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SCIENCE FOR SOCIETY Despite awareness of climate impacts on development, climate variability and
future change have received limited attention in investment decisions.We examined past and future climate
variability with the aim of understanding the main source of climate risk to development plans across the
water, energy, and food sectors in southern East Africa, a relatively neglected region in terms of climate sci-
ence and targeted for extensive infrastructure development. Infrastructure performance shows high sensi-
tivity to multi-year droughts that have occurred in the past, which would challenge the viability of proposed
infrastructure. Contingency plans for the worst-case extremes need to be developed. Our assessment ex-
emplifies the need for investors anddonors to take a comprehensive approach to climate risk. Infrastructure
design should take into consideration the potential for changes in climate variability and recognize the lim-
itations of planning on the basis of short time series of observations or projections.
SUMMARY
The need to assess major infrastructure performance under a changing climate is widely recognized yet
rarely practiced, particularly in rapidly growing African economies. Here, we consider high-stakes invest-
ments across the water, energy, and food sectors for two major river basins in a climate transition zone in
Africa.We integrate detailed interpretation of observed andmodeled climate-systembehavior with hydrolog-
ical modeling and decision-relevant performance metrics. For the Rufiji River in Tanzania, projected risks for
the mid-21st century are similar to those of the present day, but for the Lake Malawi-Shire River, future risk
exceeds that experienced during the 20th century. In both basins a repeat of an early-20th century multi-
year drought would challenge the viability of proposed infrastructure. A long view, which emphasizes past
and future changes in variability, set within a broader context of climate-information interpretation and deci-
sion making, is crucial for screening the risk to infrastructure.
INTRODUCTION disruption.6–8 The 2015–2016 drought across southern Africa
In sub-Saharan Africa (SSA), exposure and vulnerability to

climate risk is high across crucial economic sectors.1–5 Recent

extreme drought and flooding events demonstrate the scale of
One Earth 4, 397–410, M
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highlighted the cascading nature of impacts involving food inse-

curity, power cuts, and drinkingwater shortages,6 disproportion-

ally affecting small and medium-sized enterprises.7 While

economic development may reduce poverty and reliance on
arch 19, 2021 ª 2021 The Authors. Published by Elsevier Inc. 397
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Figure 1. Existing and planned hydropower

across sub-Saharan Africa and area under

irrigation

Inset: Rufiji and Lake Malawi-Shire River basins

with existing and new hydropower infrastructure,

wetlands affected, and agricultural development

corridors under consideration. (1) Julius Nyerere

Hydropower Project (JNHPP), (2) Rufiji delta

ecosystem, (3) upstream rice areas in the Southern

Agricultural Growth Corridor of Tanzania (SAG-

COT), (4) Kholombidzo Hydropower, (5) Elephant

Marsh, and (6) Shire Valley Transformation Pro-

gram (SVTP). Source of hydropower data: Conway

et al.3 for East and southern Africa and http://www.

internationalrivers.org for central and western Af-

rica, with capacity and operational status updated

to the present day. Only hydropower plants with a

capacity of more than 50 MW are presented. Irri-

gated areas for 2019 (at least 50% of agricultural

area irrigated according to 250-m-resolution grid-

ded data) were derived from the WaPor database

(http://wapor.apps.fao.org) of the Food and Agri-

culture Organization of the United Nations (FAO).

Planned irrigation in sEA will expand irrigation

outside the traditional irrigated areas in southern

and northern Africa.
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climate-dependent agriculture, vulnerability to climate shocks

may remain high across the tropics as assets and economies

grow.9–12

Population and gross domestic product (GDP) growth in SSA

have been among the highest globally. To support this growth,

major infrastructure investments are planned,13 including the Ju-

lius Nyerere Hydropower Project (JNHPP) in Tanzania, one of the

largest hydro developments in SSA, and the expansion of hydro-

power on the Shire River in Malawi (Figure 1), a tributary of the

Zambezi River. Agricultural land use is still increasing—in

Tanzania it doubled between 2000 and 201814—and in many

SSA countries irrigation is strongly promoted in government pro-

grams.15 These developments require massive investment at a

time when increasing debt is a growing concern for some coun-

tries in SSA. Despite awareness of climate impacts on develop-

ment,8,16 climate variability and future change have received

limited attention in investment decisions17 and practical coordi-

nation on adaptation remains superficial and sectoral,18 despite

guidelines appearing.19,20Most investments in large hydropower

plants are still made under the assumption that rainfall or river

flow patterns will resemble historical patterns, which are often

poorly characterized. This poses severe risks to performance.21

Moreover, the vastmajority of studies on future projections focus

on changes in mean climate. Information on past and possible

future changes in variability is typically neglected in climate risk

assessments.22

Here, we examine past and future climate variability with the

aim of understanding the main source of climate risk to develop-

ment plans across the water, energy, and food sectors in the

southern East Africa (sEA) region, a relatively neglected region

in terms of climate science that is targeted for extensive infra-

structure development. We consider the sEA region to be a

‘‘climate transition zone’’ in three aspects. First, regarding rainfall

variability, sEA lies in a transition zone of complex responses to

dominant global and regional modes of climate variability
398 One Earth 4, 397–410, March 19, 2021
including the El Niño-Southern Oscillation (ENSO; note the

opposing sign of ENSO influence across sEA; Figure 2B)23–25

and the Indian Ocean Dipole (IOD),26 while themagnitude of vari-

ability remains high (Figure 2A).27–29 Second, sEA straddles the

transition between the bimodal rainfall regimes of equatorial

East Africa to the north and the unimodal southern African

regime. Third, there is low intermodel agreement in rainfall pro-

jections (Figure 2C). This contrasts with the relatively robust pro-

jected increase (decrease) over the neighboring East (southern)

Africa (see Note S3). This combination of climate features makes

the region special but not unique; climate transition zones

complicate development planning in regions across the world,

such as in equatorial western Africa and parts of South Asia

and South America. A better understanding of how to charac-

terize risk under these conditions therefore has wider relevance.

