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ABSTRACT: Motivated by recent advances in operational weather forecasting, we study the efficacy of low-precision
arithmetic for climate simulations. We develop a framework to measure rounding error in a climate model, which provides
a stress test for a low-precision version of the model, and we apply our method to a variety of models including the Lorenz
system, a shallow water approximation for flow over a ridge, and a coarse-resolution spectral global atmospheric model
with simplified parameterizations (SPEEDY). Although double precision [52 significant bits (sbits)] is standard across
operational climate models, in our experiments we find that single precision (23 sbits) is more than enough and that as low
as half precision (10 sbits) is often sufficient. For example, SPEEDY can be run with 12 sbits across the code with negligible
rounding error, and with 10 sbits if minor errors are accepted, amounting to less than 0.1 mm (6 h)21 for average gridpoint
precipitation, for example. Our test is based on the Wasserstein metric and this provides stringent nonparametric bounds
on rounding error accounting for annual means as well as extreme weather events. In addition, by testing models using
both round-to-nearest (RN) and stochastic rounding (SR) we find that SR can mitigate rounding error across a range of
applications, and thus our results also provide some evidence that SR could be relevant to next-generation climate models.
Further research is needed to test if our results can be generalized to higher resolutions and alternative numerical schemes.
However, the results open a promising avenue toward the use of low-precision hardware for improved climate modeling.

SIGNIFICANCE STATEMENT: Weather and climate models provide vital information for decision-making, and
will become ever more important in the future with a changed climate and more extreme weather. A central limitation
to improved models are computational resources, which is why some weather forecasters have recently shifted from
conventional 64-bit to more efficient 32-bit computations, which can provide equally accurate forecasts. Climate mod-
els, however, still compute in 64 bits, and adapting to lower precision requires a detailed analysis of rounding errors.
We develop methods to quantify rounding error in a climate model, and find similar precision acceptable across
weather and climate models, with even 16 bits often sufficient for an accurate climate. This opens a promising avenue
for computational efficiency gains in climate modeling.
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1. Introduction

Modern numerical Earth system models require enormous
amounts of computational resources and place significant
demand on the world’s most powerful supercomputers. As
such, operational forecasting centers are stretched to make
best use of resources and seek ways of reducing unnecessary
computation wherever possible.

One idea to improve computational efficiency that has
gained attention in recent years is to utilize low-precision
arithmetic—in place of conventional 64-bit arithmetic—for
computationally intensive parts of the code. This has been
accompanied by parallel trends in deep learning where low
precision is deployed routinely and for which novel hardware
is now emerging (Gupta et al. 2015; Micikevicius et al. 2018).

Whether such hardware can be exploited for weather and cli-
mate, however, ultimately depends on the cumulative effect
of rounding error. In fact, a number of studies have shown
that much numerical weather prediction, at least on the short
time scales relevant for forecasts, can be optimized for low
precision (Chantry et al. 2019; Hatfield et al. 2019; Jeffress
et al. 2017; Klöwer et al. 2020; Saffin et al. 2020; Prims et al.
2019) and forecasting centers are already exploiting this in
operations. Indeed, the European Centre for Medium-Range
Weather Forecasts recently ported the atmospheric compo-
nent of its flagship Integrated Forecast System to single preci-
sion (Maass 2021; Váňa et al. 2017), while MeteoSwiss and
the U.K. Met Office have previously implemented single- and
mixed-precision codes respectively (Rüdisühli et al. 2014;
Gilham 2018).

As operational weather forecasters experiment with more
efficient low-precision hardware, it is natural to ask whether
low precision is suitable for climate modeling (i.e., long time
scales) and this is the question addressed by the current
paper. Compared to weather forecasting, where research in
low precision has focused to date, climate modeling presents a
different problem requiring some new techniques. While an
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ensemble weather forecast seeks a relatively localized proba-
bility distribution over the possible states of the atmosphere
at a given time, the exact state is understood to be totally
unpredictable on long time scales due to chaos, and a climate
model seeks instead to approximate the statistics of states
over a long time period (in the language of ergodic theory,
the climatological object of interest is the invariant probability
distribution). Thus the test for a low-precision climate model
should be whether it has the same statistics (invariant distri-
bution) as its high-precision counterpart.

We develop such a test based on the Wasserstein distance
(WD) from optimal transport theory, which provides a natu-
ral notion of closeness between probability distributions. The
WD is defined as the cost of an optimal strategy for transport-
ing probability mass between distributions with respect to a
cost c(x, y) of transporting unit mass from x ∈Rd to y ∈Rd,
where throughout this paper we take c(x, y) 5 |x 2 y| so that
cost has the same units as the underlying field.

The WD is an appropriate metric for this study because
1) it is nonparametric, 2) it has favorable geometrical prop-
erties (see Fig. 1), 3) it is interpretable in appropriate physi-
cal units, and 4) it bounds a range of expected values
covering both the mean response and extreme weather
events. The metric is popular in machine learning (Arjovsky
et al. 2017) and has recently been suggested as an appropri-
ate measure of skill in climate modeling (Robin et al. 2017;
Vissio et al. 2020; Vissio and Lucarini 2018); however, since
it is not so well known within the community, a survey of
the WD, including a rigorous definition and discussion of
computational techniques, is given in appendix A. In partic-
ular, see sections a and e of appendix A for further discus-
sion of points 1–4.

