
Contributed Paper

Bridging gaps in demographic analysis with
phylogenetic imputation

Tamora D. James ,1
∗

Roberto Salguero-Gómez ,2 Owen R. Jones ,3 Dylan Z. Childs ,1

and Andrew P. Beckerman 1

1Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, U.K.
2Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Rd, Oxford OX1 3SZ,
U.K.
3Interdisciplinary Centre on Population Dynamics (CPop), Department of Biology, University of Southern Denmark, Campusvej 55,
5230 Odense M, Odense, Denmark

Abstract: Phylogenetically informed imputation methods have rarely been applied to estimate missing values in
demographic data but may be a powerful tool for reconstructing vital rates of survival, maturation, and fecundity
for species of conservation concern. Imputed vital rates could be used to parameterize demographic models to
explore how populations respond when vital rates are perturbed. We used standardized vital rate estimates for 50
bird species to assess the use of phylogenetic imputation to fill gaps in demographic data. We calculated imputa-
tion accuracy for vital rates of focal species excluded from the data set either singly or in combination and with
and without phylogeny, body mass, and life-history trait data. We used imputed vital rates to calculate demographic
metrics, including generation time, to validate the use of imputation in demographic analyses. Covariance among
vital rates and other trait data provided a strong basis to guide imputation of missing vital rates in birds, even in the
absence of phylogenetic information. Mean NRMSE for null and phylogenetic models differed by <0.01 except
when no vital rates were available or for vital rates with high phylogenetic signal (Pagel’s λ > 0.8). In these cases,
including body mass and life-history trait data compensated for lack of phylogenetic information: mean normalized
root mean square error (NRMSE) for null and phylogenetic models differed by <0.01 for adult survival and <0.04
for maturation rate. Estimates of demographic metrics were sensitive to the accuracy of imputed vital rates. For
example, mean error in generation time doubled in response to inaccurate estimates of maturation time. Accurate
demographic data and metrics, such as generation time, are needed to inform conservation planning processes,
for example through International Union for Conservation of Nature Red List assessments and population viability
analysis. Imputed vital rates could be useful in this context but, as for any estimated model parameters, awareness
of the sensitivities of demographic model outputs to the imputed vital rates is essential.

Keywords: conservation modeling, demographic models, extinction risk, generation time, parameter estima-
tion, population dynamics, population growth rate, survival

Cerrando Brechas en los Análisis Demográficos con Imputación Filogenética

Resumen: Los métodos de imputación guiados filogenéticamente se han aplicado con poca frecuencia para
estimar los valores faltantes en los datos demográficos, aunque pueden ser una herramienta poderosa para la
reconstrucción de tasas vitales de supervivencia, maduración y fecundidad de especies de importancia para la
conservación. Las tasas vitales imputadas podrían usarse para generar parámetros en los modelos demográficos
para explorar cómo responden las poblaciones cuando se perturban las tasas vitales. Utilizamos estimaciones de
tasas vitales estandarizadas para 50 especies de aves para analizar el uso de la imputación filogenética para llenar
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los vacíos en los datos demográficos. Calculamos la certeza de imputación para las tasas vitales de las especies
focales excluidas del conjunto de datos por sí solas o en combinación y con y sin datos de filogenia, masa corporal
y características de historia de vida. Usamos las tasas vitales imputadas para calcular las medidas demográficas,
incluyendo el tiempo de generación, y así validar el uso de la imputación en los análisis demográficos. La covari-
anza entre las tasas vitales y otros datos de características proporcionó una base sólida para orientar la imputación
de tasas vitales faltantes en las aves, incluso la ausencia de información filogenética. El NRMSE medio para los
modelos nulo y filogenético difirió por <0.01 salvo cuando no hubo tasas vitales disponibles o para tasas vitales
con una señal filogenética alta (λ de Pagel > 0.8). En estos casos, la inclusión de la masa corporal y las carac-
terísticas de historia de vida compensó la falta de información filogenética: el error cuadrático medio de la raíz
normalizada media (NRMSE) para los modelos nulo y filogenéticos difirió por <0.01 para la supervivencia adulta
y <0.04 para la tasa de maduración. Las estimaciones de las medidas demográficas fueron sensibles a la certeza
de las tasas vitales imputadas. Por ejemplo, el error medio en el tiempo generacional se duplicó en respuesta
a las estimaciones imprecisas del tiempo de maduración. Las medidas y datos demográficos certeros, como el
tiempo generacional, son necesarios para orientar los procesos de planeación de la conservación; por ejemplo,
a través de las valoraciones de la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza y
los análisis de viabilidad poblacional. Las tasas vitales imputadas podrían ser útiles en este contexto, pero como
para cualquier tipo de parámetro de modelo estimado, el conocimiento de las sensibilidades del rendimiento del
modelo demográfico es esencial para las tasas vitales imputadas.