In this paper, we adopt a comprehensive approach that inte-

grates multiple sources of evidence and methods to develop a

rounded portrayal of climate risk. We synthesize evidence from

recent literature on climate processes in and around sEA’s tran-

sition zone and undertake primary data analysis and hydrological

impact modeling combined with detailed analysis of climate

model projections. Major infrastructure proposals are identified

from current policies and analyzed under historic and future

climate variability with user-defined performance metrics and a

suite of new robust rainfall products. The products are all based

on similar underlying observational data but vary in their spatial

extent, resolution, and data-assimilation techniques. For future

variability, we utilize the CMIP5 archive and a bias-corrected

version,30 for which we assess the ability to simulate the domi-

nant drivers of variability.

Climate variability and changing policy contexts
In regions where rainfall is markedly seasonal and characterized

by high interannual variability, higher levels of institutional and

infrastructure investment are needed to achieve basic water



Figure 2. Three variables characterizing southern East Africa’s transition zone

(A) Standard deviation of annual (July–June) rainfall (mm).

(B) Composite wet-season (October–March) rainfall anomalies during moderate and strong El Niño years (in mm/month); dots indicate regions with significant

correlation with the ENSO index Niño3.4 over the period 1901–2016 (p < 0.05).

(C) Projected change in annual (July–June) rainfall for 2020–2050 comparedwith present day (1976–2005, in mm/month); dots indicate model agreement in signal

(more than 66% of models) (see the experimental procedures).
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security.31 Investments in irrigation and hydropower infrastruc-

ture are often seen as necessary for socioeconomic develop-

ment and in order to manage water resource variability.32

However, in sEA, such variability is sometimes overlooked in sur-

face and groundwater development plans, including policy com-

mitments to increase irrigation. Furthermore, low policy coher-

ence in the highly interdependent water, energy, and

agriculture sectors is evident in both Malawi and Tanzania with

regard to considerations of climate change.18,33

Expanding energy supply is a crucial element of economic

development34,35 in a region where half the population is still

without direct access to electricity36 and with a heavy reliance

on hydropower,37 which currently produces about 90% of Mala-

wi’s and 40% of Tanzania’s electricity. Both countries experi-

ence regular blackouts and load shedding associated with dry

conditions and drought, among other causes.38 In Malawi,

climate variability has contributed to substantial fluctuations in

Lake Malawi levels39 that have influenced political priorities on

energy security.40 The economic cost of power outages has

been estimated at 5%–7% of the GDP for Malawi and

Tanzania.41

Concern about overdependence on hydropower led to policy

shifts in both countries toward diversifying electricity supply,

including coal in Malawi42,43 and natural gas in Tanzania.18,44

Yet, even though declining hydropower supply is attributed to

climate change, theMalawi Growth and Development Strategy34

still aims to develop hydropower plants along the Shire River. In

Tanzania, a major decision was taken in 2017 to go ahead with

the JNHPP, first conceived in the 1950s, to support the country’s

growth and economic transition agenda.45 When operational, it

will be the third largest hydropower dam by energy-generating

capacity (2,115 MW) in Africa. Both the JNHPP and Malawi’s

Shire River hydropower will dominate the countries’ energy sup-

ply mix, concentrating risk in large infrastructure projects.

The agriculture sector is also pursuing policies that aim to in-

crease productivity and food security with expanded irrigation

embodied in a number of presidential programs, suchas theShire

Valley Transformation Program and the Southern Agricultural
Growth Corridor of Tanzania (SAGCOT, which is planning a

quadrupling of irrigated agriculture in the basin). Together, both

programs focus on the commercialization of up to 200,000 small-

holder families and aim to lift millions out of poverty through

enhanced rural employment in improved value chains. The aim

expressed in the National Agricultural and Irrigation Policies is

to absorb variation in production linked toweather variability;46,47

however, there is little consideration of irrigation water availability

under future climate conditions.

RESULTS

Characterizing historical rainfall variability
Rainfall over sEA is primarily controlled by the African rain belt,

which is intensely active from December to March and predis-

posed to north-south fluctuations,29 driving high interannual

rainfall variability with a standard deviation (SD) of ~200 mm

around a crop production-critical level (roughly 600 mm required

for maize) in both basins (Figures 2A and 3). Rainfall variability

over our study basins substantially reflects the control of

ENSO23–25 and the IOD22 (Figure 3) occurring both indepen-

dently26 and through complex interactions.48,49 Over the Rufiji

basin, rainfall anomalies show a clear signal whereby El Niño

or positive IOD events tend to be associated with above-average

rainfall and La Niña or negative IOD events tend to be associated

with drier-than-average conditions (Figure 3A). The IOD positive

phase is particularly important for major wet years, e.g., 1961–

1962 and 1967–1968 independent of El Niño and 1997–1998

coincident with El Niño. The Rufiji wet season, with contributions

from the East African ‘‘short rains’’ and the southern African un-

imodal wet season, is rather long and has accordingly complex

influences.50

Conversely, for the Shire basin, rainfall anomalies during the

El Niño and La Niña phases of ENSO are reversed (Figure 3B).

However, the association is less coherent than in the Rufiji, and

La Niña events have produced both wet years (e.g., 1988–

1989) and dry years (1999–2000) as the basin straddles the

dipole structure of ENSO influence (Figure 2B). The IOD has
One Earth 4, 397–410, March 19, 2021 399
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far less control on the Shire than the Rufiji as a result of loca-

tion (Note S3) and seasonality of rainfall. Furthermore, the

control exerted by the IOD and ENSO on sEA rainfall is non-

stationary with pronounced multi-decadal variations.25 Major

rainfall anomalies in both basins also occur in years when

ENSO and IOD are inactive, during which regional controls

are important (e.g., the Angola Low during the wet event of

1978–1979).

