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ABSTRACT: 

Point cloud produced from technologies such as terrestrial laser scanning (TLS) and photogrammetry (terrestrial and aerial) are 

widely used in rockfall monitoring applications due to the wealth of data they provide. In such applications, the acquisition and 

registration of multi-epoch point clouds is necessary. In addition, point clouds can be derived from different sensors (e.g., lasers 

versus digital cameras) and different platforms (terrestrial versus aerial). Therefore, registration methods should be able to support 

multi-platform datasets. Currently, registration of multi-platform datasets is done with manual intervention, and automatic 

registration is difficult. While registration of TLS point clouds can be achieved by targets that are not on the rock surface, this is not 

the case for photogrammetric methods, as ground control points (GCPs) should be located on the rock surface. Such GCPs can be 

lost or destroyed with time, and re-establishing them is difficult. Automated registration often relies on feature-based algorithms with 

refinement using the iterative closest point (ICP) algorithm. This paper presents a novel registration approach of multi-epoch and 

multi-platform point clouds to support rockfall monitoring applications. The registration method is based on edges that are detected 

in the different datasets using α-molecules. The paper shows application examples of the novel approach at different rock slopes in 

Colorado. Results demonstrate that the developed method in many cases performs better than the well-known ICP method and can be 

used to register point clouds and support rockfall monitoring.   

1. INTRODUCTION

Point cloud collection methods such as terrestrial laser scanning 

(TLS), terrestrial photogrammetry (TP), and aerial 

photogrammetry from small unmanned aerial systems (sUASs) 

are widely being used in rockfall monitoring applications, as 

they offer datasets with high accuracy and spatial resolution. 

For monitoring applications and multi-epoch comparisons, their 

registration into a common coordinate system is important. In 

most cases, a single remote sensing method is being used, but 

when practical, two or more methods can be combined.  

Registration of point clouds often relies on targets and/or 

ground control points (GCPs) or registration algorithms. For 

photogrammetrically derived point clouds, placement of targets 

on the rock surface is often necessary. This is dangerous and 

difficult, and targets may get damaged with time, requiring their 

re-establishment. For TLS, methods registration of multiple 

scans can be achieved using targets. These targets do not need 

to be on the rock surface, which is beneficial. Using point cloud 

registration algorithms is not trivial, as multi-epoch datasets 

might present differences in data densities, data gaps and 

overlap, and quality. The Iterative Closest Point (ICP) (Besl and 

McKay 1992) is often used, which offers several advantages. 

However, the input point clouds need to have a good initial 

registration, as the algorithm can become trapped in local 

minima (Attia and Slama 2017; Li et al. 2020). To address this 

issue, several ICP variants have been developed over the years 

in order to enhance registration performance (e.g., Bae and 

Lichti 2008; Wujanz et al. 2018; Kromer et al. 2019; Li et al. 

2020). It is questionable whether such methods facilitate multi-

platform registration, and often they cannot be applied in an 

automatic way. In addition, there have been algorithms 

developed specifically for TLS data, taking advantage of 

accurate instrument levelling with electronic compensators; 

therefore, rotations need only be solved in the horizontal plane 

(e.g., Cai et al. 2019; Zang et al. 2019). Methods that were 

designed for TLS setups are not suitable for multi-platform 

points clouds such as those derived from TLS, TP, and sUAS 

methods, as in the general case the input datasets will not be 

levelled. Thus, the availability of point clouds from several 

sensors necessitates the use of registration algorithms suitable 

to automatically register multi-platform point clouds. Feature-

based registration methods that rely on distinct geometric 

features (points, lines, planes) are more suitable for the built 

environment, as finding such features is easy (e.g., building 

corners and outlines, road segments and sidewalks), but their 

application in complex rock surfaces is difficult (Abellan et al. 

2014). For registration of rock-surfaces, feature-based methods 

build feature vectors using the 3D coordinates of points and 

describing the local surface properties in the vicinity of a point. 