Palabras Clave: dinámicas poblacionales, estimación de parámetros, modelado de la conservación, modelos
demográficos, riesgo de extinción, supervivencia, tasa de crecimiento poblacional, tiempo de generación
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Introduction

Understanding population responses to human-induced
threats, such as habitat loss and degradation, climate
change, and overexploitation (Brook et al. 2003; Parme-
san 2006; Maclean & Wilson 2011; Maxwell et al. 2016),
is crucial for identifying at-risk species and to guide con-
servation interventions (e.g., Bruna et al. 2009; Dahlgren
et al. 2016; Lunn et al. 2016). Population models param-
eterized with estimates of vital rates of survival, develop-
ment, and reproduction can be used to generate predic-
tions about how a population will respond to pressures
that cause changes to vital rates (Selwood et al. 2015).

Obtaining the vital rate estimates necessary to pop-
ulate demographic models requires investment of re-
sources and time, which may be lacking in a critical

conservation setting. The most at-risk species may be
those for which information is most lacking (Beissinger
& Westphal 1998; Coulson et al. 2001; González-Suárez
et al. 2012), due to geographical, taxonomic, or other
biases in recording (Roberts et al. 2016; Troudet et al.
2017; dos Santos et al. 2020) or to logistical barriers
to collecting complete demographic data (Menges 2000;
Weimerskirch 2001; Pike et al. 2008; Clutton-Brock &
Sheldon 2010). Consequently, complete empirical demo-
graphic data are available for only a small and biased sub-
set of species (Lebreton et al. 2012; Salguero-Gómez et al.
2015, 2016; Conde et al. 2019).

When data are missing for a focal species, ad hoc impu-
tation methods are commonly used to fill in such gaps for
demographic modeling (Beissinger & Westphal 1998).
Parameter estimates may be derived from empirical data
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for other species based on relatedness (Heinsohn et al.
2004; Koenig 2008) or trait similarity (McCarthy et al.
1999; Valle et al. 2018). Other approaches include com-
bining estimates from populations to form a represen-
tative model for a species (Sæther & Bakke 2000) and
parameterization of models based on a range of plausible
values (Rodríguez et al. 2004) or on data from captive
individuals (e.g., Young et al. 2012). Such approaches
produce bias (Schafer & Graham 2002), and their use
raises concerns about the reliability of model outputs
and the ability to make robust conclusions (Sæther & En-
gen 2002; Ellner & Fieberg 2003; McGowan et al. 2011).
Therefore, formal methods for estimating missing vital
rates and quantifying uncertainty in such estimates are
needed.

Many ad hoc methods of imputing missing values are
based on the expectation that the vital rates of the focal
species will be similar to closely related species (Felsen-
stein 1985; Pagel 1999). By accounting more formally for
evolutionary history, it may be possible to improve the
imputation of missing vital rates. Phylogenetic imputa-
tion methods use phylogeny, together with an evolution-
ary model describing the divergence of trait values (Mar-
tins & Hansen 1997; Pagel 1999; Freckleton et al. 2002),
to estimate missing values in species-based data. Traits
may be more or less labile, leading to differences in how
well trait values may be predicted by evolutionary rela-
tionships (Freckleton et al. 2002; Blomberg et al. 2003).
Phylogenetic signal, a measure of the strength of phyloge-
netic dependence of trait values (Pagel 1999; Blomberg &
Garland 2002), may determine the benefit of using phylo-
genetic information when imputing trait values (Penone
et al. 2014). If phylogenetic signal is strong, phylogeneti-
cally informed methods can potentially improve imputa-
tion performance.

