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ABSTRACT: There are now a plethora of data, models, and approaches available to produce re-
gional and local climate information intended to inform adaptation to a changing climate. There 
is, however, no framework to assess the quality of these data, models, and approaches that takes 
into account the issues that arise when this information is produced. An evaluation of the quality 
of regional climate information is a fundamental requirement for its appropriate application in 
societal decision-making. Here, an analytical framework is constructed for the quality assessment 
of science-based statements and estimates about future climate. This framework targets state-
ments that project local and regional climate at decadal and longer time scales. After identifying 
the main issues with evaluating and presenting regional climate information, it is argued that 
it is helpful to consider the quality of statements about future climate in terms of 1) the type of 
evidence and 2) the relationship between the evidence and the statement. This distinction not only 
provides a more targeted framework for quality, but also shows how certain evidential standards 
can change as a function of the statement under consideration. The key dimensions to assess 
regional climate information quality are diversity, completeness, theory, adequacy for purpose, 
and transparency. This framework is exemplified using two research papers that provide regional 
climate information and the implications of the framework are explored.
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Informing the large number of actions needed to manage climate risks, reduce damages, 
and maximize potential opportunities is a grand challenge for climate change science 
(Moss et al. 2013). Adapting human and natural systems across sectors of society is 

necessary to improve preparedness and enhance resilience to a changing climate. Decision-
relevant climate information can support society’s efforts to adapt to climate change.

Different strategies for making climate adaptation decisions utilize scientific information 
differently in the decision-making process (Dessai and van der Sluijs 2007). Nevertheless, 
whenever scientific climate information is used in adaptation, “quality” is considered to be 
an essential characteristic that this information should have (e.g., Lu 2011; Wilby et al. 2009; 
for a general overview on quality of science for policy, see Funtowicz and Ravetz 1990).

The kind of long-term regional climate information that is increasingly important for 
decision-makers (see, e.g., Knutti 2019) ranges in temporal scales—from hours to multiple 
decades—and spatial scales—from meters to hundreds of kilometers. Global climate models 
(GCMs) and Earth system models (ESMs) are the dominant source of regional climate informa-
tion, but increasingly downscaling, both statistical and dynamical, has been used to achieve 
higher-resolution information (see, e.g., Pielke and Wilby 2012; Giorgi 2020). However, it is 
difficult to evaluate long-term information at the regional scale because of the presence of 
deep uncertainty and because the usual empirical tests are not applicable due to the nonsta-
tionarity of the climate system (see, e.g., Stainforth et al. 2007b).

General guidance on some dimensions of quality (e.g., Nissan et al. 2019; Benestad et al. 
2017) are emerging in the literature, but this literature is fragmented. The way quality is 
characterized can be very different depending on whether it is discussed in physical cli-
mate science (e.g., Zeng et al. 2019; Krysanova et al. 2018), environmental social science 
(e.g., Lemos and Morehouse 2005; Cash et al. 2003), or philosophy of science (e.g., Parker 
and Risbey 2015; Parker 2009), and on whether it is aimed at knowledge deriving from cli-
mate science research or information deriving from climate services (Barsugli et al. 2013). 
Characterization of the quality of climate information should also include a discussion of 
the roles of scientific knowledge in their social, political, and economic contexts (Maxim 
and van der Sluijs 2011).

To address the quality issues that are specific to climate change adaptation decision-making, 
we focus on what quality means for regional climate information derived from knowledge 
produced by scientific research. In particular, we target the quality of the evidence and the 
methods used to produce knowledge about regional climate change and its related uncertainty. 
Due to the knowledge evaluation issues discussed below, this knowledge cannot only be 
derived from the output of ESMs: other lines of evidence, such as expert judgment, theory, and 
observations can and should be taken into account to produce information that goes beyond 
or replaces model output (see Fig. 1). In the rest of this paper, regional climate information 
refers to scientific knowledge about regional climate that intends to inform adaptation to a 
changing climate. We recognize that social values do influence methodological choices in 
the sciences (see, e.g., Douglas 2009; Intemann 2015; Elliott and Steel 2017), but we do not 
directly engage with this debate here.
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The aim of this paper is to propose a framework that enables the assessment of the qual-
ity of regional climate information. The framework draws on insights from physical climate 
science, environmental social science, and philosophy of science to identify relevant quality 
dimensions and is intended as a general guide to assess quality in this context. We character-
ize quality along five dimensions that can support users of climate information, including 
“non-specialist scientists” and decision-makers. Scientists might use this framework because 
knowledge about future regional climate is produced by experts across many different disci-
plines, and an expert in one discipline may not have the expertise to evaluate the knowledge 
produced from another discipline. Decision-makers can use this framework because they 
may not be trained in the science that is used to generate regional climate information. The 
framework raises the questions that specialists and non-specialists alike need to ask regard-
ing the provenance of regional climate information.