Based on those feature vectors point correspondences are 

identified, which are then used to estimate the transformation 

between two input point clouds. Some examples of feature-

based algorithms are the scale-invariant feature transform 

(Lowe 1999), intrinsic shape signatures (Zhong 2009), and 
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point feature histograms (Rusu et al. 2009); however, these 

methods are often used for initial registration, followed by more 

precise fine registration with the ICP algorithm.  

 

Discontinuity traces are distinct rock features, which can be 

considered as edges i.e., rapid changes of elevation or 

brightness if an image is used. They play an important role in 

slope stability analysis, as they define weak planes in a rock 

mass where rocks can detach and fail (Battulwar et al. 2021). 

Several methods have been developed to extract such 

discontinuity traces from rock surface, and a review of these 

different methods and approaches can be found in Battulwar et 

al. (2021). In addition, edges are often used in image analysis 

and image matching (Gruen 2012). The wavelet transform 

allows multi-scale analysis; however, wavelets are not 

directionally sensitive and limit their edge detection ability. For 

this reason, newer methods of contourlets, curvelets, and 

shearlets were developed. A recently developed method named 

α-molecules (Grohs et al. 2016), offers a unified framework for 

multi-scale transform, including wavelets, curvelets, and 

shearlets (Reisenhofer and King 2019).  

 

A new automatic registration method, based on detected rock 

discontinuity traces (edges), was developed in Bolkas et al. 

(2021) to support multi-epoch and multi-platform registration 

for rockfall monitoring applications. This paper presents the 

main algorithm steps, and we demonstrate its application in a 

new and more complex rock slope dataset to demonstrate the 

robustness of the algorithm. The following sections present and 

discuss the main algorithm steps, the datasets used in this paper, 

and the results related to rockfall detection, finishing with 

conclusions.  

  

 

2. METHODS 

The automatic registration algorithm is based on edge detection 

and consists of five main processing steps (1) data preparation 

and coarse registration (2) edge detection (3) edge matching (4) 

point correspondences identification, (5) and fine registration. 

More information about the registration algorithm, including a 

thorough assessment of the individual steps, can be found in 

Bolkas et al. (2021). Note that the algorithm was developed for 

outcrops that generally have a 2.5D shape and not for fully 3D 

point clouds.  

 

The input datasets are the source and target point clouds. The 

target point cloud is used as a reference for registration, which 

can be geo-referenced or in a local reference frame. The source 

point cloud is the dataset that needs to be transformed to match 

the coordinate system of the target point cloud. In many cases, 

this process requires finding three rotations, three translations, 

and one scale. The scale parameter can be neglected in the case 

where laser scanner point clouds are used, but it should be 

included when photogrammetric point clouds are used, either 

terrestrial or aerial. Numerical simulations with various 

scenarios of rotation, translation, and scale have shown that the 

algorithm can register point clouds within few mm to their 

original root mean square error (RMSE), even when the source 

point cloud has a scale of 0.5 with respect to the target point 

cloud (Bolkas et al. 2021). For instance, the original RMSE 

difference between two georeferenced sUAS and TP datasets 

from a rockfall site in Idaho Springs, Colorado was 2.1 cm. We 

applied a 500-m offset, 45° rotation, and 0.5 scale to the sUAS 

dataset, and after application of the proposed algorithm, the 

RMSE is 2.3 cm (for more information and more scenarios see 

Bolkas et al. 2021).  

 

The main algorithm steps are summarized in Figure 1. The 

point clouds are rotated through principal component analysis 

(PCA) to make the outcrop span in the x- and y-axis directions. 

This is possible because point clouds of rock outcrops are 

typically 2.5D. This achieves a coarse registration between the 

two datasets. However, depending on the spatial extent of the 

two input datasets, there can be some significant translations in 

the x- and y-axis and a rotation about the z-axis. Coarse 

registration is enhanced using a phase correlation 

transformation (one rotation along the z-axis and two 

translations) (Dimitrievski et al. 2016). Approximate cropping 

of the two input datasets to the same spatial extent can facilitate 

the coarse registration performed in this step.  

