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Abstract: Continuing uncertainty about the present magnitudes of global environmental change
phenomena limits scientific understanding of human impacts on Planet Earth, and the quality of
scientific advice to policy makers on how to tackle these phenomena. Yet why global environmental
uncertainties are so great, why they persist, how their magnitudes differ from one phenomenon
to another, and whether they can be reduced is poorly understood. To address these questions,
a new tool, the Uncertainty Assessment Framework (UAF), is proposed that builds on previous
research by dividing sources of environmental uncertainty into categories linked to features inherent
in phenomena, and insufficient capacity to conceptualize and measure phenomena. Applying the
UAF shows that, based on its scale, complexity, areal variability and turnover time, desertification is
one of the most inherently uncertain global environmental change phenomena. Present uncertainty
about desertification is also very high and persistent: the Uncertainty Score of a time series of five
estimates of the global extent of desertification shows limited change and has a mean of 6.8, on
a scale from 0 to 8, based on the presence of four conceptualization uncertainties (terminological
difficulties, underspecification, understructuralization and using proxies) and four measurement
uncertainties (random errors, systemic errors, scalar deficiencies and using subjective judgment). This
suggests that realization of the Land Degradation Neutrality (LDN) Target 15.3 of the UN Sustainable
Development Goal (SDG) 15 (“Life on Land”) will be difficult to monitor in dry areas. None of the
estimates in the time series has an Uncertainty Score of 2 when, according to the UAF, evaluation by
statistical methods alone would be appropriate. This supports claims that statistical methods have
limitations for evaluating very uncertain phenomena. Global environmental uncertainties could be
reduced by devising better rules for constructing global environmental information which integrate
conceptualization and measurement. A set of seven rules derived from the UAF is applied here
to show how to measure desertification, demonstrating that uncertainty about it is not inevitable.
Recent review articles have advocated using ‘big data’ to fill national data gaps in monitoring LDN
and other SDG 15 targets, but an evaluation of a sample of three exemplar studies using the UAF still
gives a mean Uncertainty Score of 4.7, so this approach will not be straightforward.

Keywords: uncertainty evaluation; desertification; global change; Earth observation; planetary
measurement; Land Degradation Neutrality; Sustainable Development Goals

1. Introduction

The present magnitudes of major global environmental change phenomena, such
as forest area change, biodiversity loss and desertification, have been very uncertain for
decades. Judged purely by the number of available estimates, one of the most uncertain of
these phenomena is desertification, which is land degradation in dry areas. The annual rate
of desertification has only been estimated once, for the 1970s [1], and estimates of the global
extent of desertification show it contracting, not expanding: an estimate of the area of at
least moderately desertified land in the 1970s [2] is over six times an estimate for the 1980s
made by the World Atlas of Desertification [3,4]. That estimate has not been updated by
the recently published Third Edition of the Atlas, since its authors claim that desertification
cannot be mapped satisfactorily [5]. This is an important statement, for while the first

Sustainability 2022, 14, 4063. https://doi.org/10.3390/su14074063 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14074063
https://doi.org/10.3390/su14074063
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su14074063
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14074063?type=check_update&version=2


Sustainability 2022, 14, 4063 2 of 33

two editions of the Atlas were produced by the United Nations Environment Programme,
the third comes from the European Commission Joint Research Centre (JRC), a leading
centre for global environmental monitoring using remote sensing data. In 2011, a report
from a group of remote sensing scientists, coordinated by JRC, recommended that a Global
Drylands Observing System be established to monitor desertification [6], but such a system
is still awaited.

Continuing uncertainty about the extent and rate of change of desertification makes it
difficult to assess the effectiveness of the United Nations Convention to Combat Deserti-
fication (UNCCD). Moreover, since drylands account for half of the Earth’s land surface
area [3], without accurate estimates of the extent and rate of change of their degradation, it
will be impossible to reliably monitor whether the world offsets the rate of land degradation
by the rate of restoration of degraded land by 2030, and so achieves Land Degradation
Neutrality (LDN), which is Target 15.3 in the UN Sustainable Development Goal 15: “Life
on Land” [7,8]. The other eight targets cover two other key global environmental change
phenomena: forest area change (15.2) and biodiversity loss (15.1 and 15.4–15.9). According
to Allen et al., the 17 Sustainable Development Goals (SDGs) “suffer from a lack of national
data needed for effective monitoring and implementation. Almost half of the SDG indi-
cators are not regularly produced and available datasets are often out of date” [9]. They,
like Hassani et al. [10], identify satellite data and other sets of “big data” as a potential
solution to this problem, but conclude that using these data will not be straightforward.
Indeed, in the journal papers on using big data for monitoring SDGs which they review,
SDG 15 accounts for the largest share of all papers but one of the smallest shares with global
datasets cited in them [9]. This paper addresses these data deficiencies for land degradation
in dry areas, but its analysis of global environmental uncertainties is also relevant to other
targets in SDG 15.

Does the persistence of global environmental uncertainties mean that they are in-
evitable? At the other extreme of spatial scales, in 1927, Heisenberg deduced from the new
theory of quantum mechanics an inequality which showed that for electrons and other
sub-atomic particles, “the exact knowledge of one variable can exclude the exact knowledge
of another” [11,12], since the disturbance involved in measuring the position of a particle,
for example, affects the measurement of its momentum. Yet while Heisenberg’s Uncertainty
Principle was just a theoretical prediction in 1927, there is ample empirical evidence, for
desertification and other phenomena, to show the persistence of global environmental
uncertainties, despite all the planetary data collected in the 50 years since the first Landsat
satellite was launched in 1972. Although sub-atomic physics may seem to have little in
common with global change science, they both involve measuring phenomena with sci-
entific instruments, and this paper is not the first to discuss potential parallels between
Heisenberg Uncertainty and environmental uncertainties [13].

Are global environmental change phenomena equally uncertain? Global environmen-
tal uncertainties continue to inhibit governments from committing sufficient resources to
tackling humanity’s global impacts on the planet. So if science can differentiate between
the uncertainties associated with different phenomena, this could lead to greater incentives
to tackle them.

Surprisingly little research has been undertaken into global environmental uncertain-
ties, despite their scientific and political importance. This may be because environmental
uncertainties generally are too easily taken for granted: Brown even stated in 2010 that
“there is no common understanding or consistent definition of uncertainty in environ-
mental research” [14]. Neglect of uncertainty about the natural environment is apparent
when Google Scholar searches for journal papers whose titles contain “environmental
uncertainty” or “environmental uncertainties” generate results dominated by studies of
organization theory [15] and control systems [16], which focus on the business environment,
not the natural environment.

This paper aims to inspire fresh interest in environmental uncertainties by: (a) propos-
ing an Uncertainty Assessment Framework (UAF) that can tackle the above questions about
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the inevitability and relative sizes of global environmental uncertainties, and indicate how
they can be reduced by planetary measurement; and (b) applying the UAF to desertifi-
cation and SDG Target 15.3. The UAF focuses on uncertainty about the magnitudes of
environmental phenomena, rather than all knowledge about the latter. Instead of starting
from a blank slate, it restructures sources of environmental uncertainty in two existing
taxonomies [13,17] using an original conceptualization, dividing these sources into three
categories linked to: (a) the features inherent in phenomena; (b) insufficient capacity to con-
ceptualize phenomena; and (c) insufficient capacity to measure phenomena. It deals with
present uncertainties, not future uncertainties and risk [18], uncertainties in modelling [19],
or links between uncertainty and decision making [20].

This paper has four main sections. The first reviews previous research into environ-
mental uncertainty. The second outlines the UAF, and the data and methods employed in
the paper. The third applies the UAF to desertification, finding that it has a high inherent
uncertainty and a persistently high present uncertainty. The fourth suggests how to reduce
present uncertainty about desertification by planetary measurement, using an initial set
of rules derived from the UAF for constructing reliable global environmental information,
and shows that uncertainty about desertification is not inevitable. It also examines whether
these rules are followed by a sample of papers, identified in recent reviews [9,10], which
discuss using big data to monitor SDG Target 15.3.

2. Literature Review
2.1. Defining Uncertainty

Uncertainty is defined as “incomplete knowledge” by Böschen et al. [21], but is
a contested term. For example, for Smithson, uncertainty is a type of error [22]; for Roth, it
describes constraints on reproducing experimental procedures [23]; and for Brown, it is
“a state of confidence” varying between certainty and irrelevance [14].

The relationship between uncertainty and risk is contentious too. Knight divided
ignorance into risk, which can be assessed by probabilities, and uncertainty, which can-
not [24]. Probabilities remain central to analysing future risk today [25], though Beck
argued that prediction “is not reducible to . . . probability” [18].

Wynne distinguishes between uncertainty and risk when classifying “kinds of uncer-
tainty” and proposes two more categories: ignorance, in which “we don’t know what we
don’t know”; and indeterminacy, which is an inability to classify “things . . . as the same
or different, [based on] specific properties or criteria” [26]. This views indeterminacy as a
conceptualization limitation. Yet physicists treat it more explicitly as a measurement limita-
tion, so parameters are known but cannot be properly measured [27]. Such different views
illustrate the contributions made to uncertainty by conceptualization and measurement,
and synergies between them.

2.2. The Sociology of Knowledge Accumulation

Uncertainty about any phenomenon is usually reduced as science systematically accu-
mulates knowledge about it through observation, experiment and explanation. Isolated
facts, or data, are collected and then processed within a conceptual framework into mean-
ingful information [28]. After being verified and reported, information is synthesized into
even more usable knowledge.

Science, however, is a social activity in which continuous development is punctuated
by discontinuities as scientific communities switch from one dominant theoretical paradigm
to another [29]. It also differentiates into an increasing number of subject-specific disciplines,
each with its own language and rules [30] and authority and monopoly claims [31].

