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Abstract

We present closed-form solutions to some double optimal stopping problems with payoffs 

representing linear functions of the running maxima and minima of a geometric Brownian 

motion. It is shown that the optimal stopping times are th first times at which the underly-

ing process reaches some lower or upper stochastic boundaries depending on the current 

values of its running maximum or minimum. The proof is based on the reduction of the 

original double optimal stopping problems to sequences of single optimal stopping prob-

lems for the resulting three-dimensional continuous Markov process. The latter problems 

are solved as the equivalent free-boundary problems by means of the smooth-fit and nor-

mal-reflection conditions for the value functions at the optimal stopping boundaries and the 

edges of the three-dimensional state space. We show that the optimal stopping boundaries 

are determined as the extremal solutions of the associated first-order nonlinear ordinary 

differential equations. The obtained results are related to the valuation of perpetual real 

double lookback options with floating sunk costs in the Black-Merton-Scholes model.
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1  Formulation of the Problems

The main aim of this paper is to present closed-form solutions to the discounted optimal 

double stopping problems with the values:

and

for some given constants L
i
≥ 1 ≥ K

i
> 0 , for i = 1, 2 . Here, for a precise formulation of 

the problem, we consider a probability space (Ω, F, P) with a standard Brownian motion 

B = (B
t
)
t≥0

 . We assume that the process X = (X
t
)
t≥0

 is defined by:

so that it solves the stochastic differential equation:

where 𝜇 < r , r > 0 and 𝜎 > 0 are given constants, and x > 0 is fixed. In our application, the 

process X describes the current state of technological progress, which changes over time 

due to the active process of research and development in a branch of the industry, where 

r is the discount rate. The running maximum S = (S
t
)
t≥0

 and minimum Q = (Qt)t≥0
 of the 

process X defined by:

for arbitrary 0 < q ≤ x ≤ s , respectively, can be interpreted as the best and the worst market 

valuation of technology achieved so far. Suppose that the suprema in (1) and (2) are taken 

over all stopping times � and � with respect to the natural filtration (F
t
)
t≥0

 of the process 

X, and the expectations there are taken with respect to the risk-neutral probability measure 

P. In this case, the values of (1) and (2) can be interpreted as the rational (or no-arbitrage) 

values of (perpetual) real lookback compound options with present values, which are lin-

ear in the running maximum or minimum of X, as well as sunk cost investment amounts, 

which are constant or linear in X, in the Black-Merton-Scholes model, respectively (see, 

e.g. Dixit and Pindyck [Dixit and Pindyck (1994); Chapter X] for the examples of standard 

compound real options).

The problem of (1), which has its dual of (2), is a typical valuation problem for finan-

cial lookback options. It has, however, a broader interpretation related to capital budgeting 

of real investment decisions, that is, real lookback options. In particular, by utilising the 

approach presented in this paper, decision makers are able to quantify the financial value of 

investments in new promising technologies, as well as of the policy mechanisms that can 

be used to incentivise such investments. More specifically, we have in mind that the current 

state of technological progress is observable and is described by the process X, whereas r is 

the discount rate.

(1)V1 = sup
�≤�

E

[

e
−r�

(

L1 X� − min
0≤t≤�

X
t

)

+ e
−r�

(

max
0≤t≤�

X
t
− K1 X�

)]

(2)V2 = sup
�≤�

E

[

e
−r�

(

max
0≤t≤�

X
t
− K2 X�

)

+ e
−r�

(

L2 X� − min
0≤t≤�

X
t

)]

(3)X
t
= x exp

(

(

� − �
2∕2

)

t + � B
t

)

(4)dX
t
= � X

t
dt + � X

t
dB

t
(X

0
= x)

(5)St = s ∨ max
0≤u≤t

Xu and Qt = q ∧ min
0≤u≤t

Xu
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In order to adopt a new technology at time t ≥ 0 , a firm is required to pay sunk costs 

which are proportional to the value of the technology in the market denoted by X = (X
t
)
t≥0

 . 

This implies that more valuable developments are also associated with higher investment 

cost (for example, due to competition for suppliers). Typically, however, there is a time lag 

between a technological breakthrough and the actual realisation of the full potential of a 

new technology. The latter often requires additional investment in complementary tech-

nologies, changes in business processes or proper infrastructure (see Brynjolfsson and Hitt 

(2003) and Brynjolfsson et al. (2017)). In our problem, this feature is encapsulated by a 

second option available to the firm upon adoption of the new technology. We call this fea-

ture the commercialisation option. More specifically, by paying the sunk costs K
1
X , the 

firm is able to realise the full potential of the technology, given by the running maximum 

S of the process X. These sunk costs are proportional to the current market value of the 

technology’s potential due to, for example, the need to develop technology-specific infra-

structure. Ideally, the firm would like to enter the market, adopt the technology, when the 

cost of acquisition is low, and undertake further investments, once the technology is valu-

able enough. In other words, a firm would like to identify future winners early on, as once 

the market identifies the winning technologies, the costs of their adoption will be high. 

Hence, if the firm realises the potential of a technology too late, it pays larger sunk costs 

and delays further investments in developing this technology. Consequently, some emerg-

ing technologies reach their productive potential later than it might be desirable from a 

social welfare point of view. In this paper, we propose a valuation framework that allows to 

quantify the value associated with implementing a specific incentive mechanism inspired 

by financial lookback options, which stimulates innovations by reducing the firm’s regret 

of missing out on investment opportunities. This mechanism takes the form of an invest-

ment cost subsidy, which is equal to the difference between the current market value of the 

technology given by X, and the minimal value it has achieved until this moment Q. Then, 

upon the technology adoption, the firm receives the value L
1
X which is proportional to its 

current value X, whereas the costs paid by the firm are equal to Q, which reduces its regret 

associated with failing to time the market.

From the derived closed-from solutions we conclude that under such a support mecha-

nism, firms have an incentive to adopt a technology when X is moving away from its run-

ning minimum Q. In this case, the technology is more valuable. Upon adoption the follow-

ing two cases can occur. If the technology is sufficiently promising, then the firm will wait 

with commercialisation. This happens, because the probability that a new, higher, maxi-

mum S will be reached soon is large and, thus, there is a larger potential for a higher pay-

off which induces the firm to wait with commercialisation. However, if the market value 

is small relative to its running maximum S, then the firm commercialises the technology 

immediately after adoption as it is now unlikely that the technology will improve in com-

parison to its best performance achieved so far to warrant waiting for a higher maximum. 

These results show that double lookback options allow a social planner to subsidise the 

most efficient technologies without having to pick winners ex ante. Rather, the benefit 

of such a subsidy is a direct support for the realised winners, that is, the most desirable 

technologies as evidenced by market value, which could result in a considerable welfare 

increase.

Discounted optimal stopping problems for certain reward functionals depending on 

the running maxima and minima of continuous Markov (diffusion-type) processes were 

initiated by Shepp and Shiryaev (1993) and further developed by Pedersen (2000); Guo 

and Shepp (2001); Gapeev (2007); Guo and Zervos (2010); Peskir (2012, 2014); Glover 
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et  al. (2013); Rodosthenous and Zervos (2017); Gapeev (2019,  2020); Gapeev et  al. 

(2021); Gapeev and Li (2021); Gapeev and Al Motairi (2021); Gapeev (2022) among 

others. The main feature in the analysis of such optimal stopping problems was that the 

normal-reflection conditions hold for the value functions at the diagonals of the state 

spaces of the multi-dimensional continuous Markov processes having the initial pro-

cesses and the running extrema as their components. It was shown, by using the estab-

lished by Peskir (1998) maximality principle for solutions of optimal stopping prob-

lems, which is equivalent to the superharmonic characterisation of the value functions, 

that the optimal stopping boundaries are characterised by the appropriate extremal 

solutions of certain (systems of) first-order nonlinear ordinary differential equations. 

Other optimal stopping problems in models with spectrally negative Lévy processes and 

their running maxima were studied by Asmussen et al. (2003); Avram et al. (2004); Ott 

(2013); Kyprianou and Ott (2014) among others.