 

With a user input grid size value, the point clouds are gridded, 

and the z-axis direction is converted to a grayscale. Next, edge 

detection takes place using symmetric α-molecules 

(Reisenhofer and King 2019). The tuning parameters for the 

symmetric α-molecules are found empirically with an approach 

similar to Bolkas et al. (2018). The goal in this step is to detect 

similar / identical edges in both datasets. One of the most 

important input parameters is the maximum feature length, as 

low values (e.g., 2 m) can result in highly fragmented edges, 

which can increase the number of falsely matched edges. For 

both datasets in this paper, we have found that a maximum 

feature length of 4 m is suitable.  

 

Edge matching is then performed using the discrete Fréchet 

distance (DFD) (Eiter and Mannila 1994). The DFD is a 

measure of similarity between two polygonal curves, and 

measures the shortest “leash” or coupling distance that is 

needed to connect and traverse the two curves. The computation 

of the DFD can consider curves with a different number of 

points, which is beneficial for the problem of edge matching in 

rock surfaces. Because the DFD is measured in the metric 

space, an initial registration at the level of 1-2 meters is needed. 

To speed up processing, the DFD is computed for source edges 

that are within a radius of the reference edges (e.g., 10 m). For 

the computation of the radius, we use the edge midpoints. Fine 

tuning the DFD threshold value allows the user to keep strong 

edge matches. Figure 2 shows an example of edge matching 

and the DFD distance computation. Edges are identified in both 

the target and source datasets. It is expected that, in general, 

similar edges will be detected. Figure 2 shows two examples of 

the DFD computations, the first between a target edge and the 

corresponding source edge, and the second between the same 

target edge and a different source edge. It is seen that strong 

matches will have a low DFD value, while poor matches will 

have a higher DFD value; thus, with simple thresholding we 

can keep the strong matches.  

 

Point correspondences in the matched edges are extracted using 

the sum of squared differences. This step is implemented using 

the Matlab function “matchFeatures” (MathWorks, Inc. 2020). 

The function offers the use of threshold to keep strong matches 

between corresponding points. The registration is achieved 

through a rigid body transformation using a Procrustes analysis 

(Kendall 1989). A threshold of two times the standard deviation 

of the residuals is used to remove outliers, and the Procrustes 

analysis is repeated (Bolkas et al. 2021). Although this is a 
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simple approach for outlier removal, results obtained thus far 

suggest that it is sufficient. In the future, a more robust 

approach for outlier detection will be added to enhance 

robustness against outliers. After this step, it is considered that 

the two input point clouds are registered to a common 

coordinate system. The datasets can be transformed back to the 

target coordinate system using the PCA rotation values of the 

target dataset.  

 

Estimations of multi-epoch difference between point cloud 

datasets are determined using the model-to-model cloud 

comparison (M3C2) algorithm (Lague et al. 2013), as 

implemented in Cloud Compare (CloudCompare 2015) using a 

point spacing of 10 cm. From the M3C2 distances between 

datasets we compute RMSE values, which are used for 

assessment of registration. For comparison and validation of the 

developed registration method we provide registration results 

using the ICP algorithm as implemented in Cloud Compare.  In 

the computation of the RMSE values, we have excluded points 

in vegetated areas using a manually made vegetation mask, 

which was created using the photogrammetric datasets.  

 

 

 
Figure 1. Flowchart of proposed registration algorithm. 

 

 
 

Figure 2. Example showing edge matching and DFD. 

 

3. DATASETS 

Datasets for this paper originate from two rockfall sites along 

interstate 70 in Colorado. The first site is located in Idaho 

Springs, Colorado (Kromer et al. 2019) and the second site is 

located in Glenwood Canyon, Colorado. The Idaho Springs site 

is part of the Front Range of the Colorado Rocky Mountains 

and is characterized by jointed biotite gneiss. The Glenwood 

Canyon site is located in the White River Uplift and is 

characterized by jointed coarse-grained granite. The sites are 

prone to rockfalls due to their steep geometry and weathering 

during freeze-thaw cycles. The size of rockfalls is typically at 

the 1 m3 level or smaller, although larger events (between 1 m3 

and 10 m3) occur every few years (Kromer et al. 2019; Weidner 

et al. 2019).  

