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a b s t r a c t 

The transition to energy systems with a high share of renewable energy depends on the availability of technologies 
that can connect the physical distances or bridge the time differences between the energy supply and demand 
points. This study focuses on energy storage technologies due to their expected role in liberating the energy sector 
from fossil fuels and facilitating the penetration of intermittent renewable sources. The performance of 27 energy 
storage alternatives is compared considering sustainability aspects by means of data envelopment analysis. To 
this end, storage alternatives are first classified into two clusters: fast-response and long-term. The levelized cost 
of energy, energy and water consumption, global warming potential, and employment are common indicators 
considered for both clusters, while energy density is used only for fast-response technologies, where it plays a key 
role in technology selection. Flywheel reveals the highest efficiency between all the fast-response technologies, 
while green ammonia powered with solar energy ranks first for long-term energy storage. An uncertainty analysis 
is incorporated to discuss the reliability of the results. Overall, results obtained, and guidelines provided can 
be helpful for both decision-making and research and development purposes. For the former, we identify the 
most appealing energy storage options to be promoted, while for the latter, we report quantitative improvement 
targets that would make inefficient technologies competitive if attained. This contribution paves the way for 
more comprehensive studies in the context of energy storage by presenting a powerful framework for comparing 
options according to multiple sustainability indicators. 

1. Introduction 

Electricity is among the cornerstones for most economic activities 
and human living conditions [1] . Electricity systems link generators 
with consumers through transmission and distribution grids. Tradition- 
ally, secure electricity systems were designed based on key technical 
parameters such as stability, flexibility, resilience, adequacy, and ro- 
bustness [2] . This, among other factors, led to the widespread deploy- 
ment of dispatchable technologies such as those based on fossil fuels or 
nuclear energy [3] . More recently, environmental concerns have pushed 
the adoption of various clean and renewable electricity production tech- 
nologies [4] . However, while conventional generation technologies can 
easily adapt to the inherent fluctuating demand, renewable sources like 
solar and wind are intermittent, unpredictable, and uncertain, therefore 
compromising the system capacity to match supply with demand [5] . 

∗ Corresponding author. 
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One of the most promising solutions to rapidly meet the electricity 
demand when the supply comes from non-dispatchable sources is energy 
storage [ 6 , 7 ]. Electricity storage technologies convert the electricity to 
storable forms, store it, and reconvert it to be released in the network 
when needed [8] . Electricity storage can improve the electricity grid’s 
reliability, efficiency, safety, security, and stability [ 9 , 10 ] while bring- 
ing down the cost of electricity supply [11] through the reduction of the 
number and duration of costly electrical interruptions [12] . In a context 
where global power generation with renewable technologies is expected 
to rise from 25% in 2020 to 86% in 2050 [11] , it is not surprising that 
energy storage is deemed key to achieving the energy sector’s decar- 
bonization [13] . 

Energy storage technologies can be classified according to their func- 
tions, the storage duration, and the form of stored energy [14] , with no 
single technology performing well in all situations [9] . For instance, 
large-scale mechanical energy storage options can shift a large volume 
of electricity from one time to another, while batteries are rapidly re- 
sponding to a signal [11] . Thus, a myriad of energy storage technologies 
with different characteristics are and will be needed to provide service 
in different applications [14] . 
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Nomenclature 

𝛿∗ Supper efficiency of DMU o 
𝜀 Non-Archimedean infinitely small value 
𝜆 Intensity vector that reports the weight of each DMU in the virtual DMU 
Λ Intensity vector that reports the weight of each DMU in the virtual DMU 
Ƭ∗ Efficiency of the DMU o 
CG Coal Gasification 
CCS Carbon Capture and Storage 
DEA Data Envelopment Analysis 
DEDLF Delivered Energy During Lifetime 
DOD Depth Of Discharge 
ED Energy Density 
FEDLF Feed Energy During Lifetime 
FTEJ Full Time Equivalent Jobs 
GWP Global Warming Potential 
LCOE Levelized Cost Of Energy 
LHV Lower Heating Value 
m Number of inputs 
NC Number of Cycles during lifetime of technology 
RE Renewable Energy 
REC Rated Energy Capacity 
RTE Round-Trip Efficiency 
WE Water Electrolysis 
WS Water Splitting 
s 1 Number of desired outputs 
s 2 Number of undesired outputs 
S i 

− Slack of inputs in SBM model 
S r 
g Slack of desired outputs in SBM model 

Sr b Slack of undesired outputs in SBM model 
t Charnes-Cooper linear transformation coefficient 
x io Input i related to the DMU o 
X Matrix of inputs 
y ro 

g Desired output r related to the DMU o 
y ro 

b Undesired output r related to the DMU o 
Y g Matrix of desired outputs 
Y b Matrix of undesired outputs 

Abbreviation and full name of fast-response energy storage technologies 
Short-term 

Flywheels Flywheels 
SMES Superconducting Magnetic Energy Storage 

Medium-term 

FB-VR Flow battery - Vanadium Redox 
FB-ZB Flow battery - Zinc Bromine 
LA Lead-Acid 
Li-ion Lithium-ion 
Li-Fe-Ph Lithium-Ferro-Phosphate 
Li-Ni-Mn-Co Lithium-Nickel-Manganese-Cobalt 
Na-Ni-Cl Sodium-Nickel-Chloride 
Na-S Sodium-Sulphur 
Ni-Cd Nickel-Cadmium 

Abbreviation and full name of long-term energy storage alternatives 
H 2 , CG Power to H 2 , Coal Gasification 
H 2 , CG-CCS Power to H 2 , Coal Gasification with carbon capture and storage (CCS) 
H 2 , SMR Power to H 2 , Steam Methane Reformation 
H 2 , SMR-CCS Power to H 2 , Steam Methane Reformation with CCS 
H 2 , WE-Grid mix Power to H 2 , Water Electrolysis by Grid mix 
H 2 , WE-Hydropower Power to H 2 , Water Electrolysis by Hydropower energy 
H 2 , WE-Solar Power to H 2 , Water Electrolysis by Solar energy 
H 2 , WE-Wind Power to H 2 , Water Electrolysis by Wind energy 
H 2 , WSCL Power to H 2 , Water Splitting by Chemical Looping 
NH 3 , SMR Power to NH 3 , Steam Methane Reformation 
NH 3 , SMR-CCS Power to NH 3 , Steam Methane Reformation with CCS 
NH 3 , WE-Grid mix Power to NH 3 , Water Electrolysis by Grid mix 
NH 3 , WE-Hydropower Power to NH 3 , Water Electrolysis by Hydropower energy 
NH 3 , WE-Solar Power to NH 3 , Water Electrolysis by Solar energy 
NH 3 , WE-Wind Power to NH 3 , Water Electrolysis by Wind energy 
NH 3 , WSCL Power to NH 3 , Water Splitting by Chemical Looping 
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To facilitate the development and deployment of energy storage 
technologies, these must satisfy economic, environmental, and techni- 
cal targets [5] . For instance, the European Association for Storage of En- 
ergy, in their 2017 roadmap, suggested that storage technologies should 
aim to achieve a levelized cost of stored energy lower than the levelized 
cost of energy appointed to other flexibility options such as grid up- 
grades or flexible generators [15] . Meanwhile, the 2030-plan for sta- 
tionary energy storage systems aims at the cost of ≈0.05 €/(kWh, cy- 
cle), in addition to achieving 10000 cycles durability and 20 years life- 
time [16] . Further cost reductions besides technical and/or environmen- 
tal improvements could make these technologies even more attractive. 
Therefore, gathering quantified and updated information about energy 
storage technologies is one of the first tasks needed to pave the way for 
their development and widespread application. 

Several works have compared energy storage technologies based 
only on economic, technical [17] , or environmental aspects [18] . For in- 
stance, Koohi-Fayegh et al. compared the performance of fast-response 
storage technologies in frequency regulation applications based on their 
energy and power density, cycle efficiency, lifetime, and capital costs 
[19] . A review concerning the life cycle cost of energy storage technolo- 
gies was presented by Zakeri and Syri [20] , including elements such 
as capital, operational, maintenance, and replacement costs. They con- 
cluded that the power conversion system and the energy storage unit 
section strongly affect an energy storage system’s technical and eco- 
nomic performance [20] . 

On the other hand, some works shifted the focus from economic and 
technical considerations to the environmental implications of storage 
technologies. In this context, a cradle-to-gate life cycle assessment (LCA) 
study of vanadium redox flow batteries and zinc-cerium batteries illus- 
trated that the electrolyte production process contributes significantly to 
most impact categories [21] . A similar conclusion was reported for lead- 
acid, lithium-manganese, and lithium-iron-phosphate batteries [22] . 

Very few studies considered environmental aspects and other sus- 
tainability dimensions simultaneously, and in case they did, it was lim- 
ited to only one or a few storage technologies. Stougie et al. employed a 
multi-dimensional life cycle assessment for analyzing the sustainability 
of five different energy storage units considering economic and environ- 
mental criteria, in addition to each technology’s total cumulative exergy 
loss [23] . Another multi-objective optimization was reported by Li et al. 
to select energy storage systems. They used economic and environmen- 
tal objectives and technical constraints, finding flow batteries and hy- 
drogen energy storage as the optimal solutions for emerging distributed 
energy systems [24] . Kapila et al. compared energy, life cycle green- 
house gas emissions, and costs for large-scale mechanical energy storage 
systems. Their results revealed that the unit’s energy consumption (i.e., 
amount and energy source) is more relevant than the construction mate- 
rial considering greenhouse gas emissions from a life-cycle perspective 
[25] . 

Going beyond previous research, this contribution aims to provide a 
comprehensive assessment of a wide range of energy storage technolo- 
gies (11 fast-response and 16 long-term storage options) considering a 
total of six key performance indicators that allow covering the three sus- 
tainability dimensions concurrently ( i.e. , economic, environmental, and 
social perspectives). To ensure a fair comparison, technologies are first 
classified into two clusters according to their response time. In addition, 
we analyze for the first time the sustainability performance of ammonia 
as an energy storage material. We include the operation phase of stor- 
age technologies within the scope of our work, thus advancing previous 
research in both depth and breadth. 

Comparing options in terms of multiple sustainability indicators is 
a challenging task calling for multicriteria decision-making methods. 
Among available tools, we resort to Data Envelopment Analysis (DEA) 
[26] because it can combine multiple indicators into a single score, 
avoiding the definition of subjective weights between the indicators. 
The uncertainty associated with the data used for the analysis is consid- 
ered to draw robust and reliable conclusions. 

In the past, DEA has been widely used to investigate and compare 
engineering systems for the energy sector, such as nuclear energy [27] , 
thermal powerplants [28] , power industries [29] , energy-consuming 
equipment [30] , renewable energy production [31–37] , and the elec- 
tricity mix in European countries [26] . Nevertheless, to the best of the 
authors’ knowledge, there is only one previous work on applying DEA 
to benchmark energy storage technologies. It compares pumped hydro 
storage, compressed air energy storage, lead-acid battery, and lithium- 
ion battery using sustainability indicators and employing DEA, reporting 
lithium-ion battery as the most efficient case [38] . 

The analysis carried out first grades technologies within each cluster 
as either efficient or inefficient, providing evidence to support policies 
promoting the most appealing technologies to underpin the sustainabil- 
ity transition. For inefficient technologies, quantitative guidelines re- 
garding directions and targets for improvement are provided. This valu- 
able information will be key for technology developers to push their 
designs to the frontier of the best-performing options available in the 
market. 

As will be further detailed later in the manuscript, the results ob- 
tained suggest that flywheel, nickel-cadmium, lithium-ion, and sodium- 
sulfur batteries are the preferred options among fast-response technolo- 
gies, while green ammonia from water electrolysis powered by solar en- 
ergy is ranked first between long-term storage options. Other efficient 
options for the later cluster are green hydrogen from solar and wind. 

The remaining of this contribution is structured as follows. The 
methodology applied for the multicriteria assessment of energy stor- 
age technologies is described in the second section, while the results are 
presented and discussed in the third section. Finally, the conclusions 
drawn on how these results can be used for effective policymaking are 
presented in section four. 

2. Methodological approach 

In this contribution, we use DEA to compare the performance of en- 
ergy storage technologies through the lens of sustainability (i.e., eco- 
nomic, environmental, and social perspectives). DEA is a linear pro- 
gramming method that allows measuring the relative efficiency of a 
set of homogenous entities (called Decision-Making Units, DMUs) in 
transforming one or several input(s) into one or several output(s) [39] . 
Producing more outputs using fewer inputs is the general criterion for 
higher efficiency (see Eq. (1) [40] ), yet if some outputs are undesirable 
(e.g., carbon emissions), producing lower amounts of them is desired 
[41] . 

efficiency = 
weighted sum of outputs 

weighted sum of inputs 
(1) 

In the context of this contribution, we model energy storage technolo- 
gies as DMUs consuming m inputs and producing s 1 desired outputs and 
s 2 undesired outputs. The value of inputs and outputs for each DMU 

are obtained from different sustainability indicators, which are classi- 
fied in these three categories depending on whether they are resources 
“consumed ” by the technology (i.e., inputs, e.g., water), beneficial out- 
puts from the process (i.e., desirable outputs, e.g., the creation of new 

job opportunities) or outputs that are not desired (i.e., undesirable out- 
puts, e.g., polluting emissions to air). The DMUs considered are pre- 
sented in Section 2.1 , while details on inputs and outputs are provided 
in Section 2.2 . 

With input and output values at hand, an efficiency score will be 
obtained for every DMU by solving a DEA model for each of them. The 
model will return an efficiency score of 1 if the DMU is efficient, that 
is, if and only if there is no other DMU with lower or equal levels of 
inputs and undesirable outputs while simultaneously achieving greater 
or equal output levels. 

Note that, in DEA, the efficiency score is given by a weighted (i.e., 
linear) combination of indicators, which is a common approach also 
used in other multicriteria decision-making methods and algorithms and 
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Fig. 1. Classification of the energy storage technologies (or DMUs under the concept of DEA) considered. SMES: Super Magnetic Energy Storage, FB: Flow Battery, VR: 
Vanadium Redox, ZB: Zinc-Bromine, LA: Lead-Acid, Li-Fe-Ph: Lithium-Ferro-Phosphate, Li-Ni-Mn-Co: Lithium-Nickel-Manganese-Cobalt, Na-Ni-Cl: Sodium-Nickel- 
Chloride, Na-S: Sodium-Sulfur, Ni-Cd: Nickel-Cadmium, CCS: Carbon Capture and Storage, SMR: Steam Methane Reformation, WE: Water Electrolysis, WS: Water 
Splitting. 

in environmental impact metrics such as the EcoIndicator99 [42] . This 
approach is not always underpinned by a physical interpretation but 
is still useful for estimating technological options’ relative ranking. In 
addition, the use of DEA avoids the need to define these weights in ad- 
vance, thus preventing a subjective bias in the assessment of the dif- 
ferent technological options. This is equivalent to implicitly assuming 
that all the inputs, desired outputs, and undesired outputs are equally 
important. The case where a higher weight is assigned to environmen- 
tal indicators is later analysed in Appendix A.1 . Specifically, we use a 
unit-invariant model that makes it possible to combine different indica- 
tors without their units altering the final efficiency score obtained [43] . 
Further, the monetized analysis, presented in Appendix A.2 , translates 
all the indicators to their monetary values before combining them. 