We start this paper by further clarifying what is meant by regional climate information. 
Next, we highlight the main issues that arise in evaluating and representing this information: 
knowledge evaluation issues and quantification issues. These issues are to be understood in 
the context of the purpose of regional climate information. Next, we characterize how regional 
climate information is constructed, and we propose a framework to evaluate its quality. The 
framework identifies five key dimensions of quality: diversity, completeness, theory, adequacy 
for purpose, and transparency, and we illustrate the application of these dimensions with two 
examples. We conclude with some general remarks about the framework.

Why we need a quality assessment framework
Climate science serves many different purposes, ranging from improving our understanding 
of Earth system processes and their interaction with human activity to informing decision-
making. We focus on regional climate information that has the purpose of informing climate 
change adaptation decisions. Regional climate information is to be understood as statements 

Fig. 1. (top) Typology of evidence that can be used to support knowledge claims about future climate 
and (bottom) selected ways in which knowledge claims about future climate can be presented. The 
blue triangle represents the relationship between the evidence and the statement about future 
regional climate.
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or estimates about future regional climate that have the intention of informing adaptation to a 
changing climate. We highlight the purpose of regional climate information because different 
purposes for generating information motivate the use of different methods of generating this 
information (Laudan 1984, 62–63; Shackley and Wynne 1995) and of different standards 
of evaluation. However, there is currently no quality framework that explicitly claims that 
quality can change depending on the purpose that the information serves. In this section we 
clarify the purpose of the regional climate knowledge addressed by our framework and specify 
some of the main challenges that can affect quality in this context.

The purpose and epistemic reliability of regional climate information. The issue of model 
purpose has been addressed by researchers interested in how to justify model-based infer-
ences that are relevant for policy. Recently, Thompson and Smith (2019) have highlighted the 
distinction between “model land,” the land of statements about models derived from models, 
and statements derived from models about the real world. They argue that when making 
decision relevant model-based statements, scientists need to be aware of and explicit about 
the consequences of the assumptions introduced in a model, since decision-relevant state-
ments will be taken to be about the real world, rather than the model. Risbey et al. (2005), 
Parker (2009, 2020), Baumberger et al. (2017), and Nissan et al. (2020) argue that when we 
assess a model, we are not assessing the whole model, but only the aspect of the model that 
addresses the particular question asked of the model, or, in other words, the purpose that 
the model serves. So, how does the purpose of informing climate change adaptation feature 
in this quality assessment framework?

If the purpose of regional climate information is to inform adaptation to a changing climate 
then it should be epistemically reliable. Epistemic reliability of a statement or an estimate, 
in this context, refers to whether the statement or estimate (and its associated confidence/
uncertainty) about the future is likely to capture or estimate a state of the climate that 
will actually realize. The epistemic reliability of regional climate information is difficult 
to assess due to the nonstationarity of the climate system and the time scales of change 
under consideration, which remove the option of applying the usual empirical tests to these 
statements/estimates. Epistemic reliability of multidecadal projections is different from the 
meaning of reliability as it is used by the weather and seasonal forecasting community (e.g., 
Weisheimer and Palmer 2014), which relies on past model performance in forecasting the 
system. Winsberg (2006, p. 17) suggests that in some cases one can define a reliable process 
in terms of how well it fits with the methods, physical intuition, and data of a given field, 
rather than in terms of the relative frequency with which a model produces an accurate state-
ment. Baldissera Pacchetti (2020), however, adds that when assessing uncertainty from the 
structural differences between climate models it is important to be able to explain why we 
might believe that such climate knowledge is epistemically reliable.

Providing these explanations is especially important when an evaluation of the accuracy 
of model output cannot be established over a time frame of meaning to the assessment. We 
know whether a weather forecast is reliable when there are collections of past forecasts and 
out-of-sample verifications thereof. This is the sense in which reliability is understood in the 
weather and seasonal forecasting community. But out-of-sample verifications are not always 
available. Consider the following: we know that a damped harmonic oscillator provides reli-
able predictions of the behavior of an oscillating weight in a viscous medium if the oscillation 
is slow enough, and we know this because it is derived by means of Hooke’s law, Newton’s 
second law, etc. This theoretical knowledge, together with some empirical results about viscos-
ity, will allow one to have an epistemically reliable expectation of how a weight will behave 
in a new medium for which one knows the viscosity but for which there are no experimental 
results of weights oscillating in that medium. While the case of generating regional climate 
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information is considerably more complex, explanations of a similar nature can help us assess 
to what extent regional climate information captures the potential future state of affairs, in 
a way that can inform climate change adaptation decisions. When the purpose of regional 
climate information is to inform adaptation to a changing climate, it should be epistemically 
reliable in the sense that one should be able to explain why a statement about future regional 
climate is likely to happen, or, in other words, why it is credible.

Epistemic reliability of regional climate information is particularly important when conse-
quential decisions are made on the basis of this information. This concept is therefore central 
to our quality evaluation framework: the higher the quality of a statement or estimate about 
future climate, the more reasonable it is to believe that we are making a credible statement 
or estimate for its societal purpose. This is how “quality” is most usefully interpreted in the 
context of regional climate information for adaptation planning. To be clear how knowledge 
about future regional climate should be evaluated, we first review some of the major shortcom-
ings of current climate knowledge evaluations and of how current knowledge about regional 
climate is presented.

