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Abstract 8 

SCN2A- related disorders include intellectual disability, autism spectrum disorder, 9 

seizures, episodic ataxia and schizophrenia. In this study, the phenotype-genotype 10 

association in SCN2A-related disorders was further delineated by collecting detailed 11 

clinical and molecular characteristics. Using previously proposed genotype-12 

phenotype hypotheses based on variant function and position, the potential of 13 

phenotype prediction from the variants found was examined. 14 

Patients were identified through the Deciphering Developmental Disorders study and 15 

gene matching strategies. Phenotypic information and variant interpretation evidence 16 

was collated. 17 previously unreported patients and 5 patients who had been 17 

previously reported (but with minimal phenotypic and segregation data) were 18 

included (10 males, 12 females; median age 10.5 years). All patients had 19 

developmental delay and the majority had intellectual disability. Seizures were 20 

reported in 15/22 (68.2%), 4/22 (18.2%) had autism spectrum disorder and no 21 

patients were reported with episodic ataxia. The majority of variants were de novo. 22 

One family had presumed gonadal mosaicism. The correlation of use of sodium 23 

channel-blocking antiepileptic drugs with phenotype or genotype was variable.  24 



These data suggest that variant type and position alone can provide some predictive 1 

information about the phenotype in a proportion of  cases, but more precise 2 

assessment of variant function is needed for meaningful phenotype prediction. 3 

 4 
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Introduction 13 

Sodium voltage-gated channel α subunit 2 is a member of the sodium channel alpha 14 

subunit gene family and encodes sodium channel Nav1.2 (SCN2A OMIM *182390). 15 

Voltage-gated sodium channel Nav1.2 is one of the four major sodium channels in 16 

the brain and consists of four domains, with each domain comprising of 6 17 

transmembrane segments (see figure 1). The S3 segment acts as the voltage sensor 18 

and the S5 and S6 segments form the ion selectivity pore (Hedrich 2019). 19 

Pathogenic variants in SCN2A are associated with different neurological and 20 

neurodevelopmental phenotypes including developmental and epileptic 21 

encephalopathies (DEE), self-limiting neonatal-infantile epilepsy (SLNIE), episodic 22 

ataxia (EA), developmental delay (DD), intellectual disability (ID), autism spectrum 23 

disorder (ASD), and schizophrenia (Reynolds  2020). While many SCN2A variants 24 



have been identified associated with these phenotypes, only a relatively small 1 

number of these have been functionally characterised.  2 

DEE is an umbrella term describing diseases characterised by both delayed 3 

neurodevelopment and epilepsy. SLNIE is characterised by early onset seizures that 4 

usually resolve in early childhood with normal cognitive development and a family 5 

history suggestive of autosomal dominant inheritance (Scheffer 2017).  Lauxman et 6 

al. characterised variants in patients with both SLNIE and DEE using whole cell 7 

patch-clamp recordings demonstrating evidence of gain of function (GoF) effects 8 

from these variants (Lauxmann 2018). Ben-Shalom et al demonstrated that the 9 

majority of ASD-related SCN2A variants resulted in a complete loss of Nav1.2 10 

function (Ben-Shalom 2017).  Therefore, it would be expected that all protein-11 

truncating variants (PTVs) (with assumed loss of function (LoF) effect) would result 12 

in an ASD and/or ID phenotype and if seizures are present, it would be expected that 13 

they are later onset (after infancy). This genotype-phenotype paradigm has been 14 

corroborated by further studies (Begemann 2019) although not unsurprisingly, 15 

occasional exceptions to this paradigm have been reported (Sundaram 2013, Leach 16 

2016, Suddaby 2019). 17 

In early onset seizures (<3 months) associated with SCN2A, non-selective sodium 18 

channel blockers are generally thought to be most effective, which is in-keeping with 19 

the suggestion that most of these variants result in GoF (Wolff 2017, Sanders 2018). 20 