Any test can only bound the effects of rounding error at
low precision relative to the variability of probability distribu-
tions generated by a corresponding high-precision experi-
ment. Experiments must thus be carefully designed to
minimize such variability in order to isolate the effects of
rounding error. For example, by taking an ensemble of suffi-
ciently long integrations one can reduce initial condition vari-
ability, and by keeping external factors such as greenhouse

gas emissions annually periodic one can reduce variability due
to nonstationarity. A choice of metric with strong properties
(e.g., points 1–4 listed above) is then crucial for interpretation
of the resulting bounds on rounding error in order to have
confidence in the reliability of a low-precision model.
Although we developed our methods to measure rounding
error, we hope they might also be of interest to the broader
climate modeling community.

a. Structure of the document

Section 2 covers the Lorenz system, intended to illustrate
our methodology using a low-dimensional and well-known
chaotic dynamical system. Section 3 then extends the analysis
to a high-dimensional dynamical system via a finite-difference
scheme for a shallow-water model. Section 4 presents a
short interlude into a simple heat diffusion model, the main
aim of which is to illustrate clearly the effect of stochastic
rounding in preventing stagnation in time-stepping schemes.
Section 5 analyses the SPEEDY model in low precision,
both through an idealized El Niño experiment and through
the detailed climatological methods developed in sections 2
and 3. Section 6 provides conclusions and poses areas for
further research. Acknowledgments are then given along
with links to our source code. Appendix A provides relevant
background on the Wasserstein distance, which is central to
our work, while appendix B documents the different arith-
metic formats and rounding modes that are referenced in
the paper.

b. Notation

In this paper we write Float64, Float32, and Float16 to
denote the IEEE-754 standard formats for double, single, and
half precision respectively, and BFloat16 for Google’s Brain
floating point format (see Fig. B1 in appendix B), with round-
to-nearest used implicitly as the rounding scheme. We write
Float32sr, Float16sr, and BFloat16sr whenever stochastic
rounding is used instead (see appendix B). All low-precision
formats (i.e., everything except Float64) have been imple-
mented insoftware, rather than in hardware; see the data avail-
ability statement (following the acknowledgments) for details.

FIG. 1. An example of the Wasserstein distance (WD). The WD from g1 to f is 1, where an
optimal transport strategy is to shift all of the probability mass up by one unit. By contrast, it is
easily seen that WD(f, g2) . 1, reflecting the intuition that g1 is a better approximation of f than
is g2. The figure is motivated by Robin et al. (2017).
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2. The Lorenz system

To illustrate our methods, which will later be applied to
more complex climate models, we first consider the Lorenz
system:

dx
dt

5 10 y2 x( ),

dy
dt

5
8
3
2 z

( )
x2 y,

dz
dt

5 xy2 28z:

(1)

Derived first in Lorenz (1963) in a study of convection,
(1) exhibits features of nonlinear dynamics representative
of the real atmosphere (Molteni and Kucharski 2018). The
system has a fractal attractor AMR3 and the dynamics on
A is chaotic, rendering the precise numerical approxima-
tion of any specific orbit futile. On the other hand, a study
of asymptotics on A reveals statistics common across
orbits, which one may hope to approximate. Indeed, there
exists a unique invariant probability distribution n sup-
ported on A such that for almost any orbit x(t) 5 [x(t),
y(t), z(t)] initiated in the basin of attraction of A and any
bounded continuous function f

lim
T→∞

1
T

�T

0
f x t( )[ ]

dt

{ }
5

� � �
f x( )dn x( ) (2)

(cf. Tucker 1999). Thus n encodes the long-time statistics of
the system. For example, taking f(x) 5 1 for x ∈ B and
f(x) 5 0 outside of a neighborhood of B, from (1) we see
the average time an orbit spends in a region B is the

probability mass n(B). In the context of climate modeling,
the test for a low-precision integration of (1) is whether it
produces approximately the same n as its high-precision
counterpart.

We first sampled 10 initial conditions i0, :::, i9 ∈R3 from a
normal distribution with unit variance centered at the center
of mass of the attractorA. We then integrated (1) at high pre-
cision (Float64) initialized at initial conditions i0, … , i4 for
220000 model time units (mtu) each and discarded the first
20000 mtu as spinup to allow for any orbits initially perturbed
off A to return to A, and we labeled these five runs as the
control ensemble econtroli . Next, for each comparison arith-
metic (including Float64 as a control) we integrated (1) initial-
ized at initial conditions i5, … , i9 for 220000 mtu, discarded
the first 20000 mtu, and labeled these as the competitor
ej. Each integration used the Runge–Kutta fourth-order
scheme with a time step of dt 5 0.002. For background on the
different arithmetic formats and stochastic rounding, see
appendix B.

In general, results will be sensitive to both the choice of
numerical scheme and the time step; however, we will not
dwell on such issues since our aim is to develop a method to
measure rounding error in a climatological context, rather
than to obtain an optimal integration.