Knowledge evaluation issues. While it is recognized that uncertainty in climate projections 
is in some sense irreducible (see, e.g., McWilliams 2007), gaps in our knowledge about future 
regional climate can also be due to theoretical, observational, and computational constraints. 
For example, there are limitations to the empirical tests of the climate models from which this 
knowledge is derived. Truly forward-looking tests about the accuracy of climate projections can 
only be made with earlier generations of models, and even then the available observations are 
limited to those between the date the projection was produced and the present day—a short 
period in the context of climate change and climate variability [see, e.g., Dessai and Hulme 
(2008), Grose et al. (2017), and Hausfather et al. (2020) for exceptions].

Climate models are also evaluated based on how they simulate past observational or 
reanalysis data. But shared assumptions in GCMs and ESMs and reanalysis data gener-
ated with such models open the possibility of shared biases that are difficult to detect and 
isolate. Lenhard and Winsberg (2010, p. 257) have argued that GCMs are subject to a kind 
of “confirmation holism”: the complexity of both the interactions between the modules of 
the GCM and the model development process often makes it virtually impossible to assign 
improvements in model performance to improvements of the representation of the physi-
cal processes in the code. Further, assessments of model performance with observational 
and reanalysis data do not directly test the prognostic accuracy of the model, as successful 
reproduction of past data does not imply that models will accurately predict a changing 
climate on long temporal scales (e.g., Reifen and Toumi 2009). Climate projections are ex-
trapolatory (see, e.g., Stainforth et al. 2007b), because the conditions to which the model is 
applied are different to those for which we have observations, making past successes less 
relevant. Last but not least, the nature of this kind of evaluation runs the risk of evaluating 
the models against features of datasets which have been knowingly or unknowingly used 
in model development or tuning [see Shackley et al. (1998) for an early analysis of the use 
of GCMs for policy making].

Model evaluation is often sought in a context of demonstrating a degree of robustness. One 
common understanding of robustness is the one used when performing sensitivity analysis, 
which philosophers have called “inferential robustness” (Woodward 2006). Inferential robust-
ness refers to a robust inferential process. Its core idea is that the statement is robust if it is 
insensitive to various competing assumptions, models, or, for the case of regression analysis, 
choice of competing explanatory variables. Following Woodward (2006), suppose that Ei are 
the different assumptions, models, etc., and R is the statement derived from the inferential 
process. Then, if the same statement R is obtained for any choice of Ei, then R is robust, 
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and likely to be true. This reasoning underlies some of the interpretations of multimodel 
ensembles, and has been criticized on the basis that model genealogy, shared assumptions 
between GCMs, and the use of GCMs in producing reanalysis data, undermine the strength 
of this inference and the associated uncertainty [Parker (2011), but see Lloyd (2015) for an 
alternative interpretation of robustness and ensembles]. Woodward notes that this notion 
of robustness relies on the assumption that all possible competing assumptions, models or 
explanatory variables are considered.

Another relevant notion of robustness is what Woodward (2006) calls “measurement ro-
bustness” [also discussed in Wimsatt (1981)], which refers to the confidence one has in an 
empirical value that is measured with different instruments. So, for example, a measurement 
of temperature at location x and time t is robust if one gets the same value with a mercury 
thermometer, a thermocouple or an infrared thermometer. While this notion of robustness 
has not been formalized, philosophers have argued that the independence of these measure-
ments is what is valuable for inferring that the reading is correct (Woodward 2006, p. 234). 
The reasoning behind this argument is similar to the reasoning behind the importance of 
independence in statistical sampling, i.e., it is valuable because it removes possible biases.

Independence is a term discussed in physical climate science in the context of multimodel 
ensembles (MME) (see Knutti et al. 2017, and references therein) and in the philosophy of sci-
ence (Parker 2011; Lloyd 2009, 2010, 2015). Claims of robustness are particularly problematic 
for MMEs, where models are often analyzed as if they were independent (Pirtle et al. 2010; see 
also Parker 2011) but such an assumption is not warranted (Parker 2011; Knutti et al. 2010; 
Masson and Knutti 2011).

Physical climate scientists are developing strategies to approximate independence in 
MMEs by designing schemes to weight the models (Sanderson et al. 2015; Knutti et al. 2017) 
but there are still open questions about whether this strategy is effective. The main point of 
Parker (2011) is that we cannot think of an ensemble of models to be a random sample from the 
space of possible models and since it is unclear how to define a space of all possible models, 
model weighing is inherently problematic. Most recently, Jebeile and Crucifix (2020) have 
discussed the difficulties of MME optimization.