Phylogenetic imputation has been proposed for filling
gaps in functional trait data in plants (Swenson 2014) and
mammals (Guénard et al. 2013; Penone et al. 2014). Such
methods have rarely been applied to demographic data,
although hierarchical approaches incorporating taxon-
omy have been used to estimate life-history parameters
in fish (Thorson et al 2017). We focused on demographic
traits, namely vital rates of survival, maturation, and fe-
cundity. In plants, imputation of single vital rates sug-
gests that neither fecundity nor the survival of differ-
ent life stages are strongly predicted by phylogeny or
species-level traits (Che-Castaldo et al. 2018), reflecting
weak phylogenetic signal in plant vital rates (Burns et al.
2010). In vertebrates, strong phylogenetic signal in char-
acteristics that covary with vital rates (body size, mor-
phology, and life-history traits) has been interpreted as
being informative about evolutionary processes, such as
the strength of stabilizing selection and evolutionary la-
bility (Blomberg et al. 2003; but see Revell et al. 2008).

Whatever the exact evolutionary processes involved, the
tendency of vital rates to covary with body size (Stearns
1983) and life-history traits (e.g., age at maturity and
clutch size, Sæther & Bakke 2000) suggests that they
will also have strong phylogenetic signal, which would
be useful in an applied setting to infer vital rates for
related species. The inclusion of covarying allometric
and life-history trait data may inform the imputation of
vital rates (e.g., Shine & Charnov 1992; Brawn et al.
1995).

Imputed vital rates provide a means by which demo-
graphic characteristics of a population may be derived.
Demographic metrics of interest in a conservation set-
ting include population growth rate and its sensitivity
and elasticity to underlying vital rates (Benton & Grant
1999) and life-history metrics such as generation time.
Sensitivity analysis identifies vital rates with the most
capacity to produce change in population growth rate.
Accurate imputation of vital rates to which population
growth rate is sensitive would be valuable for making
well-founded demographic predictions to guide conser-
vation interventions. Generation time is used by inter-
national conservation bodies, such as the International
Union for Conservation of Nature (IUCN), to produce
indicators for conservation decision-making (Mace et al.
2008). When underlying life-history data are missing or
sparse, demographic metrics may be estimated using
proxies based on life-history traits such as reproductive
lifespan (Fung & Waples 2017; Staerk et al. 2019) or
imputed either directly (Fagan et al. 2013; Cooke et al.
2018) or by means of underlying life-history traits (Paci-
fici et al. 2013; Bird et al. 2020). Demographic metrics
derived using phylogenetically imputed vital rates could
improve accuracy over these alternative methods.

We used existing vital-rate data for birds to assess
the feasibility of using phylogenetic imputation to fill
gaps in demographic analysis. Although many avian
demographic data sets have been compiled (Sæther &
Bakke 2000; Lebreton et al. 2012; Salguero-Gómez et al.
2016), information about vital rates is missing for many
species of conservation concern (e.g., survival is missing
for 82% of bird species, Conde et al. 2019). We used
demographic data for 50 species to derive standardized
vital rates and apply a multivariate imputation framework
that incorporates phylogenetic covariance among vital
rates to impute missing values. We determined how
accurately values excluded from the vital-rate data can
be imputed, either singly or in combination. Further, we
assessed the value of including body mass and life-history
trait data (clutch size and female age at maturity) when
imputing missing vital-rate data. We used original and
imputed vital rates to calculate demographic metrics
that inform assessments of population performance and
extinction risk.
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Methods

All analyses were carried out in R (version 3.6.3, R Core
Team 2020).

Standardized Vital Rate, Body Mass, and Life-History Trait Data

We extracted matrix population models for birds from
the COMADRE Animal Matrix Database (version 3.0.1,
COMADRE 2019) and other sources (Sæther & Bakke
2000). We screened the data to avoid models with errors
in construction (Kendall et al. 2019) and to ensure valid
structure for the subsequent analysis (Appendix S1). The
resulting set of matrix population models represented
50 bird species across 15 orders and a range of avian
life histories. We identified prebreeding and postbreed-
ing census models and categorized each life history as
early maturation (individuals mature and breed after 1
year) or delayed maturation (individuals remain as non-
breeding juveniles for 1 or more years; Fujiwara & Diaz-
Lopez 2017). Allowing for the different representation
of early- and delayed-maturation species in prebreeding
and postbreeding census models, we collapsed prere-
productive and reproductive stages (Salguero-Gómez &
Plotkin 2010) and derived a set of standardized vital rates
representing first-year survival (s0), adult survival (sa),
fecundity ( f ), and maturation rate (m) from the result-
ing matrices. To ensure a full set of standardized vital
rates in the imputation analysis, we restricted the main
analysis to 40 species with postbreeding census mod-
els (Appendix S2). We combined the standardized vital
rates with avian body mass, clutch size, and female age
at maturity (Wilman et al. 2014; Myhrvold et al. 2015)
and transformed all variables to satisfy the requirements
of the imputation model (Appendix S1).