Integrations are binned and plotted in Fig. 2. While the
Float32, Float32sr, and Float16sr integrations appear to
approximate the high-precision attractor well, Float16 suffers
from the small number of available states forcing the evolu-
tion into an early periodic orbit, while we found that BFloat16
collapsed on a point attractor with this fine time step,
although both of these integrations were notably improved by
stochastic rounding. For each arithmetic we computed the
ensemble mean Wasserstein distance (WD; see appendix A)

FIG. 2. The Lorenz system integrated and data-binned at different precisions to approximate the invariant probability distribution. Warmer
color corresponds to more probability mass.
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between the five probability distributions generated by ei and
the five distributions generated by econtrolj ; the evolution of
this quantity with time is plotted in Fig. 3 with a log-log
scale. Note that the Float64 competitor (black in Fig. 3)
shows the mean WD between a pair of high-precision inte-
grations initiated at different initial conditions, and thus
gives a measure of the variability of the experiment at high
precision, which is important to be able to draw conclusions.
Figure 3 confirms quantitatively what is suggested by Fig. 2
in that the Float32, Float32sr, and Float16sr curves closely
follow Float64 in the approach to statistical equilibrium,
showing that rounding error is small relative to high-precision
variability, while for BFloat16sr rounding error has notably
perturbed the dynamics. The size of the high-precision vari-
ability after 100000 mtu (Fig. 3) is less than 0.1 model space
units (msu), which is small in the context of distributions sup-
ported on the Lorenz attractor, which has characteristic length
scale of approximately 50 msu (Fig. 2).

To compute WDs we approximated the probability dis-
tributions by data binning with cubed bins and a bin width
of 6 msu. This is a coarse estimation but we found results
were not sensitive to decreasing bin width [in agreement
with Vissio and Lucarini (2018)] and we also performed
the same computation approximating by the empirical dis-
tributions generated by 2500 samples as well as approxi-
mating by Sinkhorn divergences, and by marginalizing
onto one-dimensional distributions (see section c in appen-
dix A), all of which gave analogous results. The methods
based upon sampling and marginalization provide alterna-
tives to data-binning in higher dimensional settings, as we
will come to in the next section.

3. A shallow water model

We next consider the shallow water model from Klöwer
et al. (2020), which describes turbulent flow in a rectangular
ocean basin, driven by a steady zonally symmetric wind forc-
ing over a meridionally symmetric ridge. The equations are

u

t
1 u · =( )u1 f ẑ3 u5 2 g=h1D1F;

h

t
1= · uh( )5 0;

where u 5 (u, y) is velocity, h is surface elevation,
D5 2 cD=h

( )
u| |u2n=4u is a nonlinear diffusive term with

coefficients cD and n (bottom friction and biharmonic viscoc-
ity coefficient), F is wind forcing, f is the Coriolis parameter,
h 5 H 1 h is layer thickness, and H is the time-independent
depth of the water at rest describing the ridge at the fluid
base. The ocean basin dimensions were taken as 2000 km 3

1000 km with average depth of 500 m. We integrated the
equations using the scheme from Klöwer et al. (2020), which
uses finite differences on an Arakawa C-grid and fourth-order
Runge–Kutta in time combined with a semi-implicit scheme
for the dissipative terms, with a time step of 6 h, and refer to
Klöwer et al. (2020) for more details on the numerics.

Following the methodology developed in section 2 we inte-
grated for 20 years discarding the first year of each run as
spinup, taking a five-member ensemble for each arithmetic.
Snapshots of the evolution in each case are plotted in Fig. 4a.
We computed ensemble mean pairwise WDs between the dis-
tributions generated by high- and low-precision ensembles
and plot this quantity evolving with time in Fig. 4b. We found

FIG. 3. Measuring rounding error in the climate of the Lorenz system. Plot shows Wasserstein
distances between the probability distributions generated by low-precision and high-precision
ensembles (bin width 6.0) where black is high precision vs high precision for reference.
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that for Float16 and BFloat16sr rounding error is significant
while for Float32 and Float16sr rounding error is small rela-
tive to high-precision variability. In particular, our results
show that rounding errors at half-precision are successfully
mitigated by stochastic rounding in this climate experiment.
Again, we refer to appendix B for background on these differ-
ent number formats.

The main difference between the methods of this section and
section 2 is that we considered here a dynamical system that is
high dimensional, so that approximating probability distributions
is nontrivial. For Fig. 4b we approximated the invariant distribu-
tions by taking 2500 uniformly distributed random samples in
time and computed WDs between the corresponding empirical
distributions (see section c of appendix A). This approximation
method does not give readily interpretable results due to a curse
of dimensionality; however, we obtained analogous results by
marginalizing onto one-dimensional subspaces. We save discus-
sion of such marginalized results for section 5 in the context of a
global atmospheric model.

4. Interlude: Heat diffusion in a soil column

In this section we briefly consider a very simplified land sur-
face component of a global climate model. This is a trivial
case of climatology since all solutions converge upon a cons-
tant equilibrium temperature and so there is no need to use
the WD in this setting. We include this simple example, how-
ever, because it clearly illustrates a major advantage of
stochastic rounding (SR) over round-to-nearest (RN) in pre-
venting stagnation.

This section was partially motivated by Harvey and
Verseghy (2016) and Dawson et al. (2018). In Harvey and
Verseghy (2016) the authors observed that the Canadian
Land Surface Scheme (CLASS) could not be run effectively
at single precision in large part because of an issue of stagna-
tion. They argued that single-precision arithmetic was not
appropriate for climate modeling with the scheme, which
relies crucially on accurate representations of slowly varying
processes such as permafrost thawing, and that double preci-
sion or even quadruple precision should be adopted instead.
The setup considered here was introduced in Dawson et al.
(2018) as a toy model that retained some features of CLASS,
most crucially the stagnation at single precision with RN. The
authors of Dawson et al. (2018) proposed mixed precision to
avoid stagnation, while the results of this section indicate that
SR provides an alternative approach.