The complexity of GCMs and the difficulties of model evaluation implies that regional cli-
mate knowledge needs to rely on more than just the models (or ensemble of models) to be able 
to evaluate its epistemic reliability and hence its quality. Further, the above limitations should 
always be clearly stated when producing decision relevant climate knowledge based on GCMs.

Quantification issues. The issues outlined above can be exacerbated by an excessive focus 
on quantification. Policy-makers want, or are thought to want, quantified climate information 
(Heaphy 2015) but scholars interested in the science–policy interface have increasingly called 
attention to the pitfalls of such a focus and the overconfidence that it produces (Porter 1995; 
Supiot 2017; Kovacic 2018).

Adopting a “one size fits all” approach for quantifying knowledge and uncertainty can 
lead to several issues. Parker and Risbey (2015) argue that this kind of approach can lead to 
a false sense of precision regarding the uncertainty associated with a particular distribution 
of future states of the climate. Such false precision, they continue, may influence the choice of 
decision-making strategy adopted by the policy maker (e.g., a top-down instead of a bottom-
up approach; Dessai and van der Sluijs 2007).

The focus on quantified information may also suggest that such information is somehow 
better than other ways of representing knowledge claims and associated uncertainties (e.g., 
ranges with low precision, or direction of change), but this is not the case. See, for example, 
the discussion of quantified information provided by the Intergovernmental Panel on Climate 
Change (IPCC) found in Risbey and Kandlikar (2007). In that paper, the authors argue that the 
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distinction made by the IPCC between likelihood and confidence (Mastrandrea et al. 2011) is 
not a useful one, because likelihood and confidence are supposed to separate the frequentist 
and subjective interpretations of quantified model output, but these cannot be clearly sepa-
rated (Risbey and Kandlikar 2007, p. 24). Relatedly, philosophers have argued that even in a 
Bayesian framework, societal and ethical values can influence the evaluation of probabilistic 
model output (Parker and Winsberg 2018). So, quantification may lead to a false perception 
of lack of subjectivity.

In sum, the current focus on GCM/ESM evaluation and output quantification is not generally 
adequate to achieve the kind of epistemic reliability that is required for informing decision-
making. In the rest of this paper, we focus on how regional climate information that intends 
to inform decision-making is constructed and indicate the quality dimensions that directly 
address the issues that have been presented so far.

Toward a quality assessment framework
We can now ask how to approach quality assessment for regional climate information that 
intends to inform decision-making. Decision-makers may want to know how likely it is that 
a particular statement about future climate will realize, so the epistemic reliability of a state-
ment is an important component of statements that aim to inform decision-making. The 
relation between epistemic reliability and how these statements or estimates are presented, 
e.g., how precise a particular statement is and what form it takes (probability distribution or 
qualitative estimate), depends on how the information is produced.

Risbey and Kandlikar (2007) suggest that scientists should formulate statements with 
different levels of precision based on the available evidence and the strength of the justifica-
tions for the statements. Precision, in this case, refers to whether the information appears in 
the form of a probability distribution function, bounds on estimates, and so on. The quality 
of an estimate depends on the quality of the evidence in the sense that we can make better 
estimates with better evidence. But we can choose what precision to report and that choice 
also depends on the quality of the evidence and on how the accuracy is assessed.

The relation between quality of model output and quality of evidence is most clear in 
short-term forecasting (e.g., weather forecasting): in this case, instances of past successes of 
the models and well-established methodological choices provide support for the accuracy of 
future probabilistic forecasts and, as a consequence, their quality. It should be noted, however, 
that probabilistic weather forecasting may incur similar problems as climate models when 
evaluating forecasts of extreme events for which there are few examples in the observations.

For the case of regional climate information, however, instances of past success of a model 
do not directly imply that the model will be accurate in the future, since the conditions to 
which the model is applied are different (see “Why we need a quality assessment framework” 
section). We therefore fine-grain the analysis of the relation between evidence and scientific 
statements to better articulate how quality can be evaluated for regional climate information. 
We consider two aspects of this information relevant for quality:

1) the evidence which underlies this information (e.g., observational or model time series 
data, proxy data, expert judgment, theoretical understanding), and

2) the relationship between the evidence and the information (e.g., validity of the method-
ological details regarding how the information is extracted from the evidence, or how 
different lines of evidence are aggregated).

Considering this distinction is helpful for evaluating the quality of statements or estimates 
about future regional climate, in so far as it allows for a systematic representation of the way 
this information is produced. We exemplify the utility of this distinction in Table 1, where 
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Table 1. Statements or estimates about future regional climate of Risbey et al. (2002) and Tebaldi et al. (2004), the evidence used for 
these statements, the relationship between the evidence and the statements, and the graphical representation of the information 
presented in these papers.

Paper Risbey et al. (2002) Tebaldi et al. (2004)

Statement 
or estimate 
about future 
climate

Qualitative statement: Small changes in large-scale atmospheric 
dynamics can lead to large changes in regional climate in some 
regions and very small or no changes in other regions.