This is not universal, and other patients display no response to sodium channel 21 

blockers (Liang 2017). This is in contrast to the ASD and/or ID phenotype 22 

presentations, when seizures have developed later in childhood, where non-sodium 23 

channel blockers are thought to be more effective (Sanders 2018).  24 



This study identified 22 patients with SCN2A variants through the DDD study and 1 

gene matching strategies, who had not been previously reported, or had only been 2 

reported as part of large exome datasets with minimal phenotypic information 3 

included. Detailed phenotypic data and epilepsy treatment data were collected along 4 

with evidence for pathogenicity for the variants.  5 

 6 

2. Materials and Methods 7 

The Deciphering Developmental Disorders study (DDD study) is a UK based 8 

research study that recruited patients with severe undiagnosed neurodevelopmental 9 

disorder and/or congenital anomalies, abnormal growth parameters, dysmorphic 10 

features, and unusual behavioural phenotypes from 24 regional Clinical Genetics 11 

centres from around the UK and Republic of Ireland between 2011 to 2015 (DDD 12 

Study 2014, 2017, Wright 2014). This study used a combination of exome 13 

sequencing and array-based detection of chromosomal rearrangements to identify 14 

the underlying causes in these previously undiagnosed individuals. To date, over 15 

4500 children have received a diagnosis from the DDD study (DDD study).  16 

A complementary analysis project was applied for and granted by the DDD study, 17 

allowing access to anonymised details of patients with SCN2A variants identified 18 

through this study.  From the DDD study, 28 patients were identified with pathogenic 19 

or likely pathogenic SCN2A variants. Responsible clinicians were contacted to offer 20 

recruitment to the individuals and 19 patients (or their parents/guardians) gave 21 

consent for publication.  An additional 3 cases were identified via gene matching 22 

strategies via the DECIPHER database (DECIPHER, Firth 2009).  These additional 23 

patients had either a clinical exome or an ID gene panel. The ID panel was based on 24 



the DDD panel (https://www.lumc.nl/sub/4080/att/1768916 version 1, 18-02-2018, 1 

1875 genes.). 2 

Phenotype and genotype information was gathered from the DECIPHER and 3 

additional information from the responsible clinician’s routine clinical assessments 4 

and examination of medical records. Phenotypes were defined as per Human 5 

Phenotype Ontology terms (Köhler 2021) and International League against Epilepsy 6 

definitions (Scheffer 2017). Clinical information included: medical history, 7 

dysmorphology, growth parameters, developmental progress, learning, seizure 8 

onset, type and progression and current or most-recent anti-epileptic drugs (AEDs) 9 

prescribed.  Where MRI brain imaging had been carried out, the reported findings 10 

were also collected. 11 

Pathogenicity evidence was collected from the DECIPHER database and referring 12 

clinician. Each variant was then reviewed and classified according to ACMG criteria 13 

and related publications (Richards 2015, Ellard 2020). 14 

Exclusion criteria from this study were: patients with an additional proven genetic 15 

diagnosis where the SCN2A variant was not thought to be contributory, and those in 16 

whom SCN2A variants were classified as benign or likely benign. 17 

 18 

 19 

4 Results 20 

Demographics 21 

22 patients (10 male, 12 female) between 2 years and 52 years (median age 10.5 22 

years) were recruited according to the above methods. 19 were from the DDD study, 23 

and 3 from Leiden clinical genetics services. 18 had trio exome sequencing via the 24 

DDD study, 1 was diagnosed through the DDD study as the parent of a proband, 2 25 



had a trio exome through routine clinical services and 1 had an ID gene panel 1 

through routine clinical service. Table 1 shows a summary of the characteristics of 2 

the patients with variants in SCN2A who were included in this study with table 1a 3 

summarizing the patients with an early onset seizure phenotype associated with 4 

DD/ID (DEE), and table 1b those with an ID/ASD phenotype. A comprehensive 5 

summary of detailed phenotypic data is available in Supplementary data 1. 6 

 7 

Tables 1a and 1b here 8 

 9 

Neurodevelopment 10 

Of the 22 patients, all had DD and 19 had also been assessed as having ID. DD was 11 

mild in 3/22 (13.6%), moderate in 5/22 (22.7%), moderate-severe in 3/22 (13.6%) 12 

and severe in 6/22 (27.3%) patients. In 2/22 (9.1%) patients profound DD was noted. 13 