Following Dawson et al. (2018), we consider an idealized
soil column that is heated from the top and thermally insu-
lated from the bottom:

T
t

5D
2T
z2

,

with T(t, 0) 5 280, T=z
( )

t,H( )50, and T(0, z) 5 273, where
T(t, z) is temperature in kelvin, H 5 60 m is soil depth, and
D 5 7 3 1027 m2 s21 is the coefficient of diffusivity, and dis-
cretize as

Tn1 1
j 5Tn

j 1DDt
Tn
j1 1 2 2Tn

j 1Tn
j2 1

Dz( )2
[ ]

, (3)

with Dz5 1 m and Dt 5 1800 s.
We integrated for 100 years, and the results are plotted in

Fig. 5. Stagnation is apparent for Float32 and Float16 where
the small tendency term in (3) is repeatedly rounded down to
zero, so that heat does not diffuse effectively through the soil
column. This is mitigated by SR, however, which assigns a
nonzero probability of rounding up after the addition in (3)
(see section b of appendix B). Rounding error is negligible
with Float32sr; while visible as noise in Float16sr, the solution
shares the large-scale pattern of Float64.

To be clear, this section is not intended to imply that SR
is necessary in the low-precision integration of the heat
equation. There are other ways to avoid stagnation, such
as increasing the time step, which is extremely small in this
example and well below what is necessary for stability,
or implementing a compensated summation for the time-
stepping. Rather, this section aims to illustrate an interest-
ing advantage of SR in mitigating stagnation by means of a
clear and visual example. For more analysis of SR in
the numerical solution of the heat equation see Croci and
Giles (2020).

5. A global atmospheric model

Finally, we proceed to a global atmospheric circulation
model: the Simplified Parameterizations Primitive Equation
Dynamics version 41 (SPEEDY). SPEEDY is a coarse-
resolution model employing a T30 spectral truncation with
a 48 3 96 latitude–longitude grid, eight vertical levels, and a
40-min time step, and is forced by annually periodic fields
obtained from ERA reanalysis together with a prescribed
sea surface temperature anomaly Kucharski et al. (2013).
For this section, in order to isolate the effects of numerical
precision we truncated only the significant bits, so that
when we speak of half precision, for example, we refer to
10 significant bits (sbits) and 11 exponent bits rather than
the IEEE-754 standard 5 exponent bits (see section a of
appendix B).

As a first test, we constructed a constant-in-time SST
anomaly field to crudely simulate an El Niño event and ran
SPEEDY both with and without to investigate the mean
field response. This anomaly field was constructed [partially
following Dogar et al. (2017)] by taking the Pearson correla-
tion coefficients between an ERA reanalysis time series at
each grid point and the Niño-3.4 index over 1979–2019 and
multiplying by a factor of 4 in an attempt to produce tem-
perature anomalies in Kelvin roughly of the magnitude of
the 2015 El Niño. Figure 6 shows the El Niño response for
precipitation and geopotential height at 500 hPa (Z500) for
both double and half precision and it is seen that the latter
certainly simulates a similar response to the El Niño. The
area-weighted Pearson correlations between the double
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precision and half precision mean El Niño responses for the
northern extratropics, southern extratropics, and tropics
were calculated as (0.99, 0.99, 0.99) for precipitation and
(0.98, 0.99, 0.93) for Z500.

To explore the full climatology, we next followed the WD
calculations of sections 2 and 3. We generated initial condi-
tions i0, … , i9 by integrating from rest for 11 years at 51
sbits of precision (effectively double precision plus a tiny
rounding error) before discarding the first year as spinup
and taking the initial conditions from the starts of each of
the 10 subsequent years. This method was intended to emu-
late sampling from the high-precision invariant distribution
while avoiding overlap in the high-precision ensemble. We
then constructed our control ensemble econtroli and competi-
tor ensembles ej by integrating for 10 years from the initial
conditions i0, … , i4 and i5, … , i9 respectively. The SST

anomaly was turned off so that boundary conditions were
annually periodic.

To circumvent issues of dimensionality (see section c of
appendix A) we first marginalized onto the distributions
spanned by individual spatial grid points and measure error
by WDs between these 1D distributions. We call these grid-
point Wasserstein distances (GPWDs) and note that this is
the approach adopted in Vissio et al. (2020). To address corre-
lations between grid points, we then checked our GPWD
results against approximate WDs between the full distribu-
tions, which were obtained via a Monte Carlo sampling
approach as was done in section 3. While such results are
harder to interpret quantitatively (see appendix A) we found
that they were analogous to the GPWD results. In particular,
no errors were detected by this method which were not pre-
sent in the GPWDs.

(a)

(b)

FIG. 4. The shallow water model integrated at different precision levels. (a) A snapshot of the flow speed (m s21),
initiated from the same initial condition, after 50 days. (b) The effect of rounding error on climatology.
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The gridpoint mean and 95th percentile GPWD results for
total precipitation, Z500, and horizontal wind speed at 500 hPa
are plotted in Fig. 7 as they evolve with time. To give insight
into the spatial distribution of rounding errors, Fig. 8 shows
maps of both the absolute error

mean WD elow-precisioni , econtrolj

( )
2WD ehigh-precisioni , econtrolj

( )[ ]
,

(4)

and the log relative error

log10
mean WD elow-precisioni , econtrolj

( )[ ]
mean WD ehigh-precisioni , econtrolj

( )[ ]⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭, (5)

for precipitation (convective and large-scale combined) across
grid points after the 10-yr integrations have completed.