2.1. DMU modelling 

Storage technologies can be classified based on the duration and 
frequency of power supply, and each class has its particular charac- 
teristics and applications [44] . To prevent unfair comparisons across 
classes, technologies are grouped into fast-response (including short- 
and medium-term storage technologies) and long-term ( Fig. 1 ), consid- 
ering their response time. H 2 produced using coal gasification is con- 
sidered in our study, while NH 3 produced from such H 2 is discarded 
due to the lack of reliable data. Except for it, all the other considered 
alternatives are the same for H 2 and NH 3 . 

Fast-response technologies show response times ranging between 
a few seconds to a few hours, reason why these technologies are 

typically used for voltage stabilization, frequency control, peak shav- 
ing, load leveling, and daily storage. They should be able to of- 
fer several cycles during a day and, therefore, the number of cy- 
cles during their lifetime and their power and energy density are 
very relevant aspects [2] . This cluster includes two short- and nine 
medium-term technologies. Flywheel and super magnetic energy stor- 
age (SMES) are short-term storage technologies, while vanadium re- 
dox flow battery (FB-VR), zinc-bromine flow battery (FB-ZB), lead- 
acid (LA), lithium-ion, lithium-Ferro-phosphate (Li-Fe-Ph), lithium- 
nickel-manganese-cobalt (Li-Ni-Mn-Co), sodium-nickel-chloride (Na-Ni- 
Cl), sodium-sulfide (Na-S), and nickel-cadmium (Ni-Cd) batteries are the 
options considered as medium-term energy storage technologies. There 
are various types of lithium-ion, redox flow, and sodium batteries with 
different battery characteristics regarding the materials used for the 
electrolytes and electrodes. For instance, a graphite-based anode, a cath- 
ode made using a lithium metal oxide (e.g. Li-Fe-Ph, Li-Ni-Mn-Co, etc.), 
and an electrolyte are the main components of a lithium-ion battery [9] . 
Significant research efforts are taking place to identify the material com- 
bination leading to the best battery characteristics in each case. All these 
DMUs are entirely based on data found in the literature (see supplemen- 
tary information, section B). Pumped hydro storage and compressed air 
energy storage are two medium-term storage technologies not consid- 
ered in this contribution since they are large-scale storage options and 
including them in the analysis could lead to unfair comparison. 

On the other hand, long-term storage alternatives are usually used 
for dark-calm control during the no sun-no wind weeks in cold regions, 
prioritizing a low self-discharge rate. Since they have a very high energy 
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Fig. 2. Flow diagrams for H 2 and NH 3 production. Grey H 2 /NH 3 : H 2 or NH 3 produced using fossil fuels, Blue H 2 /NH 3 : H 2 or NH 3 produced using fossil fuels and 
the emitted carbon captured by CCS, Green H 2 /NH 3 : H 2 or NH 3 produced using renewable energy sources. 

density and acceptable reliability for long-term applications, they have 
strategic importance. We consider a total of 16 long-term energy storage 
alternatives (i.e., DMUs under the concept of DEA) for long-term storage, 
which result from combining two energy carriers (namely H 2 and NH 3 ) 
with the different production processes (e.g., hydrogen obtained from 

steam methane reforming with carbon capture or without it). Data for 
these DMUs is not readily available in the literature, so we modeled 
them as follows. 

Hydrogen can be obtained using a variety of fossil fuels and renew- 
able energy sources, which will result, in turn, in multiple DMUs (e.g., 
H 2 from coal gasification, H 2 from water electrolysis using solar energy, 
etc.). Renewable (or green) hydrogen is produced from water electrol- 
ysis powered by renewable energy sources. Blue hydrogen refers to the 
hydrogen produced using fossil fuels and a carbon capture and storage 
(CCS) unit used to capture carbon emissions [45] . The carbon captured 
during this process can be used in applications like enhanced oil re- 
covery [46] or valuable chemical production [47] . Hydrogen produced 
using fossil fuels without capturing the associated carbon emissions is 
called grey hydrogen ( Fig. 2 ) [45] . The hydrogen produced can be used 
as a standalone energy storage alternative or as raw material for am- 
monia production. For the former, three conversion steps are required. 
First, hydrogen is compressed using a reciprocating compressor with 
∼90% efficiency. Then, the compressed gas is stored with 98% effi- 
ciency. Finally, hydrogen can be reconverted back to electricity using 
different alternatives: an open cycle gas turbine with 35% efficiency, a 
combined cycle process with 60% electricity generation efficiency [48] , 
or a fuel cell with about 20-50% efficiency [49] . Intending to capture 
all these nuances, we assume the widest range (i.e., 20-60% conversion 
efficiency) and use its average as the nominal case; this results in 40% 

efficiency for this final step. Therefore, the overall conversion efficiency 
of 35% is obtained for hydrogen (i.e., 90% . 98% . 40%). 

In case hydrogen is used as a raw material to produce ammonia 
through the Haber-Bosch process [50] , several DMUs with similar color 
codes as for hydrogen (i.e., blue, green, and grey ammonia) will result, 
depending on the energy source and hydrogen production process. Con- 
verting hydrogen to ammonia requires an additional air separation unit 
to obtain N 2 from the air, in addition to the other process units included 

in a typical Haber-Bosch process, such as separation equipment [51] . 
Based on experimental studies, 22 kg/s NH 3 are produced using 4 kg/s 
H 2 [50] . According to the reaction’s stoichiometry, 22.67 kg ammonia 
can be achieved using 4 kg H 2 . Therefore, we consider a conversion of 
97% (22/22.67) for this step. This value is consistent with other stud- 
ies reporting conversions above > 90% [52] or even 98% [53] . Ammo- 
nia is then separated from the remaining reactants with a recovery of 
97% ( > 95% [52] ). Ammonia storage efficiency is the same as hydrogen, 
while different options arise for converting ammonia into electricity. 
For instance, one can use fuel cells at efficiencies varying between 37% 

[54] and 54% [55] , while a solid oxide fuel cell-gas turbine combined 
cycle of ammonia can achieve efficiencies of 68% [56] . For the sake of 
simplicity, we consider the average of the widest range based on the 
reported data (i.e., 37%-68%), which is 53% for the efficiency of the 
ammonia reconversion step. Therefore, the overall efficiency of storing 
and transforming ammonia to electricity is about 52% (i.e., 98% . 53%). 

Independent DEAs will be carried for each cluster, where different 
inputs and outputs will also be assessed (i.e., gravimetric energy den- 
sity will be assessed for fast-response technologies, but not for long-term 

energy storage alternatives). The specific list of inputs and outputs (de- 
sired and undesired) included in each analysis is described in detail in 
the next section. Note that some of these technologies can be used for dif- 
ferent purposes (e.g., flywheel for power quality control and distributed 
generation support), potentially achieving different performance (i.e., 
indicator values) in each case [20] . For simplicity, we assume only a cer- 
tain value based on their more common application (e.g., power qual- 
ity control in the case of flywheels). The explicit consideration of the 
uncertainty associated with the data is expected to cover all the po- 
tential inaccuracies stemming from the different modelling choices and 
assumptions, leading to robust conclusions (see Section 2.4 ). 

2.2. Inputs and outputs 

A total of six performance indicators are selected to cover the three 
sustainability dimensions. These indicators are classified as inputs and 
desired or undesired outputs of the DMUs in each cluster, as reported 
in Fig. 3 . The only difference between the indicators considered in the 
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Fig. 3. Diagram of DMUs for each of the clusters: fast-response and long-term storage systems. LCOE: Levelized cost of energy. GWP: Global warming potential. In 
practice, the inverse of energy density (expressed in kg/GJ) is used instead of the normal indicator to align with the input concept of “the less, the better ”. 

two clusters is that the gravimetric energy density (GJ/kg) is used for 
fast-response technologies and not for the long-term. The reason is that 
size is a crucial factor for fast-response technologies, which are many 
times used for portable applications [7] , while it is not so determinant 
for long-term options. 

Data for fast-response technologies are mainly gathered from litera- 
ture, using the average value among available data where more than one 
reference is available for a certain indicator. Data gaps are filled based 
on average values of similar technologies (e.g., the LCOE reported for Li- 
ion is used for Li-Fe-Ph). All the indicators in this cluster are downscaled 
to unitary values through their division by the amount of energy deliv- 
ered during the lifetime of technology, e.g., they are expressed per GJ of 
energy delivered (see supplementary information, section A1 for details 
on the calculation of the delivered energy for fast-response technolo- 
gies). Note that these values indirectly consider factors such as dedicated 
lifespans, number of cycles, energy capacities, round-trip efficiency, and 
depth of discharge. 

For long-term storage alternatives, hydrogen data are collected from 

the relevant literature, with missing data replaced by the average val- 
ues of similar options (e.g., water consumption for hydrogen production 
using coal gasification is considered the same as steam methane refor- 
mation (SMR), since both are based on fossil fuels process). Likewise, 
ammonia data are collected from the relevant literature. Missing data for 
ammonia-based DMUs is sometimes estimated from hydrogen (e.g., cost 
of ammonia = cost of hydrogen + their typical cost difference). Data can 
be estimated per kg of NH 3 considering the reaction stoichiometry and 
the efficiency of the different conversion steps. In addition, data of a typ- 
ical carbon-capturing unit is used to estimate the energy consumption of 
hydrogen and ammonia production with CCS. In this cluster, indicators 
are divided by the amount of energy delivered by 1 kg gas, as estimated 
using the gravimetric energy density of the gas and the efficiency of 
the gas-to-power processes (i.e., compression, separation, storage, and 

reconversion). Details are provided in the supplementary information, 
section A2. These values are implicitly affected by indirect factors such 
as the lifespan of the facilities involved in these processes (e.g.,10000 
working hours equivalent to five years lifespan for the equipment used 
in hydrogen production based on water electrolysis using wind energy 
[57] ). 

All the data collected, their references, and the assumptions con- 
sidered to estimate the missing data are reported in detail in section B 
of supplementary information. The following subsections briefly explain 
the indicators considered (further details provided in the supplementary 
information, section B), while the final values used in our investigations 
are reported in Tables 1 and 2 . 

2.2.1. Economic indicators 
The Levelized cost of energy (LCOE) is used here to capture the eco- 

nomic dimension, similar to other works [58] . Typically, the LCOE con- 
siders all relevant initial, variable, and end-of-life costs [59] . We source 
the LCOE directly from the literature for fast-response technologies, al- 
though values used neglect end-of-life costs due to the unavailability of 
data [20] . In the case of long-term storage options, the LCOE is obtained 
from the cost of producing 1 kg of gas using each of the production 
routes considered. 

2.2.2. Environmental indicators 
Four environmental indicators (three in the case of the long-term 

cluster) are considered in the analysis. Acknowledging all impact cate- 
gories are important, we focus on energy consumption, energy density, 
water consumption, and global warming potential (GWP) since data on 
other indicators such as ecotoxicity or human health were not found 
for all the technologies considered. Regarding their use in DEA, envi- 
ronmental indicators are classified as follows: energy consumption, the 
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Table 1 
Input and output indicators for fast-response technologies. LCOE: Levelized cost of energy, GWP: Global warming potential. 
FTEJ: Full Time Equivalent Jobs. 

Storage 
options 

Inputs Undesired output Desired output 

LCOE ( €) Energy (GJ) 1/Energy density (kg/GJ) Water (m 3 ) GWP (CO 2 -eq emissions) Employ (FTEJ) 

Flywheels 163.89 1.39 5291.0 1.8 44.2 2.68·10 − 4 

SMES 102.50 1.74 101010.1 1.2 115.5 3.35·10 − 4 

FB-VR 98.61 1.40 12345.7 2.9·10 − 3 8.9 1.72·10 − 4 

FB-ZB 59.44 1.58 4830.9 2.9·10 − 3 12.1 2.11·10 − 4 

LA 90.28 1.64 6944.4 2.0·10 − 3 20.0 9.14·10 − 4 

Li-ion 172.92 1.40 1111.1 0.5·10 − 3 3.0 13.19·10 − 4 

Li-Fe-Ph 172.92 1.54 1111.1 0.5·10 − 3 14.3 14.06·10 − 4 

Li-Ni-Mn-Co 172.92 1.40 1111.1 0.5·10 − 3 11.8 13.15·10 − 4 

Na-Ni-Cl 97.22 1.45 2314.8 4.8·10 − 3 18.2 9.80·10 − 4 

Na-S 68.06 1.41 1388.9 1.8·10 − 3 0.2 3.06·10 − 4 

Ni-Cd 117.36 1.51 1763.7 0.2·10 − 3 2.8 22.86·10 − 4 

Average 119.65 1.50 12656.62 276.3·10 − 3 22.8 8.65·10 − 4 

Std. deviation 43.43 0.12 29507.67 626.8·10 − 3 33.0 6.8·10 − 4 

Table 2 
Input and output indicators for long-term energy storage alternatives. LCOE: Levelized cost of energy, GWP: 
Global warming potential. FTEJ: Full Time Equivalent Jobs. 

Storage 
options 

Inputs Undesired outputs Desired output 

LCOE ( €) Energy (GJ) Water (m 3 ) GWP (CO 2 -eq emissions) Employ (FTEJ) 

H 2 , CG 124.82 5.52 2.74 2392.7 1.12·10 − 3 

H 2 , CG-CCS 261.81 9.72 2.74 103.2 2.34·10 − 3 

H 2 , SMR 139.79 5.52 2.74 1611.2 1.25·10 − 3 

H 2 , SMR-CCS 234.25 8.27 2.74 110.2 2.10·10 − 3 

H 2 , WE-Grid mix 650.67 5.52 2.74 4170.0 5.82·10 − 3 

H 2 , WE-Hydropower 918.86 5.52 1.31 175.0 8.22·10 − 3 

H 2 , WE-Solar 1949.45 5.52 1.31 699.9 17.44·10 − 3 

H 2 , WE-Wind 1080.48 5.52 1.31 87.5 9.67·10 − 3 

H 2 , WSCL 134.72 5.52 4.61 210.0 1.20·10 − 3 

NH 3 , SMR 279.64 5.42 0.46 554.15 2.50·10 − 3 

NH 3 , SMR-CCS 301.57 5.80 0.46 346.35 2.70·10 − 3 

NH 3 , WE-Grid mix 635.02 5.42 0.46 512.61 5.67·10 − 3 

NH 3 , WE-Hydropower 821.84 5.42 0.29 69.45 7.36·10 − 3 

NH 3 , WE-Solar 1539.72 5.42 0.30 233.40 13.77·10 − 3 

NH 3 , WE-Wind 934.56 5.42 0.30 90.65 8.36·10 − 3 

NH 3 , WSCL 275.98 5.42 0.30 68.27 2.50·10 − 3 

Average 642.70 5.93 1.55 714.65 5.75·10 − 3 

Std. deviation 539.83 1.23 1.33 1122.36 4.83·10 − 3 

inverse value of energy density, and water use are considered inputs, 
while GWP is deemed an undesired output. 