 

The Idaho Springs site has points clouds from TLS, TP, sUAS 

photogrammetry. The site has a spatial extent of approximately 

55 m width by 35 m height. Datasets are available for 2018 and 

2019, with the exception of the sUAS datasets, where only a 

2019 data acquisition was conducted. There are 13 ground 

GCPs on the rock surface that facilitated geo-referencing of the 

photogrammetric datasets and continuous monitoring (Kromer 

et al. 2019). Their coordinates were established using total 

station observations. For the purposes of this paper the TP and 

sUAS datasets are used (Figure 3).  

 

 
Figure 3. Study area and datasets for the Idaho Springs, 

Colorado site. (a) TP in 2018, showing the location of GCPs as 

well; (b) sUAS photogrammetry.  

 

The Idaho Springs site utilizes a system of five fixed station 

cameras established by Kromer et al. (2019). All five stations 

use a Canon 5DSR digital camera, which offer a high resolution 

sensor of 50 megapixels. The stations are about 10-15 m apart 

and positioned parallel to the slope. The stations are located 

across the slope at a distance of approximately 70 m. The 

system automatically captures images two times a day, at noon 

and at 12:30 pm for redundancy. Using Agisoft Metashape and 

python scripting, a point cloud is automatically created and 

registered to previously generated point clouds without needing 

GCPs on the rock surface (Kromer et al. 2019). The average 

point spacing of the resulting dense point cloud is 1.5 cm.  

 

sUAS imagery was collected using an Aibot X6, which carried 

a Sony Alpha 6000 digital camera with 24.3 megapixels. The 

sUAS also had accurate Global Navigation Satellite System 
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(GNSS) – Real Time Kinematic (RTK), which allowed cm-

level positioning, which also reduces the requirements for the 

number of GCPs to about 4-6 (Bolkas 2019). A 30 mm focal 

length flight was conducted on June 4, 2019 with 35 images 

collected from a distance of 70-80 m from the rock surface. The 

images were processed in Agisoft Metashape and the average 

point spacing of the resulting dense point cloud is 2.2 cm.  

 

The Glenwood Canyon site has TLS and TP datasets from 

October 13 of 2018 and January 19 of 2019. The site has a 

spatial extent of 150 m width and 50 m height (Figure 4). TLS 

and photogrammetry data were captured concurrently for both 

dates. A Faro Focus x330 phase shift scanner was used to 

collect data for this site. To ensure adequate coverage of the 

complex slope surface, TLS datasets were collected from three 

different stations at a distance of approximately 40 m from the 

slope and 50 m between stations. The three component datasets 

were then aligned and merged for each date using a semi-

automated feature based and ICP registration algorithm 

(Schovanec, 2020). The final merged point clouds have a point 

spacing of approximately 1-2 cm and registration error between 

component datasets of less than 1 cm.  

 

 
 

Figure 4. Study area and datasets for the Glenwood Canyon, 

Colorado site. (a) TP October 13 of 2018; terrestrial laser 

scanning October 13 of 2018; (c) TP January 19 of 2019; (d) 

terrestrial laser scanning January 19 of 2019.  

 

Photographs at the Glenwood site were taken with a handheld 

18-megapixel Canon EOS Rebel T2i, and at approximately 

equal spacing between photos along the same 150 m width as 

the lidar stations. The 2018 dataset had 15 photos, and the 2019 

dataset had 14 photos. Similar to the Idaho Springs site, the 

point cloud was created using Agisoft Metashape. To scale the 

model and reduce artifacts on the large slope, eight distinctive 

points were selected from the TLS scan and used as “pseudo” 

GCPs in Metashape. The TP dataset has an average point 

spacing of about 5 cm. Of note is that in the second data 

acquisition in 2019, there is also snow covering parts of the 

rock surface. These are depicted with white color in Figure 4c 

for the photogrammetric dataset and with blue color in Figure 

4d for the laser scanning dataset.  