Probabilistic projection of precipitation change at seasonal and regional 
scales. 22 regions, under IPCC Special Report on Emission Scenarios A2 and 
B2 scenarios for December-January-February (DJF) and June-July-August 
(JJA). The information is presented in boxplots for precipitation change (as a 
percentage) in each region.

Evidence

Expert judgment of atmospheric scientists about the effects of 
synoptic features of climate on region of expertise, both for winter 
and summer, to build “scenarios,” where scenarios are possible 
futures assuming a more or less equivalent of doubling CO2.

Precipitation data from the observational dataset from the Climatic 
Research Unit of the University of East Anglia (New et al. 1999, 2000) 
aggregated in seasonal and regional 30-yr means (1961–90).

Precipitation data from multimodel ensemble output of nine atmosphere-
ocean general circulation models aggregated in seasonal and regional 
30-yr means (2070–99).

National Center for Environmental Prediction reanalysis data.

Available model output found in the literature: mostly (but not 
exclusively) atmospheric general circulation model (AGCM) output 
from the National Aeronautics and Space Administration Goddard 
Institute for Space Studies and the National Oceanic and Atmo-
spheric Administration Geophysical Fluid Dynamics Laboratory.

Relationship 
between 
evidence and 
statement

Experts describe how synoptic features affect the seasonal cycle of 
regional precipitation and temperature. Experts then evaluate how 
the synoptic features and their relationship to regional precipita-
tion and temperature may change in light of changes in GHG 
concentrations (scenarios). These scenarios for particular regions 
are subsequently compared with reanalysis data and with relevant 
AGCM output found in the literature.

Bayesian analysis: Model output and observational data are used to update 
priors (uniform distributions) to posteriors. The joint posterior probabilities 
are approximated through Markov chain Monte Carlo simulation.

Posteriors are weighted by dividing by a measure of natural variability. 
The percentage precipitation change and the derived new values of 
natural variability are calculated.

Model independence is calculated by estimating “model bias” and “model 
convergence” based on the reliability ensemble average method of 
Giorgi and Mearns (2002).

Assumption: Ensemble average of projections is “best approximation” to 
truth and bias is deviation of any one projection from the ensemble average.

Graphical 
representation 
of the 
statement or 
estimate

This image shows how the current position of large-scale features 
such as the wintertime polar and subtropical jet streams (thick 
solid lines) can change location under a first-guess climate change 
scenario (thick dashed line). Changes in location of large-scale 
features influences regional climate.

Probabilistic distribution of mean precipitation change for different 
regions for DJF (yellow/top) and JJA (gray/bottom), averaged over the A2 
and B2 scenarios for the period 2070–99 compared to 1961–90.
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we introduce two papers that we will use to illustrate the quality dimensions discussed in 
the next section: Risbey et al. (2002, hereafter R02) and Tebaldi et al. (2004, hereafter T04). 
Both papers produce scientific regional climate information that intends to inform adapta-
tion. Both papers target changes in precipitation under climate change but they present the 
information in qualitative and quantitative terms, respectively.

Table 1 shows R02’s qualitative statement about future regional climate, the evidence used 
and how the evidence is aggregated to produce the statement. Table 1 also shows T04’s state-
ment, and their use of a Bayesian method to estimate probability distributions of present and 
future precipitation using observations and model output. Their conclusion is similar to R02 
in that there is large interregional variability, but they claim more precision about what areas 
are affected, in what way, and provide quantified estimates.

The quality assessment framework
Our framework utilizes five dimensions that are indicative of the quality of statements about 
future climate that are relevant for adaptation. These are diversity, completeness, adequacy 
for purpose, theory, and transparency. This section describes these dimensions and how they 
apply to our framework. The dimensions embody an ideal standard of quality toward which 
regional climate information should strive.

Diversity. This dimension of quality indicates that different types of evidence should be 
taken into account when producing knowledge about future regional climate of high quality. 
It is motivated by the “Knowledge evaluation issues” section above and the importance of 
variety of evidence discussed by Vezér (2016) (see also Lloyd 2009). Recall the discussion of 
robustness in that section: it is clear that MMEs are not robust in the senses that have been 
discussed by philosophers of science, and hence evaluation of regional climate information 
in terms of MMEs is insufficient for high quality. Recent discussions in the philosophy of 
climate science (e.g., Winsberg 2018; Lloyd 2015) suggest the focus of robustness should 
be not only the independence of the lines of evidence but also the types of evidence. In Fig. 
1, we show a possible typology of evidence that can contribute to climate knowledge, such 
as theoretical understanding, model output, and paleoclimate data. Note that this typology 
may not be exhaustive and does not have strict boundaries. For example, reanalysis data 
are a hybrid between model output and observations and share characteristics with both 
types of evidence.