Note that energy consumption is not an impact per se , yet it is in- 
cluded here to capture other potential direct and indirect impacts asso- 
ciated with generating any energy carrier. Energy is required to manu- 
facture storage units, operate them (in some cases), and is also fed for 
storage; therefore, the total energy consumption aggregates these three 
contributions. 

For fast-response storage technologies, the energy consumption for 
manufacturing is retrieved mainly from techno-economic studies of the 
different technologies, while their operational energy is considered zero, 
and the energy fed for storage is calculated based on typical usage as re- 
ported in the supplementary information, section B. For long-term stor- 
age alternatives, the energy required to produce 1 kg gas is used as their 
total energy consumption. 

The energy density is also used as an environmental indicator as a 
higher gravimetric density will result in lower material use and subse- 
quent environmental impacts [60] . 

Since all the indicators are expressed per GJ, its reciprocal value 
(1/energy density) is used. 

Water use stems mainly from the manufacturing stage for fast- 
response technologies and is collected from techno-environmental stud- 
ies. The operational water consumed to produce 1kg of gas is used for 
long-term energy storage options. 

The global warming potential (i.e., CO 2 -eq emissions) is quantified 
using Life Cycle Assessment (LCA), a standardized tool for evaluating en- 
vironmental impacts incurred during all life stages of a product [ 22 , 61 ]. 
The CO2-eq emissions for fast-response technologies are usually pro- 
vided per capacity of the storage unit. Likewise, for long-term storage, 
the CO 2 -eq emissions are related to the production of 1 kg gas. Addi- 
tional calculations necessary to obtain the GWP per GJ of delivered en- 
ergy are reported in section B of the supplementary information. 

2.2.3. Social indicators 
Employment, energy security, health, public acceptability, and 

safety are the most widely used indicators of the energy sector [58] . 
Despite this, only direct employment is used in this contribution as data 
for the remaining indicators were missing for all or most technologies 
[62] . 

In the context of DEA, labor could arguably be considered either as 
a desired output with positive social effects or as an input for the con- 
struction or operation tasks. Without loss of generality, we here adopt 
the former approach because the energy sector is a promising source of 
new job opportunities worldwide. 

2.2.4. Summary 
The final indicator values used for each DMU in the corresponding 

DEAs are presented in Tables 1 and 2 . 
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2.3. Data uncertainty 

As already discussed, the value of specific indicators may vary 
within a certain range due to simplifications and the diversity of 
alternatives available for some storage options, sometimes affected 
by regional differences. We characterize the uncertainty associated 
with each input and output using uncertainty distributions to con- 
sider this variability and obtain more robust conclusions. This im- 
plicitly assumes that the propagation of uncertainties associated with 
the individual factors needed to compute a particular indicator falls 
within the uncertainty considered for the final value of the indicator 
itself. 

Specifically, three types of distributions are used as follows. For pa- 
rameters where we could find only one value in the literature (i.e., 
no range of values is available), uncertainty is characterized based 
on a uniform distribution with support of ± 10% of the nominal pa- 
rameter. This is the case of water use and feed energy during the 
lifetime of technologies (see Tables B3, B6, and B7 of supplementary 
information). 

For parameters with a range of values available, we select trian- 
gular distributions whose limits correspond to the lowest and high- 
est data reported in the literature for the indicator and its mode to 
the nominal value (i.e., the average among all values in the litera- 
ture). The indicators belonging to this group are LCOE, energy con- 
sumption, energy density, and employment. Note that for each of these 
indicators, there are a few DMUs for which we have only a single 
value rather than a range for them. For these cases, ± 10% of the 
nominal parameter is used to estimate a range following a triangular 
distribution. 

Uncertainties on GWP are characterized following the guidelines 
from the Ecoinvent database [63] . According to this, each life cycle 
inventory entry (e.g., methane emissions, carbon dioxide emissions, 
etc.) used to compute the final life cycle impact (e.g., global warm- 
ing potential) is assumed to follow an individual lognormal distribu- 
tion whose uncertainty is characterized based on the so-called Pedigree 
Matrix [63] . This matrix assigns scores to different data quality cate- 
gories for each dataset, which are later translated into the corresponding 
standard deviation ( 𝜎). These categories are reliability, completeness, 
temporal correlation, geographical correlation, and future technical 
correlation [64] . 

For simplicity, we assume that the standard deviation of the life cycle 
impact can be characterized based only on the most significant stressor 
among life cycle entries (i.e., CO 2 emission in the case of the GWP). 
This simplification, previously used elsewhere [65] , avoids characteriz- 
ing uncertainty distributions for hundreds of life cycle entries that would 
contribute very little to the variability in the final impact. Further de- 
tails on this approach are provided in the supplementary information, 
section C. 

After characterizing all the uncertain distributions for the differ- 
ent parameters, these distributions are discretized using Monte Carlo 
sampling to generate 100 independent scenarios for each indica- 
tor. Finally, a DEA model is solved for each scenario and DMU, 
following the approach in Ewertowska et al. [40] . It results in 
100 different efficiency scores for each DMU (one for each sce- 
nario), which will be reported in results as error bars over effi- 
ciency scores. The next section provides the details on the DEA model 
used. 

2.4. DEA model 

With the values of the different indicators, we can finally use 
DEA to estimate the efficiency score of each DMU in each scenario. 
Without loss of generality, the non-oriented undesired output slack- 
based model (Un-Outputs SBM) is used in this study (M1, where vari- 
ables are represented in italics, while parameters appear in normal 

font) [66] . 
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𝑆 − ≥ 0 , 𝑆 𝑔 ≥ 0 , 𝑆 𝑏 ≥ 0 , Λ ≥ 0 , 𝑡 > 0 . (M1) 

Here, Ƭ∗ is the efficiency score of DMU o under evaluation, with the ∗ 

superscript denoting the optimal value of the variable, that is, the value 
the variable takes in the optimal solution to the corresponding problem. 
Variable t is the Charnes-Cooper linear transformation coefficient, nec- 
essary to transform the original nonlinear undesired output SBM model 
into a linear model like M1 (see Li et al. for more details [66] ). Also, 
m, s 1 , and s 2 stand for the number of the inputs, the number of desired 
outputs, and the number of undesired outputs, respectively. In all cases, 
subscript i refers to inputs, while subscript r refers to outputs. Variables 
Si − , Sr g , and Sr b correspond to the slacks in inputs, desirable (good), 
and undesirable (bad) outputs. In this model, slack variables quantify 
the distance from each DMU to the efficient frontier. This will be fur- 
ther discussed in the next paragraph. Similarly, x io , y ro 

g , and y ro 
b refer 

to the input, the desired output, and the undesired output of DMU o , 
respectively. X is the matrix of inputs (X = [x 1 , x 2 , …, x n ]), while Y g 
and Y b are the analogous matrices for desired (Y 

g = [y 1 
g , y 2 

g , …, y n 
g ]) 

and undesired outputs (Y b = [y 1 
b , y 2 

b , …, y n 
b ]). Finally, Λ reports the 

weights with which efficient DMUs are combined to constitute the vir- 
tual DMU of the DMU assessed. Therefore, elements of Λ with non-zero 
values correspond to efficient DMUs belonging to the reference set of 
the DMU assessed. The concept of virtual DMU is further explained in 
the next paragraph. 

According to model M1, a DMU is efficient ( Ƭ∗ = 1) when all the slack 
variables are zero for all the inputs and outputs ( S i 

− = 0, S r 
g = 0, S r 

b = 0, 
∀𝑖, 𝑟 ). Efficient DMUs are linearly combined to form the so-called effi- 
cient frontier. Conversely, if Ƭ∗ < 1, the DMU is inefficient, and at least 
one of the slacks ( S i 

− , S r 
g , S r 

b ) has a strictly positive value. In this case, 
the exact efficiency score ( Ƭ∗ ) depends on the distance to a reference 
point on the frontier. The reference point is constructed by combining 
the efficient DMUs that are closer to the inefficient DMU under eval- 
uation. Therefore, the reference point presents an efficient-equivalent 
version of the inefficient DMU assessed; this point is the so-called vir- 
tual DMU. Slack variables provide the distance from the inefficient DMU 

to its virtual DMU. SBM models are non-radial in the sense that they 
handle input(s) and output(s) without imposing proportional changes 
for them [67] (i.e., slacks can freely take any value independently from 

each other). Note that slack values can guide improvement efforts (i.e., 
the required decrease in inputs and undesired outputs and the required 
increase in the desired outputs). For more clarification, see Fig. 4 of 
Zurano-Cervelló et al. [26] . 

Model M1 assumes that the ratio of outputs to inputs does not depend 
on the inputs’ level. This assumption is known as constant returns-to- 
scale (CRS) in DEA literature [26] . The use of CRS is consistent with the 
use of normalized data (i.e., per GJ), as explained in Section 2.2 . 

One well-known limitation of DEA models is that efficient DMUs can- 
not be further discriminated, thus preventing the obtention of a rank- 
ing that might help decision-making purposes [68] . To overcome this, 
a super-efficiency model that allows the efficiency score to be higher 
than one is used for efficient DMUs [41] . In a super-efficiency model, 
the DMU to be evaluated is removed from the set of candidate DMUs 
that can form the efficient frontier, thus, measuring the distance from 

this DMU to the frontier created with the remaining ones [ 68 , 69 ]. The 
undesired output slack-based super-efficiency DEA model (M2) is se- 
lected in this study. The mathematical formulation for the fractional 
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Fig. 4. Distribution of efficiency scores for fast-response energy storage technologies under uncertainty. Short-term technologies: Flywheel, SMES; Medium-Term: 
rest of the technologies. Grey region: inefficient, Light green region: efficient. Median efficiency: dashed line inside the plots. 1 st (lower) and 3 rd (upper) quartiles: dot 
lines inside the plots. Changes in the plot’s width: distribution of the data standing for the corresponding efficiency. Percentages next to violins: number of efficiency 
scores that are equal to or more than 1 (i.e., probability of being efficient). 

form of this model is as follows, although we use the linear form in our 
investigations. Additional details on the model and how to transform it 
to a linear-equivalent version can be found elsewhere [ 66 , 70 , 71 ]. 
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Here, 𝛿∗ is the super efficiency score of DMU o under evaluation, with 
the ∗ superscript denoting the value the variable takes in the optimal 
solution to the corresponding problem (i.e., the optimal value of the 
variable). Note that, since this model is used to rank the efficient DMUs, 
the super efficiency score is always greater than or equal to one ( 𝛿∗ ≥ 1). 
The highest value of 𝛿∗ corresponds to the first ranked DMU among those 
under evaluation. Also, 𝜆 is the intensity vector that reports the weights 
of efficient DMUs in constructing the corresponding virtual DMU, 𝜀 is 
the non-Archimedean infinitely small value that forces the denominator 
to be positive even after the growth of undesirable output(s). All other 
symbols are the same as in M1 [70] . Note that, in this model, the slack 
values can be understood as a safe margin of changes for input(s) and 
output(s) in the sense that the DMU assessed can afford worsening its 
performance by these quantities while remaining efficient. Therefore, 
slacks are proportional to the stability level of the efficient condition 
of the DMU (i.e., the higher the super-efficiency slacks, the more likely 
it is the DMU will remain efficient). It could be said that safe margins 
hint at sustainability indicators that the efficient technology relies on 
to be deemed efficient. In addition, these margins provide a safe room 

for technology development, quantifying affordable downgrades in key 
performance indicators that may arise due to the enhancement of other 
features of the technology. 

Models M1 and M2 need to be solved for each DMU and scenario, 
providing 100 (super)-efficiency scores for each DMU. 

3. Results and discussion 

The results obtained for fast-response technologies are reported in 
Section 3.1 , while the results for long-term options are presented in 
Section 3.2 . Safe margins of change are also reported for efficient DMUs, 
providing insight into why a particular technology is efficient. In addi- 
tion, improvement targets are presented for inefficient DMUs, offering 
guidelines for technology developers to enhance their performance. Fur- 
ther, Section 3.3 discusses DEA results in the context of the technology 
readiness level (TRL) of the different technologies, providing insight into 
the future of the energy storage systems market. Finally, Section 3.4 in- 
corporates the stakeholders’ concerns for technology section. 

3.1. Fast-response technologies 

Fig. 4 depicts the efficiency scores distribution obtained by solving 
models M1 and M2 for each DMU in the fast-response cluster for 100 
scenarios. Each of these scenarios corresponds to a particular realization 
of the uncertain parameters, obtained by applying Monte Carlo sam- 
pling to the associated uncertain distributions. As a result, instead of 
having a single efficiency score for each DMU, 100 values are obtained, 
i.e., one for each scenario. The lowest efficiency score obtained for each 
DMU corresponds to its worst scenario, while its highest efficiency score 
represents its best scenario. The efficiency scores obtained for the re- 
maining scenarios are distributed between these extreme values. This 
distribution is depicted using a violin plot, where wider violin sections 
correspond to efficiency scores with a higher probability of occurrence 
(i.e., the DMU achieves this efficiency score in more scenarios). Tech- 
nologies whose violins are wholly located in the efficient area have ob- 
tained an efficiency score greater than or equal to one in all the scenarios 
and, therefore, have a 100% probability of being efficient according to 
our data (e.g., Ni-Cd and Na-S). Note that the violin plots in this figure 
have been truncated to report the minimum and maximum efficiency 
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obtained for each technology; meanwhile, the median efficiency is pre- 
sented using a black dashed line inside the plots, and the lower (first) 
and upper (third) quartiles are shown with dot lines inside the plots. The 
percentage next to each violin provides the probability of each technol- 
ogy being efficient. For instance, a 70% probability means that, among 
the 100 scenarios discretized using Monte Carlo sampling, the technol- 
ogy is efficient in 70 scenarios and inefficient in the remaining 30. 