We further consider the problems of (1) and (2) as the associated double (two-step) opti-

mal stopping problems of (6) and (7) for the three-dimensional continuous Markov pro-

cesses having the process X as well as its running maximum S and minimum Q as their state 

space components. The resulting problems turn out to be necessarily three-dimensional in 

the sense that they cannot be reduced to optimal stopping problems for Markov processes of 

lower dimensions. The original optimal double stopping problems are reduced to the appro-

priate sequences of single optimal stopping problems which are solved as the equivalent 

free-boundary problems for the value functions which satisfy the smooth-fit conditions at 

the optimal stopping boundaries and the normal-reflection conditions at the edges of the 

state space of the three-dimensional processes. The multiple (multi-step) optimal stopping 

problems for one-dimensional diffusion processes have recently drawn a considerable atten-

tion in the related literature. Duckworth and Zervos (2000) studied an investment model 

with entry and exit decisions alongside a choice of the production rate for a single com-

modity. The initial valuation problem was reduced to a double (two-step) optimal stopping 

problem which was solved through the associated dynamic programming differential equa-

tion. Carmona and Touzi (2008) derived a constructive solution to the problem of pricing 

of perpetual swing contracts, the recall components of which could be viewed as contin-

gent claims with multiple exercises of American type, using the connection between optimal 

stopping problems and the associated with them Snell envelopes. Carmona and Dayanik 

(2008) then obtained a closed form solution of a multiple (multi-step) optimal stopping 

problem for a general linear regular diffusion process and a general payoff function among 

others. The problem of pricing of American compound standard put and call options in the 

classical Black-Merton-Scholes model was explicitly solved in Gapeev and Rodosthenous 

(2014a). The same problem in the more general stochastic volatility framework was studied 

by Chiarella and Kang (2009), where the associated two-step free-boundary problems for 

partial differential equations were solved numerically, by means of a modified sparse grid 

approach.

The rest of the paper is organised as follows. In Sect. 2, we embed the original problems 

with the values V
∗

i
 , for i = 1, 2 , in (1) and (2) into the optimal multiple stopping prob-

lems for the values functions V∗
i
(x, s, q) , for i = 1, 2 , in (6) and (7) for the three-dimensional 

continuous Markov process (X, S, Q) defined in (3) and (5), respectively. It is shown that 

the optimal exercise times �∗
1
(S, Q) and �∗

2
(S, Q) are the first times at which the process 

X reaches some upper or lower boundaries b∗(S, Q) or a∗(S, Q) depending on the current 

values of either the processes S and Q, respectively. In Sect.  3, we derive closed-form 

expressions for the candidate value functions for V∗
i
(x, s, q) , for i = 1, 2 , as solutions to the 
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equivalent free-boundary problems and apply the normal-reflection conditions at the edges 

of the three-dimensional state space for (X,  S,  Q) to characterise the candidate optimal 

stopping boundaries for b∗(S, Q) and a∗(S, Q) or as the minimal and maximal solutions of 

the appropriate first-order nonlinear ordinary differential equations, respectively. In Sect. 4, 

by applying the change-of-variable formula with local time on surfaces from Peskir (2007), 

it is verified that the resulting solutions to the free-boundary problem provide the expres-

sions for the value functions and the optimal stopping boundaries for the underlying asset 

price process in the original problems. In Sect. 5, we recall the explicit solutions of the 

inner optimal stopping problems with the value functions U∗
1
(x, s) and U∗

2
(x, q) from (72). 

The main results of the paper are stated in Theorem 4.1. The resulting method is presented 

in Corollary 4.2 and described in Remark 4.3.

2  Preliminaries

In this section, we describe the structure of the three-dimensional optimal stopping prob-

lems of (1) and (2) which are related to the floating sunk costs real double lookback option 

pricing problems and formulate the equivalent free-boundary problems.

2.1  The Two‑step Optimal Stopping Problems

It is seen that the problems of (1) and (2) can naturally be embedded into the opti-

mal double stopping problems for the (time-homogeneous strong) Markov process 

(X, S, Q) = (Xt, St, Qt)t≥0 defined in (3) and (5) with the values:

and

for some L
i
≥ 1 ≥ K

i
> 0 , for i = 1, 2 , fixed, where the suprema are taken over all stop-

ping times � and � with respect to the filtration (F
t
)
t≥0

 . In this case, by virtue of the strong 

Markov property of the process (X,  S,  Q), the original problems of (6) and (7) can be 

reduced to the optimal stopping problems with the values:

where the suprema are taken over all stopping times � of (X, S, Q), and we set:

for some L
1
≥ 1 ≥ K

2
> 0 fixed, respectively. Here, the functions U∗

1
(x, s) and U∗

2
(x, q) 

represent the values of the optimal stopping problems formulated in (72), where the 

optimal stopping times �∗
i
 , for i = 1, 2 , have the form of (73), for some boundaries 

0 < g
∗(s) ≡ 𝜆∗s < s and h∗(q) ≡ 𝜈∗q > q > 0 determined in Corollary 5.1 below.

(6)V1 = sup
�≤�

E
[

e−r� (L1 X� − Q� ) + e−r� (S� − K1 X� )
]

(7)V2 = sup
�≤�

E
[

e−r� (S� − K2 X� ) + e−r� (L2 X� − Q� )
]

(8)V i = sup
�

E
[

e−r� Gi(X�
, S

�
, Q

�
)
]

(9)G1(x, s, q) = L1 x − q + U∗

1
(x, s) and G2(x, s, q) = s − K2 x + U∗

2
(x, q)
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2.2  The Outer Optimal Stopping Problems

Let us first transform the rewards in the expressions of (8) and (9) with the aim to for-

mulate the associated optimal stopping problems. For this purpose, we use standard argu-

ments based on an application of Itô’s formula (see, e.g. [Liptser and Shiryaev (2001); 

Theorem 4.4] or [Revuz and Yor (1999); Chapter II, Theorem 3.2]) to show that the infini-

tesimal operator � of the process (X, S, Q) from (4) and (5) acts on an arbitrary function 

V(x, s, q) from the class C2,1,1 on E according to the rule:

while we should also assume that:

in order to have the operator � well-defined at d
1
 and d

2
 , respectively (see, e.g. [Peskir 

(1998); Subsection  3.1]). We first recall from the results of Beibel and Lerche (1997); 

Pedersen (2000) and Guo and Shepp (2001) (as well as Gapeev (2020)) on the expres-

sions in (85)-(86) for the value functions U∗
1
(x, s) and U∗

2
(x, q) in (72) which solve the free-

boundary problems in (74)-(80) that the processes e−rt
U

∗
1
(X

t
, S

t
) and e−rtU∗

2
(Xt, Qt) admit 

the representations:

and

where the stochastic integrals with respect to the standard Brownian motion B = (B
t
)
t≥0

 are 

continuous square-integrable martingales. Let us now apply Itô’s formula to the processes 

e−rtGi(Xt, St, Qt) , for i = 1, 2 , to obtain:

(10)(�V)(x, s, q) = 𝜇 x 𝜕xV(x, s, q) +
𝜎2x2

2
𝜕xxV(x, s, q) in 0 < q < x < s

(11)𝜕
q
= 0 at 0 < x = q < s and 𝜕

s
= 0 at 0 < q < x = s

(12)

e
−rt

U
∗

1
(X

t
, S

t
) = U

∗

1
(x, s) + ∫

t

0

e
−ru (�U

∗

1
− r U

∗

1
)(X

u
, S

u
) I
(

X
u
< S

u

)

du

+ ∫
t

0

e
−ru

𝜕
s
U

∗

1
(X

u
, S

u
) I
(

X
u
= S

u

)

dS
u

+ ∫
t

0

e
−ru

𝜕
x
U

∗

1
(X

u
, S

u
) I
(

X
u
< S

u

)

dB
u

(13)

e−rt U∗

2
(Xt, Qt) = U∗

2
(x, q) + ∫

t

0

e−ru (�U∗

2
− r U∗

2
)(Xu, Qu) I

(

Xu > Qu

)

du

+ ∫
t

0

e−ru
𝜕qU∗

2
(Xu, Qu) I

(

Xu = Qu

)

dQu

+ ∫
t

0

e−ru
𝜕xU∗

2
(Xu, Qu) I

(

Xu > Qu

)

dBu

(14)

e−rt G1(Xt, St, Qt) = G1(x, s, q)

+ ∫
t

0

e−ru H1(Xu, Su, Qu) I
(

Qu < Xu < Su

)

du

− ∫
t

0

e−ru I
(

Xu = Qu

)

dQu + N1

t
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with

and

with

for each 0 < q < x < s , and all t ≥ 0 , where I(⋅) denotes the indicator function. Here, � is 

the infinitesimal operator of the process (X, S, Q) having the form of (10)-(11) above, and 

the processes N i = (N i

t
)
t≥0

 , for i = 1, 2 , defined by:

for all t ≥ 0 , are continuous square-integrable martingales under the probability measure P. 