Planetary measurement uses instruments on satellites to collect global data, and then,
with appropriate support from ground data, converts these data into global information. It
is difficult to explain on purely technological grounds the limited amount of planetary
measurement since the first Landsat satellite was launched in 1972, but much easier when
allowing for the sociology of science, since different approaches are taken towards data
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collection and information production by remote sensing scientists, on the one hand, and
scientists in other disciplines which study land cover change, on the other [32]. Ecologists,
for example, have traditionally preferred to collect data by intensive measurements in small
sample plots, and have been slow to make full use of remote sensing data [33]. Remote
sensing scientists are skilled in processing the latter data but have taken time to convert
them into global information. For example, the first global forest area map based on “wall-
to-wall” Landsat data was not published until 2012 [34]; and of a sample of 96 papers
published before this advance in the International Journal of Remote Sensing in 2009, only one
focused on mapping at global scale (Supplementary Table S1).

Knowledge about global environmental change is gained not only by scientific processes,
but also by intergovernmental political processes in which UN and other international
organizations conceptualize phenomena and estimate their magnitudes. One example is
the UN Commission for Sustainable Development process which led to the Sustainable
Development Goals [8]. Intergovernmental processes often characterize global phenomena
by indicators—measurable quantities that represent specific attributes of a given system [35].
If indicators are to generate meaningful information, they should ideally be chosen using
coherent conceptual frameworks [36]; yet, in practice, these processes tend to rely on long
lists of indicators with limited coherency [37]. Interactions between scientific processes and
political processes vary in intensity [38].

2.3. Existing Approaches to Evaluating Very Uncertain Environmental Phenomena

The conventional quantitative approach taken by many peer-reviewed studies to evalu-
ate uncertainty about environmental phenomena uses statistical methods to estimate errors.
Yet it is claimed that this approach is less meaningful in cases of severe uncertainty [39,40],
when “unquantifiable uncertainties . . . dominate the quantifiable ones” [41]. Estimates
of global environmental change phenomena are particularly prone to this, because many
estimates are still not wholly based on measurements of the kind that scientists working
at lower spatial scales take for granted, but often rely heavily on national statistics whose
links to measurements are less robust [32].

One alternative to purely quantitative analysis of uncertainty is to combine it with
qualitative evaluation. The Numerical Unit Spread Assessment Pedigree (NUSAP) system
divides uncertainty into three “sorts”: “technical”, or random error; “methodological”,
or unreliable measurement; and “epistemological”, or how well scientific theories fit the
real world [42]. The first two sorts represent measurement and the third conceptualiza-
tion. Van der Sluijs has added a “societal” category in which society influences scientific
activity [41]. NUSAP identifies for any number its random error (Spread); reliability, linked
to systematic errors (Assessment); and how the number is produced (Pedigree). Although
NUSAP has been applied to various environmental phenomena, Spread seems less rel-
evant to highly uncertain phenomena; and Pedigree indicators may change from one
phenomenon to another, and give measurement uncertainties priority over conceptualiza-
tion uncertainties.

Another approach is to only evaluate sources of environmental uncertainty qualita-
tively. Regan et al. distinguish between “linguistic sources”, which limit conceptualization,
and “epistemic sources”, which include natural variability and measurement sources [13]
(Table 1). Van Asselt and Rotmans separate “variability” in phenomena from “limited
knowledge” (or measurement) sources, but exclude conceptualization sources (except
“value diversity”) [17] (Table 1). Both taxonomies neglect economic factors, which limit
the size, frequency and resolution of large scale surveys [43]. They are also rather arbi-
trary and inconsistent in categorizing sources, and in sequencing them in each category
(Tables S2 and S3). Yet their similarities suggest that, suitably modified, they could form
the basis for a more coherent taxonomy which distinguishes more clearly between inherent,
conceptualization and measurement sources, and this has inspired the approach taken here.
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Table 1. Two taxonomies of sources of environmental uncertainty proposed in 2002 by
Regan et al. [13] and Van Asselt and Rotmans [17] (detailed definitions are provided in
Tables S2 and S3).

Regan et al. Van Asselt and Rotmans

Linguistic Variability

L1. Vagueness V1. Inherent randomness
L2. Context dependence V2. Value diversity
L3. Ambiguity V3. (Irrational) human behaviour
L4. Underspecificity V4. (Non-linear) societal dynamics
L5. Indeterminacy V5. Technological surprises

Epistemic Limited Knowledge

E1. Measurement error K1. Inexactness
E2. Systematic error K2. Lack of measurements
E3. Natural variation K3. Practically immeasurable
E4. Inherent randomness K4. Conflicting evidence
E5. Moral uncertainty K5. Reducible ignorance
E6. Subjective judgement K6. Indeterminacy

K7. Irreducible ignorance

3. Methodology, Materials and Methods
3.1. Overview

Böschen et al.’s definition of uncertainty as “incomplete knowledge” [21] suggests that
to conceptualize the origins of environmental uncertainty, it is necessary to first identify
what determines complete knowledge of an environmental phenomenon (Kc), and then
explain how the gap between this and present knowledge at any time t (Kt) is linked to
restrictions on capacity to construct knowledge.

The Uncertainty Assessment Framework (UAF) proposed here therefore divides
sources of uncertainty about any environmental phenomenon into three interacting cate-
gories (Figure 1) which are linked to:

(1) The features inherent in the phenomenon.
(2) Insufficient capacity to conceptualize the phenomenon.
(3) Insufficient capacity to measure the phenomenon.
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The features of a phenomenon determine what must be understood to have complete
knowledge about it, and contribute to its inherent uncertainty. They include its: (a) spatial
extent; (b) biophysical complexity, which depends on the minimum number of attributes
needed to characterize its spatial distribution—attributes correspond to the different infor-
mation layers which must be combined to map the phenomenon (see below); (c) spatio-
temporal randomness, resulting from natural factors; and (d) human-environment com-
plexity, which exacerbates biophysical complexity and natural randomness. The larger
each feature is, the more knowledge is needed to understand the phenomenon, and the
greater its inherent uncertainty.

The two capacities describe how improving technology, financial resources and people’s
skills (or ‘Human Capital’) can reduce uncertainty by constructing present knowledge about
the phenomenon. The smaller the two capacities are, the larger the associated difficulties in
conceptualization and measurement are likely to be.

If the difference between complete and present knowledge is represented by the sum
of present conceptualization uncertainties (Uct) and measurement uncertainties (Umt) resulting
from the associated capacity limitations at time t then:

Kc = Kt + Uct + Umt (1)

Following Van der Sluijs [41], all three categories of sources are subject to societal constraints,
which include political, economic and other social factors (Figure 1).

The UAF builds on previous research by restructuring the individual sources listed
by Regan et al. [13] and Van Asselt and Rotmans [17], using the phenomenal features and
measurement categories prominent in both taxonomies and the conceptualization category
highlighted by Regan et al. [13] (Table 2).

Table 2. A taxonomy of sources of environmental uncertainty in the Uncertainty Assessment Frame-
work (UAF) and corresponding terms in the taxonomies of Regan et al. [13] and Van Asselt and
Rotmans [17].

UAF Taxonomy Corresponding Terms in Other Taxonomies
in Table 1 *

Phenomenal uncertainties
P1. Spatial extent −
P2. Biophysical complexity RE3
P3. Spatio-temporal randomness RE4; VV1
P4. Human-environment complexity VV3, VV4, VV5
Conceptualization uncertainties
C1. Terminological difficulties RL1, RL3, RL5; VV2
C2. Underspecification RL4
C3. Understructuralization RL4, RE5
C4. Using proxies −
Measurement uncertainties
M1. Random errors RE1; VK1
M2. Systematic errors RE2; VK4, VK5
M3. Scalar deficiencies in measurement RL2; VK2
M4. Using subjective judgment RE6

* The second column lists the Linguistic (RL) and Epistemic (RE) categories of Regan et al. [13], and the Variability
(VV) and Limited Knowledge (VK) categories of Van Asselt and Rotmans [17], with numbering as in Table 1.

3.2. Phenomenal Uncertainties

It is proposed that uncertainty inherent in an environmental phenomenon is associated
with four of its features:

(1) Spatial extent (S). The greater the area of a phenomenon, the more difficult it is to
measure, and the more spatially diverse its distribution is likely to be.

(2) Biophysical complexity (B), potentially involving many environmental attributes—
each of which may be represented by at least one variable—and processes linking
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these attributes. For example, forest area change involves change in just one forest
attribute: area. In contrast, forest carbon change involves changes in at least two
attributes: area and carbon density, each of which needs to be mapped. Biodiversity
involves changes in at least three attributes: ecosystem diversity, species diversity and
genetic diversity [44] (Table 3). In the two latter cases the number of attributes could
be expanded to include intermediate ones, e.g., biomass density in the case of forest
carbon change [32], but for simplicity, the minimum number of attributes is used here.
Desertification is an even more complex phenomenon, with at least seven attributes,
as discussed in Section 4.1.3.

(3) Randomness in spatial and temporal distributions (R), resulting from natural factors.
(4) Human-environment complexity (H), evident in multidirectional, multitemporal and

multiscalar interactions between human systems and environmental systems. Often
involving changeable, conflicting and inconsistent human behaviour in causing or
responding to phenomena, these interactions can exacerbate biophysical complexity
and natural randomness and shift the characteristics of phenomena outside previously
recorded ranges.

Table 3. The multiple attributes of four global environmental change phenomena.

Phenomenon Number of Attributes Attributes

Forest area change 1 Area
Forest carbon change 2 Area

Carbon density
Biodiversity loss 3 Ecosystem diversity

Species diversity
Genetic diversity

Desertification 7 Vegetation area
Vegetation density
Water erosion of soil
Wind erosion of soil
Soil compaction
Waterlogging/salinization/
alkalinization of soil
Rainfall variation

The last three features encompass but expand the scope of the “epistemic” sources
3 and 4 of Regan et al. [13] and the “variability” sources 1, 3, 4 and 5 of Van Asselt and
Rotmans [17] (Table 2). Neither study recognizes the first feature, spatial extent, even
though it is far more difficult to measure environmental change at global scale than at
national and local scales [32].