Flywheel is the most efficient option among fast-response technolo- 
gies, with an efficiency score of 2 in 99% of the scenarios (inefficient 
only in one scenario). Flywheel is a short-term technology with high 
power density [44] and cheap power cost [20] , despite having a more 
challenging energy density and energy cost (the fourth highest LCOE in 
this group, see Table B1 of supplementary information). Therefore, ac- 
cording to these results, the flywheel should be the technology of choice, 
especially for applications such as power quality control, where power 
is more important than energy. Indeed, the flywheel is suitable for fre- 
quent and rapid charge-discharge cycles that are required in a short time 
horizon, as otherwise, its long cyclability and high self-discharge might 
hamper its performance [ 5 , 10 ]. 

Ni-Cd, Li-ion, and Na-S batteries stand at the second to fourth posi- 
tions with median efficiency scores of 1.61, 1.36, and 1.32, respectively. 
As shown in Fig. 4 , all types of lithium-ion batteries are found more ef- 
ficient than a lead-acid battery, consistent with previous findings [38] . 
In the case of Ni-Cd batteries, it is worth noting that cadmium is the by- 
product of zinc production processes (3 kg Cd/ton Zn), which suggests 
that the amount of cadmium production might be inflexible. Cadmium is 
a limited and valuable resource that is also dangerous for human health. 
Hence, its safe application needs extra caution [72] . Other factors at- 
tracting attention towards this battery include its high strength, good 
performance at low temperatures, and fast-charging capacity [ 10 , 73 ]. 
Conversely, sodium batteries take advantage of this low-cost and non- 
toxic material with high recyclability potential, making these batteries 
a promising candidate for high power applications [ 44 , 74 ]. Nonethe- 
less, technical features such as low conductivity, volume expansion of 
cathode, and corrosion of their anode by the electrolyte need some im- 
provements [75] . 

Other Li-ion battery types such as Li-Fe-Ph and Li-Ni-Mn-Co have 
a certain chance of being efficient (70% and 50%, respectively). Still, 
there are scenarios where their performance can drop down to 0.34 and 
0.31, respectively. Overall, lithium batteries, widely used in electric ve- 
hicles [76] , reveal an acceptable performance regarding the sustainabil- 
ity indicators considered in this study, with median efficiency scores 
between 0.99 and 1.36. Using them in electric vehicles means expos- 
ing them to hit in the event of an accident. Therefore, the explosion 
danger of these batteries, mainly caused by the elevated temperatures, 
needs to be solved [ 77 , 78 ]. One promising solution for this issue is to 
endow separators with thermal shutdown functions in their structure 
[77] . Nonetheless, their widespread use should be cautioned until more 
environmental studies investigate their impact on human toxicity and 
other environmental categories. 

FB-ZB, SMES, and FB-VR with median efficiency scores below 0.07, 
0.05, and 0.03 are by far the most inefficient technologies. 

Note that the variability of the efficiency scores of the SMES, FB-VR, 
FB-ZB, LA, Na-S, and Ni-Cd is small, which suggests that their obtained 
efficiencies are reliable. Conversely, technologies such as Li-ion, Li-Fe- 
Ph, Li-Ni-Mn-Co, and Na-Ni-Cl show significant changes depending on 
the scenario, to the point of affecting their classification as efficient 
(green-shaded background in Fig. 4 ) or inefficient (i.e., dark-shadowed 
region). For instance, while flywheel is inefficient only in one scenario, 
Ni-Cd and Na-S are always efficient. FB-VR, SMES, FB-ZB, and LA have 
no chance to be efficient (efficiency scores always lower than 1), while 
Li-ion, Li-Fe-Ph, Li-Ni-Mn-Co, and Na-Ni-Cl may be efficient or ineffi- 
cient. Within this last group, Li-ion, with a 93% probability of being effi- 
cient, is always more efficient than the other three and, therefore, should 
be the preferred choice. Indeed, comparing the probability of Li-ion and 
Na-S batteries of being efficient, we find that Na-S is deemed efficient in 

all the scenarios, while there is a small probability (7%) that Li-ion bat- 
teries show an inefficient performance, reaching efficiency scores as low 

as 0.33 in the most pessimistic estimates. Despite this, Li-ion achieves a 
higher median efficiency score (1.36 vs. 1.32) and a higher maximum 

efficiency score (1.53 vs. 1.43), suggesting that Li-ion can perform bet- 
ter than Na-S batteries in the most optimistic scenarios. A risk-taker pol- 
icy/investor may be inclined towards Li-ion batteries, capable of achiev- 
ing better performance. In contrast, a risk-averse policy/investor will bet 
on Na-S, as there is “no risk ” of it being a non-competitive technology. 
Likewise, Li-Fe-Ph (70% chance to be efficient) shows a better perfor- 
mance than Li-Ni-Mn-Co and Na-Ni-Cl in each of the scenarios, which 
suggests that it can be the selected alternative in case of storage tech- 
nology with high energy density or low water consumption is needed 
(see Tables B5 and B6 of supplementary information). Similarly, Li-Ni- 
Mn-Co is more efficient than Na-Ni-Cl, with the former showing a 50% 

probability of being efficient, while this is only 18% for the latter. All 
this is, of course, besides other considerations not explicitly assessed in 
our DEA (e.g., Li-ion technology is already well developed [79] , and is 
more accessible). 

Fig. 5 shows the safe margin of change for the fast-response technolo- 
gies deemed efficient in at least one scenario, with the values depicted 
corresponding to the average safe margins among the 100 scenarios. 
These margins represent the maximum percentage of change that can be 
introduced ceteris paribus to the current value of the indicators (added 
for inputs and deducted for outputs) before the DMU stops being effi- 
cient. 

The simultaneous analysis of Fig. 4 and Fig. 5 indicates that the 
more efficient a technology is (i.e., a higher super-efficiency score), the 
higher its safe margin. Flywheel, the first-ranked technology among fast- 
response options, has a 198% safe margin on its employment. Similarly, 
Ni-Cd and Na-S batteries also reveal safe margins on employment of 
about 122% and 64.5%. This suggests that the top three technologies 
in this cluster are mainly selected because of their relatively higher job 
creation ability. The deployment of these technologies may be challeng- 
ing in regions with a high wage rate, affecting their LCOE. In this case, 
automation may help overcome the lack of skilled laborers or their high 
wages. 

Li-ion also relies on its appealing performance on employment 
(52.5% safe margin), yet it also counts with the contribution of energy 
density (20.7% safe margin) to ensure its efficient status. Note that the 
inverse of energy density is used here as an input, which means that 
the safe margin of 20.7% in the indicator translates into an equivalent 
82.8% that can be afforded in its real energy density (from 0.9 MJ/kg 
to 0.75 MJ/kg). 

Following the same pattern, Li-Fe-Ph and Li-Ni-Mn-Co show safe 
margins on employment and 1/energy density. Yet, Li-Ni-Mn-Co could 
afford a marginal increase of 1.56% in its energy consumption, while the 
LCOE of Na-Ni-Cl could slightly worsen (no more than 1.79%), making 
it the only technology of this cluster with such a cost advantage. 

We next turn our attention to inefficient technologies, for which im- 
provement targets provide the minimum changes (i.e., reductions for in- 
put and undesired output and increments for desired outputs) required 
to make them efficient Fig. 6 . presents the average improvement tar- 
gets for inefficient fast-response technologies across the 100 scenarios, 
including technologies that are only inefficient in some scenarios. In 
this latter case, the average is calculated over the 100 scenarios. For 
DMUs with improvement targets on more than one indicator, changing 
only one of the indicators will not be sufficient to make the DMU effi- 
cient. Note that, although improvement targets are reported for all the 
indicators used, some of them might not be controllable directly due 
to design features, production factors, or other constraints [80] . Hence, 
technology developers could use DEA models with different orientations 
if improvements in some particular directions are preferred. 

We detect an urgent need to improve the performance of SMES in 
most of the categories: it requires more than 80% reduction in its LCOE 
and energy consumption, while even more demanding changes ( > 90%) 
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Fig. 5. The safe margin of change for efficient fast-response energy storage technologies under uncertainty (%). Employment (desire output): allowed reduction, 
Rest of the indicators (inputs): allowed increase. LCOE: Levelized cost of energy. 

Fig. 6. Improvement targets for inefficient technologies of fast-response energy storage cluster under uncertainty (%). All the indicators: demanded reduction. LCOE: 
Levelized cost of energy. GWP: Global warming potential. 
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are required in its energy density, water use, and GWP. Recalling that 
the sustainability indicators used in this contribution correspond to uni- 
tary values expressed per GJ of delivered energy, the results obtained 
can be explained by a very low net delivered energy of SMES compared 
with its nominal value. Acknowledging that most storage technologies 
have certain losses, these are dramatic for SMES, which, undoubtedly, 
makes it necessary to control the amount of energy wasted before at- 
tempting to achieve the performance levels requested by DEA. In a 
SMES, the superconducting coil is cryogenically cooled to avoid loss 
of stored energy [7] . Making coils out of superconducting materials like 
mercury and vanadium can decrease resistance and the need for cooling. 
Submerging the coil in liquid helium can also contribute to keeping it 
cold, avoiding losses, and gaining the superconducting advantage [14] . 
Note that these modifications might also affect the economic perfor- 
mance of SMES, which is already critical with an operational cost ten 
times higher than for batteries [11] . 

The two flow batteries evaluated, FB-VR and FB-ZB, need about a 
90% reduction on their input indicators and their GWP to become ef- 
ficient. Although they need considerable improvements in all the cate- 
gories, these batteries are still at the early stages of their development 
(technology readiness level of 6 out of 9 [79] ), therefore, such changes 
may not be out of reach for them. It seems that a remarkable rise in 
the efficiency score of these batteries can be achieved by a better un- 
derstanding of their construction that could help to improve their cur- 
rently low energy density [ 81 , 82 ]. Today, the unclear reaction mecha- 
nisms and electrolyte performance are barriers to their improvements 
[9] . In this context, the application of finite element simulations could 
guide the construction of their electrode structure, providing informa- 
tion about the dimension of channels in electrode fibres and the path of 
electrolyte flow while helping to understand the reactions mechanisms 
better [83] . The application of 3D nanostructures as electrocatalysts is 
also useful to increase the catalytic activity (that affects the polariza- 
tion resistance and energy loss [84] ) and the cycling stability of flow 

batteries, which are necessary factors to make these batteries viable at 
the commercial level [85] . Still, poor cycling [9] , corrosivity of elec- 
trolytes, and the environmental pollution associated with flow batteries 
also need significant improvements [86] . Currently, the cycling of redox 
flow batteries is limited by the sluggish anode redox chemistry [87] . Re- 
garding FB-VR, the number of operational cycles during their lifetime 
is expected to rise from about 12000 cycles [ 14 , 20 ] to 50000 cycles by 
2030 [88] . This ceteris paribus change would increase their delivered en- 
ergy during its lifetime by 428.4% and decrease, in turn, the value of 
their energy consumption by 3.8% (i.e., 76.7% reduction in manufac- 
turing energy consumption, while the feed-in energy to charge the tech- 
nology will not change), and its GWP by 85.2%. This battery’s targeted 
improvement for energy consumption and GWP is 92.0% and 97.8%, re- 
spectively (see Fig. 6 for improvement targets). Hence, rising the number 
of cycles is very helpful but still not enough to reach the improvements 
targeted. Acknowledging that a significant part of the battery value de- 
pends on the raw materials used in its structure [89] , essential develop- 
ments in material science are required to guarantee the achievement of 
such targets. For instance, ammonium-based electrolytes [90] , and low- 
cost non-corrosive advanced ion-conducting membranes are the most 
promising solutions to solve the cyclability issue and the stability and 
environmental concerns associated with flow batteries [91] . In addi- 
tion, employing nonaqueous electrolytes solves the corrosivity problems 
and is more environmentally friendly [92] . Also, application of organic 
redox-active species can significantly reduce the cost of flow batteries in 
the future [93] . It seems that, the development of low-cost membranes, 
increasing the power density, and rising the life cycle would help these 
technologies to improve their performance significantly [ 81 , 94 ]. 

Two other technologies need significant improvements to become ef- 
ficient. The first is LA, with improvement targets above 40% for LCOE, 
energy consumption, and energy density and above 90% for water use 
and GWP. The second one is Na-Ni-Cl, with targets around 20% on LCOE 
and energy density, 40% on energy consumption, and more than 70% on 

water use and GWP. These two technologies ranked second and third ex- 
pensive between the batteries based on the cost of their storage section, 
while their operational cost is lower than most of the batteries. There- 
fore, decreasing the cost of the storage section will lead to a significant 
improvement in their LCOE [20] . In the absence of practical methods 
to decrease the cost of the storage section, raising their lifetime and 
life cycle, which currently is not interesting for LA, will lead to deliver- 
ing more energy during their lifetime and consequently a lower LCOE 
[10] . On the other hand, their energy consumption can be decreased by 
improving the power stack materials manufacturing, the plant balance, 
and the power control system, which are the steps with the highest en- 
ergy consumption [95] . Also, the economy of scale can be to the benefit 
of their environmental impacts. For instance, the GWP per GJ of an 8 
MW lead-acid battery is much lower than a 2 MW one [96] . Certainly, 
recycling battery materials will decrease their associated environmental 
impacts and increase material availability [59] . This observation is un- 
derpinned by studies reporting that the impacts of recycling are lower 
than the impacts of producing fresh materials [95] . Currently, lead-acid 
is the only battery with a very good recycling operation procedure, and a 
high percentage of recycled lead is usable in the production of new bat- 
teries [72] . Also, its good performance in different temperature ranges 
makes it a potential candidate for operations with fluctuating tempera- 
tures [10] . 

Two batteries have a remarkable chance to be efficient, Li-Fe-Ph and 
Li-Ni-Mn-Co, with average improvement targets of 8.54% and 13.51%, 
respectively. To this end, they should decrease their GWP (23 and 35%, 
respectively). Like the lead-acid battery, this group of batteries can gain 
from the economy of scale to decrease their GWP. Recycling operations 
exist for lithium-ion batteries (not economical) [97] , but these are not 
well established yet and need further attention. For instance, in the case 
of their cathode, the material used, its morphology, and microstructure 
affect the recycling process and production of hazardous pollutions [98] . 
High nickel-metal carbons and spinels Li-rich Mn are recommended for 
the cathode to improve the battery capacity and operating voltage. At 
the same time, graphite containing silicon oxides attract attention for the 
application on the anode side [89] . On the other hand, the LCOE of these 
batteries requires improvements beyond 5% for Li-Fe-Ph and beyond 
9% for Li-Ni-Mn-Co. Regarding the fast and broad research concerning 
these batteries’ characteristics and costs, the cost reduction deemed is 
not far to achieve [15] . Layered lithium-rich low-cost cathode materials 
are the most attractive option for this purpose [99] . In addition, control- 
ling other indicators, such as water use, will be necessary. Battery man- 
ufacturing processes should be highlighted to control water consump- 
tion since these processes contribute more in their material consump- 
tion than operation and end-of-life processes [100] . Furthermore, Li-ion 
needs to obtain safety and environmental certificates to solve the legal 
issues that ban its extensive application [88] . The latest development 
suggests that its safety can be improved by using a physical separator 
between electrodes, which provides a reliable bridge for ion transport 
[101] . Their frequent charging needs and long charging time are other 
issues that need to be solved [ 9 , 10 ]. 