It also follows from the explicit expressions in (3)-(4) for the process X under the assump-

tion 𝜇 < r as well as from the properties of the partial derivatives �xGi(x, s, q) , for i = 1, 2 , 

and the structure of the other processes included into the expressions of (14) and (16) that 

the processes N i , for i = 1, 2 , defined in (18) are uniformly integrable. Note that the pro-

cesses S and Q may change their values only at the times when X
t
= S

t
 and Xt = Qt , for 

t ≥ 0 , respectively, and such times accumulated over the infinite horizon form the sets with 

zero Lebesgue measure, so that the indicators in the expressions of (14) and (16) as well as 

(18) can be ignored (see also Proof of Theorem 4.1 below for more explanations and refer-

ences). Then, inserting � in place of t and applying Doob’s optional sampling theorem (see, 

e.g. [Liptser and Shiryaev (2001); Chapter  III, Theorem 3.6] or [Revuz and Yor (1999); 

Chapter II, Theorem 3.2]) to the expressions in (14) and (16), we get that the equalities:

and

hold, for any stopping time � with respect to the filtration (F
t
)
t≥0

 . Hence, taking into 

account the expressions in (19) and (20), we conclude that the optimal stopping problems 

(15)
H1(x, s, q) = (�G1 − rG1)(x, s, q) ≡

(

r q − (r − 𝜇) L1 x
)

I
(

x > g∗(s)
)

−
(

r (s − q) + (r − 𝜇) (L1 − K1) x
)

I
(

x ≤ g∗(s)
)

(16)

e−rt G2(Xt, St, Qt) = G2(x, s, q)

+ ∫
t

0

e−ru H2(Xu, Su, Qu) I
(

Qu < Xu < Su

)

du

+ ∫
t

0

e−ru I
(

Xu = Su

)

dSu + N2

t

(17)
H2(x, s, q) = (�G2 − rG2)(x, s, q) ≡

(

(r − 𝜇)K2 x − r s
)

I
(

x < h∗(q)
)

−
(

r (s − q) + (r − 𝜇) (L2 − K2) x
)

I
(

x ≥ h∗(q)
)

(18)N i
t
= ∫

t

0

e−ru
𝜕xGi(Xu, Su, Qu) I

(

Qu < Xu < Su

)

𝜎 Xu dBu

(19)

E
[

e−r� G1(X�
, S

�
, Q

�
)
]

= G1(x, s, q) + E

[

∫
�

0

e−ru H1(Xu, Su, Qu) du − ∫
�

0

e−ru dQu

]

(20)

E
[

e−r� G2(X�
, S

�
, Q

�
)
]

= G2(x, s, q) + E

[

∫
�

0

e−ru H2(Xu, Su, Qu) du + ∫
�

0

e−ru dSu

]
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with the values of (8) are equivalent to the optimal stopping problems with the value 

functions:

and

where the functions Hi(x, s, q) , for i = 1, 2 , are defined in (15) and (17), for (x, s, q) ∈ E , 

respectively. Here, we denote by Ex,s,q the expectation with respect to the probability meas-

ures Px,s,q under which the three-dimensional (time-homogeneous strong Markov) pro-

cesses (X, S, Q) starts at (x, s, q) ∈ E , and by E = {(x, s, q) ∈ ℝ
3 | 0 < q ≤ x ≤ s} the state 

spaces of (X, S, Q). We further obtain solutions to the optimal stopping problems in (21) 

and (22) and verify below that the value functions V∗
i
(x, s, q) , for i = 1, 2 , are the solutions 

of the problems in (8), and thus, give the solutions of the original multiple optimal stop-

ping problems in (1) and (2), under s = q = x.

It follows from the results of general theory of optimal stopping problems for Markov 

processes (see, e.g. [Peskir and Shiryaev (2006); Chapter I, Subsection 2.2]) that the con-

tinuation and stopping regions of the optimal stopping problems in (8) have the form:

for every i = 1, 2 , respectively. It is seen from the results of Theorem 4.1 below that the 

value function V∗
i
(x, s, q) is continuous, so that the set C∗

i
 is open and D∗

i
 is closed, for every 

i = 1, 2.

2.3  The Structure of Optimal Stopping Times

Let us now specify the structure of the optimal stopping times in the outer optimal stop-

ping problems of (21) and (22). 

(i) It follows from the structure of the second integrals of (21) and (22) as well as the facts 

that the process S is increasing and the process Q is decreasing that it is not optimal to 

exercise the outer parts of the contracts (or exercise the double lookback options for 

the first time), whenever the appropriate integrands are positive. In other words, the 

diagonals d1 = {(x, s, q) ∈ ℝ
3 | 0 < x = q < s} and d2 = {(x, s, q) ∈ ℝ

3 | 0 < q < x = s} 

belong to the continuation regions C∗

1
 and C∗

2
 in (23), respectively. Moreover, it fol-

lows from the structure of the first integrals of (21) and (22) that it is not optimal 

to exercise the outer parts of the contracts (or exercise the double lookback options 

for the first time) when the inequalities Hi(Xt, St, Qt) ≥ 0 , for i = 1, 2 hold, which are 

equivalent to 0 < g∗(St) < Xt ≤ rQt∕((r − 𝜇)L
1
) and 0 < rSt∕((r − 𝜇)K

2
) ≤ Xt < h∗(Qt) 

with Qt < Xt < St , for all t ≥ 0 , respectively. In other words, these facts mean that the 

set {(x, s, q) ∈ E | 0 < q ∨ g∗(s) < x ≤ rq∕((r − 𝜇)L1) ∧ s} belongs to the continuation 

region C∗

1
 , while the set {(x, s, q) ∈ E | 0 < q ∨ rs∕((r − 𝜇)K2) ≤ x < h∗(q) ∧ s} belongs 

to the continuation region C∗

2
 in (23).

(21)V∗

1
(x, s, q) = sup

�

Ex,s,q

[

∫
�

0

e−ru H1(Xu, Su, Qu) du − ∫
�

0

e−ru dQu

]

(22)V∗

2
(x, s, q) = sup

�

Ex,s,q

[

∫
�

0

e−ru H2(Xu, Su, Qu) du + ∫
�

0

e−ru dSu

]

(23)

C∗

i
=
{
(x, s, q) ∈ E || V∗

i
(x, s, q) > 0

}
and D∗

i
=
{
(x, s, q) ∈ E || V∗

i
(x, s, q) = 0

}
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(ii) We now observe that it follows from the definition of the process (X, S, Q) in (3) and 

(5) and the structure of the rewards in (21) and (22) that, for each s > 0 fixed, there 

exist 0 < q ≤ x such that x is sufficiently close to s and the point (x, s, q) belongs to 

the stopping region D∗

i
 , for every i = 1, 2 . Moreover, for each q > 0 fixed, there exist 

0 < x ≤ s such that x is sufficiently close to q and the point (x, s, q) belongs to D∗

i
 , for 

i = 1, 2 . By virtue of arguments similar to the ones applied in [Dubins et al. (1993); 

Subsection 3.3] and [Peskir (1998); Subsection 3.3], these properties can be explained 

by the facts that the costs of waiting until the process X coming from either such a 

large x > 0 decreases to the current value of the running minimum process Q or such 

a small x > 0 increases to the current value of the running maximum process S may 

be too large due to the presence of the discounting factors in the reward functionals of 

(21) and (22). Furthermore, by virtue of the asymptotic distributional properties of the 

running maximum S and minimum Q from (5) of the geometric Brownian motion X 

from (3)-(4) on the infinitesimally small time intervals (see, e.g. [Dubins et al. (1993); 

Subsection 3.3] for similar arguments applied to the running maxima of the Bessel 

processes, [Peskir (1998); Proposition 2.1] for similar properties of the running maxima 

of general diffusion processes, and [Gapeev and Li (2021); Theorem 2.1, Part (i)] for 

similar properties of the running maxima and minima of geometric Brownian motions), 

it follows that the reward functionals in (21) and (22) infinitesimally increase when 

Xt = Qt or X
t
= S

t
 , for each t ≥ 0 . This fact also shows that all points (x, s, q) from the 

diagonals d1 = {(x, s, q) ∈ ℝ
3 | 0 < x = q < s} and d2 = {(x, s, q) ∈ ℝ

3 | 0 < q < x = s} 

belong to the continuation regions C∗

i
 , for i = 1, 2 , in (23), respectively.

  On the one hand, if we take some (x, s, q) ∈ D∗
1
 from (23) such that 

x > (1 ∨ r∕((r − 𝜇)L
1
))q and use the fact that the process (X, S, Q) started at some 

(x�, s, q) such that 0 < (1 ∨ r∕((r − 𝜇)L
1
))q < x < x� < s passes through the point 

(x, s
�
, q) , for some s′ ≥ s , before hitting the plane d1 = {(x, s, q) ∈ ℝ

3 | 0 < x = q < s} , 

then the representation of (19) for the reward functional in (21) implies that 

V∗
1
(x�, s, q) ≤ V∗

1
(x, s, q) = 0 holds, so that (x�, s, q) ∈ D∗

1
 .  Moreover, if we 

take some (x, s, q) ∈ D∗
2
 from (23) such that 0 < x < (r∕((r − 𝜇)K

2
) ∧ 1)s 

and use the fact that the process (X,  S,  Q) started at some (x��, s, q) such that 

0 < q < x�� < x < (r∕((r − 𝜇)K
2
) ∧ 1)s passes through the point (x, s, q

��) , for 

some 0 < q
′′ ≤ q , before hitting the diagonal d2 = {(x, s, q) ∈ ℝ

3 | 0 < q < x = s} , 

then the representation of (20) for the reward functional in (22) implies that 

V∗
2
(x��, s, q) ≤ V∗

2
(x, s, q) = 0 holds, so that (x��, s, q) ∈ D∗

2
 . Thus, we may conclude that 

the stopping regions D∗

i
 , for i = 1, 2 , from (23) have the right-hand and left-hand parts, 

respectively.