The relationship between inherent uncertainty (U) and the four features of an en-
vironmental phenomenon listed above can be expressed algebraically by an inherent
uncertainty function:

U = f (S, B, R, H) (2)

If S is represented by the total area of the phenomenon (Ai), B is related to the minimum
number of attributes required to characterize it (bi), and R and H are jointly represented
on the ground by the inverses of the smallest area (ai) (areal variability) and shortest
time period (ti) (turnover time) over which the phenomenon varies, then U can also be
expressed as:

U = g (Ai, bi, 1/ai, 1/ti) (3)

Ideally, there would be a close fit between these variables and the properties of the
remote sensing system chosen to measure the phenomenon. Thus, Ai would be linked to
the maximum area which a remote sensing system can measure in practice; ai and ti to
the spatial and temporal resolutions of the system, respectively; and bi to the minimum
number of attributes which can be measured remotely and/or in situ.
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3.3. Knowledge Construction Mechanisms

Identifying the social mechanisms which limit the conceptualization and measurement
capacities of scientific groups and intergovernmental and other organizations, and lead
to conceptualization and measurement uncertainties, can show how to restructure the
sources listed in Table 1 to construct the more coherent taxonomy proposed in Table 2.
The UAF assumes that conceptualization and measurement capacities can be linked to
two characteristics of a group:

(1) Its world view, or discourse, which frames conceptualization. Hajer [45] defines a
discourse as “a specific ensemble of ideas, concepts, and categorizations that are pro-
duced, reproduced and transformed in a particular set of practices and through which
meaning is given to physical and social realities.” Ideas, concepts, and categorizations
are ideally expressed in an internally consistent language which, starting with the
smallest unit, or term, is used to construct increasingly complex narratives: sets of
statements that give a meaningful totality of events [46].

(2) Its set of repeated practices, or institutions, which comprise the methods used for
measurement and constructing knowledge generally. Institutions are “enduring
regularities of human action in situations structured by rules, norms and shared
strategies, as well as by the physical world” [47]. They occur in ‘organizations’ but
are not equivalent to them. Ostrom proposed that any social setting has multiple
levels of institutions: “operational institutions”, which may be varied easily, are
embedded in the “collective choice institutions” of a particular group that change
more slowly, and are framed by “constitutional choice institutions”, consistent with
national and international laws, that change even more slowly, and are nested in
“metaconstitutional institutions”, such as social norms, that rarely change [48].

Each scientific discipline has a set of common formal collective choice institutions
for conceptualization and measurement that influence the operational institutions used
by its members. All scientists can devise new conceptualizations and institutions. When
new informal institutions are widely adopted by other members of a discipline, they may
become formal institutions, and widespread adoption of a new conceptualization may
change the dominant paradigm of a discipline [29].

Hajer’s definition of “discourse”, which is generic but was devised for environmental
research, implies that reproducing discourse in conceptualization is inseparable from repro-
ducing institutions in measurement [45]. Synergistic interactions between conceptualization
and measurement are quite common in science: new theories are tested by comparing
their predictions with empirical data, but new data may raise questions about existing
theories and lead to better ones, and to more measurements to test these theories. Such
interactions are not deterministic or predictable, and may have positive and negative effects
on uncertainty.

3.4. Societal Constraints

The concepts of discourse and institutions can also explain societal constraints on
groups that construct knowledge [41] (Figure 1), e.g., governments and intergovernmental
organizations can impose their discourses and/or institutions on scientists working for
them [49]. Science is also restricted by the operation of markets, but since governments
frame the latter, by establishing and sustaining suitable constitutional choice institutions,
they can also modify this restriction for social ends.

3.5. Conceptualization Uncertainties

Estimating the magnitude of an environmental phenomenon is constrained by insuf-
ficient capacity to conceptualize it, resulting in four main sources of conceptualization
uncertainty that limit the clarity and coverage of statements about it (Table 2). If insufficient
conceptualization capacity is linked to limitations in discourse and language, as proposed
in Section 3.3, then these sources can be listed in order of the increasing linguistic complexity
of the statements to which they refer:
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(1) Terminological difficulties, in which using unclear, poorly defined or group-specific
terms, e.g., A and B, to name and represent a phenomenon or its attributes can create
confusion or ambiguity. Every scientific discipline has a different dominant discourse,
so the same term may mean different things to different disciplines [50], or to scientists
and lay people.

(2) Underspecification, which involves lack of completeness in statements that combine
various terms, e.g., “A + B”, to describe the multiple attributes of a phenomenon. Every
discipline at any time only has sufficient common formal rules, and corresponding
institutions, to combine some of the terms in its current discourse and theories into
statements that describe a phenomenon at particular spatial scales. Statements made
by different disciplines may be mutually inconsistent.

(3) Understructuralization, in which the actual spatial distributions of the characteristics
of a complex phenomenon are not fully represented by the disaggregation of combi-
nations of terms and statements about relationships between multiple attributes, or
states and flows related to these. Such combinations may include groups of symbolic
statements (equations), e.g., “aA + bB = C1, and dA + eB = C2”, and nested hierarchical
taxonomies of attributes and states that structure multiscalar knowledge. Structural
classifications of phenomena are called “ontologies” in geographical information
science [51]. So two conceptualizations of a phenomenon may differ structurally
(ontologically) as well as terminologically (semantically).

(4) Using proxies, in which attributes are represented by indicators loosely linked to
the ideal variables for measuring these attributes, or phenomena are represented
by models constructed with easily quantified variables. This happens when it is
difficult to: (a) identify more appropriate variables by conceptualization, or (b) collect
empirical data for such variables even if they are known.

Conceptualization uncertainties impose very real constraints on the accuracy of esti-
mates, as the analysis of desertification below will show. Our first three sources are included
in Regan et al.’s “linguistic” sources of uncertainty [13] (Table 2) but are structured more
coherently here. Terminological difficulties can influence other sources. Proxies are used
in reaction to the first three sources, and can involve synergies between conceptualization
and measurement. They are mentioned in NUSAP [42] but not by Regan et al. [13] or
Van Asselt and Rotmans [17]. Limitations on conceptualization capacity are also analysed
in other literatures, such as that on “vagueness” [52].

If conceptualization uncertainty (Uc in Equation (1)) is the sum of uncertainties result-
ing from terminological difficulties (Ucte), underspecificity (Ucusp), understructuralization
(Ucust) and using proxies (Ucpr) then:

Uc = Ucte + Ucusp + Ucust + Ucpr (4)

Societal constraints on scientific conceptualization can exacerbate these uncertainties
by: (a) territorialization, in which a scientific community is divided into ‘insiders’ and
‘outsiders’ when policy makers appoint ‘expert’ advisors who are unaccountable to other
scientists, contrary to norms for good communication [53]; and (b) scope shaping, in which
policy makers influence the scope of knowledge that these experts supply by imposing
discourses and institutions on them [49].

3.6. Measurement Uncertainties

Estimating the magnitude of an environmental phenomenon is also restricted by
insufficient capacity to measure it, leading to four main sources of measurement uncertainty
which inhibit construction of quantitative statements. If insufficient measurement capacity
is linked to institutional limitations, as proposed in Section 3.3, then these sources can be
listed in order of increasing institutional nesting:

(1) Random errors in measured data, resulting from deficient equipment and human error.
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(2) Systematic errors in measured data, which are linked immediately to technical con-
straints, and through these to formal and informal institutions. For example, mea-
surements of environmental phenomena may be biased by informal adoption of
repeated practices which use: (a) equipment with insufficient resolution to observe a
phenomenon reliably; and (b) inadequate sampling designs.

(3) Scalar deficiencies in measurement, which are linked more directly to institutional
constraints. If the formal measurement institutions of a discipline do not specify all the
scalar contexts that characterize an environmental phenomenon [54], then scientists
may create ad hoc informal institutions for collecting and processing data. This can
lead to errors in estimates that evade scrutiny in peer review.

(4) Using subjective judgment in making estimates, when data are lacking.

These measurement uncertainties combine in a more coherent way the “epistemic”
sources 1, 2 and 6, and “linguistic” source 2 of Regan et al. [13]; and the “limited knowledge”
sources 1, 2, 4 and 5 of Van Asselt and Rotmans [17] (Table 2). Subjective judgment
is used in reaction to the other three uncertainties, and can involve synergies between
conceptualization and measurement.

If measurement uncertainty (Um in Equation (1)) is the sum of uncertainties resulting
from random errors (Umr), systematic errors (Umsy), scalar deficiencies (Umsc) and using
subjective judgment (Umsu) then:

Um = Umr + Umsy + Umsc + Umsu (5)

Societal constraints complicate measurement uncertainties when, for example: (a)
scientists use global compilations of national statistics in the absence of planetary measure-
ment, as when basing estimates of forest carbon change on national forest area statistics [55];
(b) governments ask scientific “experts” to use subjective judgment in making estimates
for them, as in estimates of desertification evaluated below [49]; and (c) economic factors
limit the size, frequency and resolution of surveys and hence the accuracy of estimates
of phenomena characterized by the variables Ai, ai, and ti in Equation (3)—for example,
market forces inhibited planetary measurement at appropriate spatial resolutions until the
US government modified its institutions and made medium resolution Landsat images
freely available in 2008.

3.7. Constructing the Uncertainty Fingerprint of an Estimate

The Uncertainty Fingerprint of an estimate combines its conceptual and measurement
uncertainties in a row of a matrix, and is constructed by:

(1) Identifying which of the eight sources of conceptual and measurement uncertainties
(Table 2) are associated with the estimate.