Global developmental delay (GDD) was described in 3/22 (13.6%) patients without 14 

further qualification. ID was moderate in 5/22 (22.3%), moderate-severe in 3/22 15 

(13.6%), severe in 4/22 (18.2%) and profound in 4/22 (18.2%) patients. 2 patients 16 

were noted to have ID without further qualification.  17 

Seizures were present in 15/22 (68.2%) patients, of which 10/22 had onset of 18 

seizures within the first 3 months after birth, and 4 had seizure onset in childhood. In 19 

patient 7, the seizures were reported at a very young age but the exact age of 20 

seizure onset was not known.  21 

None of the patients in this cohort were identified as having EA. In 4/22 patients 22 

stereotypy was noted, another patient had choreiform movements and another 23 

dystonic movements.  24 



In 8/22 patients abnormalities of tone were noted; increased tone in 4/22 (18.2%) 1 

and decreased or variable tone in 4/22 (18.2%). 4/22 (18.2%) had diagnoses of 2 

ASD, and an additional 2 cases displayed autistic features. One patient had a 3 

diagnosis of attention deficit disorder (ADD). 4 

One patient had a right hemi-paresis without any identifiable anomaly on MRI, which 5 

developed after an episode of status epilepticus as an infant. The onset of seizures 6 

predated the hemi-paresis.  7 

 8 

Imaging 9 

Magnetic resonance imaging (MRI) of the brain reports were available in 12/22 10 

patients. This was normal in 6/12 (50%). In cases where there were abnormal 11 

findings, these included cerebral atrophy or ‘thinning of the brain’ in 2/12 (16.7%) 12 

and hypoplasia of the corpus callosum in 3/12 (25%) patients.  13 

 14 

Growth 15 

Mean height and weight were on the 39.4th percentile (-0.24 standard deviation score 16 

(SDs)) and 49.4th percentile (0.15 SDs) respectively. Mean occipito-frontal 17 

circumference was 35.5th percentile (-1.2 SDs), with a range from <0.4th percentile to 18 

92nd percentile (-6.76 to 1.43 SDs). 4/22 (18.2%) patients had a postnatal and/or 19 

progressive microcephaly.  20 

 21 

Craniofacial Features 22 

In 6/22 (27.3%) cases, dysmorphic features were noted (see supplementary data1). 23 

These were wide ranging with very little overlap between cases. Facial features were 24 

described as ‘coarse’ in 2/22 (9.1%) cases.  25 



 1 

Systemic Features 2 

2/22 (9.1%) patients had joint hypermobility. One patient had a mild thoracolumbar 3 

scoliosis, displayed a lordotic posture and was found to have hip dysplasia. Another 4 

patient had bilateral hip dislocation.  5 

Prominent fingertip pads were noted in 3/22 (13.6%) patients. 5/22 (22.7%) patients 6 

had constipation. Two patients had gastro-oesophageal reflux with one of these 7 

requiring a percutaneous endoscopic gastrostomy. An additional patient also 8 

required a gastrostomy, without documented reflux disease. One individual had 9 

Hirschsprung’s disease (with a paternal history of Hirschsprung’s disease and 10 

therefore likely unrelated to the de novo SCN2A variant). 11 

 12 

Anti-epileptic drugs 13 

Seizures were reported in 15 individuals, of which information about treatment was 14 

available in 11 cases (see table 1). Where AED treatment information was available 15 

and there were early onset seizures, 5 were being managed with a combination of 16 

sodium channel blockers and non-sodium channel blockers, 1 was managed on a 17 

sodium channel blocker alone and 1 was managed with a single non-sodium channel 18 

blocker. 19 

Of the 4 cases where seizure onset was in childhood (>12 months), 1 of these was 20 

managed by non-sodium channel blocker and 2 were managed by a sodium channel 21 

blocker, and 1 with a combination.  22 

 23 

Molecular genetics 24 



Normal chromosomal microarray (CMA) results were found in 17/22 (77.3%) 1 

patients, and in the 5 patients where CMA findings were reported, these were 2 

interpreted as benign or likely benign. Additional single nucleotide variants were 3 