  On the other hand, if we take some (x, s, q) ∈ C∗
1
 from (23) and use the fact that the 

process (X, S, Q) started at (x, s, q) passes through some point (x��, s
��

, q) such that 

0 < q < x
′′
< x < s ≤ s

′′ before hitting the plane d
1
 , then the representation of (19) for 

the reward functional in (21) implies that V∗
1
(x��, s, q) > V∗

1
(x, s, q) = 0 holds, so that 

(x��, s, q) ∈ C∗
1
 . Moreover, if take some (x, s, q) ∈ C∗

2
 from (23) and use the fact that 

the process (X, S, Q) started at (x, s, q) passes through some point (x�, s, q
�) such that 

0 < q
′ ≤ q < x < x

′
< s before hitting the plane d

2
 , then the representation of (20) for 

the reward functional in (22) implies that V∗
2
(x�, s, q) > V∗

2
(x, s, q) = 0 holds, so that 

(x�, s, q) ∈ C∗
2
.

(iii) We may therefore conclude that there exist functions b∗(s, q) and a∗(s, q) such that the 

inequalities Hi(x, s, q) < 0 , for i = 1, 2 , hold, for (x, s, q) ∈ E such that x ≥ b∗(s, q) or 

x ≤ a
∗(s, q) , respectively. In this respect, the continuation regions C∗

i
 , for i = 1, 2 , in 

(23) have the form: 
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 while the stopping regions D∗

i
 , for i = 1, 2 , in (23) are given by: 

 (Figs. 1–2 on this page illustrate computer drawings of the optimal stopping boundaries 

b∗(s, q) and a∗(s, q).)

(iv) Let us finally clarify the location of the boundaries b∗(s, q) and a∗(s, q) in relation 

to the optimal stopping boundaries g∗(s) and h∗(q) from (73) for the optimal stopping 

problems with the value functions U∗
1
(x, s) and U∗

2
(x, q) in (72) below. For this pur-

pose, we use the notations of the functions Fi(x, s, q) , for i = 1, 2 , from (36) and (37) 

below. Suppose that either the inequality b∗(s, q) < h∗(q) or a∗(s, q) > g
∗(s) holds, 

for some 0 < q < g
∗(s) < s and 0 < q < h∗(q) < s . In this case, for each point 

(24)C∗

1
=
{
(x, s, q) ∈ E || x < b∗(s, q)

}
and C∗

2
=
{
(x, s, q) ∈ E || x > a∗(s, q)

}

(25)D∗

1
=
{
(x, s, q) ∈ E || x ≥ b∗(s, q)

}
and D∗

2
=
{
(x, s, q) ∈ E || x ≤ a∗(s, q)

}
.

Fig. 1  A computer drawing of 

the optimal exercise boundary 

b∗(s, q)

Fig. 2  A computer drawing of 

the optimal exercise boundary 

a
∗(s, q)
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(x,  s,  q) such that x ∈ (b∗(s, q), h∗(q)) and 0 < q < x ≤ g
∗(s) < s , we would have 

L1x − q + U∗

1
(x, s) > L1x − q + s − K1x ≡ s − q + (L1 − K1)x = V∗

1
(x, s, q) + F1(x, s, q) 

contradicting the fact that L1x − q + U∗
1
(x, s) ≤ V∗

1
(x, s, q) + F1(x, s, q) , for 

all (x, s, q) ∈ E . Also, for each point (x,  s,  q) such that x ∈ (g∗(s), a
∗(s, q)) and 

0 < q < h∗(q) ≤ x < s , we would have s − K2x + U∗
2
(x, q) > s − K2x + L2x − q ≡ s−

q + (L2 − K2)x = V∗
2
(x, s, q) + F2(x, s, q) contradicting the fact that s − K2x + U∗

2
(x, q)

≤ V∗
2
(x, s, q) + F2(x, s, q) , for all (x, s, q) ∈ E . Hence, we may conclude that the ine-

qualities b∗(s, q) ≥ h∗(q) and a∗(s, q) ≤ g
∗(s) should hold, for all 0 < q < g

∗(s) < s and 

0 < q < h∗(q) < s , respectively.

(v) Recall that the problem of (1) can be interpreted as the combined problem of find-

ing the optimal time to adopt a new technology in the presence of an investment cost 

subsidy and then to determine when it is optimal to commercialise it. The subsidised 

technology adoption occurs when the process X hits the boundary b∗(S, Q) from above, 

implying that the first investment occurs when X moves away from its running mini-

mum Q and the technology becomes more valuable. Upon adoption the following two 

cases can occur. If the technology is sufficiently promising, that is, if X is sufficiently 

large, so that X > g∗(S) holds, then the firm will wait with commercialisation. This is 

because the probability that a new, higher, maximum S will be reached soon is large, 

and thus, there is a larger potential for a higher payoff which induces the firm to wait 

with commercialisation. If however, X is relatively small, then the firm commercialise 

the technology immediately after adoption as it is now unlikely that the technology 

will improve in comparison to its best performance achieved so far to warrant waiting 

for a higher maximum.

2.4  The Free‑boundary Problems

In order to find analytic expressions for the unknown value functions V∗
i
(x, s, q) , for i = 1, 2 , 

from (21) and (22) with the unknown boundaries b∗(s, q) and a∗(s, q) from (24)-(25), let 

us use the results of general theory of optimal stopping problems for Markov processes 

(see, e.g. [Peskir and Shiryaev (2006); Chapter IV, Section 8]) as well as optimal stopping 

problems for maximum processes (see, e.g. [Peskir and Shiryaev (2006); Chapter V, Sec-

tions 15–20] and references therein). We can therefore reduce the optimal stopping prob-

lems of (21) and (22) to the equivalent free-boundary problems:

(26)(�V1 − r V1)(x, s, q) = −H1(x, s, q) for q < x < b(s, q)

(27)(�V2 − r V2)(x, s, q) = −H2(x, s, q) for a(s, q) < x < s

(28)V1(x, s, q)||x=b(s,q)−
= 0, V2(x, s, q)||x=a(s,q)+

= 0

(29)�xV1(x, s, q)||x=b(s,q)−
= 0, �xV2(x, s, q)||x=a(s,q)+

= 0

(30)�qV1(x, s, q)||x=q+
= 1, �sV2(x, s, q)||x=s−

= −1
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where the instantaneous-stopping as well as the smooth-fit and normal-reflection condi-

tions of (28)-(30) are satisfied, for each 0 < q < s . Observe that the superharmonic char-

acterisation of the value function (see, e.g. [Peskir and Shiryaev (2006); Chapter IV, Sec-

tion 9]) implies that V∗
i
(x, s, q) , for i = 1, 2 , are the smallest functions satisfying (26)-(27) 

with (28) and (31)-(32) with the boundaries b∗(s, q) and a∗(s, q) , respectively. Note that the 

inequalities in (33)-(34) follow directly from the arguments of parts (i) and (ii) of Subsec-

tion 2.3 above.

3  Solutions to the Free‑boundary Problems

In this section, we obtain closed-form expressions for the value functions V∗
i
(x, s, q) , for 

i = 1, 2 , in (21) and (22) associated with the perpetual real double lookback options on 

maxima and minima and derive first-order nonlinear ordinary differential equations for the 

optimal stopping boundaries b∗(s, q) and a∗(s, q) from (24)-(25) as solutions to the free-

boundary problems in (26)-(34).

3.1  The Candidate Value Functions

We first observe that the general solutions of the second-order ordinary differential equa-

tions in (10) + (26)-(27) have the form:

for every i = 1, 2 , with the particular solutions:

and

for all 0 < q ≤ x ≤ s , respectively. Here, Ci,j(s, q) , for i, j = 1, 2 , are some continuously dif-

ferentiable functions, and the numbers �j , j = 1, 2 , are given by:

so that 𝛾
2
< 0 < 1 < 𝛾

1
 , as well as the identity:

(31)V1(x, s, q) = 0 for x > b(s, q), V2(x, s, q) = 0 for x < a(s, q)

(32)V1(x, s, q) > 0 for x ≤ b(s, q), V2(x, s, q) = 0 for x ≥ a(s, q)

(33)(�V1 − r V1)(x, s, q) < −H1(x, s, q) for x < b(s, q)

(34)(�V2 − r V2)(x, s, q) < −H2(x, s, q) for x > a(s, q)

(35)Vi(x, s, q) = Ci,1(s, q) x�1 + Ci,2(s, q) x�2 − Fi(x, s, q)

(36)F1(x, s, q) =
(

L1 x − q
)

I
(

x > g∗(s)
)

+
(

s − q + (L1 − K1) x
)

I
(

x ≤ g∗(s)
)

(37)F2(x, s, q) =
(

s − K2 x
)

I
(

x < h∗(q)
)

+
(

s − q + (L2 − K2) x
)

I
(

x ≥ h∗(q)
)

(38)�j =
1

2
−

�

�2
− (−1)j

√

(

1

2
−

�

�2

)2

+
2r

�2
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holds. Then, by applying the conditions from (28)-(30) to the function in (35), we get that 

the equalities:

are satisfied, for 0 < q < s , where the functions Fi(x, s, q) , for i = 1, 2 , are defined in 

(36)-(37).