Phylogeny

We downloaded a sample of 1,000 full avian phyloge-
netic trees (Hackett backbone) from the BirdTree web-
site (www.birdtree.org, Jetz et al. 2012), pruned to
match the species in the standardized vital-rate data. The
tree topology was well supported (3 nodes with poste-
rior probability <0.95), so we used the least squares con-
sensus method (Lapointe et al. 1997; phytools version
0.7-20, Revell 2012) to create an average tree for phylo-
genetic imputation analysis (Appendix S3). This method
creates a consensus tree for which the sum-of-squares pa-
tristic (node-to-node) distances to the set of trees in the
sample is minimized. We compared outputs from imputa-
tion in the consensus tree with results for a sample of 50
trees from the posterior distribution to demonstrate that
our results were insensitive to phylogenetic uncertainty
(Appendix S5).

Phylogenetic Signal

Phylogenetic signal is a measure of pattern derived by
comparing observed trait distributions with expectations
from a specified model of evolution. Pagel’s λ is a trans-
formation of the phylogeny, obtained by maximum likeli-
hood, that produces the best fit of the data to a Brownian
motion model of evolution. Pagel’s λ takes values from 0
(complete phylogenetic independence) to 1 (patterns of
similarity observed in the data are proportional to shared
evolutionary history) or above (traits are more similar
among species than expected) (Pagel 1999; Freckleton
et al. 2002). We used phytools (version 0.7-20) (Rev-
ell 2012) to estimate mean Pagel’s λ for each standard-
ized vital rate across 1,000 phylogenetic trees obtained
from BirdTree to account for any residual uncertainty in
branch lengths. In addition, we used Rphylopars (version
0.2.12) (Goolsby et al. 2016) to estimate Pagel’s λ for
each of the trait data sets to characterize phylogenetic
dependence in the data, taking into account covariance
among the data.

Phylogenetic Imputation

We carried out a multistage analysis to assess the use of
phylogenetic imputation to reconstruct missing values
introduced systematically into the standardized vital-rate
data (Fig. 1). Phylogenetic imputation predicts missing
values based on covariance among the data, supple-
mented by phylogeny and a model for evolution. We used
Rphylopars (version 0.2.12, Goolsby et al. 2016), which
implements maximum likelihood estimation of missing
trait values in a phylogenetic generalized least squares
framework, assuming normally distributed continuous
variables. We combined the consensus phylogeny with
a null model of evolution, in which phylogeny does not
influence trait values, and a Pagel’s λ model, in which
the phylogeny is scaled to account for phylogenetic
dependence in the data (phylogeny, Fig. 1). We created
3 trait data sets: standardized vital rates only; vital rates
and body mass data; and vital rates, body mass, and life-
history trait data (trait data sets, Fig. 1). Within each trait
data set, we introduced a known structure of missing val-
ues among the vital rates for a focal species. We removed
vital rate values in all possible combinations of single
and multiple vital rates, resulting in 15 data sets per
species (missing data combinations, Fig. 1). We imputed
missing values assuming either model of evolution. After
transformation to the original scale for each vital rate, we
used the normalized root mean square error (NRMSE),

NRMSE =
√∑

i(X
∗
i −Xi )

2

n

(Xi) − mini(Xi)
(1)

to assess imputation accuracy for each vital rate, missing
vital rate combination, trait data set, and evolutionary
model (error calculation, Fig. 1). Here, X ∗

i and Xi are
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Figure 1. Process for applying phylogenetic imputation to vital rate, body mass, and life-history trait data to assess
the accuracy of predicting vital rates for use in demographic models (NRMSE, normalized root mean square error;
X ∗

i and Xi, imputed and original values, respectively, of a vital rate for species i; n, number of species).

imputed and original values, respectively, of a vital rate
for species i. Normalization by the range of observed
values for the vital rate allows comparison of errors
across vital rates.