Finally, flywheel and Li-ion are almost always efficient, translating 
into very small improvement targets (always below 5.5%). These could 
be achieved by the targeted choice of material [100] , of course, so as 
not to worsen other aspects (e.g., self-discharge, lifetime, charging time, 
etc.). 

The estimated improvement target for employment is always zero 
for all the technologies, reason why it is not depicted in Fig. 5 . 

3.2. Long-term energy storage options 

Fig. 7 presents the efficiency scores for long-term energy storage al- 
ternatives. Like Fig. 4 , violin plots have been truncated to report each 
alternative’s minimum and maximum efficiency. Median efficiencies are 
presented using a black dashed line inside the plots, while the lower 
(first) and upper (third) quartiles are shown with dot lines inside the 
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Fig. 7. Distribution of efficiency scores for long-term energy storage options under uncertainty. The colors for hydrogen and nitrogen are indicated underneath the 
x-axis labels. Grey region: inefficient, Light green region: efficient. Median efficiency: dashed line inside the plots. 1 st (lower) and 3 rd (upper) quartiles: dot lines 
inside the plots. Changes in the plot’s width: distribution of the data standing for the corresponding efficiency. Percentages next to violins: number of efficiency 
scores that are equal to or more than 1 (i.e., probability of being efficient). 

plots. The percentage next to each violin provides the probability of 
each technology being efficient. For clarification of the used colors for 
hydrogen and nitrogen underneath the x-axis labels, see Fig. 2 . 

As shown in Fig. 7 , green ammonia from solar energy is the only 
long-term storage option that is always efficient, achieving a median 
efficiency of 1.265. This efficiency score is mainly due to this technol- 
ogy’s high employment and low water consumption (Table B7 and B11). 
Green hydrogen produced with solar energy and then the one produced 
with wind energy are the next two alternatives, with median efficiency 
scores of 1.09 and 1.08, respectively. The former takes advantage of its 
low energy consumption, while the latter offers important employment 
opportunities. Green ammonia from hydropower and wind energy are 
ranked fourth and fifth, with median efficiencies of 1.07 and 1.02, re- 
spectively. These results reveal that the top five long-term storage alter- 
natives relate to water electrolysis using renewable energies (i.e., green 
hydrogen and ammonia). Although green hydrogen and ammonia are 
still very expensive compared with grey and even blue ones, it is ex- 
pected that future cost reduction of renewable energy sources will help 
them to become the cheapest options [45] . As will be further discussed 
later, other options like green hydrogen using hydropower, ammonia 
produced by water electrolysis using grid mix energy, and ammonia pro- 
duced by chemical looping processes have a certain chance of being ef- 
ficient despite displaying median efficiencies below one: 0.53, 0.44, and 
0.39, respectively. Moving to any of the remaining eight long-term stor- 
age options results in a dramatic decrease in the median efficiency score, 
below 0.33 in all the cases. It means that these technologies are, in prin- 
ciple, inferior to the other eight when assessed based on the economic, 
environmental, and social indicators we considered. Between these al- 
ternatives, grey hydrogen does not have any chance of being efficient, 
regardless of the technology employed in its manufacturing (max effi- 
ciency of 0.33 for coal gasification and 0.32 for SMR). In addition to 
their high GWP, their high energy and water consumption also exacer- 

bate their situation. Therefore, they need remarkable improvements to 
be comparative with other options in the market. 

Among the five alternatives that are efficient in all or most of the 
scenarios, two are related to hydrogen and three to ammonia, and all of 
them use renewable energy. It means that only 22% of hydrogen alter- 
natives can be deemed efficient, while 43% of ammonia-based options 
are found efficient in at least some scenarios. Compared to hydrogen, 
ammonia is safer and generally needs lower space for storage due to its 
higher volumetric density [102] . However, developments like applying 
complex hydride materials can help store hydrogen safely and efficiently 
[103] . 

Green hydrogen or ammonia have better performance than their grey 
alternatives, even between inefficient options. Despite this, grey alter- 
natives still are widely used owing to the higher reliability of fossil fuels 
and the possibility of gas production with higher capacity. Maybe in the 
form of policies, extra efforts seem necessary to move to cleaner sources 
[104] . 

Employing a CCS unit is essential for processes that use fossil fu- 
els to control CO 2 emissions, although we did not find this to cause a 
fundamental change in their efficiency scores. Indeed, the maximum dif- 
ference in efficiency scores of production units (hydrogen or ammonia) 
with and without CCS is approximately 0.05 (based on the median). This 
happens because when a CCS unit is used, the reduction of GWP comes at 
the cost of increasing LCOE and energy consumption. Hopefully, reduc- 
ing the cost of electricity generation using cleaner sources besides other 
technical improvements will increase the contribution of more sustain- 
able gas production methods such as green hydrogen and ammonia. For 
instance, projections indicate that, in 2030, the cost of ammonia pro- 
duction using renewable sources will be lower than its production using 
methane reforming [105] . 

In terms of the variability of the efficiency scores, we find that green 
ammonia from solar energy is always efficient. The next green alterna- 
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tives based on water electrolysis are ammonia from hydropower, hy- 
drogen from wind, and hydrogen from solar, showing 92%, 91%, and 
89% probability of performing better than the remaining alternatives 
in each scenario. Among the other options, green ammonia from wind 
(NH 3 , WE-Wind) and hydrogen relying on the grid for water electrol- 
ysis (H 2 , WE-Grid mix) have a 76% and 38% probability of being ef- 
ficient. Other options like ammonia produced using water splitting by 
chemical looping (NH 3 , WSCL), ammonia produced by steam methane 
reformation and using carbon capture and storage (NH 3 , SMR-CCS), hy- 
drogen produced by water electrolysis powered by hydropower energy 
(H 2 , WE-Hydropower), ammonia produced by steam methane reforma- 
tion (NH 3 , SMR), ammonia produced by water electrolysis powered by 
grid mix (NH 3 , WE-Grid mix), hydrogen by steam methane reformation 
using CCS (H 2 , SMR-CCS), hydrogen from coal gasification using CCS 
(H 2 , CG-CCS), and hydrogen produced using water splitting by chemical 
looping (H 2 , WSCL) have smaller probabilities of being efficient (33%- 
4%), which suggests these technologies are among the best performance 
alternatives only in some particular contexts. For instance, green ammo- 
nia based on wind energy might be particularly suitable for regions with 
strong and constant winds and without reliable solar energy potentials. 
Meanwhile, grey hydrogen production options such as coal gasification 
(H 2 , CG) and steam methane reforming (H 2 , SMR) are inefficient in all 
the scenarios. Even blue hydrogen alternatives such as hydrogen produc- 
tion based on the coal gasification with CCS (H 2 , CG-CCS) and hydrogen 
production based on the SMR and with CCS (H 2 , SMR-CCS) only have a 
small chance to be efficient (less than 5%). This suggests they might still 
be viable alternatives for some niche applications, although less likely 
than the alternatives previously discussed. Overall, green processes are 
preferred over blue and grey due to their higher efficiency according to 
the indicators employed in this contribution. 

Comparing hydrogen use as a standalone energy storage option with 
ammonia obtained from the same hydrogen, we can see that ammonia 
has better performance almost always. The only exception is when wind 
energy is used for water electrolysis. In this case, the median efficiency 
of hydrogen is 0.055 higher than for ammonia. Therefore, converting 
hydrogen to ammonia is recommended if the ultimate goal is to have a 
long-term energy storage alternative. 

We next investigate why some technologies are efficient. To this end, 
we plot the safe margins of change for alternatives that are efficient at 
least in one scenario (see Fig. 8 ). Overall, efficient alternatives have safe 
margins only on one or two of their indicators at most, while the rest 
should remain at equal or better values to retain their efficient condi- 
tion. The case that attracts the most attention is the 48.3% safe margin 
on employment that is related to ammonia produced using water elec- 
trolysis by solar energy (NH 3 , WE-Solar). Supposing that technological 
innovations and automation decrease labor needs for this alternative as 
it moves from 5 to higher technology readiness levels [ 106 , 107 ], the 
next storage options in terms of their efficiency scores could be ex- 
plored as alternatives. Note that, in this case, the safe margin on em- 
ployment is also high for the third and the fourth most efficient op- 
tions, hydrogen produced by water electrolysis powered by wind (H 2 , 
WE-Wind) and ammonia produced by water electrolysis powered by hy- 
dropower (NH 3 , WE-Hydropower), with values of 15% and 12.9%, re- 
spectively. However, the second standing alternative, (H 2 , WE-Solar), 
can also afford to increase its low energy consumption by 24.7%, while 
(H 2 , WE-Grid mix) could raise its LCOE by 9.7%, if deemed necessary 
for introducing additional innovations affecting other features. In addi- 
tion, about 4.53%, 3.04%, and 1.79% rise in LCOE is allowed for (NH 3 , 
WSCL), (NH 3 , SMR-CCS), and (NH 3 , SMR), respectively, which high- 
lights the economic competitiveness of the chemical looping method 
compared to other options for energy production. For the rest of the 
alternatives, the safe margin is only obtained on LCOE and is lower 
than 1%. These are the alternatives that have a slight chance to be 
efficient. 

Improvement targets are next computed for alternatives that are 
inefficient in at least one scenario (see Fig. 9 ). As in Fig. 6 , the 

values depicted correspond to perceptual changes concerning the 
current value of the indicators, calculated as the average of all 
100 scenarios. 

Fig. 9 reveals that the minimum reduction required in LCOE is 0.6% 

and is related to (H 2 , WE-Wind), which could be naturally achieved 
by falling costs of renewable energies, including wind. Meanwhile, the 
maximum reduction in LCOE is 11.76% for (H 2 , WE-Grid mix). The 
rest of the options are demanded LCOE reductions within this range, 
but generally lower for ammonia than for hydrogen. Note that the cost 
of producing 1 kg hydrogen is higher than producing 1 kg ammonia 
[108] . Also, since converting the gas to electricity using a fuel cell is 
more expensive than with gas turbines [20] , replacing fuel cells with 
gas turbines can help control the LCOE for hydrogen. In addition, the 
cost of storing the gas generated changes from 130 €/kWh for above- 
ground storage to 3.7 €/kWh for underground storage [20] . Therefore, 
the DMUs needing to reduce their LCOE, can move to underground gas 
storage to help reach their target, provided this option is socially and 
politically accepted in the region. 

The highest reduction required in energy consumption is about 90% 

related to grey and blue hydrogen, followed by WSCL. The current pilot 
efforts for CCS systems consume significant amounts of energy, but new 

technologies are being investigated that could bring the energy demand 
down [109] . For green hydrogen and ammonia, the reduction required 
in energy consumption is meager, and (H 2 , WE-Wind) with 0.45% de- 
manded reduction in energy consumption is the last and the best one in 
this indicator. It is worth noting that there is considerable heat waste 
in the gas production reactors [50] , and heat integration can improve 
their performance. 

Regarding water use, the situation presents a similar pattern to en- 
ergy consumption but with different values, ranging from 1.21% for 
(NH 3 , WE-Hydropower) to 97.09% for (H 2 , SMR). 

Almost all the investigated long-term storage options need to de- 
crease their GWP. Between the inefficient DMUs, changes requested 
start at 0.31% for (H 2 , WE-Wind) and climb until 96.99% related to 
(H 2 , SMR). Using CCS, CO 2 emissions can be controlled, but as al- 
ready discussed, the contribution of CCS does not seem very effective 
in improving the efficiency score of DMUs (only 0.05), as CCS wors- 
ens the performance in energy consumption and LCOE. Despite this, 
a CCS unit is necessary for ammonia production since the existence 
of CO 2 in the reactor can affect the hydrogen and nitrogen reaction 
catalyst [110] . 

The improvement target obtained for employment of all the 
long-term storage options is zero and, therefore, not represented in 
Fig. 9 . 

3.3. Future market and development trajectory of energy storage options 

A technology may look much more appealing than the other tech- 
nologies in a comparative analysis such as DEA regarding the consid- 
ered indicators. Despite this, not all energy storage technologies will 
successfully access the energy market [106] . The technology readiness 
level (TRL) of each technology allows us to assess the maturity and its 
level of expected changes in the future [88] . When TRL is low, and the 
technology is still in its research or concept stage, it is highly uncertain 
whether the technology will be able to be implemented or not [79] . If 
it succeeds, its development potential will be high at first. Still, as it 
gets closer to the level of full development (i.e., being marketable), this 
potential will decrease, following a learning curve. Technologies with 
a higher TRL value are developed very well, and further development 
may not be easy. In such a case, if the technologies are efficient, they 
may finally penetrate the market but probably not in the near future, 
and if they are not efficient, they will have a long and challenging way 
to go. 

The future market access potential of fast-response energy storage 
technologies and long-term energy storage alternatives are discussed in 
Sections 3.3.1 and 3.3.2 , respectively. 
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Fig. 8. The safe margin of change for efficient long-term energy storage alternatives under uncertainty (%). Employment (desire output): allowed reduction, Rest of 
the indicators (inputs): allowed increase. The colors for hydrogen and nitrogen are indicated underneath the x-axis labels. LCOE: Levelized cost of energy. 

3.3.1. Future market of efficient and inefficient fast-response technologies 
To explore the chance of each efficient or inefficient technology to 

access the market, we plot their median efficiency versus their TRL, 
as shown in Fig. 10 . The median efficiency score of fast-response tech- 
nologies used in Fig. 10 corresponds to the one obtained with DEA and 
previously reported in Fig. 4 . The technology´s current TRL is retrieved 
from different literature sources, as reported in Table (B.12) of supple- 
mentary information. Each technology should meet specific criteria to 
qualify for a certain level [79] , according to nine levels ranging from 1 
(non-mature) to 9 (mature). Usually, a TRL lower than four is related 
to technology at the research or concept test stage. If TRL is between 
4 and 6, the technology is in the demonstration or technical develop- 
ment stage. When TRL is above 7, the technology is at a specific test 
certification stage or is marketable (i.e., TRL close to 9) [107] . 