(2) Coding the uncertainties as follows:

a. Conceptualization uncertainties: terminological difficulties (te); underspecifica-
tion (usp); understructuralization (ust); and using proxies (pr).

b. Measurement uncertainties: random errors (r); systematic errors (sy); scalar
deficiencies (sc); and using subjective judgment (su).

(3) Calculating the total number of uncertainties in the fingerprint to give its Uncertainty
Score (US), on a scale from 0 to 8.

3.8. Trends in Uncertainty over Time

Stacking the Uncertainty Fingerprints of successive estimates of an environmental
phenomenon on top of each other in multiple rows in a matrix shows how the composition
of its uncertainties changes over time. Among conceptualization uncertainties, ideally
the use of proxies should end first (as estimates are increasingly based on appropriate
measurements), followed by terminological difficulties, understructuralization and under-
specification in a related manner. Among measurement uncertainties, reliance on subjective
judgment should ideally end first, for the same reason as for proxies. Scalar deficiencies
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will decline as common rules for planetary measurement are devised, agreed and widely
adopted, enabling reductions in random errors and systematic errors.

Assembling the trend in the Uncertainty Scores of successive estimates of a phe-
nomenon in a stack gives its Uncertainty Profile, which can show if present uncertainty is
persistent or not. If the Uncertainty Score falls to the statistical threshold value of US = 2,
then ideally uncertainty should be dominated by two measurement uncertainties—random
errors (Umr) and systematic errors (Umsy)—that can be evaluated by standard statistical
methods alone, thereby showing continuity between the latter and the UAF (see also Sup-
plementary Information). The Uncertainty Profiles of different phenomena can be used to
compare trends in their present uncertainties.

The UAF only applies to information on the magnitudes of environmental phenomena.
So gaining an accurate estimate of a phenomenon does not end the accumulation of knowl-
edge about it. It is merely a precondition for allowing scientists to develop increasingly
reliable explanations of the processes that cause and control it.

3.9. Rules for Constructing Reliable Global Environmental Information

The conceptualization uncertainties and measurement uncertainties listed in Table 2
and the inherent uncertainty function (Equation (3)) lead to seven rules for constructing
reliable global environmental information by planetary measurement:

(1) Define a phenomenon clearly and appropriately.
(2) Specify the minimum number of attributes to measure, to completely characterize

a phenomenon.
(3) Disaggregate measurement of a phenomenon, to represent the full diversity of its

spatial distribution.
(4) Minimize spatial systematic errors, by using sensors whose spatial resolution matches

the areal variability of a phenomenon and whose spectral resolution matches its most
distinctive property.

(5) Minimize temporal systematic errors, by choosing a monitoring frequency consistent
with the turnover time of a phenomenon.

(6) Minimize the systematic and random errors associated with the method used to
classify satellite images, e.g., supervised classification, unsupervised classification,
crowd classification etc., supported by ground data.

(7) Minimize the systematic and random errors associated with the algorithm used to
combine estimates of the various attributes of a phenomenon.

The first three rules will avoid terminological difficulties (1), underspecification (2), un-
derstructuralization (3), and using proxies. Rules 4–7 will avoid using subjective judgment,
and reduce random and systematic errors and scalar deficiencies.

3.10. Methods

The inherent uncertainty of desertification was assessed using the components of the
inherent uncertainty function (see Equations (2) and (3)).

Individual estimates of the extent of desertification were evaluated to identify the
presence of conceptualization and measurement uncertainties, produce their Uncertainty
Fingerprints, and calculate their Uncertainty Scores (US). The US values of five global
estimates were combined to give the Uncertainty Profile of desertification. Underlying
mechanisms which limit conceptualization and measurement capacities and generate
uncertainties were also identified.

The rules proposed here for constructing global environmental information were ap-
plied to suggest how to reduce uncertainty about desertification by planetary measurement,
and to inform the Uncertainty Fingerprinting of methods proposed to use ‘big data’ to
monitor SDG Target 15.3.
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3.11. Data

A time series of five estimates of the global extent of desertification, estimated by
scientists working within the framework of intergovernmental (UN) institutions [1–3,56,57],
was analysed using the UAF, together with methods proposed by scientific groups to use
big data to monitor SDG Target 15.3 in seven papers identified in two recent reviews [9,10].
A sample of 96 papers in the International Journal of Remote Sensing in 2009 was examined
to identify topics given priority in remote sensing science (see Supplementary Table S1).
Another 50 papers on assessing dryland degradation, published in Land Degradation and
Development from 2006 to 2010, were analysed to identify the scalar preferences, and
diversity of discourses and institutions, of dryland scientists (see Tables S4, S5, S8 and S9).
To avoid bias, both samples precede the start of global forest measurement using Landsat
satellite data [34], and exclude special issues.

4. Results

To illustrate how the Uncertainty Assessment Framework (UAF) can be used in prac-
tice this section applies it to desertification. After examining the inherent uncertainty
of desertification it identifies present conceptualization and measurement uncertainties
in a time series of five estimates of the global extent of desertification, and then assem-
bles the Uncertainty Fingerprints of these estimates and the overall Uncertainty Profile
of desertification.

4.1. The Inherent Uncertainty of Desertification
4.1.1. Definition

Desertification is defined in the United Nations Convention to Combat Desertification
(UNCCD) as “land degradation in arid, semi-arid and dry sub-humid areas resulting from
various factors, including climatic variations and human activities” [58]. Countering it by
the restoration of degraded land is necessary to achieve the Land Degradation Neutrality
Target 15.3 of UN Sustainable Development Goal 15 [7,8] in dry areas.

4.1.2. Spatial Extent

Desertification affects the drylands, which, according to the UN Environment Pro-
gramme World Atlas of Desertification [3], cover 6147 million hectares (Mha) in the hyper-
arid, arid, semi-arid and dry sub-humid zones. All of this area except for 978 Mha of
hyper-arid land (natural desert) is vulnerable to desertification [59] and so 5169 Mha
should be measured to determine its extent.

4.1.3. Biophysical Complexity

Desertification is a complex phenomenon in which the degradation (or reduction in
quality) of vegetation and soil, and the corresponding decline in their collective ecological
functions, is influenced by variation in climate [2]. Long-term human degradation of land
can accelerate when drought reduces land productivity and human impacts intensify. It
involves continuous transitions between different degrees of degradation, and is usually
reversible by restoration up to a threshold degree of degradation [59].

Desertification has multiple attributes. Thus, each type of dryland ecosystem has
a particular area, within which its multiple layers of grasses, shrubs and trees grow at
varying densities. Degradation through overuse causes each of these types of plants and
their species (including crops) to decline in density, which makes soil more vulnerable to
degradation by: (a) water erosion; (b) wind erosion; (c) compaction by animals and machinery;
and (d) salinization, alkalinization and waterlogging—three related forms of degradation to
which irrigated cropland is especially susceptible. Desertification therefore has at least six
terrestrial attributes plus rainfall variation, for which vegetation maps must be corrected to
avoid misleading inferences about vegetation change [60] (Table 3).
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4.1.4. Spatio-Temporal Randomness

Desertification is highly dispersed and spatially variable, owing to variation in soil
erosivity [61], and how the irregular timing and location of rainfall influence vegetation
growth in dry areas and human responses to it.

4.1.5. Human-Environment Complexity

Biophysical complexity and natural randomness are exacerbated by how complex
underlying social, economic and political driving and controlling forces [62,63] can lead to
cross-scalar relationships [64] and coupled relationships with multiple feedback loops [65].

Consequently, areal variability (Equation (3)) may be as little as 0.1 ha, since tree
density is low in dry open woodlands, and gullies caused by soil erosion may only be a
few metres wide, even in advanced stages of erosion [66]. A turnover time of 2 years fits
the great fluctuation in rainfall and short-term vegetation and human responses to this [67]
within long-term cycles.

4.1.6. The Relative Inherent Uncertainty of Desertification

Desertification is one of the most inherently uncertain of all global environmental
change phenomena. For example, in terms of the components of the inherent uncertainty
function (Equation (3)), it has seven times as many attributes as forest area change (Table 3),
and the area potentially affected is three times the area of forest in the tropics (Table 4),
where forest area is currently changing most rapidly. An areal variability of as little as
0.1 ha is just a fifth of that of tropical forest area change (0.5 ha): the smallest agricultural
clearances in tropical moist forest are usually of the order of 1 ha, but this overall tropical
mean allows for the greater spatial complexity of tropical dry forest change. The turnover
time of desertification (2 years) is slightly less than that of the 3 years for tropical forest area
change (Table 4).

Table 4. Values of components of the inherent uncertainty function for two global environmental
change phenomena.

Phenomenon Potentially Affected
Area (Mha) No. of Attributes Areal Variability (ha) Turnover Time (yrs)

Desertification 5169 7 0.1 2
Tropical forest area change 1770 1 0.5 3

4.2. Conceptualization Uncertainties of Estimates of Desertification

This assessment of present uncertainty about desertification begins by checking to
see if the four sources of present conceptualization uncertainty in Table 2—terminological
difficulties, underspecification, understructuralization and using proxies—occur in the
time series of five estimates of the global extent of desertification in Table 5.

4.2.1. Terminological Difficulties

Terminological difficulties lead to uncertainty about what a number refers to, and to
inconsistency between estimates of what may appear to be the same variable.

The first four estimates of the extent of at least moderately desertified land were
prepared for the United Nations Environment Programme (UNEP), which convened the
UN Conference on Desertification (UNCOD) in 1977 and coordinated implementation of
the Plan of Action to Combat Desertification agreed there [68]. The estimates vary greatly,
from 4002 Mha [2] to 3272 Mha [1] and 3475 Mha [56] in the 1970s to 608 Mha [3,4] in the
1980s (Table 5). Counter-intuitively, they appear to show desertified land contracting, not
expanding, over time. The rate of desertification has only been estimated once, for the
1970s (20 Mha.a−1) [1].