 

 

4. RESULTS AND DISCUSSION 

4.1 Idaho Springs site  

For the first site, we are using the TP dataset from 2018 as the 

reference. For the TP registration, 13 GCPs were used. To show 

how the proposed algorithm can be utilized in multi-platform 

datasets, we are using the sUAS dataset acquired in 2019. For 

georeferencing, the sUAS dataset uses 0 GCPs, relying solely 

on GNSS. This scenario resembles a case where all GCPs were 

lost in the second data acquisition and one must rely on a 

registration algorithm to connect the two epochs. We assume 

that an accurate pre-calibration for the sUAS is available (as it 

is in this case); therefore, most of the error in the computed 

RMSE values will reflect misregistration.  

 

Figure 5 shows the matched edges for the TP and sUAS 

datasets in the registration using the developed algorithm. In 

general, the figure shows good matches. Some mismatches are 

found in the upper part of the site caused by vegetation; 

however, poor point correspondences have limited impact on 

the registration algorithm, as they are removed through 

thresholding in the Procrustes step. For this dataset, about 1,700 

points were used for the final registration with Procrustes 

analysis.   

 

 

 
Figure 5. Matched edges in the Idaho Springs dataset for the 

TP and sUAS datasets 

 

Table 1 shows the RMSE statistics for these scenarios. Without 

a registration algorithm applied, the RMSE is 35.2 cm, which 

reflects direct georeferencing relying on GNSS. When the ICP 
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is applied, the RMSE reduces to 3.3 cm, and when the 

developed algorithm is applied the RMSE reduces to 2.5 cm. 

Note that the RMSE using all 13 GCPs for the sUAS dataset is 

2.1 cm; therefore, the 2.5 cm achieved shows that the developed 

algorithm adequately registered the two point clouds. Figure 6 

depicts the change histograms for each case, showing the higher 

accuracy achieved by the developed algorithm (higher peak and 

smaller tails).  

 

Table 1. Idaho Springs site. Registration RMSE values (in cm) 

for the sUAS dataset using the TP dataset as reference. 

 

Dataset  sUAS (0 GCPs and Pre-

calibration; 2019) 

TP (13 GCPs; 2018);  

original comparison  

 

35.2 

TP (13 GCPs; 2018); 

Registration using ICP 

3.3 

TP (13 GCPs; 2018); 

Registration using the developed 

algorithm 

2.5 

 

 

 
Figure 6. Histograms for TP (13 GCPs; 2018) and sUAS (0 

GCPs and Pre-calibration; 2019) comparison (a) initial 

comparison; (b) Registration using the developed algorithm; (c) 

Registration using the ICP algorithm. 

 

 

Figure 7b shows the detected rockfalls using the TP (2018) as 

reference and the sUAS (0 GCPs and pre-calibration) in 2019 

registered using the developed algorithm. For reference we 

provide the TP (2018) versus TP (2019) comparison, which 

utilized the 13 GCPs and produced an RMSE of 1.5 cm. 

Rockfalls are detected at the 95% confidence level with respect 

to the RMSE values. Thus, in Figure 7a, changes higher than 

3 cm are considered rockfalls, and in Figure 7b, changes higher 

than 5 cm are considered rockfalls. In general, we find that 

similar rockfalls are detected, showing how the developed 

algorithm can be used to support accurate rockfall detection 

using photogrammetric datasets when an accurate camera pre-

calibration is available.  

 

 

 
Figure 7. Detected rock changes (a) TP (2018) versus TP 

(2019) using 13 GCPs; (b) TP (2018) versus sUAS (2019; 0 

GCPs and pre-calibration) using the developed algorithm.   