identified in 4/22 (18.1%) patients and these were found to be benign or likely 4 

benign. These additional results are summarised in Supplementary Data 1.  5 

There were 20 SCN2A variants (transcript NM_001040142.2), 13 novel and 7 6 

previously reported variants.   None of the previously reported variants has been 7 

functionally characterised. The majority of the patients in this cohort (16/22, 72.7%) 8 

have missense variants in SCN2A which have been classified according to ACMG 9 

guidelines based on a combination of evidence including de novo status, multiple 10 

lines of computational evidence suggesting a deleterious effect on the protein and 11 

being absent from population databases. 12 

From this cohort, 6 patients had a presumed LoF variant and of these 2 patients had 13 

nonsense variants, 2 had frameshift variants and 2 had splice site variants. These 14 

were classified as pathogenic or likely pathogenic variant based on a combination of 15 

evidence including de novo status and absence from population databases. Of the 6 16 

presumed LoF variants identified, none were associated with a neonatal-onset 17 

seizure phenotype. Seizures were seen in 2/6 cases and were later onset (after 2 18 

years).   ASD was diagnosed in 4 of the presumed LoF variant cases, with ID and 19 

autistic features in one patient and isolated ID in one patient.  20 

A summary of the variants, ACMG criterions and classification is provided in table 2. 21 

 22 

Table 2 here 23 

 24 

Figure 1 shows the position of the variants on a schematic representation of SCN2A. 25 



The 20 variants identified were spread along the gene, in all domains. The 6 protein 1 

truncating variants (from 6 patients) associated with ASD or ID were throughout the 2 

gene. 6/10 of the missense variants (7/11 patients) associated with DEE appear to 3 

cluster near the voltage sensor. 3/4 of the missense variants (3/5 patients) 4 

associated with ASD/ID clustered near the pore.  5 

 6 

Figure 1 here 7 

 8 

Inheritance and mosaicism 9 

In 17/22 (77.3%) cases, the SCN2A variant was found to be de novo. In 2 patients 10 

inheritance was unknown. In 2 patients the variant was inherited from an affected 11 

parent (patients 3 and 6).  12 

Patient 3, who had absence seizure onset at 3 months, and moderate DD and ID, 13 

inherited the variant from an affected mother (see figure 2b), who was also reported 14 

to have seizures (although the age of onset is unknown) and a ‘specific learning 15 

disability’. This variant is absent from gnomAD, lies with a constrained region of the 16 

gene (assessed via DECIPHER database) and in silico tools predict this to be 17 

deleterious. The only previous report of this variant is referring to this same patient 18 

(Fitzgerald 2015). Currently, therefore, this remains a VUS with a posterior 19 

probability of 81.2%. 20 

Patient 6 inherited the variant from his father who was also reported to have onset of 21 

seizures at a very young age (although exact age unknown), which resolved by 22 

around age 4 -5 years and learning difficulties. (see figure 2a). A full sibling of patient 23 

6 did not have the SCN2A variant, but had infantile onset seizures with a milder ID 24 

but with an antenatal and perinatal history suggestive of vascular risk, and so with a 25 



plausible alternative explanation. Wider cascade testing of the SCN2A variant in this 1 

family was not possible. Given the presence of this pathogenic SCN2A variant, with 2 

no other class 3,4 or 5 variants from the trio exome analysis and no CNVs on CMA 3 

in this patient, this was concluded to be the likely explanation for the patients’ 4 

phenotype. 5 

 6 

One family (patients 16 and 17, see figure 2c) had presumed gonadal mosaicism: 7 

Two maternal half siblings were identified to have the same pathogenic SCN2A 8 

variant, which was absent from the mother’s blood and buccal DNA and absent from 9 

patient 16’s father. It is therefore presumed that this is due to maternal gonadal 10 

mosaicism. 11 

figure 2 here (pedigrees) 12 

 13 

 14 

 15 

Discussion 16 

Here we report detailed phenotypic information for 22 cases of SCN2A-related 17 

disorders that have not previously been reported with detailed phenotypic data. 18 