These estimates have no terminological difficulties as they all assume that deserti-
fication includes a range of soil and vegetation degradation, much of it dispersed and
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reversible, with only the most severe degradation leading to new desert. This is consistent
with how UNCOD defined the term as: “an aspect of the widespread deterioration of
ecosystems under the combined pressure of adverse and fluctuating climate and excessive
exploitation . . . [involving] the diminution or destruction of the biological potential of land,
and can lead ultimately to desert-like conditions” [59]. The fourth estimate was reported
in the UNEP World Atlas of Desertification [3] and included in its Second Edition too [4],
though this used instead the more compact definition in the UN Convention to Combat
Desertification [58] (see Section 4.1.1).

Table 5. Estimates of the global extent of desertification (Mha).

Estimate Primary Variable Period Magnitude
(Mha) Notes

Dregne (1977) [2] Area of at least moderately
desertified land 1970s 4002 −

Dregne (1983) [1] Area of at least moderately
desertified land 1970s 3272 −

Mabbutt (1984) [56] * Area of at least moderately
desertified land 1970s 3475 −

Middleton and Thomas
(1992, 1997) [3,4]

Area of at least moderately
desertified land 1980s 608 UNEP World Atlas

of Desertification
LADA (2008) [57] Degrading area 1981–2003 771 From Bai et al. [69]

* This paper also included an estimate of 1942 Mha that omitted unused rangelands.

The fifth estimate in Table 5, 771 Mha, does have terminological difficulties. It comes
from a “preliminary [global] map of land degradation” published by the Land Degradation
Assessment in Drylands (LADA) project of another UN agency, the Food and Agriculture
Organization [57]. It refers not, as FAO states, to the area of “degraded land”, but to a
proxy variable of “degrading area” [69]. The estimate is based on a drop in biomass growth
from 1981 to 2003 estimated from satellite data. So here conceptualization is affected by the
practicalities of measurement.

Table 5 contains no estimate for the Third Edition of the World Atlas of Desertifica-
tion, published in 2018 not by UNEP, but by the Joint Research Centre of the European
Commission (JRC). JRC is a leading centre for planetary measurement, and a new map of
desertification based on remote sensing data could have provided a more robust estimate
than those in earlier editions, which relied on subjective judgment. Yet the Atlas states
that: “‘desertification’ or ‘land degradation’ cannot be captured in global maps in a way
that satisfies all stakeholders. Instead, [the Atlas] illustrates the geographic distribution of
coincident patterns of issues that may indicate potential land degradation” [5].

Difficulties in “satisf[ying] stakeholders” in the new Atlas reflect the different percep-
tions of the governments of developing countries, who are concerned about the impacts of
drought (a natural hazard) on economic development, and those of developed countries,
who are more concerned about land degradation (a human-made hazard) [49]. The term
“desertification” is also contested by scientists, as its original meaning of frontier-like desert
expansion [70] is not how UNCOD understood desertification [71]. UNEP ‘territorialized’
the drylands science community (see Section 3.5) into ‘insiders’, who advised it for UN-
COD [59] and later initiatives and accepted its discourse, and ‘outsiders’ (other scientists),
many of whom did not. Thus, in our sample of 50 papers that assess dryland degradation,
only 36% mention the term “desertification” in the text and just 4% include it in their titles
(Table S4). The focus of the new Atlas on “potential land degradation” is consistent with
a scientific discourse within which maps of potential desertification hazard are generated
by biophysical models [72,73]. A “World Map of Desertification” was the most widely
publicized of four maps presented to UNCOD, though it only showed potential land
degradation hazard, not the actual current status of desertification [74].
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4.2.2. Underspecification

Underspecification limits the completeness of estimates in covering all attributes of
a phenomenon.

All the estimates of the extent of desertification in Table 5 are underspecified. In 1977,
Dregne was the first to specify desertification as a combination of vegetation degradation
and soil degradation [2], and used this approach to produce for UNCOD the first world
map of current desertification status (Figure 2) [75]. This subjective estimate divides soil
degradation into wind erosion, water erosion and salinization, but omits soil compaction
(Figure 3a). Two later estimates by Dregne in 1983 [1] and Mabbutt in 1984 [56] are even
less complete, as they only refer to total soil erosion (Figure 3b).
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The UNEP World Atlas of Desertification estimate is underspecified too, since it treats
soil degradation as a proxy for all desertification (Figure 3c). The estimate is well specified
in soil degradation, covering all soil attributes, but it omits vegetation degradation. The
Atlas acknowledges this limitation, and includes a map combining soil and vegetation
degradation, but no estimate based on this map [3]. This conceptualization was influenced
by measurement practicalities, since UNEP used the dryland component of an existing soil
degradation map based on subjective estimates by a large team of scientists [76], instead of
commissioning a special survey of desertification.

In contrast, the LADA estimate is underspecified because it omits soil degradation and
uses a decline in vegetation productivity as a proxy for all land degradation [57] (Figure 3d).
Yet vegetation productivity corresponds to just one of 11 indicators (“vegetation activity”)
in LADA’s own comprehensive taxonomy of land degradation indicators, the other ten
covering climate, soil and water [77] (Table S6). This proxy also involves a synergy between
conceptualization and measurement since LADA used an existing map of vegetation
change originally produced for another purpose [69]. Underspecification in the LADA and
UNEP World Atlas of Desertification estimates contributes to their values being lower than
the earlier estimates, since both omit a major group of attributes.
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Figure 3. Alternative conceptual structures for specifying the attributes of desertification in five global
estimates of the extent of desertification by Dregne [1,2], Mabbutt [56], UNEP [3] and LADA [57],
also showing their disaggregation by land use type and the scales used for ranking the degree and
severity of desertification.

4.2.3. Understructuralization

Understructuralization limits the extent to which an estimate is disaggregated to repre-
sent the actual distribution of a phenomenon.
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Estimates of the extent of desertification would ideally be disaggregated by types
of land use, aridity and degradation of irrigated cropland. Only the Dregne (1977) and
LADA estimates in Table 5 are understructuralized by land use type [2,57]. The Dregne
(1983) and Mabbutt (1984) estimates divide areas of land by degree of desertification, e.g.,
slight, moderate, severe and very severe, for the three main uses of drylands: rainfed
cropping, livestock raising and irrigated cropping (Figure 3b) [2,56]. The UNEP World
Atlas of Desertification estimate takes a different approach, by focusing on the causes
of desertification, but it identifies areas in which soil is degraded by “overgrazing” and
“agricultural activities”. The latter include both rainfed cropping and irrigated cropping,
whose degraded area is listed separately (Figure 3c) [3].

Only the UNEP World Atlas of Desertification [3] and LADA [57] estimates are disag-
gregated between the aridity zones within which desertification can occur according to the
UN [58,59], though the LADA estimate combines the arid and hyper-arid zones (Table S7).
The other estimates are understructuralized and this limits their spatial resolution.

The UNEP World Atlas of Desertification estimate is also fully disaggregated between
the different types of degradation of irrigated cropland: salinization, alkalinization and
waterlogging [3] (Figure 3c). The other estimates are understructuralized since they merely
list the area of all degraded irrigated cropland under the heading of “salinization or
waterlogging”, as with the estimates by Dregne [1] and Mabbutt [56], or aggregate degraded
irrigated cropland with other degraded land, as with the estimates by Dregne [2] and
LADA [57].

4.2.4. Using Proxies

All estimates of the extent of desertification in Table 5 use proxies, indicating their
tenuous foundation on measured variables and/or data. Dregne only uses one proxy in his
two estimates–an economic indicator (crop yield) to represent salinization of irrigated crop-
land [1,2] though his second estimate does include electrical conductivity equivalents [1]);
but Mabbutt [56] relies on economic proxy indicators (crop and livestock yields) for all
three of his attributes (Table S6).

The UNEP World Atlas of Desertification uses soil degradation as a proxy for desertifi-
cation. It assesses different types of soil degradation using quantifiable indicators, and then
converts these into the extent of desertification by using four additional proxy indicators:
“changes in agricultural suitability”, “decline in agricultural productivity”, the quality of
the terrain, and intactness of “biotic functions” and the ease of restoring these [3] (Table S6).
The LADA map uses “degrading area” as a proxy for “degraded land” [57], though the
map’s original authors [78], and later LADA itself [79], recognized that this did not properly
represent land degradation observable on the ground.

4.3. Measurement Uncertainties of Estimates of Desertification

This section reports the presence in the time series of estimates of the four sources
of measurement uncertainty listed in Table 2: random errors, systematic errors, scalar
deficiencies and using subjective judgment.

4.3.1. Random and systematic errors

Systematic errors can be evaluated in relation to areal variability and turnover time in
the inherent uncertainty function (Equation (3)). They are analysed here with random errors
since both are high in all the estimates of desertification in Table 5. Systematic errors are
difficult to assess for the first four estimates, owing to the limited empirical data on which
these are based, but are more easily traced in LADA’s map of lands, where, according
to the Normalized Difference Vegetation Index calculated from satellite data, biomass
growth fell from 1981 to 2003 [57]. Drylands only account for 22% of the global total of this
“degrading area” (Table S7), and since in Africa the latter is concentrated below the Equator,
the estimate is biased as it excludes degradation of drylands immediately to the south of
the Sahara. Desertification, by definition, can lead to “the diminution or destruction of the
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biological potential of land . . . .” [59], but it is not equivalent to a reduction in net primary
productivity, as this can also occur because of lack of rainfall [80]. Systematic errors also
result from the gap between the 8 km resolution of satellite data used for this map and the
much higher resolutions needed to monitor the areal variabilities of the different attributes
of desertification reliably (see Section 4.1.4) [81].