For both geopotential height and horizontal wind speed
we found that rounding error was negligible relative to
high-precision for 12 sbits and above, while a small rounding
error emerged at 10 sbits. For precipitation the picture was
similar, except with a very small rounding error emerging at
12 sbits. Figure 8 reveals those grid points at which rounding
error becomes significant relative to high-precision variabil-
ity for precipitation at 10 sbits. Rounding error is negligible
relative to high-precision variability across all grid points
for 14 sbits and above, and the mean high-precision variabil-
ity for precipitation after 10 years is around 0.04 mm

(6 h)21, which is very small (see section e of appendix A for
interpretation of WDs in terms of expected values). More-
over, the rounding error at 10 sbits is small, with gridpoint
mean values of 0.07 mm (6 h)21, 5 m, and 0.3 m s21 for pre-
cipitation, geopotential height, and horizontal wind speed
respectively, and with the worst affected grid points seeing
errors on the order of 1 mm (6 h)21, 25 m, and 1 m s21

respectively (recall that these values provide bounds on
annual means as well as extreme weather events; see
section e of appendix A). To give more intuition behind the
size of rounding error at 10 sbits, the probability distribu-
tions for precipitation at some of the worst affected tropical
grid points (coastal Suriname at 5.568N, 56.258W and west-
ern Nigeria at 9.278N, 3.758E) after 10 years are plotted in
Fig. 9. It is clearly seen that the difference between double
and half precision, even at these worst affected grid points,
is slight. It may also be noted from Figs. 7 and 8 that
stochastic rounding partially mitigates rounding error at
half-precision.

We also computed differences in annual mean precipita-
tion and found that, by and large, these were of the same
order as the GPWDs, indicating that precipitation error was
largely accounted for by differences in the means. In gen-
eral, however, WD bounds are much stronger than mean
bounds (see section e of appendix A) so we can be confident
that our estimates give stringent bounds on rounding error.

To summarize this section, with external forcings held annu-
ally periodic we found that a well-defined large-to-medium scale
structure of the invariant probability distribution of SPEEDY

FIG. 5. Heat diffusion in a soil column with different number formats and rounding modes.
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emerged after 10 years. This statement is quantified by the
high-precision variability as measured by the gridpoint mean
GPWD (black curve in Fig. 7), which after 10 years was about
0.05 mm (6 h)21 for precipitation, for example. The finer-scale
structures, which account for less than 0.05 mm (6 h)21 in grid-
point mean GPWD, remain ill defined, so we cannot conclude
that there is no rounding error, but only that any potential
rounding error must be smaller than 0.05 mm (6 h)21. If we
were to increase the integration time, we would expect that
the high-precision variability would decrease as finer-scale
structures in the invariant distribution emerge, which would
give sharper bounds on rounding error. In fact, our empirical
results indicate an approximate power law in the rate of
decrease of the high-precision variability, as seen in the linear
structure of Fig. 7, which gives some indication of how long a
modeler might have to integrate for to obtain a desired high-

precision variability. It is up to the climate model developer
to determine what is an acceptable bound on rounding
error. For the case of SPEEDY, we felt that the measured
high-precision variabilities after 10 years were small relative
to existing model biases, and thus provided an appropriate
bound. Moreover, Fig. 9 shows that even at the worst
affected grid points, the effects of rounding error at half-
precision are slight.

6. Conclusions

While there is now convincing evidence that low-preci-
sion arithmetic can be suitable for accurate numerical
weather prediction, before this work there had not been a
detailed study of the effects of rounding error on climate
simulations, and we have set out to address this imbalance.

(a)

(b)

FIG. 6. Annual mean response to El Niño: double vs half precision.
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We have argued that an appropriate metric to measure
rounding error in the context of a chaotic climate model is
the Wasserstein distance (WD), an intuitive and nonpara-
metric metric that provides bounds on a range of expected
values including those relevant for extreme weather
events. By constructing experiments minimizing the vari-
ability between probability distributions at high precision
and comparing WDs against low precision we have
obtained stringent bounds on rounding error, and we have
found that error is typically insignificant until truncating
as low as half precision in our climate experiments.

We cannot conclude from our results that a state-of-the-
art Earth system model can be run with equally low preci-
sion, since such codes are hugely complex, which can make
low-precision issues difficult to overcome. However, given
that the unit round-off error scales exponentially with the
number of sbits, it would appear that the current industry
standard of double precision across all model components
is likely overkill. In terms of acceptable precision, our
results for SPEEDY are similar to those found in an analy-
sis of the initial-value problem, suggesting that a level of
precision suitable on weather time scales might also be suit-
able for climate for this model—something that is not obvi-
ous a priori. In light of recent operational successes with
single-precision weather forecasting, this is a promising
result in the direction of potential single-precision climate
modeling; however, further research will be required to
assess the generalizability of our results.