Multi-year variability is also apparent with periods of consec-

utive dry years, especially during the early 20th century, in both

basins. More recently, the Rufiji basin experienced consecutive

dry years after the 1997–1998 EL Niño, possibly associated

with persistent LaNiña-like conditions in thePacific (Figure 3A).50

Decadal variability (red lines in Figure 3) contributes 16%of over-

all variance in the Rufiji and 19% in the LakeMalawi-Shire. There

is no significant long-term trend in rainfall, such that interannual

and multi-annual variability rather than long-term changes in

mean rainfall dominates the historical period.

Historical performance of recent infrastructure plans
Using hydrological models and climate data (see the experi-

mental procedures), we examined the impact of historical

climate variability on several of the large, pending investments

in the two basins: expansion of hydropower (e.g., the JNHPP)

and irrigation (e.g., the Shire Valley Transformation Project and

SAGCOT) (see the experimental procedures for hydrological

model setup). These represent ‘‘what-if’’ scenarios: as if the hy-

dropower and irrigation expansion had been present from 1900

onward.

Rainfall variability translates into high variability in streamflow

with persistence of wet and dry years (see Figure 3 and the co-

efficients of variation in Figure 5), leading to a multi-year pattern

most notably in simulated Lake Malawi levels (Figure 3F). Pro-

longed periods of below-average rainfall during the beginning

of the 20th century led Lake Malawi levels to fall below the

outflow threshold.51 Even if the Lake Malawi barrage (built in

1960) had been present, it would not have fully prevented the

drop in lake levels (Figure 3F) because of the severity and dura-

tion of themulti-year drought. Similar multi-year dry conditions in

the Rufiji basin (Figure 3A) would have led to the JNHPP—

assuming it was built and operated to prioritize firm (reliable)

electricity production (see the experimental procedures)—failing

to meet its potential firm energy level for multiple consecutive

years (Figures 3B and 3C).

The second half of the 20th century recorded wetter periods

especially in the 1960s, similar to much of East Africa.52 After

the strong El Niño of 1997–1998, a higher frequency of years
Figure 3. Hydrological impact pathways

(A and D) Annual precipitation anomalies (October–September) for the Rufiji (A) a

strong El Niño or La Niña and with strong positive or negative IOD are highlighte

Lanczos filter with 8-year frequency cutoff. Note: caution is required in interpre

observations. Definitions of EN and IOD events are explained in the experimenta

(B and C) Simulated mean annual Rufiji river inflows and outflows at the JNHPP

Project reservoir (assuming it was built in 1900) (C). The simulated range in live sto

(HRR) and low (LRR) irrigation return flow rates, which affects inflows into the res

firm energy flow, is indicated by the purple bars, whereas green dots highlight yea

the delta ecosystem.

(E) Mean annual inflows and outflows of Lake Malawi, assuming the barrage was

(F) Simulated monthly lake levels of Lake Malawi, assuming the barrage was pre
with below-average rainfall returned and contributed to hydro-

power disruption in smaller reservoirs in the Rufiji basin.53 The

simulation shows that under these conditions, the JNHPP would

have just managed to maintain firm energy output because of its

large storage size but only if upstream irrigation expansion was

managed to ensure recovery of irrigation water return flows. Un-

controlled upstream irrigation expansion and greater reuse of re-

turn flows by smallholder farmers is ongoing,54 which would put

greater pressure on the performance of the JNHPP downstream

(Figure 3C and the experimental procedures).

The present relatively undisturbed natural flow regime in the

Rufiji comprises biennial bank overflows, which rejuvenate one

of the world’s largest deltaic wetland systems in the Nyerere Na-

tional Park and support downstream flood recession irrigation.55

The JNHPP damwill alter this pattern, particularly if operated pri-

marily for hydropower purposes. In our simulation, exceedence

of the peak flow threshold of more than 2,500 m3 s�1 during a

wholemonth56 (Figure 3C), required for delta flooding and regen-

eration, would be reduced from one in 2 years to less than one in

10 years. This would affect the delta ecosystem, fisheries, and

farming, although it is possible that the JNHPP dam could be

operated to mitigate this risk but at the expense of reliable en-

ergy production.

In Malawi, barrage operation aims to replicate natural outflows

into the Shire River. High rainfall does not translate directly into

high outflows; although the size of Lake Malawi buffers part of

the interannual variability in inflows, the large surface area leads

to high evaporative losses of up to 80% of total inflows and lake

rainfall. While single years with low inflow can still be buffered

(e.g., 1949 and 1954), consecutive or multiple years of drought

within a short time span (1910s and around 1990) lead to a

drop in lake levels, a sharp reduction in outflows, and a slow re-

covery. Our analysis shows how investments in both the Rufiji

and Lake Malawi-Shire basins are strongly sensitive to multi-

year rainfall variability.

Climate change and future variability risk
The Rufiji and LakeMalawi-Shire basins are located in a region of

particularly high uncertainty in projected rainfall, as noted in Fig-

ure 2B. Most research has focused on projected changes in

mean rainfall57,58 or extremes.59,60 Over sEA, climate-model pro-

jections of mean annual rainfall span wetter and drier futures

(Figure 4A): performance-based model weighting does not

reveal strong systematic effects on the spread of projections

or their impacts and has limited effect on the range of uncer-

tainty.61 This range in rainfall uncertainty is both amplified and

modified by hydrology. Relative changes in runoff are more
nd Lake Malawi-Shire (D) basins (source: CENTRENDS); years with modest to

d. The red line indicates a decadal rainfall variability obtained with a low-pass

ting the early and later parts of the series because there are very few in situ

l procedures.

reservoirs (B) and simulated monthly live storage of the Nyerere Hydropower

rage represents uncertainty in the efficiency of irrigated agriculture under high

ervoir. Risk of failure, i.e., not being able to release sufficient water to maintain

rs with sufficient release of water to satisfy downstream flood requirements of

present from 1900.

sent from 1900.
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Figure 4. Projected future rainfall variability

(A) Current and future rainfall variability using the bias-corrected AMMA2050 models;30 the absolute change in future mean annual rainfall is shown by gray bars.