Now, by solving the system of equations in (40)-(41), we obtain that the candidate value 

function admits the representation:

for q ≤ x < b(s, q) , where

for 0 < g
∗(s) ≤ q < s , and

for 0 < q < g
∗(s) < s , and every j = 1, 2 . Also, by solving the system of equations in (42)-

(43), we obtain that the candidate value function admits the representation:

for a(s, q) < x ≤ s , where

for 0 < q < s ≤ h∗(q) , and

(39)
�

1

�
1
− 1

�
2

�
2
− 1

=

r

r − �

(40)C1,1(s, q) b�1 (s, q) + C1,2(s, q) b�2 (s, q) = F1(b(s, q), s, q)

(41)C1,1(s, q) �1 b�1 (s, q) + C1,2(s, q) �2 b�2 (s, q) = �xF1(b(s, q), s, q)

(42)C2,1(s, q) a�1 (s, q) + C2,2(s, q) a�2 (s, q) = F2(a(s, q), s, q)

(43)C2,1(s, q) �1 a�1 (s, q) + C2,2(s, q) �2 a�2 (s, q) = �xF2(a(s, q), s, q)

(44)�qC1,1(s, q) q�1 + �qC1,2(s, q) q�2 = 0

(45)�sC2,1(s, q) s�1 + �sC2,2(s, q) s�2 = 0

(46)V1(x, s, q;b(s, q)) = C1,1(s, q;b(s, q)) x�1 + C1,2(s, q;b(s, q)) x�2 − F1(x, s, q)

(47)C1,j(s, q;b(s, q)) =
�3−j(L1b(s, q) − q) − L1b(s, q)

(�3−j − �j)b
�j (s, q)

(48)C1,j(s, q;b(s, q)) =
�3−j(s − q + (L1 − K1)b(s, q)) − (L1 − K1)b(s, q)

(�3−j − �j)b
�j (s, q)

(49)V2(x, s, q;a(s, y)) = C2,1(s, q;a(s, q)) x�1 + C2,2(s, q;a(s, q)) x�2 − F2(x, s, q)

(50)C2,j(s, q;a(s, q)) =
�3−j(s − K2a(s, q)) + K2a(s, q)

(�3−j − �j)a
�j (s, q)

(51)C2,j(s, q;a(s, q)) =
�3−j(s − q + (L2 − K2)a(s, q)) − (L2 − K2)a(s, q)

(�3−j − �j)a
�j (s, q)
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for 0 < q < h∗(q) < s , and every j = 1, 2.

Moreover, by means of straightforward computations, it can be deduced from the 

expression in (46) with (36) that the first-order and second-order partial derivatives 

�xV1(x, s, q;b(s, q)) and �xxV1(x, s, q;b(s, q)) of the function V1(x, s, q;b(s, q)) take the form:

and

on the interval q < x < b(s, q) , for each 0 < q < s . Also, by means of straightforward com-

putations, it can be deduced from the expression in (49) with (37) that the first-order and 

second-order partial derivatives �xV2(x, s, q;a(s, q)) and �xxV2(x, s, q;a(s, q)) of the function 

V2(x, s, q;a(s, q)) take the form:

and

on the interval a(s, q) < x < s , for each 0 < q < s.

3.2  The Candidate Stopping Boundaries

In order to derive first-order nonlinear ordinary differential equations for the candidate 

boundary functions, we further assume that the functions b(s, q) and a(s, q) are continu-

ously differentiable. Then, applying the condition of (44) to the functions C1,j(s, q;b(s, q)) , 

for j = 1, 2 , in (47)-(48), we obtain the equalities:

for 0 < g
∗(s) ≤ q < s , and

for 0 < q < g
∗(s) < s . Here, by virtue of the structure of the equation in (56), we have 

b(s, q) = �∗q with 𝜈
∗
> 1 from (84), for all q > g

∗(s) and each s > 0 . Note that the candidate 

value function V1(x, s, q;b(s, q)) in (46) with (47)-(48) is (strictly) increasing in b(s, q), so 

that we should take the candidate stopping boundary b(s, q), for i = 1, 2 , as the minimal 

solution of the first-order nonlinear ordinary differential equation in (57) located above the 

plane d1 = {(x, s, q) ∈ ℝ
3 | 0 < x = q < s}.

(52)
𝜕xV1(x, s, q;b(s, q)) = C1,1(s, q;b(s, q)) 𝛾1 x𝛾1−1 + C1,2(s, q;b(s, q)) 𝛾2 x𝛾2−1

− L1 I
(

x > g∗(s)
)

− (L1 − K1) I
(

x ≤ g∗(s)
)

(53)
�xxV1(x, s, q;b(s, q)) = C1,1(s, q;b(s, q)) �1(�1 − 1) x�1−2

+ C1,2(s, q;b(s, q)) �2(�2 − 1) x�2−2

(54)
𝜕xV2(x, s, q;a(s, q)) = Ci,1(s, q;a(s, q)) 𝛾1 x𝛾1−1 + Ci,2(s, q;a(s, q)) 𝛾2 x𝛾2−1

+ K2 I
(

x < h∗(q)
)

− (L2 − K2) I
(

x ≥ h∗(q)
)

(55)
�xxV2(x, s, q;a(s, q)) = Ci,1(s, q;a(s, q)) �1(�1 − 1) x�1−2

+ Ci,2(s, q;a(s, q)) �2(�2 − 1) x�2−2

(56)�qb(s, q) =
�2(q∕b(s, q))�1 − �1(q∕b(s, q))�2

�1�2(q∕b(s, q) − (r − �)L1∕r)((q∕b(s, q))�1 − (q∕b(s, q))�2 )

(57)

�qb(s, q) =
�2(q∕b(s, q))�1 − �1(q∕b(s, q))�2

�1�2((s − q)∕b(s, q) + (r − �)(L1 − K1)∕r)((q∕b(s, q))�1 − (q∕b(s, q))�2 )
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Hence, applying the condition of (45) to the functions C2,j(s, q;a(s, q)) , for j = 1, 2 , in 

(50)-(51), we obtain the equalities:

for 0 < q < s ≤ h∗(q) , and

for 0 < q < h∗(q) < s . Here, by virtue of the structure of the equation in (58), we have 

a(s, q) = �∗s with 0 < 𝜆
∗
< 1 from (82), for all 0 < s < h∗(q) and each q > 0 . Note that the 

candidate value function V2(x, s, q;a(s, q)) in (46) with (47)-(48) is (strictly) decreasing in 

a(s, q), so that we should take the candidate stopping boundary a(s, q), for i = 1, 2 , as the 

maximal solution of the first-order nonlinear ordinary differential equation in (59) located 

below the plane d2 = {(x, s, q) ∈ ℝ
3 | 0 < q < x = s}.

3.3  The Minimal and Maximal Admissible Solutions b∗(s, q) and a∗(s, q).

We further consider the minimal and maximal admissible solutions of first-order non-

linear ordinary differential equations as the smallest and largest possible solutions 

b∗(s, q) and a
∗(s, q) of the equations in (57) and (59), which satisfy the inequalities 

0 < q < h∗(q) ≤ b∗(s, q) ≤ s , and 0 < q ≤ a
∗(s, q) ≤ g

∗(s) < s , for all 0 < q < g
∗(s) < s 

and 0 < q < h∗(q) < s . By virtue of the classical results on the existence and uniqueness 

of solutions for first-order nonlinear ordinary differential equations, we may conclude that 

these equations admit (locally) unique solutions, because of the facts that their right-hand 

sides represent (locally) continuous functions in (s, q, b(s, q)) and (s, q, a(s, q)) and (locally) 

Lipschitz functions in b(s, q) and a(s, q), for each 0 < q < g
∗(s) < s and 0 < q < h∗(q) < s 

fixed (see also [Peskir (1998); Subsection 3.9] for similar arguments based on the analysis 

of other first-order nonlinear ordinary differential equations). Then, it is shown by means 

of technical arguments based on Picard’s method of successive approximations that there 

exist unique solutions b(s, q) and a(s, q) to the equations in (57) and (59) started at some 

points (q0, s, q0) and (s0, s0, q) , for each 0 < q
0
< g

∗(s) < s and 0 < q < h∗(q) < s
0
 fixed 

(see also [Graversen and Peskir (1998); Subsection 3.2] and [Peskir (1998); Example 4.4] 

for similar arguments based on the analysis of other first-order nonlinear ordinary differen-

tial equations).