 

 

4.2 Glenwood Canyon site  

For the second site, the TLS registration between the 2018 and 

2019 epochs was already at the 1 cm level and focus is placed 

on the TP dataset registration. In this example, the TP dataset 

are registered with respect to the TLS datasets, thus comprising 

a multi-platform registration scenario. Alignment of the TP 

dataset was achieved using the TLS-derived GCPs, which 

might be insufficient. The registration using the TLS-derived 

GCPs shows an agreement at the 12.4 cm level for both the TP 

2018 and 2019 datasets when using the TLS from the 2018 data 

acquisition (Table 2). The ICP manages to reduce these values 

to 9.5 cm and 10.0 cm, respectively. When the developed 

algorithm is being implemented instead of the ICP, the RMSE 

values drop to 8.2 cm and 8.3 cm for the 2018 and 2019 TP 

datasets, respectively.  

 

Table 2. Glenwood Canyon site. Registration RMSE values (in 

cm) for the TP datasets using the TLS 2018 as basis for the 

registration.  

Dataset  TP (2018) TP (2019) 

TLS (2018);  

Registration uses TLS-derived 

GCPs 

12.4 12.4 

TLS (2018);  

Registration uses ICP 

9.5 10.0 

TLS (2018);  

Registration uses Developed 

algorithm 

8.2 8.3 

 

Figure 8 shows the matched edges that were used for this 

registration. Note that the same α-molecules input parameters 

with the Idaho Springs site were used, showing that after some 

initial training and experience minimal tuning is needed. For the 
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2018 comparison (Figure 8a) about 3,300 points were then 

identified from the matched edges to be used in the Procrustes 

analysis, and for the 2019 comparison (Figure 8b) about 3,000 

points were identified. Figure 9 shows the histograms for the 

TP (2019) comparisons, depicting the smaller tails and higher 

peak in the histogram when the developed algorithm is used. 

These results further demonstrate the contribution of the 

developed algorithm to register multi-platform datasets and 

support rockfall monitoring from multiple point cloud data 

sources. 

 

 

 
Figure 8. Matched edges in the Glenwood Canyon dataset (a) 

TLS (2018) versus TP (2018); (b) TLS (2018) versus TP 

(2019).  

 

 

 
Figure 9. Histograms for TLS (2018) and TP (2019) 

comparisons; 2019) comparison (a) initial registration using 

TLS-derived GCPs; (b) Registration using the developed 

algorithm; (c) Registration using the ICP algorithm. 

 

 

Figure 10 shows the detected changes at the 95% confidence 

level. Figure 10b shows the detected changes for the TLS 

(2018) versus TLS (2019) comparison, using 3 cm as the 95% 

confidence level, and Figure 10c shows the detected changes 

for the TLS (2018) versus TP (2019) comparison using the 

developed algorithm for registration and 17 cm as the 95% 

confidence level. Most of the detected changes in Figure 10b 

are due to snow coverage; therefore, few or no rockfalls are 

detected in the remaining parts of the rock surface (see also 

Figure 10a for the snow areas). Even though the 

photogrammetric datasets have a lower accuracy, they also 

confirm that no changes take place in the rock surface, and most 

changes are due to the presence of snow in the second epoch.  

 

 

 

 
 

Figure 10. Detected changes (a) TP (2019) dataset shown to 

highlight the areas of snow; (b) TLS (2018) versus TLS (2019); 

(c) TLS (2018) versus TP (2019) using the developed algorithm 

for registration.  

 

 

5. CONCLUSIONS 

Accurate registration of point clouds is important for change 

detection and rockfall monitoring. Existing registration methods 

are often based on the ICP and its variants, while feature-based 

methods are often used for initial alignment only. This paper 
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presented the main components of a new automatic algorithm 

(Bolkas et al. 2021) and demonstrated its application in a new 

and more complex rock slope dataset. The application of the 

algorithm in a new site validates the robustness of the 

developed approach. Application examples from two test sites 

in Colorado showed how the developed algorithm can be used 

to register multi-epoch and multi-platform point clouds and 

support rockfall monitoring applications.  
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