Incorporating different types of evidence is important to address some of the issues around 
shared biases between climate models and, to a lesser extent, with reanalysis data. Doing 
so somewhat approximates independent lines of evidence and the features of measure-
ment robustness that have been discussed by philosophers such as Woodward (2006) and 
Wimsatt (1981). Diversity of evidence is mostly a dimension that applies to the evidence that 
underlies regional climate information, but it can also inform the relation between the evi-
dence and the statement. While it would be most convenient if diverse sources of evidence 
supported the same narrow range of values, they are still useful even when that is not the 
case. Having different sources of evidence that disagree is still better than relying on just one 
of them, since this allows the scientist to have an appropriate level of uncertainty.

To further illustrate this dimension of quality, consider the two example papers of Table 1. 
R02 mainly use three different types of evidence. The first is “dynamical thinking,” which 
is an expert evaluation of possible future climate based on theoretical insights. This type of 
evidence combines “expert judgment” and “theory” (see Fig. 1). The second type of evidence 
is climate model output. Dynamical thinking and climate model output are then supplemented 
by a third type of evidence, reanalysis data, which is used to illustrate large-scale synoptic 
features identified by the experts. T04 rely on model output and observational data.
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To evaluate diversity, we need to ask about the relation between these types of evidence. 
It is clearly stated in R02 that dynamical thinking is used to interpret model output, but the 
possible shared assumptions between model output, reanalysis data, and dynamical think-
ing are not specified (e.g., are the experts the same individuals that have built the models 
the output of which is used?). On the other hand, the observational data used by T04 share 
fewer assumptions with model output data. So, while T04 use fewer types of evidence, the 
types of evidence used are more diverse than in R02. However, the lack of detailed information 
about the relation between sources of evidence in both R02 and T04 makes this a difficult 
dimension to assess.

Completeness. Completeness refers to how many of the potential sources of evidence are 
taken into consideration. This characterization of completeness draws from the discussion of 
completeness of uncertainty assessments found in Parker and Risbey (2015). Completeness 
is also discussed as a necessary assumption in the context of robust inferential processes, 
and Woodward (2006) criticizes it in so far as it is an unattainable standard for robust-
ness. Nevertheless, high quality statements about future climate draw from all possible 
and relevant sources of evidence (all the elements that contribute to climate knowledge in 
Fig. 1), and completeness is a dimension that, together with diversity, captures the value 
of maximizing the different types of evidence for improving the quality of regional climate 
information. Because of the structural similarities and shared assumptions of climate mod-
els, using all possible models in an MME would not count as complete for the purposes of 
delivering information for adaptation.

Some reasons for which technically sophisticated model intercomparison projects may 
be insufficient are the following. First, as discussed in the “Knowledge evaluation issues” 
section, MMEs do not suffice to produce probabilistic projections that adequately capture all 
relevant uncertainty: models cannot be considered to be elements from a random sample of 
all possible models (Parker 2010, 2011). Relatedly, the hawkmoth effect (Frigg et al. 2014) 
implies that small differences in (nonlinear) model structure can lead to diverging differ-
ences in model output. Even with model weighting, therefore, multimodel ensembles may 
still produce a biased representation of the uncertainties in model-based projections. Second, 
Deser et al. (2012) have shown that different (micro) initial-condition (Stainforth et al. 2007a) 
ensemble sizes are needed depending on the variable of interest (such as sea level pressure, 
precipitation, or surface air temperature), and computational constraints limit the ensemble 
size to below what is required for many variables. Third, Hawkins et al. (2016) have shown 
that details of the distributions of the model output from the model ensembles strongly de-
pends on the (macro) initial conditions (Stainforth et al. 2007a) used for these experiments. 
We therefore suggest that regional climate information needs additional lines of evidence for 
satisfying the dimension of completeness.

Take the R02 and T04 cases above. R02 mainly take three possible types of evidence into 
consideration: dynamical thinking, climate model output, and reanalysis data. T04, on the 
other hand, explicitly state that they want a nonheuristic approach to produce a weighted 
average of model output. This suggests that they purposefully leave out evidence that cannot 
be formalized (e.g., dynamical thinking). So, only two types of evidence (models, observa-
tions) are used. T04 would therefore have lower completeness than R02.

Completeness should, of course, be evaluated in conjunction with diversity. The number 
of different types of evidence (aspect 1 in the “Towards a quality assessment framework” 
section) needed to satisfy the completeness dimension may depend on the relation between 
the evidence and the statement (aspect 2 in the “Towards a quality assessment framework” 
section). In R02, the expert reasoning used to augment and interpret climate model informa-
tion provides a more complete assessment of the uncertainty in the statements about future 
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climate than the model-based information alone. Dynamical reasoning is, in this case, used 
as a tool for evaluating model deficiencies and interpreting model output. Furthermore, 
the authors recognize that model output and dynamical reasoning could be compared with 
observations to improve the credibility of their statements still further. But in T04 the two 
types of evidence (model output and observations) are less “complete” than they appear, as 
a consequence of how they are combined to inform the statements. In the quantification of 
uncertainty in model-based projections the choice of observational dataset can itself be a 
source of bias (Singh and AchutaRao 2020). These methodological choices affect T04’s results 
because their model performance measures (see Table 1) are based on model performance 
against past observations.