Hence, in order to construct the appropriate functions b∗(s, q) and a∗(s, q) which satisfy 

the equations in (56) and (58) and stays strictly above and below the appropriate diagonals 

d1 = {(x, s, q) ∈ E | 0 < x = q < s} or d2 = {(x, s, q) ∈ E | 0 < q < x = s} , respectively, we 

construct the sequences of solutions satisfying such properties and intersecting d
1
 and d

2
 

(see also [Peskir (2014); Subsection 3.5] (among others) for a similar procedure applied for 

solutions of other first-order nonlinear ordinary differential equations). For this purpose, 

for any decreasing and increasing sequences (ql)l∈ℕ and (s
l
)
l∈ℕ , such that 0 < ql < g∗(s) < s 

and 0 < q < h∗(q) < sl , we can construct the sequences of solutions bl(s, q) and al(s, q) , for 

l ∈ ℕ , to the equations in (57) and (59), for all 0 < q < ql and s > s
l
 such that bl(s, ql) = ql 

and al(sl, q) = sl holds, for each 0 < ql < g∗(s) < s and 0 < q < h∗(q) < sl , and every 

l ∈ ℕ . It follows from the structure of the equations in (57) and (59) that the inequali-

ties 𝜕qbl(s, ql) < 1 and 𝜕sal(sl, q) < 1 should hold for the derivatives of the corresponding 

(58)�sa(s, q) =
�2(s∕a(s, q))�1 − �1(s∕a(s, q))�2

�1�2(s∕a(s, q) − (r − �)K2∕r)((s∕a(s, q))�1 − (s∕a(s, q))�2 )

(59)

�sa(s, q) =
�2(s∕a(s, q))�1 − �1(s∕a(s, q))�2

�1�2((s − q)∕b(s, q) + (r − �)(L2 − K2)∕r)((s∕a(s, q))�1 − (s∕a(s, q))�2 )
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functions, for each 0 < ql < g∗(s) < s and 0 < q < h∗(q) < sl , and every l ∈ ℕ (see also 

[Pedersen (2000); pages 979-982] for the analysis of solutions of another first-order nonlin-

ear differential equation). Observe that, by virtue of the uniqueness of solutions mentioned 

above, we know that each two curves q ↦ bl(s, q) and q ↦ bm(s, q) as well as s ↦ al(s, q) 

and s ↦ a
m
(s, q) cannot intersect, for each 0 < q < g

∗(s) < s and 0 < q < h∗(q) < s , and 

l, m ∈ ℕ , such that l ≠ m , and thus, we see that the sequence (bl(s, q))l∈ℕ is decreasing 

and the sequence (al(s, q))l∈ℕ is increasing, so that the limits b∗(s, q) = liml→∞ bl(s, q) and 

a∗(s, q) = liml→∞ al(s, q) exist, for each 0 < q < s , respectively. We may therefore conclude 

that b∗(s, q) and a∗(s, q) provides the minimal and maximal solutions to the equations in 

(57) and (59) such that b∗(s, q) > q and a
∗(s, q) < s holds, for all 0 < q < g

∗(s) < s and 

0 < q < h∗(q) < s.

Moreover, since the right-hand sides of the first-order nonlinear ordinary differen-

tial equations in (57) and (59) are (locally) Lipschitz in (s,  q), respectively, one can 

deduce by means of Gronwall’s inequality that the functions bl(s, q) and al(s, q) , for each 

l ∈ ℕ , are continuous, so that the functions b∗(s, q) and a
∗(s, q) are continuous too, for 

0 < q < g
∗(s) < s and 0 < q < h∗(q) < s . The appropriate maximal admissible solutions of 

first-order nonlinear ordinary differential equations and the associated maximality princi-

ple for solutions of optimal stopping problems which is equivalent to the superharmonic  

characterisation of the payoff functions were established in Peskir (1998) and further  

developed in Graversen and Peskir (1998), Pedersen (2000), Guo and Shepp (2001), Gapeev  

(2007), Guo and Zervos (2010), Peskir (2012,  2014), Glover et  al. (2013), Ott (2013), 

Kyprianou and Ott (2014), Gapeev and Rodosthenous (2014b, 2016a 2016b), Rodosthenous  

and Zervos (2017), and Gapeev et al. (2021) among other subsequent papers (see also [Peskir  

and Shiryaev (2006); Chapter I; Chapter V, Section 17] for other references).

4  Main Results and Proofs

In this section, based on the facts proved above, we formulate and prove the main 

result of the paper. Observe that, by means of the change-of-measure arguments from 

Shepp and Shiryaev (1994) and Gapeev (2019), the problems of (6)-(7) can be reduced 

the appropriate optimal stopping problems for the two-dimensional Markov process 

(S∕X, Q∕X) = (St∕Xt, Qt∕Xt)t≥0 . However, we follow the classical approach initiated 

in Shepp and Shiryaev (1993) and to solve them as three-dimensional optimal stopping 

problems.

Theorem 4.1 Let the process (X, S, Q) be given by (3)-(4) and (5) with 𝜎 > 0 , 𝜇 < r , and 

r > 0 . Then, the value functions of the optimal stopping problems in (21) and (22), for 

some L
i
≥ 1 ≥ K

i
> 0 , for i = 1, 2 , fixed, admit the representations:

and

while the optimal stopping times have the form:

(60)V∗

1
(x, s, q) =

{

V1(x, s, q;b∗(s, q)), if q ≤ x < b∗(s, q),

0, if x ≥ b∗(s, q),

(61)V∗

2
(x, s, q) =

{

V2(x, s, q;a∗(s, q)), if a∗(s, q) < x ≤ s,

0, if 0 < x ≤ a∗(s, q),
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where the candidate value functions and boundaries are specified as follows: 

 (i) the function V1(x, s, q;b∗(s, q)) is given by (46) with (47)-(48), where the bound-

ary b∗(s, q) satisfying the inequality b∗(s, q) ≥ h∗(q) represents the minimal solu-

tion of the first-order nonlinear ordinary differential equation in (57) such that 

b∗(s, q) > q , for 0 < q < g
∗(s) < s , while b∗(s, q) = h∗(q) ≡ �∗q with 𝜈

∗
> 1 from (84), 

for g∗(s) ≤ q < s;

 (ii) the function V2(x, s, q;a∗(s, q)) is given by (49) with (50)-(51), where the boundary 

a
∗(s, q) satisfying the inequality a∗(s, q) ≤ g

∗(s) represents the maximal solution of 

the first-order nonlinear ordinary differential equation in (59) such that a∗(s, q) < s , 

for 0 < q < h∗(q) < s , while a∗(s, q) = g
∗(s) ≡ �∗s with 0 < 𝜆

∗
< 1 from (82), for 

q < s ≤ h∗(q).

Recall that we can put s = q = x to obtain the values of the original perpetual real float-

ing-cost double lookback call-put and put-call option pricing problems of (1) and (2) from 

the values of the double optimal stopping problems of (6) and (7), which are equivalent to 

the sequence of single optimal stopping problems of (21)-(22) and (72). Note that, since 

the both parts of the assertion stated above are proved using similar arguments, we may 

only give a proof for the case of the three-dimensional single optimal stopping problem of 

(22), which is related to the outer perpetual real lookback put-call options.

Proof In order to verify the assertion of part (ii) stated above, it remains for us to show 

that the function defined in the right-hand side of (61) coincides with the value function 

in (22) and that the stopping time �∗
2
 in (62) is optimal with the boundary a∗(s, q) being 

the solution of the system in (42)-(43)+(45) specified in (49)-(51) with (58)-(59). For this 

purpose, let us denote by V2(x, s, q) the right-hand side of the expression in (61) associ-

ated with a∗(s, q) . Then, it is shown by means of straightforward calculations from the pre-

vious section that the function V2(x, s, q) solves the left-hand system of (26)-(34). Recall 

that the function V2(x, s, q) is C2,1,1 on the closure C
2
 of C

2
 and is equal to 0 on D

2
 , which 

are defined as C
∗

2
 , C∗

2
 and D∗

2
 in (24) and (25) with a(s, q) instead of a∗(s, q) , respectively. 