We used species means to estimate phylogenetic co-
variance (Goolsby et al. 2016) to avoid conditioning
problems in the data sets that included body mass and
life-history trait data. We imputed values both with and
without phenotypic variation for the vital-rate data to
demonstrate that excluding phenotypic covariance from
the analysis was not detrimental to the estimation of phy-
logenetic covariance (Appendix S6).

Demographic Metrics

We represented avian life histories with stage-structured,
postbreeding census models with an annual time step
(Caswell 2001) parameterized with s0, sa, f , and m
imputed under the phylogenetic model. For early-

maturation species,

A =
[
s0 f sa f
s0 sa

]
(2)

and for delayed-maturation species,

A =
⎡
⎣0 m sa f sa f

s0 (1 − m) sa 0
0 m sa sa

⎤
⎦ (3)

We used these population models to generate popula-
tion growth and life-history metrics (Table 1). For each
missing data combination and trait data set, we calcu-
lated the normalized root mean square error (Eq. 1) to
compare estimates of these demographic metrics from
models parameterized with imputed and original vital
rates. We inspected differences in the sensitivity and elas-
ticity of population growth rate to each vital rate for bias
(systematic differences) or increased variance.

Conservation Biology
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Table 1. Demographic metrics of population growth and life history used in an assessment of the effect of imputed parameters on demographic model
outputs.

Metric Description

Population growth
asymptotic population growth rate long-term performance of a population
sensitivity and elasticity of population growth rate response of population growth rate to changes in underlying vital

rates
Life history

generation time time required for population to increase by a factor equal to net
reproductive rate

mean age at maturity average time taken to enter reproductive stage
mean lifespan average age of individuals at death

Results

Phylogenetic Signal

For postbreeding census data, mean Pagel’s λ was weak
for first-year survival (0.246 [SD 0.013]), intermediate
for fecundity (0.532 [0.018]), and strong for adult sur-
vival (0.889 [0.016]) and maturation rate (0.923 [0.116]).
Mean values for prebreeding census data were similar
(sa: 0.817 [0.019]; m: 0.934 [0.094]). High phylogenetic
signal suggested that adult survival and maturation rate
should be successful targets for phylogenetic imputation
but high variance in Pagel’s λ for maturation rate sug-
gested greater phylogenetic uncertainty in maturation
rate.

For postbreeding census models, Pagel’s λ was 0.488
for the vital-rate data, increasing to 0.702 when body
mass was added and decreasing to 0.684 when life-
history trait data were included; the pattern was similar
for prebreeding census data. These results indicate that
body mass improves the characterization of phylogenetic
dependence among vital rates, but that life-history trait
data do not produce further improvement and may even
act slightly negatively on phylogenetic signal.

Imputed Vital Rates

Adult survival and fecundity were the most accurately
imputed vital rates in the postbreeding census data:
mean NRMSE of 0.169 (SD 0.039) and 0.172 (0.019),
respectively. Imputed first-year survival (mean NRMSE:
0.248 [0.010]) and maturation rate (mean NRMSE: 0.346
[0.055]) were less accurate.

For first-year survival and fecundity, the phylogenetic
model was no more accurate than the null model (Fig. 2).
However, phylogenetic information helped to improve
imputation accuracy for adult survival and maturation
rate, particularly for multiple missing vital rates. Includ-
ing body mass and life-history trait data improved im-
putation accuracy for adult survival and maturation rate
(Fig. 2) and reduced the difference in accuracy between
phylogenetic and null models for adult survival.

Life-History Metrics

Generation time calculated with a single imputed vital
rate had a similar accuracy across trait data sets for first-
year survival, adult survival, and fecundity (mean NRMSE:
0.075 [SD 0.011]) (Fig. 3), despite differences in impu-
tation accuracy for these vital rates (Fig. 2). For mat-
uration rate, mean NRMSE was higher (0.140 [0.073])
and NRMSE was markedly higher when body mass and
life-history trait data were included, due to 2 outliers
for which imputed maturation rate was underestimated,
leading to overestimation of generation time (Appendix
S17).