Regarding stochastic rounding (SR), although not cur-
rently in hardware, interest from machine learning together
with a number of recently released patents suggest that it
might become available soon (Croci and Giles 2020).
Rounding error is present in all numerical models, but with
deterministic rounding schemes it can be hard to identify
and may contribute to systemic biases. With SR, however,
potential rounding error is appropriately treated as another
source of model uncertainty, which is then sampled by an
ensemble of models runs and reflected in probabilistic pre-
dictions. In addition, our experiments have shown that SR
can make models more resilient to rounding error, espe-
cially at low precision. While some of the advantages of SR

are well understood, such as in the context of solving linear
diffusive equations (Croci and Giles 2020), in other settings
its benefits are more obscure. Further research is called for
to shed more light on the contexts in which SR and other
low-precision formats can benefit weather and climate
models. In addition, the community is encouraged to
engage now with chip-makers in order to influence hard-
ware development for next-generation models.
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with stochastic rounding. For the Lorenz system integra-
tion we made use of github.com/milankl/Lorenz63.jl; for
the shallow water model github.com/milankl/ShallowWa-
ters.jl version 0.4; and for SPEEDY we used a branch pri-
marily developed by Saffin for which some changes were
made to optimize for low precision, which may be found at
github.com/eapax/speedy. To compute optimal transport
metrics in one dimension we used the scipy.stats package
for Python while for higher-dimensional computations
including Monte Carlo methods we built a custom solver
at github.com/eapax/EarthMover.jl.

FIG. 7. Measuring rounding error in SPEEDY climatology with grid point Wasserstein distances. Double precision variability in
black provides a reference.
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FIG. 8. Spatial distribution of precipitation error after 10 years [cf. (4) and (5)].
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APPENDIX A

The Wasserstein Distance

The Wasserstein distance (WD) defines distance between
probability distributions m and n as the lowest cost at which
one can transport all probability mass from m to n with
respect to a cost function c(x, y) 5 |x 2 y|p that sets the
cost to transport unit mass from position x to position y,
where in our work we have taken p 5 1 so that cost has
the units of the underlying field. In this appendix we will
first motivate the WD as a tool for the analysis of climate
data by listing some of its favorable properties, before giv-
ing the formal definition of the WD, discussing methods for
its computation, comparing it with other common metrics,
and highlighting its interpretability through a useful dual
formulation.

a. Properties of the WD

As stated earlier, the WD is defined (at least informally)
as the smallest cost required to transport one probability
distribution into another. Before giving the formal details
of this definition, let us first motivate the WD by listing
some of its favorable properties.

First, the WD is nonparametric and versatile. It does not
require any specific structure of the distributions such as
Gaussianity and it can be used to compare both singular
and continuous distributions. This is an important point for
climate modeling which presents a wide range of probabil-
ity distributions. For example, the climatological distribu-
tions corresponding to South Asian rainfall or the subtropi-
cal jet stream latitude are multimodal, while for the Lorenz

system the object of interest is a singular probability distri-
bution supported on a fractal attractor. The ability to con-
sider singular distributions is also useful since it accommo-
dates working directly with the empirical distributions
corresponding to a sample of data, rather than first binning
the data into a histogram, for example.

Second, the WD is intuitive. It may be interpreted as the
minimum amount of work required to transport one distribu-
tion into the other, an idea which is readily conceptualized,
and it takes the units of the underlying field. For example,
for distributions of rainfall measured in millimeters per day
(mm day21), a WD of 1 can be thought of as a difference of
1 mm day21. Moreover, this figure provides bounds on dif-
ferences in mean rainfall as well as differences in extreme
rainfall, for example (see section e of appendix A).

Third, the WD takes into account geometry. To illustrate
this, consider three simple distributions with densities:

f x( )5 1 x ∈ 0, 1[ ]
0 otherwise

,
{

g1 x( )5 1 x ∈ 1, 2[ ]
0 otherwise

,
{

g2 x( )5 1 x ∈ 9, 10[ ]
0 otherwise

:

{
Now if f is taken as the true distribution and g1 and g2 as

approximations of f, then clearly g1 gives the better approx-
imation, due to its proximity to f. This is reflected with
WD(f, g1) , WD(f, g2). By contrast, considering instead

FIG. 9. Precipitation climatology at two grid points that are representative of the largest rounding errors at half precision.
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the Lp distances between densities, for example, would give
‖f 2g1‖Lp5 ‖f2g2‖Lp52 for all p$ 1, which does not
reflect the geometry, and this is only intensified in higher
dimensions as is illustrated in Fig. 1. This is not just a short-
coming of the Lp metric but is shared by measures such as
the Kolmogorov–Smirnoff test or the Kullback–Liebler
divergence.A1

More generally, the WD metrizes the space of probability
distributions with respect to weak convergence, which means
that closeness in the sense of the WD corresponds to closeness
with respect to a natural topology (Villani 2003, theorem 7.12).

b. Formal definition of the Wasserstein distance

There are two alternative formulations of optimal trans-
port due to Monge and Kantorovich and it is helpful to
consider both when computing WDs.