Among them there were 13 novel variants. The majority of these data supports the 19 

previously proposed genotype-phenotype paradigm and add to the understanding of 20 

gonadal mosaicism risk and inherited variants.  21 

Protein-truncating variants (PTV) in SCN2A have been shown to be situated 22 

throughout the gene, as expected by their resulting functional effect.  Previous 23 

functional assessments have found that missense variants leading to LoF tend to be 24 

situated at the pore loop or N-terminus (Ben-Shalom 2017) whereas missense 25 



variants with GoF effect tend to be located in the transmembrane segments or in 1 

cytoplasmic loops near to these or in the cytoplasmic loop containing the inactivation 2 

gate (Hedich 2019). 3 

This variants found in this study showed some correlation with these previous 4 

findings. 6/10 of the missense variants associated with DEE (and therefore predicted 5 

to result in GoF) and 3/4 of the missense variants associated with ASD or ID (and 6 

therefore predicted to result in LoF) being positioned as previously seen (Hedich 7 

2019, Wolff 2019). 8 

There was a range of DD and/or ID within this cohort, from mild to profound in-9 

keeping with previous case series (Alsaif 2019, Schwarz 2019). There was a range 10 

of seizure phenotypes reported. No cases were reported with SLNIE, which is likely 11 

to be reflective of the cases selected for the DDD study, which will have been biased 12 

towards patients with more severe developmental phenotypes. None of the patients 13 

in this cohort were identified as having EA. As this is an uncommon later finding in 14 

SCN2A, this is not unexpected. 15 

One adult patient was reported with bipolar disorder. It is interesting that this patient 16 

with a LoF variant and ASD went on to have this diagnosis in adulthood. Bipolar 17 

disorder-associated loci have been identified in GWAS studies, which include 18 

SCN2A (Stahl 2019) but it remains to be seen if there is a causal link here. There 19 

were no patients with a diagnosis of schizophrenia. Overall, awareness of 20 

vulnerability to secondary psychiatric disorders in patients with SCN2A- related ASD 21 

should lead to a lower threshold for assessment in any adult displaying symptoms.  22 

No specific facial gestalt was recognisable, although 6/22 (27.3%) patients had 23 

dysmorphic features. Cases of SCN2A-related disorder are likely to be made with 24 

panel-based or next generation sequencing (NGS) based approaches to 25 



investigation, rather than on clinical assessment alone. The presence of dysmorphic 1 

features may require consideration of a separate or additional genetic diagnosis but 2 

may be part of the phenotypic presentations of SCN2A-related disorder. 3 

Other previously reported associated phenotypes include structural brain 4 

abnormalities including severe cortical dysplasia (Bernardo  2017), cerebral atrophy 5 

(Ogiwara  2009, Baasch  2014), and hypoplastic corpus callosum (Baasch  2014). In 6 

50% of the patients in this study who had cranial imaging an abnormality was 7 

identified including cerebral atrophy and hypoplasia of the corpus callosum. 8 

Spasticity and other movement disorders such as dystonia, chorea, stereotypies, 9 

opisthotonus and oculogyric crises have also been noted in SCN2A disorders 10 

(Takezawa  2018, Howell  2015), and these were also observed in this cohort (6/22 11 

patients).  12 

Perhaps due to the impact of the phenotype on the likelihood of an individual having 13 

the capacity to have a child, in the majority of previously reported cases, the variants 14 

have been de novo (Lindy  2018). The 2 families from this study with inherited 15 

variants highlight the possibility of inheritance of SCN2A variants associated with a 16 

non-benign phenotype. No evidence of incomplete penetrance was demonstrated in 17 

these data.  18 

Mosaicism in probands and parents is recognised in epilepsy-related 19 

neurodevelopmental genes (Stosser 2018) and one previous case of paternal 20 

germline mosaicism of SCN2A has been reported in a family with two children with 21 

an Ohtahara syndrome epilepsy phenotype (Zerem 2014). This study documents the 22 

first reported family with a presumed LoF phenotype (ID/DD with or without later 23 

onset seizures) (patients 16 and 17) with presumed gonadal mosaicism. This has 24 

important implications for counselling of families with a child with a de novo SCN2A 25 



pathogenic variant. Generally, in clinical practice, recurrence risk based on gonadal 1 

mosaicism rate is counselled as around 1%. This study and the previous reported 2 

case of mosaicism is in-keeping with this estimated recurrence risk and there is 3 

insufficient data at present to alter this practice for SCN2A variants. 4 

It is hypothesed that SCN2A variants in DEE vs ASD/ID have opposing effects of the 5 