4.3.2. Scalar Deficiencies

All estimates of desertification in Table 5 have scalar deficiencies owing to limitations
of the informal institutions devised to produce them. ‘Insider’ scientists who worked
within UN institutions to make subjective global estimates of the extent of desertification
for UNEP devised informal institutions to do this, since few local ground data were
available [49]. Studies by autonomous scientists have scalar deficiencies too, e.g., LADA’s
global map of “degrading area” relies on another ad hoc set of institutions [57]. None of
our sample of 50 papers on assessing dryland degradation shows evidence for the use of
conceptual frameworks and formal measurement institutions suited to global and regional
scales. Only 4% of papers even produce national information using national conceptual
frameworks (Table S8).

4.3.3. Using Subjective Judgment

It is difficult to evaluate properly the reliability of subjective estimates by referring to
the methods and/or data on which they are based. Only the LADA estimate does not rely
on subjective judgment [57].

4.4. Fingerprinting the Sources of Uncertainty about Desertification

The Uncertainty Fingerprints of the estimates of the extent of desertification by Dregne
(1983) [1] and Mabbutt (1984) [56] show that the estimates are limited by underspecification,
understructuralization by irrigated cropland and climate, random errors, systematic errors,
scalar deficiencies and using proxies and subjective judgment (Figure 4). The Dregne (1977)
estimate is also understructuralized by land use type [2]. The least uncertain estimate, by
the UNEP World Atlas of Desertification [3], lacks understructuralization, but resembles
the preceding three estimates in being underspecified, relying on proxies and subjective
judgment, and having no terminological difficulties. The LADA estimate is not based on
subjective judgment but does have terminological difficulties [57].
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Figure 4. A stack of Uncertainty Fingerprints to show changes over time in the conceptualization and
measurement uncertainties associated with five estimates of the global extent of desertification and
in their Uncertainty Scores (ustc = understructuralization by climate; ustlu = understructuralization
by land use, and ustir = understructuralization by irrigated cropland degradation).

Measurement uncertainties exceed conceptualization uncertainties in the first four
estimates in Table 5, yet conceptualization uncertainties still account for over 40% of all
sources of uncertainty (Figure 5). This supports claims by Van der Sluijs [41] and others
that statistical methods alone have limitations for evaluating very uncertain phenomena.
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Figure 5. The total numbers of the eight main sources of conceptualization and measurement
uncertainties found in a time series of five estimates of the global extent of desertification.

Stacking the fingerprints on top of each other to give the Uncertainty Profile of deserti-
fication shows that uncertainty about it is high and persistent. The first three estimates, by
Dregne [1,2] and Mabbutt [56], all have Uncertainty Scores of 7 on a scale from 0 to 8. This
drops to 6 for the UNEP World Atlas of Desertification estimate [3], but returns to 7 for the
LADA estimate [57] (Figure 6). The mean score of 6.8 is far above the statistical threshold of
2, when only random and systematic errors are expected and statistical evaluation alone is
appropriate, according to the UAF, so this also supports the claim of Van der Sluijs [41].
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4.5. The Underlying Mechanisms of Global Environmental Uncertainties

The UAF can explain why uncertainties about estimates persist, by linking trends
in uncertainties, as in the Uncertainty Profile in Figure 6, to underlying discursive and
institutional constraints on conceptualization and measurement capacities in the monitoring
systems that produce the estimates (see Section 3.3).

Intergovernmental discourses responding to societal influences have framed conceptual-
ization in all estimates of desertification evaluated here, allowing the use of proxies (Table 6).

Table 6. Numbers of conceptualization and measurement uncertainties associated with five estimates
of the global extent of desertification and their underlying mechanisms (I = intergovernmental,
S = scientific, Y = present, and − = absent).

Conceptualization
Uncertainties

Measurement
Uncertainties

Uncertainty
Score Discourse Formal

Institutions
Informal

Institutions
Conceptualization–

Measurement
Synergies

Dregne (1977) [2] 3 4 7 I I S −
Dregne (1983) [1] 3 4 7 I I S −
Mabbutt (1984) [56] 3 4 7 I I S −
Middleton and
Thomas (1992) [3] 2 4 6 I I S Y

LADA (2008) [57] 4 3 7 IS I S Y
Mean 6.8

Uncertainty is also influenced by the institutions of intergovernmental and govern-
mental organizations, and by scientific institutions. Formal intergovernmental institutions
are linked here to large uncertainties in monitoring desertification, but they have allowed
scientists to devise informal institutions to make estimates (Table 6).

Negative synergies between conceptualization and measurement can promote un-
certainty too (Table 6), as when ease of access to existing maps of soil degradation and
vegetation change led to underspecification in the UNEP World Atlas of Desertification
estimate [3] and LADA estimate [57], respectively. So while in Heisenberg Uncertainty,
one measurement disturbs another [11], in environmental uncertainty it seems that how a
phenomenon is ‘measured’ can disturb how it is conceptualized.

5. Measuring Desertification

The results presented in the previous section, which show that uncertainty about
desertification has been persistently high for decades, imply that global environmental
uncertainties are indeed inevitable, and so support the statement in the Third Edition
of the World Atlas of Desertification that the global extent of desertification cannot be
mapped satisfactorily [5]. However, this evidence is not conclusive. This section applies the
seven rules for constructing reliable global environmental information through planetary
measurement, derived from the UAF in Section 3.9 (Table 7), to examine if it is technically
feasible to measure desertification reliably at global and national scales, for example, to
quantify the indicator for Target 15.3 of the Sustainable Development Goals: “proportion of
land that is degraded over total land area” [8]. It then examines if these requirements are
met by a sample of seven papers, identified in recent reviews [9,10], which propose using
“big data” to monitor SDG Target 15.3.
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Table 7. Seven rules for constructing reliable global environmental information.

1. Define a phenomenon clearly and appropriately.
2. Specify the minimum number of attributes to measure, to completely characterize a phenomenon.
3. Disaggregate measurement of a phenomenon, to represent the full diversity of its spatial distribution.
4. Minimize spatial systematic errors, by using sensors whose spatial resolution matches the areal variability of a phenomenon and
whose spectral resolution matches its most distinctive property.
5. Minimize temporal systematic errors, by choosing a monitoring frequency consistent with the turnover time of a phenomenon.
6. Minimize the systematic and random errors associated with the method used to classify satellite images.
7. Minimize the systematic and random errors associated with the algorithm used to combine estimates of the various attributes of
a phenomenon.

5.1. Conceptualizing Desertification

Conceptualization frames the design of data collection, the analysis of data, and
presentation of the resulting information, and is the subject of the first three rules in Table 7.

5.1.1. Define a Phenomenon Clearly and Appropriately

If desertification is defined as in either the UNCOD or UNCCD definitions (see
Sections 4.1.1 and 4.2.1) then this should avoid terminological difficulties.

5.1.2. Specify the Minimum Number of Attributes to Measure

An estimate of the extent of desertification will be fully specified if all six attributes of
vegetation degradation and soil degradation in Table 3 are measured, and their estimates
are adjusted to remove misleading signals caused by rainfall variation.

5.1.3. Disaggregate Measurement of a Phenomenon

To avoid understructuralization, any measurement of desertification should be disag-
gregated to represent the actual diversity of its spatial distribution by estimating the degree
of degradation for all types of land use, aridity and degradation of irrigated cropland. Past
experience, reviewed in Section 4.2.3, shows how to do this. Disaggregating by aridity
requires that a digital map of climatic zones is overlaid on a map of desertification. As
changes in global climate will shift climatic zones [82], existing maps of the latter should
be revised using ground-based climate measurements. To disaggregate by land use, it is
necessary to map land use before measuring degradation, so that measurements can incor-
porate criteria appropriate to each land use [1]. Mapping land use is also a prerequisite for
mapping degradation of irrigated cropland, as specific measurement methods, discussed
below, are required for this too.

5.1.4. Avoiding Other Types of Conceptualization Uncertainties

Using remote sensing data, supported by ground data, does not prevent the use of
proxies (see Section 4.2.4), but proxy uncertainty should be absent if planetary measurement
is properly conceptualized and carried out at appropriate spatial and temporal resolutions.

5.2. Measuring Desertification

Measurement involves collecting data and converting them into meaningful informa-
tion. It is the subject of the last four rules in Table 7.

5.2.1. Minimize Spatial Systematic Errors

Matching the spatial resolution of a sensor to the areal variability (smallest area of
variation) of each attribute of a phenomenon, and the sensor’s spectral resolution to
the most distinctive property of each attribute, will minimize spatial systematic errors.
Desertification has at least six terrestrial attributes plus rainfall variation. Each is now
discussed in turn.

(1) Vegetation area. Mapping vegetation cover in dry areas is challenging since dryland
ecosystems commonly involve trees scattered at low density over grasslands. This is
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difficult to measure with the medium (20–100 m) resolution optical satellite sensors
used to map changes in the area of the much denser forests in humid areas with
reasonable accuracy [83]. The first global map of tree cover in drylands based on very
high (≤ 1 m) resolution satellite images was not published until 2017, and led to a
much higher estimate of dry forest area than earlier estimates using lower resolution
images [84]. The correlation which that study found between dry forest area and
the spatial resolution of sensors (Figure 7) supports the relationship between spatial
resolution and areal variability (ai) in the inherent uncertainty function (Equation (3)).

(2) Vegetation density. Measuring vegetation degradation in dry areas, e.g., by a decline in
tree and grass density, is even more challenging than measuring vegetation cover [83].
Very high resolution satellite images are suitable for this too, but measurement is com-
plicated by: (a) the maintenance of vegetation cover when invasive species proliferate
on degraded land; (b) the lack of an absolute benchmark for ‘non-degraded’ ecosys-
tems in the drylands [85]; and (c) the temporal dimension, e.g., tree and grass density
vary with rainfall, and so apparent trends should be corrected for this (see below).