For the Monge formulation, suppose we have discrete
probability distributions

m5
1
N

∑N
i5 1

dxi , h5
1
N

∑N
i5 1

dyi , (A1)

where xi,yi ∈Rd and we visualize each as a distribution of
equal masses on Rd. The masses might be books on a
bookshelf R or shipping crates on a dockside R2. We are
tasked with transporting m to h. The masses cannot be split
so a transport strategy is a permutation s of N objects.
Introducing a cost function c(x, y) defining the cost to move
unit mass from position x to position y, the cost of s is
1=N
( )∑N

i51 c(xi,ys i( )) and the optimal cost is the cost of an

optimal strategy mins∈SN 1=N
( )∑N

i51 c(xi,ys i( ))
{ }

where SN is

the set of permutations. The special case c(x, y) 5 |x 2 y|
defines (Monge’s version of) the WD:

W1 m,h( )5mins∈SN
1
N

∑N
i5 1

xi 2 ys i( )
∣∣ ∣∣: (A2)

Kantorovich’s formulation is a relaxation of Monge’s in
that masses are viewed as continuous rather than discrete
(think piles of sand rather than shipping crates) so mass
can be subdivided in infinitely many ways. Suppose now a
pair of distributions

m5
∑M1

i5 1

Pidxi , h5
∑M2

j5 1

Qjdyj , (A3)

where
∑

iPi5
∑

iQi51 and Pi, Qj $ 0 (i.e., the P and Q
terms are probability vectors). In applications m and n may
represent discrete probability histograms, where the points xi
and yj are the midpoints of bins and Pi and Qj are weights.A2

A transport strategy is now defined as a nonnegative val-
ued matrix p ∈RM1 3M2

$0 where pij denotes the amount of
mass transported from xi to yj and for conservation of mass
we impose

∑
jpij5Pi,

∑
ipij5Qj. Write cij for the cost to

move unit mass from xi to yj so the cost of a strategy is∑
i,jcijpij and the optimal cost is minp∈P P,Q( )

∑
i,jcijpij, where

P P,Q( )5 p ∈ RM1 3M2
$ 0 :

∑
j

pij 5Pi,
∑
i

pij 5Qj

{ }
(A4)

is the set of possible transport strategies. Note that the
space P(P, Q) is also the space of joint distributions with
marginals P and Q, and P(P, Q) is nonempty as can be
seen by considering the independence distribution pij 5 PiQj.
The special case cij 5 |xi 2 yj| defines (Kantorovich’s version
of) the WD:

W1 m, n( )5minp∈P P,Q( )
∑
i, j

xi 2 yj
∣∣ ∣∣pij: (A5)

Note that (A5) gives a linear optimization problem
while (A2) has no obvious linear structure. If M1 5 M2 5

N and Pi5Qj51=N it may be shown there is a minimiz-
ing p for (A5), which is an optimal strategy in the sense
of Monge so (A2) and (A5) are consistent (Villani 2003,
pp. 5–6).

c. Computing the Wasserstein distance

Suppose one has samples xi{ }Ni51 and yi{ }Ni51 drawn from
a pair of distributions m and n on Rd. Then one can either
compute the Monge WD [(A2)] between the empirical dis-
tributions mn5 1=N

( )∑
idxi and hn5 1=N

( )∑
idyi directly or

one can first perform a data-binning of the data into M bins
and compute the Kantorovich WD [(A5)] between the
resulting histograms. The complexity of the former scales
with the sample size N while the latter scales with the num-
ber of bins M.

The computation of (A2) is a special case of the assign-
ment problem from economics, which can be solved in
O(N3) by the well-known Hungarian algorithm. On the
other hand, the Kantorovich formulation (A5) is an exam-
ple of a problem in linear programming. The set P(P, Q) is
a convex polytope and as the cost function is linear it fol-
lows that the minimum must be attained on a vertex of this
polytope. A minimizing vertex can be found, for example,
via the simplex algorithm.

When d 5 1 the WD can be computed easily as there is
an explicit formula. Indeed, for two 1D distributions with
cumulative distribution functions (CDFs) F and G, respec-
tively, the 1-WD is (Villani 2003, p. 75)

W1 F,G( )5
�∞

2∞
F x( )2G x( )∣∣ ∣∣dx: (A6)

When d is large data-binning is infeasible and it is more
natural to work with the empirical distributions mn, nn
directly; however, there is a curse of dimensionality in this
context. Indeed, one has

A1 The KL divergence is particularly ill suited to comparing
probability distributions onRd and this example gives KL(f, g1)5
KL(f, g2)5∞.

A2 Kantorovich’s formulation extends to more general distribu-
tions, but we consider (A3) to simplify things.
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E W1(mn, nn)2W1(m, n)
∣∣∣]5O(n2 1=d)

∣∣∣[
and this bound is sharp in general, which gives very slow
convergence in high dimension in some cases (Dudley
1969). Construction of a metric to rival the WD that does
not suffer a curse of dimensionality is an open problem and
focus of active research.