Nav1.2 function (Ben-Shalom 2017), and this study provides some evidence to 6 

supports this, with all the PTVs associated with ASD/ID.   7 

It is possible that some variants confer a risk to a broader range of SCN2A related 8 

phenotypes. From this study, nine patients had a previously reported variant, in six of 9 

these patients there were phenotypic differences to the previous reports.  For 10 

example, patient 6 and 7’s variant was previously reported in a patients with an 11 

infantile encephalopathy phenotype (Wei 2018),  with epilepsy of unknown type and 12 

age of onset and neurodevelopmental disorder (Lindy 2018), as well as benign 13 

familial epilepsy (Zeng 2018).  Similarly, patient 4 presented with a DEE and this 14 

variant has been previously reported in both DEE (Wolff 2017) and SLNIE (Kong 15 

2018). As both SLNIE and DEE can be caused by a GoF variant, it is plausible that 16 

in different families, the variant may result in either of these phenotypes, although it 17 

appears to be consistent within each pedigree.  18 

Patient’s 16 and 17 both have DD and ID and with seizures in patient 16 only. This 19 

variant has been previously reported with an ASD phenotypes (Wolff 2017, Wang 20 

2016),  Similarly, the variant observed in patient 22 has been reported with ASD, but 21 

he had isolated DD and ID (D’Gama  2015). Given that ASD and ID phenotypes are 22 

both associated with LOF, again it seems reasonable to conclude that this variant 23 

may result in differing elements of the LOF-associated phenotypes in different 24 

families.  25 



These variants will be particularly interesting to functionally characterise, to see if an 1 

unusual functional pattern explains the phenotypic variation between cases. 2 

 3 

Based on the hypothesis that GoF variants cause an early onset seizure, which are 4 

best treated with sodium channel blockers, and LoF variants lead to later onset 5 

epilepsy, which are best treated with non-sodium channel blockers, the correlation of 6 

phenotype and prescribed AED treatment was examined. The correlation of 7 

response to antiepileptic drugs with phenotype or genotype was variable with 6/7 8 

(85.7%) presumed GoF and 2/4 (50%) presumed LoF cases being treated with an 9 

AED in-keeping with the hypothesis.  There are limitations to this data, given this is 10 

based on effective treatments reported within the context of routine clinical practice, 11 

rather than a clinical trial setting.  12 

The limited ability to predict the phenotype from the variant’s type and position 13 

highlights the importance of a functional assessment of each variant. A prediction of 14 

function allows a prediction of phenotype and gives a degree of prognostic 15 

information, although this is limited by the variability of presentation, even with the 16 

same variant. However, the lack of definitive correlation of function (or presumed 17 

function) and AED response both in the literature and from this study, indicates that 18 

accurately assessing variant function is not necessarily sufficient to act as a 19 

predictive biomarker for treatment response.  20 

As whole exome or whole genome based testing is used as first line for investigation 21 

of patients, more variants are identified that may be of uncertain clinical significance.  22 

It has been recognised that an agnostic approach is increasingly identifying a much 23 

broader phenotype in previously well-described syndromes. Routine functional work 24 

as part of variant assessment is unlikely to be possible. Heyne et al. published data 25 



from a tool that uses a machine learning model to predict LoF or GoF effects, with 1 

good correlation with previously functionally tested variants (Heyne 2020). While this 2 

is a tool not validated for clinical practice, this has potential to be a cost-effect 3 

mechanism to predict variant function in a time-frame that is clinical useful. It 4 

remains to be seen whether early and optimised therapy could also act to reduce 5 

some of the presumed impact of the variant’s function on the developing brain.  6 

 7 

 8 
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