Fig. 10 is divided into different zones using dashed lines placed at 
an efficiency score of one (i.e., splitting the region between efficient 
and inefficient technologies), and TRLs of 4 and 7 (i.e., splitting the 
region according to how close the technology is to be marketable in 
the future). The combination of the different criteria met gives rise to 
the classification of the technologies assessed into different groups as 
follows: 

– Efficient ( 𝛿∗ ≥ 1 ) and marketable ( 7 < 𝑇 𝑅𝐿 ≤ 9 ): flywheel, Ni-Cd, 
Li-ion, Li-Fe-Ph and, with a bit of optimism, Li-Ni-Mn-Co belong 
to this group. According to our results, all these technologies are 
winning choices since they show a competitive performance and a 
reliable level of development. The best technology selection from 

this group for a particular application can be underpinned by Fig. 5 , 
which provides the indicators that each of these technologies per- 
forms best. For instance, flywheel, Ni-Cd, and Na-S are promising 
options when creating new job opportunities is essential for develop- 
ing a region. Meanwhile, Li-ion, Li-Fe-Ph, and Li-Ni-Mn-Co are also 

important employment creators, on top of showing a good perfor- 
mance in energy density, which makes them suitable for electric ve- 
hicles [76] . It is forecasted that, by 2030, Li-ion batteries will remain 
the dominant technology in mobility applications, while for station- 
ary applications, a broader choice of technologies will be used [89] . 
Continued research on Li-ion batteries makes solid-state Li-ion bat- 
teries marketable by 2025. From 2025 to 2030, solid-state lithium 

metal, advanced solid-state Li-ion, and metal-air batteries probably 
will access the market [89] . Despite this, their TRL is still lower than 
9, which indicates that some aspects still need to be improved before 
they can effectively penetrate the market of electricity storage tech- 
nologies. For instance, the gravimetric energy density and number 
of cycles during the lifetime of Li-ion batteries are about 250 Wh/kg 
and 3000 cycles, respectively [20] . These parameters are expected 
to reach 350 Wh/kg [106] and 15000 cycles [89] according to the 
2030 set plan target offered by the European association for energy 
storage, which presents the roadmap of energy storage technologies 
development. 

– Efficient ( 𝛿∗ ≥ 1 ) but not marketable ( 4 < 𝑇 𝑅𝐿 ≤ 7 ): only Na-S, the 
promising alternative to lithium-ion batteries [111] , belongs to this 
group. The relatively low cost of this battery, the natural abundance 
of sodium resources [111] , its high theoretical capacity, and the high 
energy density of sulphur [112] , make the Na-S technology a promis- 
ing candidate to attract investment, with real possibilities to infil- 
trate the market. Our DEA results confirm this, showing that Na-S 
is always efficient with a median efficiency score of 1.32. Although 
not a completely mature technology, its TRL is also relatively high, 
suggesting that Na-S is already highly developed, and that further 
development may not be easy or rapid. At this point, the main tech- 
nical challenge of this battery is lowering its operational temperature 
[107] . The bottleneck to solving this problem is developing and de- 
signing suitable anode materials [111] . Hollow nanostructured ma- 
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Fig. 9. Improvement targets for inefficient technologies of long-term energy storage cluster under uncertainty (%). All the indicators: demanded reduction. GWP: 
Global warming potential. 

terials capable of storing sodium ions in their structures through the 
combined conversion and alloying reactions are a class of promising 
materials for this purpose [ 113 , 114 ]. For example, indium tin oxide 
nanoparticles decorated onto activated carbon cloth enable opera- 
tions in sub-zero by immobilizing the higher-order Na-polysulfides 
and promoting their conversion into insoluble end-discharge prod- 
ucts [ 74 ]. 

– Inefficient ( 𝛿∗ < 1 ) but marketable ( 7 < 𝑇 𝑅𝐿 ≤ 9 ): LA and SMES are 
in this zone. Our analysis ( Fig. 6 ) revealed that significant improve- 
ment targets are necessary to increase the efficiency of these tech- 
nologies. SMES requires more than 80% fall in all the indicators ex- 
cept for employment. On the other hand, LA asks for about 50% de- 
crease in LCOE, energy consumption, and 1/energy density, while 
its required decline for water use and GWP is even higher and above 
90%. The fact that these technologies are marketable suggests that 
considerable time has already been spent in their development. At 
this point, they no longer have remarkable development potential. 
In the absence of a technological breakthrough, it is hard to imagine 
how these technologies could reach the required performance. For 
all these reasons, they are not particularly promising alternatives at 
this point. 

– Inefficient ( 𝛿∗ < 1 ) and not marketable ( 4 < 𝑇 𝑅𝐿 ≤ 7 ): technologies 
in this zone are Na-Ni-Cl, FB-ZB, and FB-VR. These technologies need 
further improvement before they can become efficient. Still, since 
they are not yet at a marketable stage, it is not far from the expec- 
tation that they can move to the “efficient and marketable ” zone. 
However, their improvement targets ( Fig. 6 ) do not reveal a smooth 
path ahead. For instance, Na-Ni-Cl needs to decrease its water use 
and GWP in the range of 70-80%, along with reductions in its LCOE, 
energy consumption, and 1/energy density (16-40%). Meanwhile, 

flow batteries (FB-ZB and FB-VR) need about 90% decrease in all 
the indicators except employment. For this latter group of batteries, 
extending the number of operational cycles and increasing the power 
density are requested (e.g., from 12000 cycles [ 14 , 20 ] to 50000 cy- 
cles [88] for FB-VR) [94] . 

– Research stage ( 𝑇 𝑅𝐿 ≤ 4 ): none of the technologies assessed quali- 
fied in this zone, whether efficient or inefficient. In this contribution, 
only the technologies whose data were available were considered. 
Usually, the data of technologies at the research step are not open 
to the public. It is expected that more players will be on the scene in 
the future, including organic batteries, metal batteries, onion shuttle- 
based batteries, high power primary regenerative batteries based on 
reactive metals [89] , and hybrid energy storage technologies that in- 
clude the advantages of different technologies [115] . Rapid growth 
is expected for technologies that manage to pass this step success- 
fully. 

Overall, the efficiency and TRL of all the energy storage technologies 
are influenced by some common factors. For instance, in addition to the 
environmental impacts and technical factors like energy capacity (kWh), 
energy density (Wh/kg), efficiency, response and discharge time, and 
the number of cycles during the lifetime of technology, the capital cost 
($/kW), and LCOE ($/kWh) influence the technologies TRL value [116] . 
Almost all these factors are used in our DEA analysis explicitly (i.e., as 
an indicator) or implicitly (i.e., in calculations related to estimating the 
final value of the indicators). Therefore, the efficiency and TRL of these 
technologies will change simultaneously. So, in the next paragraph, we 
present some general improvement guides, the challenges ahead, and 
the solutions to deal with them. 
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Fig. 10. Market penetration chance of efficient and inefficient fast-response energy storage technologies. Short-term: Flywheel, SMES. Medium-term: Rest of the 
technologies. Grey region: Inefficient. Light green region: Efficient. Development potential decreases moving from TRL = 0 to TRL = 9. 

The main challenge is developing advanced materials that enable 
high power and energy density to improve technical and environmental 
factors. To this end, the focus should be on adapting cathode and an- 
ode materials and stabilizing the formulation of electrolytes [89] . How- 
ever, the unbalanced distribution of raw materials in different countries 
and the marginal extraction rate are obstacles to accelerating the de- 
velopment [89] . Reaching the production target of 300 GWh/a battery 
in the European Union alone will require 270000 tons battery-grade 
graphite, 30000 tons of silicon for the anode, 225000 tons of class 1 
high purity nickel, 29000 tons of cobalt, 84000 tons of manganese, and 
59000 tons of lithium for the cathode [89] . Mapping the availability of 
raw materials in different countries helps raise awareness regarding the 
available resources [106] . Beyond the application of sensing technolo- 
gies, big data from sensors embedded in battery cells, the discovery of 
self-healing materials [117] , artificial intelligence-based tools, physics- 
aware models, and autonomous synthesis robotics will enable scientists 
to learn the interplay between battery materials and interface. There- 
fore, several battery chemists will propose using novel developed mate- 
rials and taking advantage of the knowledge obtained about the inter- 
play between different materials [89] . 

Furthermore, according to the European 2030 technology develop- 
ment roadmap, liquid discharge from battery-grade material processing 
should be zero, and CO 2 emissions in material extraction and processing 
should be reduced by 50% [89] .To this end, currently used batch pro- 
cesses should be replaced by continuous processes, new smelting, and 

slag engineering technologies, and new recoverable reagents for battery 
metal leaching and extraction should be addressed [89] . Also, beyond 
2025, some investments in the facilities that recycle materials from en- 
ergy storage technologies will become necessary to reduce the pressure 
exerted on the environment [117] , while recovery of metals from in- 
dustrial or urban wastes can also contribute to this end [89] . Further, 
to decline the technology cost, its volume (i.e., large-scale manufactur- 
ing) and standardization (i.e., proper connection of system components, 
installation, maintenance, and performance) are factors that should be 
noted [106] . 

3.3.2. Future market of efficient and inefficient long-term energy storage 
alternatives 

Fig. 11 presents the median efficiency versus TRL for long-term en- 
ergy storage alternatives. Their median efficiency is obtained from DEA 
analysis, as previously reported in Fig. 7 . Unfortunately, the TRL for 
many long-term storage options like hydrogen produced with solar, 
wind, or fossil fuels is not reported reliably and explicitly in the litera- 
ture. However, generally, the TRL for grey processes is about 8-9 and is 
higher than for blue processes, which varies from 6 to 8. Finally, with a 
TRL of 1-3, green processes still have a long way ahead [118] . We select 
the median of the ranges reported as the TRL of each production method 
[ 106 , 107 ]. In the case of NH 3 production, the TRL is not reported for 
any of the routes. Therefore, the TRL of each power-to-NH 3 production 
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Fig. 11. Market penetration chance of efficient and inefficient long-term energy storage alternatives. Grey region: Inefficient. Light-green region: Efficient. Develop- 
ment potential decreases moving from TRL = 0 to TRL = 9. Grey H 2 /NH 3 : H 2 or NH 3 produced using fossil fuels, Blue H 2 /NH 3 : H 2 or NH 3 produced using fossil fuels 
and the emitted carbon captured by CCS, Green H 2 /NH 3 : H 2 or NH 3 produced using renewable energy sources. 

method is considered the same as its power-to-H 2 equivalent (see Table 
(B.13) of supplementary information). 

Fig. 11 is equivalent to Fig. 10 , with the plotted area divided into six 
regions as given by the combination of the different categories achieved 
by the alternatives regarding their efficiency scores (efficient vs. ineffi- 
cient) and their TRL level (research stage, not marketable, marketable). 
In this case, no alternative is both efficient and marketable. Only grey 
options, like power-to-gas based on water electrolysis using the grid mix, 
are close to a marketable situation. Despite this, grey alternatives are 
still far from efficient, with improvement targets on water use, GWP, 
and energy consumption asking for reductions beyond 80%. Consider- 
ing that these alternatives are already well developed and almost mar- 
ketable, these improvements seem out of reach. 

The following alternatives in terms of TRL are blue options, such as 
power-to-gas using steam methane reforming or coal gasification, both 
coupled with carbon capture and storage. Compared to grey ones, blue 
alternatives present a better situation regarding their GWP, which, com- 
bined with their lower TRL, may result in a better performance once 
they are completely developed. However, even if they manage to infil- 
trate the market, such domination will only be a transition period before 
growing environmental concerns put green alternatives in action. 

Only the green power-to-gas-to-power routes, such as H 2 and NH 3 
based on the water electrolysis powered with wind or solar, and NH 3 
based on water electrolysis using hydropower, are found efficient. These 

alternatives are still at the research step and have good development po- 
tential, which could help them perform even better and achieve higher 
efficiency scores. 

Overall, the bottleneck for developing the power-to-gas processes is 
water electrolysis. Due to different reasons, different electrolytic cells 
and processes have managed to achieve distinct TRL levels. For instance, 
alkaline electrolysis is well developed, with a TRL of almost 9, yet the 
technology is considered not marketable because of its high costs. Other 
options like polymer electrolyte membranes with a TRL of 8, solid oxide 
electrolytic cells, and the co-electrolysis of water and CO 2 , both with a 
TRL of 5.5, still need to increase their energy efficiency and lifespan 
while reducing maintenance costs and environmental impacts [107] . 
In this context, large-scale production might help decline costs [88] . 
At the same time, the use of nanomaterials to store the gas shows an 
improved environmental performance compared to other choices like 
caverns [119] . 

Finally, it is also essential to consider the market readiness level 
when predicting the future of energy storage alternatives. Market readi- 
ness level records a value of 7-8 (out of 12) for power-to-hydrogen, 
which means the market has identified the need for this storage alter- 
native and its application [88] . In addition, it is forecasted that raising 
concerns about CO 2 emissions will increase motivations for further in- 
vestments in power-to-gas energy storage alternatives. Hence, while mo- 
bility is the most significant anticipated market for hydrogen in the short 
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term, balancing the energy system and grid reinforcement is expected 
to be the most demanding source for hydrogen in the longer term [88] . 
Further development of fuel cells, facilitation of gas storage, and cost re- 
duction are the key factors that will pave the development trajectory of 
power-to-gas energy storage alternatives [79] . Preparing the necessary 
infrastructures and certificates for gas production processes and their 
application operations will require political and financial support [88] . 

3.4. Incorporating concerns from stakeholders in the technology section 

In this contribution, we resorted to DEA to compare the energy stor- 
age options, where the absence of predefined weights is equivalent to 
implicitly assuming that all indicators are equally important. However, 
in real applications, the stakeholders’ preferences or local contexts could 
challenge this assumption and even make some technologies rejected 
initially. Also, engineers, customers, or policymakers might show some 
preferences over selected indicators, which may vary with time, loca- 
tion, and the application of the technology. Therefore, we address the 
technologies comparison by presenting two additional investigations. 
In the first analysis, we include predefined weights as parameters in the 
model formulation. Indeed, we solved an additional problem where we 
assigned 80% of the total weight to environmental indicators and 20% to 
the rest. However, different weights could be used if stakeholders were 
more inclined towards other aspects of the problem (i.e., economic, or 
social). This exercise, discussed in detail in Appendix A.1 , reflects the 
view of a stakeholder inclined towards using cleaner technologies. 