Hence, taking into account the assumption that the boundary a∗(s, q) is (at least piecewise) 

continuously differentiable, for all 0 < q < s , by applying the change-of-variable formula 

from [Peskir (2007); Theorem  3.1] to the process e−rtV2(Xt, St, Qt) (see also [Peskir and 

Shiryaev (2006); Chapter II, Section 3.5] for a summary of the related results and further 

references), we obtain the expression:

(62)�
∗

1
= inf

{
t ≥ 0 |

| Xt ≥ b∗(St, Qt)
)}

and �
∗

2
= inf

{
t ≥ 0 |

| Xt ≤ a∗(St, Qt)
}

(63)

e−rt V2(Xt, St, Qt) = V2(x, s, q) + M2

t

+ ∫
t

0

e−ru (�V2 − rV2)(Xu, Su, Qu) I
(

Qu ∨ a∗(Su, Qu) < Xu < Su

)

du

+ ∫
t

0

e−ru
𝜕sV2(Xu, Su, Qu) I

(

Xu = Su

)

dSu

+ ∫
t

0

e−ru
𝜕qV2(Xu, Su, Qu) I

(

Xu = Qu

)

dQu
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for all t ≥ 0 . Here, the process M2 = (M2

t
)
t≥0

 defined by:

is a continuous local martingale with respect to the probability measure Px,s,q . 

Note that, since the time spent by the process (X,  S,  Q) at the boundary surface 

{(x, s, q) ∈ E | x = a(s, q)} as well as at the diagonals d1 = {(x, s, q) ∈ ℝ
3 | 0 < x = q ≤ s} 

and d2 = {(x, s, q) ∈ ℝ
3 | 0 < q ≤ x = s} is of zero Lebesgue measure (see, e.g. [Boro-

din and Salminen (2002); Chapter  II, Section  1]), the indicators in the second line of 

the formula in (63) as well as in the expression of (64) can be ignored. Moreover, since 

the component Q decreases only when the process (X,  S,  Q) is located on the diagonal 

d1 = {(x, s, q) ∈ ℝ
3 | 0 < x = q < s} , while the component S increases only when the pro-

cess (X, S, Q) is located on the diagonal d2 = {(x, s, q) ∈ ℝ
3 | 0 < q < x = s} , the indica-

tors appearing in the third line of (63) can be set equal to one. Finally, we observe from 

the expressions in (49) and (50)-(51) that the function V2(x, s, q) does not actually depend 

on the variable q, and thus, the partial derivative �qV2(x, s, q) is equal to 0 in the region 

{(x, s, q) ∈ E | 0 < q < x ≤ s ≤ h∗(q)} . Therefore, since the diagonal d
1
 lies outside to the 

region {(x, s, q) ∈ E | 0 < q < h∗(q) ≤ x ≤ s} , we may conclude that the second integral in 

the third line of (63) is actually equal to zero.

It follows from straightforward calculations and the arguments of the previous sec-

tion that the function V2(x, s, q) satisfies the second-order ordinary differential equa-

tion in (27), which together with the left-hand conditions of (28)-(29) and (31) as 

well as the fact that the left-hand inequality in (34) holds imply that the inequality 

(�V2 − rV2)(x, s, q) ≤ −H2(x, s, q) is satisfied, for all (x, s, q) ∈ E such that 0 < q < x < s 

and x ≠ a
∗(s, q) . Moreover, we observe directly from the expressions in (49) with (50)-

(51) as well as (54)-(55) that the value function V2(x, s, q) is convex and increases from 

zero, because its first-order partial derivative �xV2(x, s, q) is positive and increases from 

zero, while its second-order partial derivative �xxV2(x, s, q) is positive, on the interval 

q ∨ a
∗(s, q) < x ≤ s . Thus, we may conclude that the left-hand inequality in (32) holds, 

which together with the left-hand conditions of (28)-(29) and (31) imply that the inequal-

ity V2(x, s, q) ≥ 0 is satisfied, for all (x, s, q) ∈ E . Let (�
n
)
n∈ℕ be the localising sequence of 

stopping times for the process M2 from (64) such that 𝜘
n
= inf{t ≥ 0 | |M2

t
| ≥ n} , for each 

n ∈ ℕ . It therefore follows from the expression in (63) that the inequalities:

hold, for any stopping time � with respect to the natural filtration of (X, S, Q) and each 

n ∈ ℕ fixed. Then, taking the expectation with respect to Px,s,q in (65), by means of Doob’s 

optional sampling theorem, we get:

(64)M2

t
= ∫

t

0

e−ru
𝜕xV2(Xu, Su, Qu) I

(

Qu < Xu < Su

)

𝜎Xu dBu

(65)

�
�∧𝜘n

0

e−ru H2(Xu, Su, Qu) du + �
�∧𝜘n

0

e−ru dSu ≤ e−r(�∧𝜘n) V2(X�∧𝜘n
, S

�∧𝜘n
, Q

�∧𝜘n
)

+ �
�∧𝜘n

0

e−ru H2(Xu, Su, Qu) du

+ �
�∧𝜘n

0

e−ru dSu ≤ V2(x, s, q) + M2

�∧𝜘n
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for all (x, s, q) ∈ E and each n ∈ ℕ . Hence, letting n go to infinity and using Fatou’s lemma, 

we obtain from the expressions in (66) that the inequalities:

hold, for any stopping time � and all (x, s, q) ∈ E.

We now prove the fact that the boundary a∗(s, q) specified above is optimal. By virtue of 

the fact that the function V2(x, s, q) from the right-hand side of the expression in (61) asso-

ciated with the boundary a∗(s, q) satisfies the equation of (27) and the right-hand condition 

of (28), and taking into account the structure of �∗
2
 in (62), it follows from the expression in 

(63) that the equalities:

hold, for all (x, s, q) ∈ E and each n ∈ ℕ . Observe that, by virtue of the arguments from 

[Shepp and Shiryaev (1993); pages 635–636], the property:

holds, where the function G2(x, s, q) is defined in (9), for all (x, s, q) ∈ E . We also note 

that the variable e−r�∗
2 V2(X�

∗
2

, S
�
∗
2

, Q
�
∗
2

) is finite on the event {�∗
2
= ∞} as well as recall 

from the arguments of Beibel and Lerche (1997) and Pedersen (2000) that the property 

Px,s,q(𝜏
∗
2
< ∞) = 1 holds, for all (x, s, q) ∈ E . Hence, letting n go to infinity and using the 

right-hand condition of (28), we can apply the Lebesgue dominated convergence theorem 

to the expression of (68) to obtain the equality:

(66)

Ex,s,q

[

�
�∧𝜘n

0

e−ru H2(Xu, Su, Qu) du + �
�∧𝜘n

0

e−ru dSu

]

≤ Ex,s,q

[

e−r(�∧𝜘n) V2(X�∧𝜘n
, S

�∧𝜘n
, Q

�∧𝜘n
)

+ �
�∧𝜘n

0

e−ru H2(Xu, Su, Qu) du + �
�∧𝜘n

0

e−ru dSu

]

≤ V2(x, s, q) + Ex,s,q

[

M2

�∧𝜘n

]

= V2(x, s, q)

(67)

Ex,s,q

[

�
�

0

e−ru H2(Xu, Su, Qu) du + �
�

0

e−ru dSu

]

≤ Ex,s,q

[

e−r� V2(X�
, S

�
, Q

�
)

+ �
�

0

e−ru H2(Xu, Su, Qu) du

+ �
�

0

e−ru dSu

]

≤ V2(x, s, q)

(68)

Ex,s,q

[

∫
�
∗
2
∧�n

0

e−ru H2(Xu, Su, Qu) du + ∫
�
∗
2
∧�n

0

e−ru dSu

]

= Ex,s,q

[

e−r(�∗
2
∧�n) V2(X�

∗
2
∧�n

, S
�
∗
2
∧�n

, Q
�
∗
2
∧�n

)

+ ∫
�
∗
2
∧�n

0

e−ru H2(Xu, Su, Qu) du

+ ∫
�
∗
2
∧�n

0

e−ru dSu

]

= V2(x, s, q) + Ex,s,q

[

M2

�
∗
2
∧�n

]

= V2(x, s, q)

(69)Ex,s,q

[

sup
t≥0

e−r(𝜏∗
2
∧t) G2(X𝜏

∗
2
∧t, S

𝜏
∗
2
∧t, Q

𝜏
∗
2
∧t)

]

≤ (1 + L2)Ex,s,q

[

sup
t≥0

S
𝜏
∗
2
∧t

]

< ∞
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for all (x, s, q) ∈ E , which together with the inequalities in (67) directly implies the 

desired assertion. We finally recall from the results of part (iii) of Subsection 2.3 above 

implied by standard comparison arguments applied to the value functions of the appro-

priate optimal stopping problems that the inequality a
∗(s, q) ≤ g

∗(s) should hold for the 

optimal stopping boundary, for 0 < q < h∗(q) < s . Thus, taking into account the fact that 

a
∗(s, q) = g

∗(s) ≡ �∗s with 0 < 𝜆
∗
< 1 from (82), for q < s ≤ h∗(q) , we may conclude that 

the inequality a∗(s, q) ≤ g
∗(s) holds, for all 0 < q < s , that completes the verification.  