Green (purple) triangles indicate increase (decrease) in future variability (represented by standard deviation [SD]); also shown is the historical variability from two

observational datasets (GPCC and CENTRENDS).

(B) Multi-model mean projected change in interannual rainfall variability (SD); dots indicate model agreement (>66% of models have a sign similar to the multi-

model mean).
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pronounced than the changes in rainfall, and there is a higher

proportion of drier futures (for the Rufiji, only 3 out of an

ensemble of 24 projections show a reduction in rainfall, but 9

out of 24 have lower runoff62), associated with increased evapo-

ration due to higher temperatures.

Intensification of daily rainfall is emerging as a robust response

to global warming resulting from thermodynamic principles.59

Such intensification is stronger in new high-resolution convec-

tion-permitting models over much of Africa;60 however, in these

large basins, the response to changes in rainfall intensity will be

dampened. It is the changes in interannual to multi-annual vari-

ability that are decision critical (Figure 3), and these will be

shaped by the extent to which the local, regional, and global

drivers of variability evolve under a warming climate. These

remain uncertain even for ENSO,63–65 and climate models typi-

cally have a limited ability to simulate ENSO teleconnections to

sEA (Figure S5). In contrast, representation of IOD rainfall pat-

terns in models is more reassuring (Figures S2 and S3), and a

robust increase in the frequency of extreme positive IOD events

has been suggested66 (Note S3), although we note no apparent

systematic relationship between the projected changes in rainfall

variability over sEA and that in the IODmode (Figure S4). Further-

more, changes in mean state and variability are likely to interact;

it has been suggested that changes tomean east-west gradients

across the Indian Ocean may lead to an emergent ENSO-like

mode of climate variability according to CMIP5 climate model

analysis,67 capable of generating unprecedented sea surface

temperature (SST) and rainfall fluctuations. With regard to the

synoptic-scale weather responsible for much of the regional

rainfall—tropical lows, cyclones, tropical-extratropical cloud-

bands—climate models do simulate these events but with

limited skill in representing their seasonality or intensities (see

Note S2).68,69
402 One Earth 4, 397–410, March 19, 2021
Acknowledging the limitations of models to simulate underly-

ing drivers, we analyzed a set of 24 bias-corrected CMIP5model

experiments for future changes in variability. There is strong

agreement on the sign of projected change in future rainfall vari-

ability such that about three-quarters of the CMIP5 models sug-

gest an increase in interannual variability (Figure 4) (irrespectively

of their mean rainfall change), and all but one project an increase

in daily variability (data not shown).

Changes in annual runoff variability show greater relative

changes (Figure 5), leading to marked changes in risk of failure

to achieve performance objectives. Hydrological amplification

of changes occurs through multiple processes including an in-

crease in rainfall events outside of the normal rainfall season

in some years but not others, converting rainfall mostly into

transpiration, which has higher potential due to higher mean

temperature, rather than runoff.

To understand extreme, multi-annual drought conditions, we

identified periods of three ormore consecutive yearswith at least

one month without lake or reservoir outflow. For the Rufiji, multi-

annual drought conditions are projected by the three driest

models, as well as by one model (ACCESS1-3) in which, on

average, rainfall and runoff increase, indicating the risk of

changes in frequency and sequencing of dry years and hinting

at a higher likelihood of a recurrence of the early-20th century

drought. For Lake Malawi, the likelihood of multi-annual drought

was dominated by projected changes in the mean such that

models projected either reduced precipitation and (semi-) per-

manent drought conditions or increased rainfall and runoff and

no drought at all.

Simulated profiles of present and future climate risk of failure

to achieve performance indicators across the water, energy,

and food sectors (see the experimental procedures) are shown

in Figure 6. Under near-present-day climate (1981–2010), the



Figure 5. Amplification of rainfall variability

Annual coefficient of variation for rainfall (P) in the Rufiji basin and runoff into

the JNHPP reservoir (Q) under present conditions and future projections

(2020–2050).
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risk of failure to meet environmental flows with the JNHPP

assumed built, irrigation expanded, and no adaptive manage-

ment is already substantial. With this particular indicator for

ecosystem services in the Rufiji, the environmental flow failure

rate could be as high as ~85% given that a period of sufficient

peak releases from the JNHPP dam would have occurred only

once since 1981 (Figure 3C). For irrigated agriculture in upstream

rice producing areas in the Rufiji basin, sufficient water availabil-

ity shows a failure rate >40%. Here, irrigation is vulnerable to

climate variability because of a lack of storage. In the Lake

Malawi-Shire river system, climate variations are buffered by

Lake Malawi storage, but the planned irrigated demand (37–50

m3/s; the residual of lake outflows and downstream environ-

mental flows that have priority) is difficult to meet. In contrast,

both basins show that firm-level hydropower requirements,

assuming hydropower would get priority over other sectoral de-

mands and with no ad hoc releases that could affect firm-level

production, could be met reliably under present conditions and

the risk of failure would be low.