This evaluation reveals that, between fast-response technologies, fly- 
wheel, Ni-Cd, Li-ion, Na-S, and Li-Fe-Ph face a significant decrease 
in their efficiency scores; nevertheless, they all remain efficient. This 
means that, although the main strengths of these technologies rest on 
their economic and social performance, they are also good choices for 
environmentally-friendly applications. The efficiencies of Li-Ni-Mn-Co, 
Na-Ni-Cl, LA, FB-ZB, SMES, and FB-VR rise remarkably. However, only 
Li-Ni-Mn-Co moves from inefficient to efficient, raising its median effi- 
ciency marginally from 0.98 to 1. In general, the prioritization of envi- 
ronmental indicators causes the efficiency scores of efficient technolo- 
gies to decrease and that of inefficient technologies to rise. However, 
these changes are not enough to cause modifications in the relative rank- 
ing of the different technologies, which remains unaltered. 

Regarding alternatives in the long-term cluster, hydrogen produc- 
tion based on water electrolysis powered with solar (H 2 , WE-Solar) and 
wind energy (H 2 , WE-Wind), and ammonia production based on water 
electrolysis powered with solar (NH 3 , WE-Solar), wind (NH 3 , WE-Wind) 
and hydropower (NH 3 , WE-Hydropower) present a decline in their ef- 
ficiencies. This happens because increasing the weight of environmen- 
tal indicators reduces the weight assigned to employment, which is the 
most favourable indicator for most of these alternatives. Nonetheless, 
all these technologies remain efficient. In contrast, the rest of the alter- 
natives face an increase in their efficiency scores, although insufficient 
to make them efficient. 

Overall, the list of technologies recommended based on the results 
from our original DEA is still valid when environmental aspects are 
placed at the core of the assessment since the relative ranking of the 
technologies remains unaltered. Further discussion about this alterna- 
tive study where environmental indicators are prioritized is presented 
in Appendix A.1 . 

Alternatively, other stakeholders may argue that the cost of revert- 
ing the damage caused by increased environmental impacts is higher 
than the cost of prevention [120] . To illustrate such an approach, in our 
second investigation, we monetized the different indicators, translating 
indicators into a consistent monetary term based on the corresponding 
externalities. Using monetized indicators in a unit-invariant DEA model, 
like the one used in this contribution, would result in the same efficiency 
scores as obtained with the original indicators since using monetization 
coefficients to transform the indicators is equivalent to changing their 
units. To overcome this, we avoid DEA and, instead, use the monetized 

indicators to estimate the efficiency of the DMUs using the basic defini- 
tion of efficiency, that is, the summation of (monetized) desired outputs 
minus the summation of (monetized) undesired outputs, divided by the 
summation of (monetized) inputs. This provides a measure of the abso- 
lute efficiency of the technology, which is conceptually different from 

the relative efficiency score provided by DEA. Combining monetized in- 
dicators into a single score is helpful to rank alternatives, nevertheless, 
opposite to DEA, it does not provide information on how to improve the 
worst-performing technologies. In addition, it is improbable that two 
technologies will tie with precisely the same score and, hence, it might 
be more challenging to decide a threshold below which the remaining 
technologies should be discarded for further analysis. This issue is solved 
with DEA, which mathematically classifies all the alternatives between 
efficient and inefficient. Therefore, we avoid any comparison of the ef- 
ficiency scores obtained with the two approaches and we only compare 
the relative ranking achieved by the energy storage options with each 
of the two methods. 

According to the results obtained for fast-response technologies, only 
flywheel, Na-S, and SMES report a decline in their ranking. Although 
this ranking degradation is significant for the flywheel, it keeps its posi- 
tion as the best short-term option. The rest of the technologies improve 
their ranking. For instance, Ni-Cd, which is the second-best option in the 
original DEA, ranks first in this new analysis. Regarding the alternatives 
of the long-term cluster, some changes are observed in their relative 
ranking, but green alternatives still occupy the first positions, and usu- 
ally green hydrogen alternatives rank better than the green ammonia 
alternatives. More details are reported in Appendix A.2 . 

4. Conclusions 

Storage technologies improve grid flexibility, which is particularly 
appealing when there is a high share of renewables. However, insuffi- 
cient attention to energy storage technologies has slowed down their 
development, hindering, in turn, the penetration of renewables. To un- 
lock this situation, energy storage technologies need to be assessed con- 
sidering all the sustainability dimensions concurrently to ensure that 
unsustainable practices in energy storage do not offset the benefits from 

the increased use of renewables in the grid. 
In this contribution, we benchmark energy storage options using 

DEA, considering uncertainty in the data through the generation of 100 
scenarios. Storage options are classified into two clusters according to 
their response time, the first for fast-response technologies and the sec- 
ond for long-term storage options. Independent DEAs are carried out for 
each cluster, finding the technologies with the best performance in each 
situation and providing evidence for policymakers to develop better- 
informed regulations. 

Flywheel, with a median efficiency score of 2 and efficient in 99% of 
the scenarios, is the most efficient option among fast-response technolo- 
gies. Since it is a short-term storage technology, it is the recommended 
choice for power applications such as power quality control. Ni-Cd, Li- 
ion, and Na-S batteries are standing at the next positions in terms of effi- 
ciency. Indeed, these medium-term technologies were found efficient in 
all or most scenarios and, therefore, should be promoted for applications 
like electric vehicles, where modular storage technologies are needed. 
In this case, it is suggested to employ a separator in the battery struc- 
ture to improve its safety. Fortunately, most of them are well developed 
and easy to access. Only, Na-S needs further developments to be mar- 
ketable. Conversely, FB-VR, SMES, and FB-ZB, with efficiencies lower 
than 0.1, are graded as the most inefficient technologies. For these tech- 
nologies, quantitative improvement targets are reported to help tech- 
nology developers improve and make them competitive. For instance, 
in the case of SMES, controlling energy loss would be key to increasing 
its performance. Also, in the case of flow batteries, increasing the num- 
ber of operational cycles is several times recommended. The application 
of nanomaterials and recently developed membranes are beneficial for 
this purpose. According to their TRL, these technologies are not entirely 

430 



F. Rostami, Z. Kis, R. Koppelaar et al. Energy Storage Materials 48 (2022) 412–438 

developed and still can improve their performance and infiltrate the 
market. However, even technology like LA that is already developed 
is deemed inefficient in our evaluation. In such a case, the technology 
does not have an easy way ahead to improve its performance. Since 
the indicators influence each other, the developers should avoid wors- 
ening other indicators when improving one of them. For this case, the 
reported safe margin of changes gives insight into the worsening indica- 
tors can afford without turning a technology inefficient. We note that, in 
this contribution, we could not explore the effect of batteries on toxicity 
and human health owing to the lack of data for some of the options con- 
sidered. This critical topic could be an object of future research since 
it might play an important role in shaping technological and political 
decisions. 

Among the 16 long-term storage options evaluated, only ammonia 
produced from hydrogen obtained by water electrolysis powered by so- 
lar energy is efficient in all the scenarios. The most efficient options are 
green ammonia (median efficiency scores of 1.265 when based on solar 
and 1.07 if based on hydropower) and green hydrogen (1.09 using solar 
and 1.07 using wind). Grey hydrogen from coal gasification and from 

SMR processes are not efficient alternatives in any of the 100 scenarios 
considered. Apart from these two options, the other options in the long- 
term cluster emerge as efficient, at least in some scenarios. Again, we re- 
port improvement targets to guide developers in enhancing the different 
technologies. For instance, most options need reductions between 0.55- 
11.76% in their LCOE, which can be achieved by employing cheaper 
options like gas turbines instead of expensive fuel cells for gas recon- 
version, reducing the cost of renewable energies in the case of green al- 
ternatives and enhancing the availability and suitability of salt caverns 
for underground gas storage in the case of blue options. More signif- 
icant actions are needed for other indicators like energy consumption 
of non-green hydrogen and ammonia, where technologies should target 
improvements between 38.45% and 89.29% to become efficient. These 
can be pursued by avoiding heat loss in reactors. Note, however, that it 
is expected that improving one of the indicators might affect others: for 
instance, insulation of reactors will result in a higher LCOE. In addition, 
the safe margin of change obtained for efficient alternatives reveals that 
most of them rest on employment generation for being deemed efficient. 
Despite this, their establishment may be challenging in regions with a 
high wage rate or lacking skilled laborers. Even in this case, automa- 
tion may be helpful, and considering that these green alternatives are 
still at the research step, they have a promising development potential. 
Blue and green alternatives are close to being marketable according to 
their TRLs. However, they are not efficient, and they may dominate the 
market only during a transition period before a clean energy sector is 
completely developed. Meanwhile, we find that ammonia reveals better 
or at least the same performance compared with hydrogen. Therefore, 
when storing energy for the long-term is the target, using hydrogen to 
produce ammonia is better than its application as an energy storage al- 
ternative. 

Although the results presented are helpful to facilitate technology 
selection and improvement, each storage technology is especially suited 
for some specific applications due to its design and characteristics. 
Therefore, the technologies reported as efficient are not necessarily the 
best choices for all the applications, and inefficient ones are not com- 
pletely useless. For a practical application, several additional aspects 
will affect the project’s social, economic, environmental, and techni- 
cal implications and should be considered before making the final de- 
cision. We dealt with some of these concerns by doing further analy- 
ses like weighted DEA and monetization. Our results revealed that al- 
though the efficiency score and relative ranking of technologies report 
some changes, still the results obtained by the original DEA are reli- 
able. Other aspects including the location of the storage unit, the avail- 
ability of raw materials, cost and availability of skilled labors, market 
energy prices, geographical limitations, deployment and construction 
time, the technology response time, the complicity of manufacturing, 
minimum and maximum charging rate, maximum operating tempera- 

ture, packing issues, ease of installation-operation-and control, needed 
accessories, ability to join with other technologies, application purpose, 
commercial availability of technology, its strength and durability, matu- 
rity, safety, grid connection impacts, recyclability and after use impacts 
also should be considered. Therefore, while this contribution provides 
a powerful framework for comparing storage technologies considering 
multiple sustainability dimensions through DEA, more comprehensive 
evaluations are still necessary. 

Acknowledging that improving some technologies to make them ef- 
ficient might take some time or even be impossible in some cases, it is 
suggested to design energy systems in a way that they do not depend 
strongly on storage technologies found inefficient in this contribution. 
In this context, policies promoting the use of the most efficient technolo- 
gies through incentives might be as effective as regulations based on the 
taxation of the poorest performing options while alleviating the direct 
economic burden placed on companies and citizens. Further, the evalu- 
ation of hybrid energy storage technologies is an unexplored necessity 
that should be considered in future studies. 
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Appendix A: Further analyses 

In the evaluation presented in the main manuscript (models M1 and 
M2), the absence of predefined weights between indicators implicitly 
considers them equally important. However, in practice, stakeholders 
might be more concerned about certain facets of the sustainability prob- 
lem. Bearing this in mind, we next present two additional analyses ad- 
dressing the same problem of comparing energy storage technologies, 
but this time using different perspectives reflecting potential concerns 
from diverse stakeholders. In the first analysis, reported in Appendix 
A.1 , we still use DEA but enforce environmental indicators to be more 
important than economic and social ones, thus prioritizing cleaner tech- 
nologies for a sustainability transition. In the second one, provided in 

431 



F. Rostami, Z. Kis, R. Koppelaar et al. Energy Storage Materials 48 (2022) 412–438 

Table A.1 
Predefined weights for indicators of each cluster. LCOE: levelized cost of en- 
ergy. GWP: global warming potential. 

Indicators 
Weight of indicators for the 
fast-response cluster (%) 

Weight of indicators for 
the long-term cluster (%) 

LCOE 10.00 10.00 
Energy consumption 20.00 26.67 
1/Energy density 1 20.00 - 
Water used 20.00 26.67 
GWP 20.00 26.67 
Employment 10.00 10.00 
Total 100.00 100.00 

1 This indicator is not considered in the evaluation of long-term energy 
storage alternatives. 

Appendix A.2 , we explicitly account for the positive and negative exter- 
nalities that would result from the deployment of each energy storage 
technology considered in this contribution. 

Appendix A.1: Weighted-SBM 

Without loss of generality, we explore a hypothetical situation where 
an environmentally conscious stakeholder assigns 80% of the total 
weight to environmental aspects and 20% to the rest (economic and 
environmental). We assume that these weights are divided equally be- 
tween indicators within each sustainability dimension. For fast-response 
technologies, this translates to 20% weight for each of the four envi- 
ronmental indicators (i.e., 80/4 = 20). For long-term alternatives, each 
of the three environmental indicators is assigned 26.67% weight (i.e., 
80/3 = 26.67). The dedicated weight to LCOE and employment in both 
clusters is 10%, as these are the only indicators in the economic and 
social categories, respectively. The weights considered are summarised 
in Table A.1 . 

Then, the undesired output slack-base model (i.e., model M1) is mod- 
ified to consider these weights as parameters. The revised model (model 
M3 hereafter) is a weighted-SBM model presented in [43] and formu- 
lated next. 

𝜏∗ = min 𝑡 − 
1 

m 

m 
∑

i=1 

w − 
i 
𝑆 − 
𝑖 

x io 
(M3) 

𝑠.𝑡. 1 = 𝑡 + 
1 

s 1 + s 2 

( 
s 1 
∑

r=1 

w 
g 
r 𝑆 

𝑔 
𝑟 

y 
g 
ro 

+ 

s 2 
∑

r=1 

w b 
r 𝑆 𝑏 

𝑟 

y b ro 

) 

x o 𝑡 = XΛ + 𝑆 − 

y 
g 
o 𝑡 = Y g Λ − 𝑆 𝑔 

y b 
o 𝑡 = Y b Λ + 𝑆 𝑏 

𝑤 − 
𝑖 = 0 . 2 𝑖 = ener gy cons umpt ion , water used , 

(

1∕ ener gy dens ity 
)

𝑤 
𝑏 
𝑟 = GWP = 0 . 2 

𝑤 − 
𝑖 = LCOE = 0 . 1 

𝑤 
𝑔 
𝑟 = Empl oyme nt 

= 0 . 1 

𝑆 − ≥ 0 , 𝑆 𝑔 ≥ 0 , 𝑆 𝑏 ≥ 0 , Λ ≥ 0 , 𝑡 > 0 . 
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− , w r 

g , and w r 
b are the weights for input i, desired 

(good) output r, and undesired (bad) output r, respectively, as provided 
in Table A.1 . The rest of the parameters and variables are the same as 

model M1. Analogous changes can be introduced in the super-efficiency 
model M2. The weighted undesired output SBM and the weighted super- 
efficiency model are solved for each DMU in the fast-response and long- 
term cluster for 100 scenarios. The scenarios were obtained by applying 
Monte Carlo sampling to the uncertain distributions associated with the 
sustainability indicators. The resulting median efficiency for each tech- 
nology is compared with its median efficiency from the original DEA 
(i.e., equally important indicators) in Figs. A.1 and A.2 , with the for- 
mer comparing fast-response technologies and the latter benchmarking 
long-term energy storage alternatives. 