(3) Water erosion. Medium resolution (Landsat) images have been used to measure trends
in areas suffering from water erosion based on their spectral properties [86]. They can
also identify large- and medium-sized gullies but cannot track their development over
time [66]. Very high resolution satellite images are therefore needed for comprehensive
measurements of the features of water erosion. Research has found that as spatial
resolution rises, so too does the number of gullies identified. For example, 9, 15 and
30 gullies were mapped in an area in Tunisia by automated classification of images
from SPOT multispectral (10 m resolution), SPOT panchromatic (5 m resolution)
and Quickbird (0.6 m resolution) sensors, respectively [87]. This also supports the
relationship between the spatial resolution of sensors and areal variability (ai) in the
inherent uncertainty function (Equation (3)).
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Figure 7. The expansion of estimates of dry forest area [84,88–90] as the spatial resolution of satellite
sensors used for measurement gets closer to the areal variability of dry forest.

Radar sensors and light detection and ranging (LiDAR) sensors can be used to measure
water erosion too, e.g., gullies below forest canopies have been mapped by an airborne
LIDAR sensor [91].

(4) Wind erosion. The spatial distribution of wind erosion has not yet been directly
measured using satellite images, possibly because of the absence of the same large
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physical artefacts seen in water erosion. One way to overcome this problem, discussed
in Section 5.2.2, currently suffers from temporal resolution issues. Most estimates
of the rate of wind erosion are currently made using mathematical models that
incorporate meteorological factors, such as wind speed, and the susceptibility of soil
to erosion, with the use of satellite images confined to mapping land use and land
cover and how these change over time [92].

Landsat images, on the other hand, can measure trends in sandy areas, showing that
while in some parts of northern China, for example, sandy areas are contracting, elsewhere
they are expanding [93–95].

(5) Soil compaction. A literature search using Google Scholar found no studies which
measured soil compaction using optical satellite sensors. LIDAR and radar sensors
might be suitable for this purpose, however.

(6) Salinization, alkalinization and waterlogging of irrigated cropland. The spectral signa-
tures of salinized and waterlogged areas differ sufficiently from those of non-affected
areas for them to be separated by medium resolution optical satellite images [96],
but best results are obtained by using ground and laboratory data too [97]. Areas
affected by salinization and alkalinization can also be distinguished using medium
resolution images [98]. Measuring the degree of salinization using satellite sensors
was previously thought to be too difficult, owing to sensor limitations and variable
spectral responses [99–101]. Yet recent research in Morocco and Turkey shows that the
degree of salinization can be measured by soil salinity indices constructed using re-
flectance characteristics in the visible and near infrared bands of Landsat images [102]
and high (10 m) resolution Sentinel 2 images [103]. So desertification maps based
on satellite images can be disaggregated by the type and degree of degradation of
irrigated cropland.

(7) Rainfall variation. The role of rainfall variation is discussed in (2) above and in the
next section.

5.2.2. Minimize Temporal Systematic Errors

Ensuring that monitoring frequency is consistent with the shortest time period over
which a phenomenon varies (turnover time) will minimize temporal systematic errors. The
temporal resolution at which desertification generally is measured should ideally match its
turnover time, set above at 2 years, while allowing correction of misleading signals due to
the seventh attribute, rainfall variation, over longer periods.

Without appropriate correction, cyclical rainfall patterns make it difficult to determine
if a reduction in vegetation cover is caused by land degradation or declining rainfall, or if
a greater profusion of vegetation is the result of land restoration, the spread of invasive
species, or simply a rise in rainfall [104,105]. Confusion over this issue has previously
led to incorrect estimates of the rate of desertification and, in turn, to scepticism about
whether desertification actually exists [71]. For example, in 1977 UNEP reported that
comparing aerial survey observations with an 18-year-old map of the Sahara Desert’s
southern border implied that the desert was moving south at over 5 km per annum [106].
Scientific scepticism about the existence of desertification grew in the late 1980s [71], after
analysis of low spatial resolution satellite images showed that while the boundary between
the Sahara Desert and the Sahelian region shifted south in 1981, it moved north in 1985 when
rainfall returned [60,107,108]. So rainfall measurements at long-term monitoring stations
are indispensable for correcting for the variation of vegetation growth with rainfall, and for
future changes in climatic zone boundaries resulting from global climate change [82].

Annual rainfall variation is used here as the climate attribute because it is important
for analysing satellite data on land cover. Other climatic variables contribute to understand-
ing desertification but in different ways, and so are not listed here for measuring actual
desertification status. For example, prolonged droughts have a causative role in accelerating
actual desertification [59], and so would be independent variables in future models in
which the measured extent of desertification is the dependent variable. Mean dry season
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length and the mean annual number of extreme precipitation events could be used in a
similar way.

Research suggests that measuring wind erosion by combining satellite data and ground
data will be challenging for temporal reasons. The origins and paths of dust storms can in
principle be measured using optical satellite images, but dust storms are often not detected
from space due to high cloud cover, and even on cloudless days the temporal resolution of
satellite sensors may not match the relevant turnover time (ti in Equation (3)). For example,
using ground-based cameras to collect images in the Mojave Desert every 15 min over
six years recorded major dust events on 68 days each year, on average. Yet none of these
events was identified in images from the low (250 m) spatial resolution MODIS sensor,
despite its high temporal resolution (daily image collection), as the timing of dust storms
did not coincide with when cloud-free images were collected [109]. National ground-based
networks are vital for measuring airborne dust transport but are still few in number, and
even the US network has only 13 measurement sites [110]. Furthermore, according to Webb
et al., such networks generally “do not address which areas are eroding, and why, with
enough accuracy to inform management” [111].

5.2.3. Minimize Errors Associated with the Method Used to Classify Satellite Images

It is also important to minimize the systematic and random errors associated with
the method used to classify satellite images, supported by ground data, since planetary
measurement methods are still embryonic. Thus, the first global “wall-to-wall” map of
forest area based on Landsat images, published only in 2012, relied on a major innovation
in semi-automated supervised classification software [34]. The first global wall-to-wall map
of forest area change based on Landsat images followed a year afterwards and appeared to
use automated classification [112].

Since these innovations for classifying medium resolution satellite images are so recent,
corresponding innovations for the reliable automated or semi-automated supervised large-
area classification of very high resolution satellite images will take time to emerge. This is
why the first very high resolution map of tree cover in the drylands used crowd-based visual
classification [84], and why the same method is likely to be used to measure desertification
at very high resolution for the first time.

5.2.4. Minimize Errors Associated with the Algorithm Used to Combine Estimates of the
Various Attributes of a Phenomenon

When the multiple attributes of desertification have been measured, it is necessary to
use an algorithm to combine the resulting estimates to map spatial variation in the overall
degree of desertification. The choice of algorithm may lead to systematic and random
errors and limit comparability between different estimates.

In the early estimates evaluated in Section 4, algorithms are only employed to allow
for the contextuality of desertification [61], so it may occur in some parts of an area but not
in others [113,114]. Thus, the UNEP World Atlas of Desertification first assesses the degree of
desertification from Light to Extreme, and then uses an algorithm to designate the severity
of desertification in areas on another four-point scale from Low to Very High, according
to the percentage incidence of Light, Moderate, Strong and Extreme desertification in that
area [3].

5.2.5. Avoiding Other Types of Measurement Uncertainties

Planetary measurement of desertification should prevent uncertainty due to the use
of subjective judgment. Scalar deficiencies will be minimized if a robust set of planetary
measurement rules, such as those proposed here, are employed. Gaining a consensus in the
global change science community for a common set of rules will take time. However, the
seven rules in Table 7 could provide a foundation on which initial theoretical discussions
can build, so that the variety of informal planetary measurement institutions now in use
can become increasingly consistent.
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5.3. The Prospects for Reducing Uncertainty about Desertification

This section has presented an optimistic view of the technical feasibility of using
planetary measurement to reduce uncertainty about desertification, but has also indicated
that current state-of-the-art remote sensing methods still impose limits on the extent of
this reduction. For instance, the Uncertainty Score for estimates is unlikely to fall below
3 soon, because of continuing underspecification owing to the lack of measurement of wind
erosion and soil compaction.

Measuring the extent of desertification at global scale must be organizationally feasible
as well as technically feasible. Thus, measuring global forest area using a wall-to-wall
survey of Landsat images was, arguably, technically feasible in the 1970s but it did not
become organizationally feasible until 2012 [34]. A similar organizational advance is needed
to reduce uncertainty about desertification. For a Global Drylands Observing System, which
was advocated in various studies in the late 2000s, Verstraete et al. proposed a nested
hierarchy of monitoring centres covering all scales from global to local [6]. Bastin et al.
later found that tree cover in drylands could be measured at global scale by crowd-based
classification of very high resolution satellite images in regional centres [84]. This could
provide the basis for planetary measurement of desertification, though this section has
shown that ground-based measurements, especially of wind erosion, soil compaction and
rainfall, may also be needed for the foreseeable future.

5.4. Recent Proposals to Use “Big Data” to Monitor SDG Target 15.3

The measurement approach proposed here can be used to quantify the indicator for
SDG Target 15.3 listed in the Sustainable Development Goals: “proportion of land that is
degraded over total land area” [8]. In the absence of sufficient national data to allow coun-
tries to monitor progress in meeting the SDGs, two recent reviews have advocated using
global sets of “big data” (including satellite data) instead [9,10]. Yet since analysis earlier in
this paper has shown that existing global information on desertification is inadequate, this
section uses the UAF to evaluate the reliability of the methods proposed to monitor Target
15.3 in a sample of seven of the papers that are cited as exemplars of the big data approach
in these two review studies.