Regarding future risk, our analysis demonstrates considerable

uncertainty. For different reasons, risk tends to become lower for

those indicators currently at high risk and higher for those

currently at low risk. In both the Rufiji and Lake Malawi-Shire,

for the majority of projections, the risk of hydropower failure in-

creases. Design characteristics of the JNHPP appear to be fully

optimized on limited observational river flow records of the late

1950s, 1960s, and early 1970s, a relatively wet period (Figure 3),

and climate projections with drier conditions increase the risk of

failure. However, becausemanymodel projections of drying also

exhibit high variability in rainfall, wet years alternate with dry

years and add to live storage, thereby keeping hydropower risk
of failure in most projections at 15% or below. In the Lake

Malawi-Shire basin, there is a more divergent effect whereby

the consequences of a small selection of projections of a drier

future lead to a higher risk of failure due to persistent constrained

or no-outflow conditions. However, for a subset of wet climate

projections (note that Munday and Washington70 question the

reliability of several of these; see also Note S2), the risk with re-

gard to firm energy remains low in both the Lake Malawi-Shire

and JNHPP hydropower systems.

Positive impacts occur for the environmental flow indicator in

the Rufiji such that increased variability in rainfall and runoff in-

crease the chance of high releases during the wet season,

although considerable risk remains. Specific adaptive environ-

mental flow management measures will be necessary to reduce

the expected negative impacts, which will involve a trade-off be-

tween total energy production and environmental flows. Up-

stream irrigation water supply deficits in the Rufiji basin might

reduce in future with high model agreement for slightly wetter

future conditions in the mountainous areas to the west of the ba-

sin. In the irrigated areas planned downstream of Lake Malawi,

large uncertainty about whether demand can be met remains,

with projections suggesting lower water availability.

The full climate risk profile is important in advising policy-

makers and guiding further research; the most serious potential

hydropower risk in the Rufiji basin (e.g., over 35%) occurs with

just three outlier models, which, depending on stakeholder risk

appetite, could be further scrutinized for their representation of

regional climate drivers and teleconnections and discounted if

found unsatisfactory to avoid making expensive modifications

on the basis of unreliable information. Other risk profiles are

characterized by either a concentration of models around a

certain risk or an even spread from low to high risk, such as for

the environmental flow indicators, where uncertainty is less likely

to be easily constrained.

Table 1 summarizes how future risk compares with historic risk

over various 30-year periods. It shows that future hydropower

and environmental flow risks in the Rufiji basin are similar to those

of recent decades. Future irrigation risk is lower than at any period

during the 20th century. For Lake Malawi-Shire, the increase in

risk for hydropower and environmental flows, though with large

uncertainty, is beyond what has been experienced previously.

Even during the early-20th century drought, the risk of hydropow-

er and environmental-flow failure was lower as rainfall down-

stream of the lake mitigated no-outflow conditions. However,

the warmer and drier conditions in several of the climate projec-

tions lead to further reduced inflow and reduced outflow and

would require a permanent adjustment in managed outflows.

DISCUSSION

This analysis focuses on the sEA climate transition zone, where

past and future climate signals are complex, presenting particular

challenges for infrastructure development and performance. A

majority of climate models project an increase in interannual rain-

fall variability, in line with advances in understanding plausible

mechanisms for future hydrological changes. Our results also

show that climate models have a mixed ability to simulate the

dominant drivers of variability over sEA, underscoring the chal-

lenges in the use of model projections for local-regional-scale
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Figure 6. Climate change impacts on failure rates in threemain Rufiji

and Lake Malawi-Shire performance indicators in three sectors

Reliability of infrastructure is summarized under current baseline (1970–2010)

and future (2020–2050) climate conditions. The size of circles and number

(plotted if not overlapped by a circle) represent the percentage of climate

model projections in this category of risk (total of 24 models). ‘‘Hydro’’ in-

dicates the risk of not meeting firm energy requirements, ‘‘E-flow’’ indicates

the risk of not meeting biannual flooding requirements in the Rufiji basin and

average minimum flow in the Lake Malawi-Shire, and ‘‘irrigation’’ indicates the

risk of not meeting monthly demand in both the Rufiji and Lake Malawi-Shire

basins (see the experimental procedures).
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future risk assessment.22,71 Nevertheless, our climate is chang-

ing, and strategies need to be put in place now tomanage existing

and future climate risks as the world warms further.

Climate risk was traced in two river basins involving high-

stakes, long-term major investment decisions across the water,

energy, and food sectors. In both basins, which share similar

climatology, infrastructure performance risk shows substantial

sensitivity to multi-annual climate variability, which would chal-

lenge the viability of proposed infrastructure. Additional expo-

sure to future risk differs between the two basins. The size of

Lake Malawi buffers single-year extremes, so future risk mainly

lies in projections of reduced rainfall. In the Rufiji, high interan-

nual variability in rainfall—amplified through basin hydrology—

sees the climate risk profiles for hydropower and environmental

flow performance indicators stretched.

Our analysis highlights the need for climate risk assessments

to incorporate a long view of variability. Infrastructure design

should take into consideration the potential for changing pat-

terns in variability and recognize possible bias if only short time

series of observations are available or when using only projec-

tions of limited length. Here, we have tested infrastructure invest-

ment performance under historical variability and an ensemble of
404 One Earth 4, 397–410, March 19, 2021
bias-corrected climate projections set within a broad under-

standing of the policy context. This combination of looking

back and forward can better portray the infrastructure risk.22

Major policy and sectoral decisions require careful planning; in

cases involving large investments, long lifetimes, and irrevers-

ibility, there is a strong argument to develop contingency plans

for the worst-case extremes (in the past and future), for example,

the development of drought management plans in both basins to

handlemulti-year dry conditions. Thesewould involve sequences

of decisionpoints across yearswith increasingly stringent restric-

tions on releases after successive years of drought. Such plans

require careful analysis to identify trigger points for decisions

and cross-sectoral coordination, particularly between agencies

responsible for water resources, energy, and agriculture.