Fig. A.1 shows the median efficiency obtained for each technology 
in the fast-response cluster from both analyses. The Y-axis presents the 
median efficiency when 80% weight is dedicated to the environmen- 
tal indicators, while the X-axis presents the median efficiency when the 
indicators are weighted equally (i.e., the median efficiency from the 
original DEA). This figure is divided into four quadrants; (i) light green 
region: the technologies are efficient regardless of the weight consid- 
ered for the indicators; (ii) dark green region: the fate of the technology 
is affected by the weight of the indicators, and it is efficient only when 
the indicators are weighted unequally; (iii) grey region: technologies are 
always inefficient regardless of the relative importance assigned to the 
different indicators; and (iv) dark green region: the fate of the technol- 
ogy is affected by the weight of the indicators and is efficient only when 
all the indicators are considered equally important. Also, using a diago- 
nal line, technologies are classified into two groups: those that report a 
higher efficiency when no predefined weights are assigned to indicators 
(i.e., located on the right side of the diagonal), and those that benefit 
from larger weights to the environmental indicators (i.e., located on the 
left side of the diagonal). 

As Fig. A.1 shows, using higher weights for environmental indicators 
results in important changes in the efficiency scores obtained. Technolo- 
gies on the right side of the diagonal, namely flywheel, Ni-Cd, Li-ion, Na- 
S, and Li-Fe-Ph, see their efficiencies decrease from 2, 1.61, 1.36, 1.32, 
and 1.03, respectively, to 1.05, 1.04, 1.03, 1.03, and 1. This happens 
because increasing the weight of environmental indicators is equivalent 
to decreasing the weight of their most favourable indicator, which, in 
the case of the flywheel, Ni-Cd, Li-ion, and Na-S, is employment (see 
Fig. 5 for more information). Li-ion and Li-Fe-Ph also rely on their en- 
ergy density to be efficient. It is an environmental indicator and in- 
creasing its weight benefits the efficiency score. However, this benefit is 
counterbalanced by the other environmental indicators and results in a 
lower median efficiency score. In any case, all these technologies remain 
efficient in this analysis, too, which demonstrates they are still robust 
options with a solid environmental performance. 

On the other hand, the technologies on the left side of the diago- 
nal, namely Li-Ni-Mn-Co, Na-Ni-Cl, LA, FB-ZB, SMES, and FB-VR, ben- 
efit from increasing the weight of environmental indicators. They im- 
prove their median efficiency scores from 0.98, 0.4, 0.24, 0.07, 0.05, 
and 0.03, respectively, to 1, 0.84, 0.81, 0.7, 0.66, and 0.57. These im- 
provements are enough for Li-Ni-Mn-Co to become efficient. Despite im- 
proving their median efficiency scores, the other technologies stay inef- 
ficient, although they now have a better chance for competition against 
efficient technologies. Indeed, using predefined weights in the analysis 
produced a narrower distribution of efficiency scores than in the origi- 
nal case: from 1.05 (flywheel) to 0.57 (FB-VR), compared to 2 (flywheel) 
and 0.03 (FB-VR). However, none of the technologies deemed efficient 
in the original DEA stops being so in this new analysis. From a mathe- 
matical point of view, model M1 is a relaxation of model M3 because 
(implicit) weights can take any value to favour the technology under 
assessment. Considering that the efficiency scores provided by DEA are 
relative (and not absolute) efficiency measures, in practice, this means 
that model M1 can produce more distinct results across the technologies. 
This is done, for instance, by assigning a high weight to employment for 
some technologies since this allows them to achieve high-efficiency val- 
ues. Remarkably, the relative ranking of the technologies is not affected 
by increasing the weights of environmental indicators, i.e., sorting the 
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Fig. A.1. Comparing the median efficiency of fast-response energy storage technologies when the indicators are weighted equally and unequally. Grey region: 
always inefficient, Light green region: always efficient. Dark green region: inefficient when the indicators are equally weighted (i.e., X-axis) and efficient when the 
environmental indicators are weighted more (i.e., Y-axis), or vice versa. 

technologies from highest to lowest median efficiency scores yields the 
same result as in the analysis presented in the main manuscript. 

We next turn our attention to the long-term energy storage alter- 
natives ( Fig. A.2 ). Again, the X-axis presents the median efficiency of 
the original DEA, while the Y-axis reports the median efficiency when 
80% weight is dedicated to the environmental indicators. This figure is 
equivalent to Fig. A.1 , with the plotted area divided into four quadrants 
achieved by the alternatives regarding their efficiency scores (efficient 
vs inefficient). Similarly, the diagonal divides the alternatives into two 
groups, with alternatives on the left side of the diagonal benefitting from 

unequal weights and alternatives on the right side of the diagonal being 
harmed. 

As shown in Fig. A.2 , the alternatives on the right side of the diago- 
nal, including green alternatives like hydrogen based on water electroly- 
sis powered with solar (H 2 , WE-Solar) and wind energy (H 2 , WE-Wind), 
and ammonia based on water electrolysis powered with solar (NH 3 , WE- 

Solar), wind (NH 3 , WE-Wind) and hydropower (NH 3 , WE-Hydropower) 
see their efficiencies decline when higher weights are dedicated to the 
environmental indicators. This change is particularly remarkable for 
(NH 3 , WE-Solar), with its efficiency score changing from 1.26 to 1.02. 
Despite this, all of them remain efficient, and this is a piece of evidence 
that they are reliable choices for environmentally friendly applications. 
Except for (H 2 , WE-Solar), the rest of these alternatives are efficient 
mainly thanks to their employment generation capabilities. Therefore, 
the reduction in their efficiency is caused by a fall in the weight ded- 
icated to employment. The fall in the employment weight results from 

increasing the weight of environmental indicators. Hydrogen produc- 
tion based on water electrolysis using solar energy (H 2 , WE-Solar) is 
mainly efficient because of its low water use (see Fig. 8 for more infor- 
mation). Therefore, the fact that its median efficiency decreases despite 
the higher weight assigned to its most-favourable indicator (i.e., water 
used) restates the necessity of improving its other environmental indica- 
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Fig. A.2. Comparing the median efficiency of long-term energy storage alternatives when the indicators are weighted equally and unequally. Grey region: always 
inefficient, Light green region: always efficient. Dark green region: inefficient when the indicators are equally weighted (i.e., X-axis) and efficient when the envi- 
ronmental indicators are weighted more (i.e., Y-axis), or vice versa. Grey H 2 /NH 3 : H 2 or NH 3 produced using fossil fuels, Blue H 2 /NH 3 : H 2 or NH 3 produced using 
fossil fuels and the emitted carbon captured by CCS, Green H 2 /NH 3 : H 2 or NH 3 produced using renewable energy sources. 

tors (i.e., energy consumption, energy density, and GWP). The rest of the 
alternatives of the long-term cluster, which are located at the left side of 
the diagonal, enjoy a climb in their median efficiency compared to the 
results from the original DEA. This includes all the blue and grey options 
and power to hydrogen based on water electrolysis using hydropower 
energy (H 2 , WE-Hydropower). Despite this, their improvements are not 
impressive, and none succeed in becoming efficient. Like fast-response 
technologies, the difference between the highest and the lowest median 
efficiency when unequal weights are used is lower (i.e., (1.02-0.73) vs. 
(1.26-0.23)). Also, in both types of analysis, (NH 3 , WE-Solar) has the 
highest median efficiency, while (H 2 , CG) presents the lowest median 
efficiency. The alternatives selected by the original DEA are attractive 
when social, economic, and environmental aspects are all essential. At 
the same time, the efficiency scores of this second “weighted ” DEA look 
more reliable when environmental aspects are the most important. 

Appendix A.2: Monetization of the indicators and monetized efficiency 

Monetization uses predefined coefficients to translate environmen- 
tal indicators into monetary terms. These coefficients are lower than 
one for some indicators and, therefore, decrease their value (e.g., wa- 
ter use, GWP), while the coefficients are greater than one for others, 
thus increasing the indicator values (e.g., energy consumption, Employ- 
ment, and 1/energy density). In this way, monetization of the indicators 
helps to consider their relative importance from an economic point of 
view [121] . In this contribution, we monetize not only the environmen- 
tal indicators but also employment. Employment provides the number 
of full-time equivalent jobs, as expressed in [number of jobs]. For its 
monetization, an average wage of 123816 $/year is considered [122] , 
together with a currency exchange rate of US$ = 0.85 € [123] . Then, the 
received wage for 30 years is estimated (i.e., 123816 $/year·0.85·30 
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Fig. A.3. Comparing the median efficiency obtained from original DEA using per GJ values of indicators (i.e., X) with the efficiency obtained using monetized 
indicators (i.e., Y) for fast-response energy storage technologies. Left side: technologies’ ranking in X. Right side: technologies’ ranking in Y. Short-term: flywheel, 
SMES. Medium-term: rest of the technologies. The number of positions that each technology climbs ( + ) or drops (-) in the monetized analysis compared with the 
original DEA is reported by the numbers in the parenthesis. The ( = ) presents the case that there is no change in the ranking of the technology. Green, blue, and red 
lines, respectively, present the climbed, maintained, and dropped ranking. 

years = 3157308). The coefficients used to transform the value of the in- 
dicators (i.e., the values reported in Tables 1 and 2 ) to their monetary 
values are presented in Table (B.14) of the supplementary information. 
As stated in the main body of the manuscript, using monetized indicators 
in a unit-invariant DEA model as the one employed in this contribution 
would not affect DEA results since monetizing the indicators is equiva- 
lent to changing their units. Hence, in this case, we avoid the use of DEA 
and calculate efficiency as the summation of the monetized desired out- 
put (i.e., employment) minus the summation of the monetized undesired 
output (i.e., GWP), divided by the summation of the monetized inputs 
(i.e., LCOE, energy consumption, energy density, and water used). This 
provides a measure of the absolute efficiency of the technologies, which 
is conceptually different from the relative efficiency provided by DEA 
to the point that it is no longer possible to classify units as efficient or 
inefficient based on a score of 1 or any other cutoff value. Finally, Figs. 
A.3 and A.4 show the results for fast-response and long-term clusters 
obtained using monetized indicators. 

Fig. A.3 depicts the efficiency obtained using monetized indicators 
(i.e., Y) versus the median efficiency obtained from DEA (i.e., X) for each 
technology in the fast-response cluster. This figure is divided into two 
regions using the dashed line. On the left side, technologies are sorted 
according to their ranking in the original DEA, while on the right side, 
they are sorted based on their ranking in the monetized analysis. The 
signs and numbers inside the parenthesis beside the name of technolo- 
gies introduce the changes in the ranking of technology in Y compared 
with X. The green line and a ( + ) sign reports an improvement in the 
ranking, while a red line and a (-) sign presents falling in the ranking. 
When the technology reports the same ranking, a blue line and an ( = ) 
sign are used. 

Flywheel drops dramatically, mainly owing to its low energy density, 
being surpassed by seven batteries in the ranking. As reported in Table 
(B.14), the monetization coefficient of energy density is lower than one 
and decreases the indicator value. Note that, in this contribution, we 
use its inverse term (i.e., 1/energy density). Therefore, an initially low 

energy density that is dropped by monetization, results in a higher mon- 
etized 1/energy density, which finally leads to a lower monetized effi- 
ciency. Despite this, flywheel is still the best short-term alternative since 
SMES performs very poorly again (from second-to-last, to last). Among 
batteries, Na-S drops two positions while most of the rest improve their 
relative ranking, including Ni-Cd as the best performing. While Ni-Cd re- 
lies on its high employment and energy density to rank first, Na-S seeks 
for an increase on these indicators to improve its monetized ranking. 
Li-Fe-Ph, the next technology with a high value on its employment in- 
dicator, becomes the second-best option in the monetized analysis. The 
rest of the technologies, Li-Ni-Mn-Co, Na-Ni-Cl, LA, and FB-VR, improve 
their ranking by climbing from 6 th , 7 th , 8 th , and 11 th , respectively, to 
4 th , 5 th , 7 th , and 10 th , while Li-ion and FB-ZB are the technologies that 
maintain their relative ranking. 

Although in some cases, the technologies’ ranking changes quite a lot 
in the monetized analysis compared with the original DEA, choices from 

the original DEA (i.e., flywheel for short-term and Ni-Cd for medium- 
term) still stand as the preferred options. Despite this, this new analysis 
unveils the potential of other technologies such as Li-Fe-Ph, which might 
also have certain opportunities to infiltrate the market. 

Fig. (A.4) is equivalent to Fig. A.3 . On the left side of the dashed line, 
the alternatives are sorted based on their ranking in the original DEA 
(i.e., X), while on the right side, they are sorted regarding their ranking 
in the monetized analysis, which is marked by symbol Y. Similarly, an 
improvement in the ranking is presented by a green line and a ( + ) sign, 
the degradation with a red line and a (-) sign, and a maintained position 
with a blue line and an ( = ) sign. The number beside the sign accounts 
for the ranking changed. 

As Fig. (A.4) shows, several “pairs ” swap their ranking. Overall, 
green alternatives are still the best, but, with externalities, they are 
sorted according to the power source, with green H 2 always preferred 
over green NH 3 because of its higher employment generation. For in- 
stance, the rankings of (NH 3 , WE-Solar) and (NH 3 , WE-Hydropower) 
fall from 1 st and 4 th , respectively, to 2 nd and 6 th , while the rankings 
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Fig. A.4. Comparing the median efficiency obtained from original DEA using per GJ values of indicators (i.e., X) with the efficiency obtained using monetized 
indicators (i.e., Y) for long-term energy storage alternatives. Left side: alternatives’ ranking in X. Right side: alternatives’ ranking in Y. The number of positions that 
each alternative climbs ( + ) or drops (-) in the monetized analysis compared with the original DEA is reported by the numbers in the parenthesis. The ( = ) presents 
the case that there is no change in the ranking of the alternative. Green, blue, and red lines, respectively, present the climbed, maintained, and dropped ranking. 
Grey H 2 /NH 3 : H 2 or NH 3 produced using fossil fuels, Blue H 2 /NH 3 : H 2 or NH 3 produced using fossil fuels and the emitted carbon captured by CCS, Green H 2 /NH 3 : 
H 2 or NH 3 produced using renewable energy sources. WE: Water Electrolysis. 

of (H 2 , WE-Solar) and (H 2 , WE-Hydropower) climb from 2 nd and 6 th , 
respectively, to 1 st and 5 th . The opposite happens with blue and grey 
sources, where ammonia processes always rank above their H 2 -based 
counterpart. Also, all processes based on water electrolysis are placed 
on the top of the list. Overall, these results show significant agreement 
with those from the original DEA and, therefore, demonstrate the ro- 
bustness of the conclusions drawn. 
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