Mean age at maturity was sensitive to imputed adult
survival because we assumed juvenile survival to be
equal to adult survival, but it was relatively well charac-
terized when adult survival was imputed (mean NRMSE:
0.041 [SD 0.007]) (Fig. 3). For imputed maturation rate,
mean age at maturity was not well estimated (mean
NRMSE: 0.234 [0.035]) and, as for generation time, mean
age at maturity was less accurate when life-history trait
data were included due to 2 outliers for which the metric
was overestimated (Appendix S18).

Mean lifespan had similar accuracy when either first-
year or adult survival were unknown (mean NRMSE:
0.121 [SD 0.007] and 0.118 [0.011], respectively) and
was not influenced by adding body mass and life-history
trait data.

Population Growth Metrics

When maturation rate was imputed, population growth
rates matched the original values reasonably well (mean
NRMSE: 0.051 [SD <0.001]) (Fig. 4). Population growth
rate was less accurate when first-year or adult sur-
vival was imputed (mean NRMSE: 0.125 [0.010] and
0.126 [0.014], respectively). The least accurate results
arose when fecundity was imputed (mean NRMSE: 0.221
[0.039]) driven by overestimation of fecundity for a sin-
gle species (Appendix S20).

Estimates of the sensitivity of population growth rate
to the underlying vital rates varied in accuracy across
missing vital rates and focal vital rate for the sensitivity

Conservation Biology
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Figure 2. Accuracy of vital rates imputed from demographic data for different numbers of missing vital rates, trait
data set, and evolutionary model (points, mean error across combinations of the same number of missing vital
rates; whiskers, range of normalized root mean square error for different missing vital rate combinations).

Figure 3. Accuracy of life-history metrics calculated from matrix population models parameterized with imputed
vital rates (filled symbols, mean error across trait data sets; open symbols, error for individual trait data sets).
Imputed vital rates that did not have an effect on the estimate of the life-history metric are not shown.

Conservation Biology
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Figure 4. Estimates of (a) population growth rate and (b) sensitivity and elasticity of population growth rate to
underlying vital rates (filled symbols, mean error across trait data sets; open symbols, error for individual trait
data sets).

calculation (Fig. 4). Responses to imputed vital rates
were more consistent across vital rate elasticities; matura-
tion rate (mean NRMSE: 0.042 [SD 0.009]) and adult sur-
vival (mean NRMSE: 0.060 [0.019]) were the most accu-
rate and first-year survival (mean NRMSE: 0.105 [0.013])
and fecundity (mean NRMSE: 0.161 [0.027]) were the
least accurate. Errors in sensitivities and elasticities were
unbiased except when maturation rate was imputed
(Appendix S21 and S22).

Discussion

Detailed understanding of species’ responses to global
change, which is needed to address the current biodi-
versity crisis, is limited by gaps in the demographic data
needed to predict population trajectories (Kindsvater
et al. 2018; Conde et al. 2019). Efforts such as the IUCN
Red List (IUCN 2020) are designed to make the most of
limited information (Rodrigues et al. 2006; Mace et al.

2008), but the use of proxies to compensate for missing
data can result in bias and under- or overestimation of
extinction risk (Fung & Waples 2017; Staerk et al. 2019).
Accurate estimation of vital rates, particularly those for
which elasticity of population growth rate is high, such
as adult survival in long-lived species, is important for re-
liable predictions of population performance. We found
that applying a multivariate framework that accounted
for covariance among rates of survival, reproduction, and
maturation allowed us to impute some missing vital rates
relatively well, even in the absence of phylogenetic infor-
mation. Including phylogenetic relationships improved
the accuracy of imputed values in some cases. However,
auxiliary trait data also tended to improve imputation ac-
curacy for multiple vital rates and compensated for lack
of phylogeny in most cases.

Imputation accuracy did not reflect the ranking of
vital rates by phylogenetic signal. However, vital rates
with the strongest phylogenetic signal, adult survival and
maturation rate, improved in accuracy with phylogeny,

Conservation Biology
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particularly for multiple missing vital rates. Penone et al.
(2014) linked the influence of phylogeny on trait esti-
mates in carnivores both to phylogenetic signal and to
how much traits covaried with body size. We found that
imputation accuracy deteriorated for multiple missing vi-
tal rates, suggesting that covariance patterns among the
vital rates were important.