Theory. Theory refers to the theoretical underpinning of statements about future climate, along 
with the representation of the underlying theory. Climate models are sometimes thought of 
as theoretical tools (see, e.g., Lloyd 2015) but the complexity of climate models implies that 
it is difficult to explain epistemic reliability without explicitly resorting to the theoretical 
understanding behind the interpretation of model output (Lenhard and Winsberg 2010). So 
the strength of the theoretical underpinning is an important source for the quality of these 
statements. Ebi (2011) argues for the importance of distinguishing theoretical support from 
other sources of evidence, as theoretical support can provide useful information to policy 
makers about the state of scientific understanding behind particular statements. For example, 
theoretical understanding may point to processes that are considered important for produc-
ing an estimate about future regional climate but are not adequately represented or assessed 
in models. Bony et al. (2011) and Giorgi (2020) make a similar argument and highlight the 
importance of “understanding” when no direct observations are available. In other situations, 
outside the domain of climate change, strong theoretical support is not always necessary of 
course. However, theory becomes increasingly important when other sources of evidence 
(like repeatable experiments or the appropriate data to test models) are not available. This is 
the case for climate information for adaptation, where estimates about never before observed 
states of the climate are needed (Stainforth et al. 2007b).

An example of the theoretical underpinning of statements about future climate is the 
understanding of the processes that are responsible for generating a particular weather pat-
tern. How this is taken into consideration as evidence in regional climate knowledge is best 
exemplified by the way R02 uses dynamical thinking as theoretical support for evaluating 
model output. When understood as such, theory is a quality dimension that applies to the 
evidence that is used for statements about future climate (aspect 1).

T04, on the other hand, do not include any discussion of the physical theory underlying their 
analysis. Indeed, the multiscale nature of the mechanisms responsible for precipitation are 
not very well understood and not yet modeled successfully (see e.g., Risbey and O’Kane 2011; 
Deser et al. 2012). So, while we understand that models are based on theory, the absence of a 
discussion of how the lack of such theoretical understanding may influence future regional 
precipitation estimates implies that theory is a quality dimension that ranks lower in T04 
than in R02.

Adequacy for purpose. Adequacy for purpose refers to the empirical adequacy that is required 
of a statement about future regional climate that intends to inform decision-making. This 
dimension is similar to empirical adequacy more broadly but puts an emphasis on the fact 
that the level of empirical adequacy that is required for a statement depends on the purpose of 
the statement. For example, Risbey and Stone (1996) investigate whether GCMs are adequate 
for regional climate change assessments by analyzing how GCMs reproduce those large-scale 
atmospheric phenomena that are relevant for regional climate. Adequacy for purpose usually 
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refers to how adequate the evidence is for the statement (aspect 2). This characterization 
draws from insights from Risbey et al. (2005), Parker (2009, 2020), Baumberger et al. (2017), 
and Nissan et al. (2020), discussed in the “The purpose and epistemic reliability of regional 
climate information” section. If one wants to assess the empirical adequacy of a model for 
predicting precipitation, one cannot just evaluate the model’s performance on the basis of 
its empirical adequacy about temperature. Rather, one needs to be explicit about how the 
empirical evaluation contributes to the epistemic reliability of the information.

Different variables used to inform adaptation (e.g., temperature, precipitation) may have 
different levels of empirical adequacy, depending on the availability and consistency of 
past data, for example. We can ask whether data are fine grained enough, whether the 
data have gaps, and whether model output is produced and analyzed at the scales that 
are needed for answering a particular question. In many cases, however, the data that are 
needed to evaluate the models is not accessible: long-term simulations of climate variables 
(especially at the local scale) may not suffice to test adequacy because the climate system 
is not a stationary system, and variability may change in unexpected ways (Smith 2002). 
Because of these limitations, adequacy for purpose as assessed by empirical tests is an im-
portant but not conclusive dimension to evaluate the quality of information (Oreskes 1998; 
Oreskes and Belitz 2001).

Consider again the statements about future regional climate change in T04 and R02. 
To evaluate adequacy for purpose, we need to ask: is the evidence adequate for making 
a statement about future climate that can inform adaptation? R02 clearly state that “one 
could devise a set of diagnostics to discern whether the climate of a particular region was 
tending more towards one scenario or another” (p. 1048), which suggests that there is more 
empirical evidence that should be taken into account to have a better statement about fu-
ture climate. The evidence in this case is therefore not as adequate for purpose as it could 
be. T04 is more difficult to assess. Their methodology relies on another paper by the same 
authors (Tebaldi et al. 2005), which is not aimed at informing adaptation but at exploring a 
particular methodology. The intention of T04, by contrast, is to derive probability distribu-
tion functions for precipitation to make statements about actual future climate. However, as 
discussed above, precipitation is difficult to predict and T04 do not discuss the theoretical, 
computational, and observational constraints to projecting precipitation patterns. So T04 
does not address the adequacy for purpose of the information that they produce and ranks 
low on this dimension.