We presented risk without considering adaptation. Through

adaptivemanagementandwell-designed reservoir operating rules

and improved irrigation practices, some of the risks could poten-

tially be mitigated.72 Greater use of groundwater, taking into

consideration observed volatility in recharge events,73 could

reduce trade-offs between agriculture, energy, and the environ-

ment in dry years. The cost of building andmaintaining damsoften

exceed their benefits74 and alternatives or complementary op-

tions, such as solar, thermal, or wind power, which can be

expanded incrementally, are rapidly becoming more cost-

competitive75 and should be considered alongside more open

consultation on major infrastructure decisions. Moving beyond a

region’s own zone of variability, for example, when hydropower

dams are integrated in regional power grids, reduces systemic

risk.3 This also offers opportunities; as the continent becomes

increasinglyconnected throughnew infrastructurecorridors, trade

can contribute to increased income, food,76,77 and energy

security.3

Our study contributes new knowledge and insights across the

multi-dimensional nature of climate risk. Outlining the policy

context that underpins development goals highlights plans at

scales and with lifetimes that will be exposed to climate condi-

tions considerably different from those in which the plans have

been drawn up. This context also allows us to identify important

performance indicators that stakeholders see as being crucial for

the sustainability and success of development actions. The re-

sults identify some outcomes that would be highly problematic;

how exactly such information informs decisions about water-en-

ergy-food infrastructure will depend upon stakeholder risk appe-

tite toward climate, alongside a host of non-climate consider-

ations. Our approach demonstrates the benefits of adopting a

long view of variability—of revealing areas of deep and aleatory

uncertainty in model projections that can be made explicit to

stakeholders in the risk analysis.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further questions about the analysis should be directed to and will be fulfilled

by the lead contact, Christian Siderius (c.siderius@lse.ac.uk).

Materials availability

This study did not generate new unique materials.

Data and code availability

All used data and models are open source and can be downloaded from the

references mentioned in the experimental procedures (WEAP [Water



Table 1. Risk of failure in three performance indicators for different periods in the Rufiji and Lake Malawi-Shire basins

Period

Rufiji Lake Malawi-Shire

Hydropower E-flow Irrigation Hydropower E-flow Irrigation

Historic risk 1900–2009 12% 78% 43% 2% 2% 28%

1900–1929 38% 79% 51% 7% 7% 63%

1910–1939 30% 80% 48% 7% 7% 64%

1920–1949 10% 80% 44% 4% 4% 54%

1930–1959 3% 87% 43% 0% 0% 32%

1940–1969 3% 73% 41% 0% 0% 16%

1950–1979 0% 67% 41% 0% 0% 6%

1960–1989 0% 67% 39% 0% 0% 5%

1970–1999 0% 87% 40% 0% 0% 6%

Present risk 1980–2009 3% 875 41% 0% 0% 4%

Future risk, mean (SD)a 2020–2050 4% (7%) 57% (28%) 22% (7%) 20% (26%) 15% (26%) 20% (35%)

Future risk is themulti-model average (of those plotted in Figure 6). Historic, present, and future risk is based on hypothetical simulations, which include

planned investments in irrigation and hydropower that have yet to be implemented (see experimental procedures).
aMean risk and SD of 29 bias-corrected climate projections.
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Evaluation and Planning] model: http://www.weap21.org; LPJmL [Lund-Pots-

dam-Jena Managed Land] model: http://www.pik-potsdam.de/research/

projects/activities/biosphere-water-modelling/lpjml/versions, together with

model description). Parameter settings and calibration of the impact models

are described in more detail in earlier publications.40,78

Time-series analysis and teleconnections

To visualize drivers of variability across the whole of Africa, we used Global

Precipitation Climatology Centre (GPCC) precipitation data79 to calculate the

coefficient of variation in precipitation (Figure 2A) and the correlation with El

Niño3.4 SST anomalies (Figure 2B) by using a Student’s t test (significance

at p < 0.05). Data are available in a 0.5� grid for the period 1900 to the present.

For the historic analysis of regional variability, precipitation was taken from

CENTRENDS, another recent dataset with a better station coverage than the

GPCC, but for East Africa only, starting in 1900.80 For the Shire catchment,

only the (important) Lake Malawi subcatchments are included because CEN-

TRENDS does not extend further south. Trend (Student’s t test), decadal

variability, and interannual variability were determined. We detected decadal

variability by applying a Lanczos bandpass filter81 8-year frequency cutoff to

the annual anomalies of precipitation time series, where the interannual vari-

ability was the resultant of the decadal pattern.

Performance of different climate models in representing ENSO and IOD was

based on the linear correlation between precipitation anomalies and SST

anomalies of both teleconnection indices. The IOD index was calculated as

the difference between the western Indian Ocean (IO) SST anomalies and

eastern IO SST anomalies for the period 1976–2005. Positive and negative cor-

relations indicate enhanced and suppressed convection, respectively (Fig-

ure S2). During positive IOD events, East Africa in particular experiences

increased rainfall,26 a correlation represented in over half of the CMIP5models

(Figure S3). We derived the ENSO teleconnection in CMIP5 models by corre-

lating model rainfall with models’ Niño3.4 SST anomalies (Figure S5).

In Figure 3, the classification ofmodest to strong El Niño or La Niña yearswas

based onWolter and Timlin,82 complemented with the Oceanic Niño Index clas-

sification by theUSNational Oceanic Atmospheric Administration for the period

after 2005. Strong positive and negative IOD years were based on the Dipole

Mode Index (DMI), adjusted for warming trend, for the period 1900–1957. Years

were classified with a strong positive or negative IOD if the DMI was exceeded

by more than one SD for three consecutive months. From 1958 onward, better

observational data on, for example, wind patterns have enabled the construc-

tion of more complex indices, and we used the classification by Hameed.26

Impact models

Model projections of precipitation, downwelling long-wave and short-wave ra-

diation, and temperature were used to drive the hydrological model of each
system to explore the range of possible impacts. Impacts were expressed

as a risk of failure in three key performance indicators, calculated as the per-

centage of years (in a 30-year period) that each risk threshold was exceeded

and visualized as the percentage of climate-model projections in each risk

category. The performance indicators were defined through consultation

with stakeholders.40,72,83 They represent, in a simplified manner, key aspects

of hydropower (electricity generation threshold), irrigation (defined as the per-

centage of months in which water demand cannot be fully met), and

ecosystem services (frequency of biennial flooding). Each indicator reflects

different features of the hydrological system and can respond differently to

the same projection.