In our work we have found that, despite the curse of
dimensionality, computing the WD between empirical dis-
tributions with a modest sample size is computationally fea-
sible and provides a useful checksum, usually in agreement
with results obtained for example by marginalizing on one-
dimensional subspaces. We also note that interesting recent
work has shown a regularized form of the WD called the
Sinkhorn divergence (SD) (Cuturi 2013) has improved
sample complexity with a dimension agnostic convergence
rate of O(n21=2 ) for appropriate regularizing parameters
(Genevay et al. 2019) and in our work we found that many
WD computations could be corroborated by SDs provided
a suitable choice of regularizing parameter was chosen to
ensure convergence of the Sinkhorn algorithm.

d. Comparing other metrics

It is interesting to note the similarity between (A6) and
the continuous rank probability score often used for
weather forecast skill

CRPS F,G( )5
�∞

2∞

∣∣F(x)2G(x) 2dx,
∣∣ (A7)

and with the Kolmogorov–Smirnoff test

KS F,G( )5 sup
x∈ ∞,∞( )

F(x)2G(x)∣∣ ∣∣, (A8)

for CDFs F and G. For the WD with p 5 2 cost there is
the explicit formula in 1D

W2 F,G( )5
�∞

2∞

∣∣F2 1(x)2G2 1(x) 2dx
∣∣ (A9)

where F21 and G21 are generalized inverses (Villani 2003,
p. 75). Note that (A6), (A7), and (A9) take account of the
geometry of R (cf. section a of appendix A) while (A8)
does not.

e. Duality

Suppose we have a pair of distributions m and n repre-
senting, for example, rainfall at a fixed location in mm
(6 h)21. How can we interpret a WD of, say, 1 between m

and n?
Since cost is defined as c(x, y) 5 |x 2 y| a nice property

of the WD is that it inherits the units of rainfall so that we
can interpret the difference in mm (6 h)21. Heuristically,
this difference tells us that a cost of at least 1 mm (6 h)21

must be spent to transport m to n, and this takes into
account both mean and extreme rainfall.

Moreover, this distance gives bounds on a range of
expected values by the Kantorovich–Rubenstein duality
(Villani 2003, theorem 1.14), which states

W1(m, n)5 sup
f∈Lip1

∣∣∣E[f (Xm)]2E
[
f (Yn)]∣∣∣,

where Xm and Yn are random variables with laws m and n, and
Lip1 is the space of functions satisfying |f(x) 2 f(y)| # |x 2 y|
(the 1-Lipschitz functions). Taking f(x) 5 x and duality gives∣∣∣E[Xm]2E[Yn]

∣∣∣#W1(m, n),

which shows that a WD of 1 mm (6 h)21 implies a difference
in expected rainfall of less than 1 mm (6 h)21 (note that this
bound is sharp when m and n are Dirac masses). But duality
also gives bounds on expected extreme rainfall. To see this,
suppose extreme rainfall is defined as any rainfall that falls in
excess of rc mm (6 h)21 where rc is some critical value. Then
taking f(x) 5 0 for x , rc and f(x) 5 x 2 rc for x $ rc gives∣∣∣E f (Xm)[ ]

2E f (Yn)
[ ]∣∣∣#W1(m, n),

which shows a difference in expected extreme rainfall of
#1 mm (6 h)21.

Understanding such heuristics is helpful in interpreting
the bounds on rounding error derived in this paper.

APPENDIX B

Number Formats

a. Floating-point arithmetic

The standard arithmetic format for scientific computing is
the floating-point number (float). The bits in a float are
divided into three groups: a sign bit, the exponent bits, and
the significant bits. A nonzero exponent specifies an interval
I5 2e2bias, 2e112bias

[ )
with a bias to allow for negative

exponents while the exponent bits are interpreted as an
unsigned integer e. By convention the bias is taken as
2k21 2 1 where k is the number of exponent bits. For
e 5 0, floats are defined on an interval I5 0, 6212bias

( )
called the subnormal range. The significant bits specify a
point on I from an evenly spaced partition of I. Thus, the
bias together with the number of exponent bits determines
the range of representable normal numbers, while the sub-
normal range, and therefore the smallest representable
number, is determined by the bias together with the num-
ber of significant bits. Some different float formats available
in hardware are shown in Fig. B1.

The IEEE-754 Float64 format is called double precision,
and Float32 and Float16 are called single and half precision,
respectively.

b. Rounding

The default rounding mode for floats is round-to-nearest
tie-to-even (RN), which rounds an exact result x to the
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nearest representable number xi. In case x is halfway
between two representable numbers, the result will be tied
to the even float, whose significand ends in a zero bit.
These special cases are therefore alternately round up or
down, which removes a bias that would otherwise persist.

For stochastic rounding (SR) rounding of x down to a
representable number x1 or up to x2 occurs at probabilities
that are proportional to the respective distances. Specifi-
cally, if u is the distance between x1, x2, then x will be
rounded to x1 with probability 1 2 u21(x 2 x1) and to x2
with probability u21(x 2 x1).

The introduced absolute rounding error for SR is always
at least as big as for RN and when low-probability round
away from nearest occurs, it can be up to 6u, twice as large
as for round-to-nearest. However, by construction, SR is
exact in expectation and thus in particular by the law of
large numbers one has

lim
N→∞

1
N

∑N
i5 1

stochastic round x( )5 x,

with the limit obtained in the strong sense. Moreover, by some-
times rounding small remainders up, rather than always rounding
them down as in RN, systemic errors can sometimes be avoided
with SR, such as in stagnation (see section 4 for an example).

While the law of large numbers may plausibly be invoked
in simple additive numerical schemes as in section 4, in
other numerical schemes such as for nonlinear evolution
equations its applicability is less clear.

It is worth noting that SR at low precision requires com-
putation at a higher precision in order to generate the prob-
abilities for rounding; however, all numbers are written,
read, and communicated at low precision. It is also interest-
ing to note that SR can easily be implemented with a ran-
dom number sampled from the uniform distribution. This

means that random samples can be computed in advance of
or in parallel to the arithmetic.
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