Transparency. Transparency requires that all the components of statements about future 
climate are accessible and traceable: a user of climate information should be able to identify 
the sources of evidence (aspect 1) and the methods used to derive the statements (aspect 
2). This dimension is necessary for the evaluation of the dimensions described above, and 
for clearly defining the applicability of the approach, since there are different requirements 
for the quality of the evidence and methods depending on the purpose of the information. 
Transparency is also valuable because it allows for accountability and explicit commu-
nication of scientific and social values in the scientific process. These elements become 
particularly problematic in collaborative research (Winsberg et al. 2014), and hence need 
to be taken into consideration.

There are different ways in which transparency can be met. First of all, the data and the 
methods should be available. Both R02 and T04 clearly discuss their methods and their data 
sources. However, observational data used in T04 are not directly cited in the paper, and the 
consequences of only using formal methods and one particular dataset to quantify the uncer-
tainty tied to estimates about future climate are not discussed explicitly. Explicitly discussing 
the limitations of using particular methods or datasets is important as these limitations may 
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not be obvious to all possible users, since not all users share the scientists’ expertise. There 
are different ways to facilitate access to this information in a way that promotes transparency 
and governments and other organizations are working on methods to achieve this.

How to best achieve transparency is still being researched [see, e.g., Weil et al. (2013) for an 
argument in favor and John (2018) for an argument against transparency in science communi-
cation]. One suggestion is to use progressive disclosure of information, where information gets 
tailored to the expertise and needs of the target audience (Van Bree and Van Der Sluijs 2014). A 
type of information disclosure, called “nontechnical summaries,” can make assumptions and 
limitations explicit for nonexpert users. However, these summaries can only reveal relevant 
assumptions and limitations in so far as they are mediated by particular groups of experts 
and typically experts are only aware of a small subset of the assumptions they are making. 
Note that these kinds of disclosures are not just important in the context of communicating 
information to users, but also for collaborative scientific projects that involve experts from 
different disciplines. Another suggestion includes the “traceable accounts” approach of the 
Fourth U.S. National Climate Assessment (USGCRP 2018, chapter 2), which is an explicit at-
tempt at communicating the evidence and methodology that went into each key statement 
of the report.

Concluding remarks
In this paper, we have described issues associated with regional climate information and 
clarified that by this information we intend scientific statements about future regional 
climate that have the purpose of informing adaptation to a changing climate. We further 
described how this information is structured, and, finally, provided a framework for 
assessing the epistemic quality of climate information for adaptation. The current focus on 
regional climate information makes the need for a framework for epistemic quality clear: 
the perceived demand for precise quantification, the limits to evaluating statements about 
future climate, and the fast growth of sources of climate information for adaptation can pose 
serious challenges for the decision-maker. Our approach to attenuating these challenges 
has been to clarify the purpose and construction of climate information for adaptation 
(sections “Why we need a quality assessment framework” and “Towards a quality assess-
ment framework”) and to identify a set of quality dimensions motivated by the literature in 
physical climate science, environmental social science, and philosophy of science (section 
“The quality assessment framework”).

We note, however, that the framework outlined above does not provide a list of neces-
sary and sufficient conditions for quality. Rather, the dimensions we have selected are a 
set of quality dimensions. These dimensions may not be comprehensive: special situations 
in which more dimensions are needed, or some dimensions become redundant, can arise. 
For example, there are cases in which theory is so well established and well developed, that 
other dimensions (such as completeness and diversity) become irrelevant. The overwhelm-
ing theoretical support for the relation between greenhouse gas concentrations and global 
average temperature is one such example. Of course, the theoretical support for the causal 
connection between greenhouse gas concentration and global average temperature is the 
result of a relatively long history of research (see, e.g., Edwards 2010), during which the 
other dimensions of quality were relevant.

We also note that while the dimensions are largely independent, there are some connec-
tions among them. Furthermore, the nature of the dimensions is such that to obtain an overall 
assessment of quality we cannot simply average across them (see the theory example above). 
The extent to which overall quality is satisfied will be dependent on the specific cases for 
which it is assessed. Once the assessment has been completed, the user can decide whether 
the information is of sufficient quality to satisfy her needs.
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Nevertheless, we believe that our framework is an important starting point that can have 
broad applicability: the framework is intended to be used as a guide for scientists and for 
decision-makers interested in using such information. For example, a decision-maker may 
use the framework to realize that different types of evidence are needed for the information 
to satisfy completeness. When exploring a climate service portal, the decision-maker can 
assess the extent to which this dimension is satisfied by reading a nontechnical summary 
that explains the methods used by the climate service provider. The nontechnical summary, 
however, also needs to satisfy the transparency dimension. It needs to reveal the assumptions 
and limitations of the information, and to do so to a satisfactory degree it needs to be medi-
ated by a diverse range of experts. The framework can also therefore be a useful normative 
framework for scientists who produce regional climate information that is intended to inform 
decision-making on adapting to a changing climate.
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