deviation. 
Solid black lines represent the medians of the simulations. Gray areas indicate the 0th 
to 100th percentile band and yellow areas the 25th to 75th percentile band of the 
values simulated by AquaCrop with 451 vectors of the posterior parameter 
distribution. The blue dash line represents the calibrated results of AquaCrop with the 
same measured data of this study using the trial and error method in Ran et al. (2017, 
2018). 
 



 

 

Figure 5 

 

SFI: Full Irrigations SDI: Deficit Irrigations SEDI: Extreme Deficit Irrigation SAI: All Irrigations
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Measured and simulated final grain yield (Y) with the AquaCrop model in the four irrigation scenarios. Red points with error bars represent 
measured yield and its ±1 standard deviation. Blue boxplots represent the 0th, 25th, 50th, 75th, and 100th percentile range of the values 
simulated by AquaCrop with 451 vectors of the posterior parameter distributions. Green points represent the calibrated results of AquaCrop with 
the same measured data of this study using the trial and error method in Ran et al. (2018). 



 

 

Figure 6 

 
The posterior distribution for parameter of KcTr,x with or without involving measured 
daily ET during the MCMC iteration in the All Irrigation treatments scenario (SAI). 
Red dash lines mean the lower and upper boundaries of the prior distribution for each 
parameter. 
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