 ◻

Corollary 4.2 The optimal method of exercising the perpetual real double lookback call-

put and put-call options on the maxima and minima with the values in (1) and (2), which 

are equivalent to the ones of (6) and (7), acts as follows. After the outer options with the 

equivalent value functions from (21) and (22) are exercised at the first exit times �∗
i
 , for 

i = 1, 2 , from (62) with the boundaries b∗(s, q) and a∗(s, q) specified in Theorem 4.1 above, 

the inner options should be exercised at the first hitting times:

with the boundaries g∗(s) and h∗(q) specified in Corollary 5.1 below, respectively.

Remark 4.3 Note that in the cases in which one starts from the stretch, that is, when 

x = s = q holds, the subsequent exercise of the outer and inner perpetual real lookback put 

and call options with the value functions in (21) and (22) may actually follow the subse-

quent exercise of the standard perpetual real lookback put and call options with the value 

functions in (72). More precisely, when the process X starts at some x = s = q , by vir-

tue of the facts that the inequalities 0 < 𝜆
∗
< 1 and 𝜈

∗
> 1 hold for the unique solutions 

of the arithmetic equations in (82) and (84) below, the outer options should be exercised 

when the process X reaches an upper boundary b∗(S, Q)[≥ h∗(Q)] or a lower boundary 

a∗(S, Q)[≤ g∗(S)] , respectively. However, in the cases in which the process X starts at 

some x < g
∗(s) < s or x > h∗(q) > q , the outer perpetual real lookback call-put and put-

call options on the maxima and minima should be exercised only at the times at which 

the underlying asset price process reaches the upper boundary [h∗(Q) <]b∗(S, Q)[< g∗(S)] 

or the lower boundary [h∗(Q) <]a∗(S, Q)[< g∗(S)] , respectively, and then, the appropriate 

inner options should be exercised at the same time.

5 Appendix

In this section, we derive explicit solutions to the optimal stopping problems of (72) below 

which are related to the perpetual American lookback options on the maximum and mini-

mum. Although, by means of the change-of-measure arguments from Shepp and Shiryaev 

(1994) and Gapeev (2019), the problems of (72) can be reduced to the appropriate opti-

mal stopping problems for one-dimensional Markov processes S∕X = (S
t
∕X

t
)
t≥0

 and 

Q∕X = (Qt∕Xt)t≥0
 , we follow the arguments of Sects. 2–4 to solve them as two-dimensional 

optimal stopping problems, in order to spare some space of the paper. Note that the left-hand 

(70)Ex,s,q

[

∫
�
∗
2

0

e−ru H2(Xu, Su, Qu) du + ∫
�
∗
2

0

e−ru dSu

]

= V2(x, s, q)

(71)�∗
1
= inf

{
t ≥ �∗

1
|| Xt ≤ g∗(St)

}
and �∗

2
= inf

{
t ≥ �∗

2
|| Xt ≥ h∗(Qt)

}
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optimal stopping problem in (72) was solved in Beibel and Lerche (1997), Pedersen (2000) 

and Guo and Shepp (2001), and we present its solution for completeness.

5.1 The Auxiliary Optimal Stopping and Free‑boundary Problems

Let us finally consider the optimal stopping problems for the (time-homogeneous strong) 

Markov processes (X, S) = (X
t
, S

t
)
t≥0 and (X, Q) = (Xt, Qt)t≥0 with the value functions:

for some given constants L
2
≥ 1 ≥ K

1
> 0 , where the suprema are taken over all stopping 

times � of (X, S) or (X, Q). It can be shown by means of the same arguments as in Subsec-

tion 2.2 above that the optimal stopping times have the form:

for some boundaries 0 < g
∗(s) < s and h∗(q) > q to be determined.

In order to find analytic expressions for the value functions U∗
1
(x, s) and U∗

2
(x, q) from (72) 

as well as the unknown boundaries boundaries g∗(s) and h∗(q) from (73), we formulate the 

equivalent free-boundary problems:

where the left-hand and the right-hand conditions in (75)-(77) are satisfied for s > 0 and 

q > 0 , respectively. The superharmonic characterisation of the value function implies that 

U
∗
1
(x, s) and U∗

2
(x, q) are the smallest functions satisfying the left-hand and the right-hand 

sides of the equations in (74)-(75) with (78)-(79) with the boundaries g
∗(s) and h∗(q) , 

respectively.

5.2 Solutions to the Free‑boundary Problems

In this case, by using straightforward calculations from Subsections 3.1–3.2 above, it can be 

shown that the candidate solution of the left-hand system in (74)-(80) takes the form:

(72)

U∗

1
(x, s) = sup

�

Ex,s

[

e−r� (S
�
− K1 X

�
)
]

and U∗

2
(x, q) = sup

�

Ex,q

[

e−r� (L2 X
�
− Q

�
)
]

(73)�
∗

1
= inf

{
t ≥ 0 || Xt ≤ g∗(St)

}
and �

∗

2
= inf

{
t ≥ 0 || Xt ≥ h∗(Qt)

}

(74)

(�U1 − rU1)(x, s) = 0 for g(s) < x < s, (�U2 − rU2)(x, q) = 0 for q < x < h(q)

(75)U1(x, s)||x=g(s)+
= s − K1 g(s), U2(x, q)||x=h(q)−

= L2 h(q) − q

(76)�xU1(x, s)||x=g(s)+
= −K1, �xU2(x, q)||x=h(q)−

= L2

(77)�sU1(x, s)||x=s−
= 0, �qU2(x, q)||x=q+

= 0

(78)U1(x, s) = s − K1 x for 0 < x ≤ g(s), U2(x, q) = L2 x − q for x ≥ h(q)

(79)U1(x, s) > s − K1 x for g(s) < x ≤ s, U2(x, q) > L2 x − q for q ≤ x < h(q)

(80)(�U1 − rU1)(x, s) < 0 for 0 < x ≤ g(s), (�U2 − rU2)(x, q) < 0 for x ≥ h(q)
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for 0 < g
∗(s) < x ≤ s , with g∗(s) ≡ �∗s , for s > 0 , where the value 0 < 𝜆

∗
< 1 is the unique 

root of the arithmetic equation:

on the interval (0, 1) (see Beibel and Lerche (1997), Pedersen (2000) and Guo and Shepp 

(2001)).

By using straightforward calculations from Subsections 3.1–3.2 above, it can be shown 

that the candidate solution of the right-hand system in (74)-(80) takes the form:

for q ≤ x < h∗(q) , with h∗(q) ≡ �∗q , for q > 0 , where the value 𝜈
∗
> 1 is the unique root of 

the arithmetic equation:

on the interval (1,∞).

5.3 The Results

Summarising the facts shown above, we state the following result which can be proved by 

means of the same arguments as Theorem 4.1 above in combinations with the arguments 

from Gapeev (2020).

Corollary 5.1 Let the processes (X, S) and (X, Q) be given by (3) and (5) with 𝜎 > 0 , 𝜇 < r , 

and r > 0 . Then, the value functions of the inner optimal stopping problems in (72), for 

some L
2
≥ 1 ≥ K

1
> 0 fixed, admit the representations:

and

while the optimal stopping times have the form of (73) above, where the candidate value 

functions and the candidate exercise boundaries are specified as follows: 

(81)

U1(x, s;g∗(s)) =
�2(s − K1g∗(s)) + K1g∗(s)

�2 − �1

(

x

g∗(s)

)�1

−
�1(s − K1g∗(s)) + K1g∗(s)

�2 − �1

(

x

g∗(s)

)�2

(82)��1
−�

2 =
(�

1
− 1)(�

2
(1 − K

1
�) + K

1
�)

(�
2
− 1)(�

1
(1 − K

1
�) + K

1
�)

(83)

U2(x, q;h∗(q)) =
�2(L2h∗(q) − q) − L2h∗(q)

�2 − �1

(

x

h∗(q)

)�1

−
�1(L2h∗(q) − q) − L2h∗(q)

�2 − �1

(

x

h∗(q)

)�2

(84)�
�

1
−�

2 =
(�

1
− 1)(�

2
(1 − L

2
�) + L

2
�)

(�
2
− 1)(�

1
(1 − L

2
�) + L

2
�)

.

(85)U∗

1
(x, s) =

{

U1(x, s;g∗(s)), if g∗(s) < x ≤ s,

s − K1 x, if 0 < x ≤ g∗(s),

(86)U∗

2
(x, q) =

{

U2(x, q;h∗(q)), if 0 < q ≤ x < h∗(q),

L2 x − q, if x ≥ h∗(q),
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 (i) the function U1(x, s;g∗(s)) is given by (81), while the boundary has the form 

g
∗(s) = �∗s , for each s > 0 , with 0 < 𝜆

∗
< 1 being a unique solution of the arithme-

tic equation in (82) on (0, 1);

 (ii) the function U2(x, q;h∗(q)) is given by (83), while the boundary has the form 

h∗(q) = �∗q , for each q > 0 , with 𝜈
∗
> 1 being a unique solution of the arithmetic 

equation in (84) on (1,∞).
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