Water-balance input and crop production for themajor food crops in the Ru-

fiji basin were generated with a global coupled hydrology-vegetation model,

LPJmL, specially adapted to the Rufiji basin.78 The model runs at a daily

time step, and the Rufiji application is schematized at 5 arcminutes (~9-km res-

olution at the equator). While the model proved capable of simulating runoff in

upstream tributaries, large parts of the catchment remain ungauged including

the Luwegu tributary from which an estimated 15%–20% of basin runoff orig-

inates, a percentage that is sensitive to the soil parameterization. Another

source of uncertainty is the hydrological processes in downstream wetlands.

Operational reservoir management was based on a simple order of priorities,

maintaining firm energy releases until live storage is depleted, such that peak

releases for environmental flows were a result of excess inflow only after the

reservoir was fully filled.

For the Shire basin, the WEAP model was used to run scenarios based on

stakeholder-identified infrastructural plans, performance needs, and adapta-

tion options. The WEAP model uses a rainfall-runoff method to simulate

Lake Malawi levels at a monthly time step for the period 1960–2009.40 Lake

Malawi is modeled as a ‘‘bucket’’ type reservoir to simulate key water balance

components (inflows, outflows, and net evaporation) at a monthly time step.

Although the model has shown good ability to reproduce 1960–2009 Lake

Malawi levels, model calibration was challenging because of sparse stream-

flow observations and data gaps in lake rainfall and lake evaporation.40 The

operation of the barrage at the outlet of Lake Malawi is of critical importance

for managing water resources, and although the model was capable of

simulating lake levels under a number of historic management strategies,

extrapolating those into future conditions represents only likely management

scenarios, so our model results need to be regarded as indicative of risk

without adaptation.

Meteorological input data

For the analysis of historic variability, the impact models were forced with

CENTRENDS precipitation data; its monthly data were downscaled to daily

time steps (the LPJmL model only; WEAP uses monthly input data) with the
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Table 2. Decision-relevant water resource risk indicators

Sector Basin Indicator Description

Energy Rufiji RP1: risk of NTF at

least once per year

NTF, whereby JNHPP reservoir level falls to a

level that cannot guarantee the required

monthly mean turbine flow of 687 m3/s to

generate firm energy. This is expressed as a

simple percentage, based on the number of

years in a 30-year time period with one or more

months with NTF.

Shire SP1: months of inadequate

Shire River flow

Three run-of-the-river hydropower stations in

Shire River require approximately the same

river discharge of ~265 m3/s for peak

hydropower production, which falls linearly

with reducing discharge. Also, if Lake Malawi

levels drop below the outflow threshold,

reduced Shire river discharge outside of the

rainy season would affect hydropower

production. These are expressed as a simple

percentage based on the number of months in

a 30-year time period with flow less than ~265

m3/s.

Water

(environmental

flows)

Rufiji RP2: risk of not achieving

at least 2,500 m3/s flow for

1 month every second year

Environmental flows downstream of the dam

depend on sufficient peak discharge to refill the

delta lakes and surrounding wetlands and to

flood farmland to replenish nutrients and soil

moisture, flush the delta, and buffer

salinization, creating vital conditions for

fisheries. Full bank flow is reached at a

threshold of 2,500 m3/s. Historically, this is

exceeded once every 2 years, and 3,000 m3/s

is exceeded every 4 years. On the basis of a

(limited) analysis of daily flows in the early

1970s, the duration of flows above this

threshold was determined to be 32 days on

average, so 1 full month.

Shire SP2: risk that no outflows

from Lake Malawi will change

seasonal flow dynamics in

the Elephant Marsh

The Elephant Marsh wetland is located

downstream of hydropower stations and is a

designated Ramsar wetland of global

biodiversity importance. However, no EFR

assessment for the wetland is available. On the

basis of Shire River discharge time series at

Chiromo gauging station prior to the

construction of the Kamuzu Barrage (1965),

~230m3/s is the lowestmonthly discharge in the

1960–1964period.We thereforeuse230m3/sas

a metric for EFR at the Elephant Marsh and

calculate a simple percentage based on the

number of months in a 30-year time period with

flow less than ~230 m3/s.

Food Rufiji RP3: number of months that

irrigation demand for current

and proposed irrigation projects

is not met

Agriculture relies heavily on irrigation in several

parts of the basin. Here, we plot the reliability of

irrigation supply to the irrigated areas upstream

of the Usangu wetlands in the Great Ruaha

subcatchment.

Shire SP3: number of months that

irrigation demand for current

and proposed irrigation

projects is not met

The Shire Valley Transformation Project has

been formulated with definedmonthly irrigation

water requirements ranging from 37 to 50 m3/s

to be diverted from the Shire River. This

monthly requirement is used as a metric for

irrigation.

EFR, environmental flow requirement; NTF, no hydropower turbine flow.
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precipitation distribution from Watch Forcing Data (WFD; available from 1901

to 200184) and the Watch Forcing Data Era-Interim dataset (WFDEI; available

for the period 1958–2012)85 and adjusted for mean bias against observations.