Imputation tended to overestimate maturation rates
(Appendices S9 and S13). In discrete time, stage-based
population models, species that mature in a single time
step have a maturation rate of 1, whereas for species
with delayed onset of reproduction, maturation rate can
be markedly <1. The resulting bimodal distribution is
severely non-normal, even after transformation. The im-
putation model we used estimated covariance among
normally distributed variables and did not compensate
for this unusual distribution.

Our finding that body mass and life-history trait data
improved the accuracy of imputed values contrasts with
studies that showed relatively minor effects of species-
level traits on the estimation of demographic rates. For
example, body mass does not improve estimation of
per capita population growth rate in mammals (Fagan
et al. 2013), and size and growth form largely fail to im-
prove predictability of demographic rates in plants (Che-
Castaldo et al. 2018).

We found that accuracy of demographic metrics typ-
ically used for conservation assessment purposes, such
as generation time (Mace et al. 2008), depended both
on the accuracy of imputed values and on the sensitiv-
ity of the metric to the imputed vital rates. Moreover,
the simplified life cycle underlying our approach may in-
troduce bias in some demographic outputs (Fujiwara &
Diaz-Lopez 2017). Many researchers advise caution in the
interpretation of demographic model outputs due to pa-
rameter uncertainty (Beissinger & Westphal 1998; Ellner
et al. 2002; Reed et al. 2002); similar care is necessary for
models parameterized with imputed values.

Our results are limited by the availability and partial-
ity of demographic data (Salguero-Gómez et al. 2015,
2016; Conde et al. 2019), which inform estimates of
covariance among vital rates. Including data for more
species may improve accuracy of imputed vital rates by
strengthening patterns of covariance (e.g., Penone et al.
2014). However, vital-rate data may be missing not at
random (MNAR) for species of conservation concern,
and such biases in missing values can influence compara-
tive analyses by skewing trait distributions (Nakagawa &
Freckleton 2008; González-Suárez et al. 2012). Although
geographical variation in demographic traits (e.g., differ-
ences in clutch size and survival across latitudes) could
create different patterns of covariance among vital rates,
including phylogeny, life-history traits, and latitude may
be sufficient to control for such variation (Jetz et al 2008;
Scholer et al 2020). Future studies could use a broader
coverage of avian life history to investigate how biases in

the availability of demographic data affect imputation ac-
curacy and could assess imputation of vital rates in other
taxonomic groups.

Recommendations

The success of phylogenetic imputation rests on the va-
lidity of the data covariance structure. This structure is
determined by the phylogeny and by the known values
for vital rates and important covariates, such as body
size. Thus, the quantity and accuracy of these data may
strongly influence the reliability of imputed values. We
suggest exploring the impact of uncertainty in the input
data by, for example, varying the values within reason-
able limits to determine the sensitivity of outputs. Un-
certainty in the phylogeny could be explored in a similar
way by sampling from a distribution of plausible trees.

We found that maturation rate was poorly handled by
the distributional assumptions of the imputation method.
We advise the use of an alternative approach, such as
using a two-component mixture model to capture the
bimodal distribution for maturation rate.

We have provided a qualitative assessment of how dif-
ferences in the accuracy of imputed vital rates translate
to accuracy of demographic metrics. A global sensitivity
analysis could be used to quantify how uncertainty prop-
agates from imputed vital rates to demographic metrics.

We used a novel approach to bridging gaps in demo-
graphic analysis with phylogenetic imputation. Although
this method cannot replace demographic metric calcu-
lation when detailed age-specific life-history parameters
are available, the ability to impute vital rates for species
with sparse demographic data is valuable in a data-limited
conservation context and avoids biases associated with
assuming family- or genus-based mean values for under-
lying traits (Schafer & Graham 2002). Accurate demo-
graphic information is vital for indicators, such as the
IUCN Red List, which informs conservation decision-
making from species-level conservation to spatial prior-
itization (Rodrigues et al. 2006), and the IUCN Green
List, a framework for assessing species recovery and con-
servation success (Akçakaya et al. 2018). In addition,
data-driven assessments are essential in guiding business
processes and supporting sustainable development goals
(Brooks et al. 2015; Bennun et al. 2018).
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