For Lake Malawi-Shire, a further correction for bias in multi-annual means was

applied over the observational period (1960–2008). Temperature, wind speed,

and short-wave radiation were also taken from WFD. The reported underesti-

mation of incoming short-wave radiation in WFD due to the overcorrection of

annual variations in aerosol loading84 was corrected by the percentage differ-

ence between WFD and WFDEI during the overlapping period. Although WFD

1901–1957 should not be considered historical in terms of meteorological

events (unlike WFD 1958–2001 and WFDEI), monthly-interannual variations

in air temperature, precipitation, and short-wave radiation should be historical-

ly correct because of the monthly observation adjustments.84

To compare present with future climate throughmodel simulations, we further

refined rainfall for theRufiji applicationbyusingCHIRPSdata,whicharebasedon

an assimilation technique and observations similar to those of CENTRENDS but

are spatially and temporally improved with cold-cloud-duration remote-sensing

data.86 They are available at a daily time step and at higher resolution (0.083 arc-

minutes) for the period of 1981 to the present. For the Shire-Malawi application,

we used historic observations per subcatchment, made available through the

Second National Water Development Project (NWDP II), a study carried out by

theMinistry of Agriculture, Irrigation, andWater Development of the government

of Malawi in 2011. For future climate, we used the AMMA2050, a new dataset of

daily data over Africa from 29 bias-corrected CMIP5 global climate models

(GCMs).30 Using a cumulative distribution function transform (CDF-t) method,

AMMA2050 removes the biases with respect to the reference period (in the

case of AMMA 2050, WFDEI).30 For Figure 6, we weighed the percentage of

models in each risk category by model performance and evaluated historic per-

formance of the original GCMs against a range of indicators regarding mean

state, trend, variability, and teleconnections, as described in Kolusu et al.61

Simulated river-basin development options

Rufiji

Exact details on planned size and operations of the Nyerere hydropower proj-

ect (JNHPP) close to the Rufiji Delta are not publicly available. We derived area

(1,200 km2 up to 1,350 km2) and live storage (22 BCM) estimates from earlier

planning reports87 and national and basin studies that often quote the planning

documents of Brazilian construction firm Odebrecht from 2013 or the Power

System Master Plans of the Tanzanian Ministry of Energy and Min-

erals.43,45,88–90 The area-level-storage relationship was reconstructed by an

overlay of the reservoir outline45 on Shuttle Radar Topography Mission eleva-

tion data;91 the resulting reservoir levels fluctuated between 158 and 187masl.

Nine storage turbines are expected to deliver ~2,060 MW capacity, which—if

run constantly—would deliver over 18,000GWh per year. Variable, area-based

evaporation losses were derived from the LPJmL model. Because detailed in-

formation on planned operating rules was lacking, we based our risk analysis

on the flow needed to maintain reported firm energy production (~6,000 GWh

per year87), which would be achieved by running the turbines at a third of the

total turbine capacity and assuming no reduction in turbine efficiency over the

possible range of water-level fluctuations. We based our analysis on monthly

values, thereby ignoring hourly to daily fluctuations in supply to meet peak

demands.

Irrigated land use in the Rufiji basin is planned to increase 4-fold between

2010 and 2035 (an area of almost 400,000 ha90). We allocated this expansion

per subcatchment by prioritizing cells with existing irrigated area and then cells

with existing agriculture within the SAGCOTdistrictswhile ruling out expansion

in game reserves or national parks and assuming that only 90%of the free area

per cell could be changed. In managed irrigation schemes, the drainage

system captures excess water and reroutes it back to the main river with the

possibility for reuse downstream. In the Rufiji basin for current practice, the

opposite occurs. Drainage return flows from large-scale irrigation schemes

are often reused by smallholder farmers who surround these schemes,

whereas in Indigenous smallholder schemes, water tends to be recycled until

there is hardly any left without infrastructure to return drainage water back to

the river.54 Even in improved indigenous irrigation schemes, efficiency gains

were found to be offset by increased overall withdrawals, facilitated by more

effective water intake structures. Rather than increase downstream water

availability, it further restricted it,54 a paradox of irrigation efficiency observed
in many systems in the world.92 As our baseline, we therefore assumed a sit-

uation in which soil losses, but no canal losses, are returned to the river (return

flows are 35% of irrigation withdrawal). In the future, land use and water ab-

stractions of smallholders might be more controlled or incorporated into the

designs, thereby limiting unplanned overextraction and meeting expected re-

turn flow rates (high return rate is 54%).

Shire

Irrigation and hydropower expansion plans in Malawi are still being developed.

With stakeholders, we identified two key projects:40 Kholombidzo Hydro Elec-

tric Power Plant (KHEPP) (run-of-the-river scheme) and Shire Valley Transfor-

mation Project (SVTP, with 43,370 ha canal-based irrigation). The SVTP is a

World Bank-funded project93 for which some details are available in the envi-

ronmental impact assessment report94 depending on which water require-

ments for the SVTP were identified. Hydropower generation capacity of

KHEPP in various reports has ranged from 160 to 370 MW. Malawi stake-

holders suggested that currently KHEPP is for 300 MW located between the

Kamuzu barrage and the Nkula Hydropower Power Plant (HPP). Since detailed

information on KHEPP plans is not available, we assume that the Shire River

discharge required for peak hydropower generation is the same as that for

Nkula HPP, i.e., 265 m3/s.

Performance indicators

We used multiple stakeholder consultations to identify and prioritize

key river-basin performance metrics. They involved government staff,

hydrological and environmental researchers from universities, and several

locally active non-governmental organizations working on sustainability

and development issues.40,72 Consultations in the Rufiji took the form of

small workshops (8–20 participants) held in March 2017, March and

November 2018, and July 2019, complemented by informal discussions

with many individuals (from the organizations listed above) between January

2016 and July 2019. In Malawi, a similar process was conducted over the

course of 2007–2019, at the end of which the WEAP model application

was handed over to the Shire Basin Authority. Initial long lists of metrics

were narrowed down for this analysis to three indicators representing key

features of the water-energy-food nexus, for which risk of failure was

calculated: one for hydropower, one for environmental flows, and one for

agriculture (Table 2). Risk of failure is defined as the percentage of time

and indicators that could not be met.
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