Only one of the seven papers, by Christian et al. [115], specifically aims to measure
the actual status of desertification, in a 144,368 ha area of Rajasthan State in India. While it
has no terminological difficulties, it is understructuralized since it is only disaggregated
by land use types and climatic zones (even though salinization is a major problem in
Rajasthan [116]), and is also underspecified since it merely maps a 25 year (1991–2016)
trend in vegetation degradation and water erosion, with vegetation degradation only being
assessed on land with natural ecosystems. Random and systematic errors are relatively
high, because 30 m resolution satellite data are employed as standard, with 5.8 m resolution
data only used for 2016, and temporal resolution (≥9 years) is also rather low. A second
paper, by Wang et al. [117], measures the status of “land degradation” in the whole of
Mongolia, but since this is in a dry area it is equivalent to desertification. The method
has no terminological difficulties and corrects informally for rainfall variation, but it is
underspecified as it effectively uses vegetation degradation (between non-degraded land,
desert steppe, sand, desert and barren land) as a proxy for land degradation as a whole,
and does not measure soil degradation as such. It is also understructuralized by aridity
zones, land use types and degradation of irrigated cropland. Spatial systematic errors are
relatively high, because 30 m resolution satellite data are used as standard, though temporal
systematic errors are relatively low since the highest temporal resolution is 5 years.

Two more papers merely use models to predict the potential hazard of desertifica-
tion [118,119], following the approach of the UNCOD “World Map of Desertification” [74]
described in Section 4.2.1, so they are not evaluated here. Nor is another modelling study
which predicts soil organic carbon content and other soil properties at global scale, using a
network of sample plots and low (250 m) resolution optical satellite data on land cover and
other land properties [120].
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In the two remaining papers, a global study by Giuliani et al. [121] discusses how
to assess land degradation in a range of climatic zones while Mitri et al. focus on a
140,800 ha area in Lebanon [122]. Both studies are framed by three UNCCD desertification
indicators—land cover, land productivity, and soil organic carbon stocks—that have been
proposed to substitute for the single SDG indicator [123], since the UNCCD is coordinating
implementation of the LDN target. As discussed in Section 4.3.1, land cover change is an
inadequate proxy for vegetation degradation. Satellite-based measurement of change in
the net primary productivity of areas stratified by land cover type may be used to estimate
vegetation degradation, but it is an inadequate proxy for land degradation as a whole.
The same is true for estimates of changes in soil organic carbon content, which should be
derived from direct measurements of soil carbon density and the different types of soil
degradation (Table 3), and not used as a substitute for them. A full critique of the UNCCD
indicators requires a separate study [124], but they and other indicators have been critically
evaluated by a group of experts appointed by the UNCCD [125]. As Giuliani et al. only
aim to provide a “proof of concept” of accessing different data sources, their global study
lacks sufficient methodological detail to be evaluated here, though it does recognize the
need to use high spatial and temporal resolution data, and appreciates the limitations of
the soil organic carbon indicator [121]. The Lebanon study is disaggregated by climatic
zones and land use/land cover types, but not by degradation of irrigated cropland. It
is underspecified, as it uses vegetation degradation (estimated using the change in net
primary productivity for forest, grassland and cropland) as a proxy for all land degradation,
and land use and land cover change to predict changes in soil organic carbon content,
rather than measuring soil degradation directly. Temporal systematic errors are high, as the
measurement period is 13 years. Spatial systematic errors are substantial, owing to the use
of data from satellite sensors with resolutions ranging from 5 m to 1000 m. Despite being
framed by the UNCCD indicators, it uses an original algorithm to estimate the degree of
overall land degradation by a weighted sum of the magnitudes of land cover change, land
productivity trend, change in net primary productivity, soil organic carbon content, erosion
risk, soil fertility and rainfall [122]. Yet since these parameters and their weights are not
justified in the study, this incurs further systematic errors (Table 7).

This evaluation of three of the seven exemplar big data studies complements the
evaluation of the five global UN studies in Section 4 by showing how the UAF can be
used to assess uncertainties in studies by scientific groups, and how ranking random and
systematic errors in Uncertainty Fingerprints can be informed by the last four rules for
constructing reliable global environmental information in Table 7. While the Uncertainty
Scores of the five UN estimates vary between 6 and 7 (Figure 4) and have a mean of 6.8, these
three studies have a lower mean of 4.7: the studies of Lebanon [122] and Mongolia [117]
have scores of 5 while that of India [115] has a score of 4 (Figure 8). None of the three
studies has terminological difficulties or uses subjective judgment. Only the Lebanon
study by Mitri et al. uses an algorithm to provide an overall estimate of the degree of
land degradation [122], and this has systematic errors associated with it. However, it is
important to note that all three studies lack scalar deficiencies since they are limited in
spatial scope.

So while there is clearly potential to use big data to substitute for inadequate national
data when monitoring SDG Target 15.3, such measurements require a more careful selection
of methods than those used in the three recent studies assessed in Figure 8 if Uncertainty
Scores are to decline substantially. Two of the other four studies [118,119] illustrate the con-
tinuing popularity among scientific groups of estimating potential desertification hazard,
rather than actual desertification status. Allen et al. are therefore justified in arguing that
substituting big global datasets for national data will face challenges.
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Figure 8. A stack of Uncertainty Fingerprints to show the conceptualization and measurement
uncertainties associated with three recent estimates of the extent of land degradation based
on ‘big data’ sources and their Uncertainty Scores (ustc = understructuralization by climate;
ustlu = understructuralization by land use; and ustir = understructuralization by irrigated cropland
degradation).

6. Conclusions

Fifty years after the first remote sensing satellite was launched to collect global data,
estimates of the magnitudes of global environmental change phenomena remain very
uncertain, since global data collected by these satellites have not been fully converted
into global information. This paper has built on two previous taxonomies of the sources
of environmental uncertainty [13,17] to propose an Uncertainty Assessment Framework
(UAF) for evaluating very uncertain environmental phenomena, and has applied it to study
the magnitude and persistence of global uncertainty about desertification and suggest how
this may be reduced.

This paper has demonstrated, using the UAF, that desertification is one of the most
uncertain of all global environmental change phenomena. Based purely on their relative
complexities, estimated using the number of attributes needed to measure them, the inherent
uncertainty of desertification, which has at least seven attributes, is much greater than that
of forest area change, which has just one attribute. Present uncertainty about desertification
is high too: the five available global estimates have a mean Uncertainty Score of 6.8 out
of a maximum score of 8, corresponding to four conceptualization uncertainties and four
measurement uncertainties.

Another finding is that uncertainty about desertification is persistent. The Uncertainty
Score (US) is a more objective measure of the persistence of uncertainty than the mere
frequency of estimates mentioned in Section 1, and using the UAF to evaluate the five
available global estimates of desertification shows that the US has remained at 7 since the
1970s, except for a dip to 6 in the 1980s.

In none of the estimates of desertification evaluated here has the Uncertainty Score
therefore fallen to the threshold of 2 when, according to the UAF, statistical evaluation
of uncertainties alone is appropriate. This, and the finding that conceptualization uncer-
tainties account for over 40% of all sources of uncertainty about desertification, support
claims that standard statistical methods are inadequate for evaluating very uncertain
phenomena [39–41].

While global environmental uncertainties are persistent, they are not inevitable like
Heisenberg Uncertainty [11]. This paper has also shown how the UAF can be used to devise
an initial set of seven rules for constructing reliable global environmental information. Con-
trary to a statement in the Third Edition of the World Atlas of Desertification [5], applying
these UAF rules shows that even the large uncertainty about the extent of desertification
could be substantially reduced if surveys are properly conceptualized, and involve mea-
surements using sensors with appropriate spatial, temporal and spectral resolutions. Yet
while it is technically feasible to measure most attributes of desertification at global scale us-
ing currently available remote sensing methods, this does not mean that uncertainty about
it will diminish quickly. Translating the technical potential of Earth observation into practice
is often hindered by organizational constraints [126], and until remote sensing methods be-
come available to monitor two particularly challenging attributes of desertification—wind
erosion and soil compaction—estimates are likely to remain underspecified, ensuring that
the US value does not fall below 3.
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These findings have two implications for measuring compliance at national scale
in dry areas with the Land Degradation Neutrality Target 15.3 of the UN Sustainable
Development Goal 15 “Land and Life”. First, within the limits of underspecification
mentioned in the last paragraph, it is technically feasible to monitor national progress in
complying with the official indicator of “proportion of land that is degraded over total
land area” listed in the Sustainable Development Goals [8], provided that measurements
are properly conceptualized and use both medium and very high resolution satellite
images, supported by ground data. While very high resolution satellite images are still
not yet widely used in national environmental monitoring, FAO has made the Collect
Earth software it used to map dry forests [84] freely available, and government use of this
software is increasing. Second, however, Allen et al. are right to caution that using “big
data” to fill gaps in national data to monitor SDG Target 15.3 will not be straightforward [9]:
(a) the five existing UN global estimates of desertification are out of date and our analysis
has shown that they were very uncertain when they were made; and (b) although the
uncertainty associated with the methods used in three recent studies of the potential to use
‘big data’ for this purpose is, according to our analysis, lower (with a mean Uncertainty
Score (US) of 4.7) than that of the five UN estimates (US = 6.8), it is still substantial, owing
to limitations in conceptualization and measurement.

The UAF can differentiate between different degrees of high inherent and present
uncertainty about different phenomena. It complements the use of statistical methods for
uncertainty evaluation and is consistent with them at the limits of their reliability. This is
because it identifies sources of uncertainty that are missed by statistical methods and which
are particularly important for complex multiple attribute global environmental change
phenomena, such as desertification. The UAF can also show how to reduce uncertainty to a
level where it can be estimated by statistical methods alone. The UAF is consistent with, but
more coherent than, previous taxonomies of sources of environmental uncertainty because
it synthesizes the sources using a novel theoretical approach to linking conceptualization
and measurement.

The simplicity of the UAF is another of its advantages, but it also leads to disadvan-
tages. For example, it is convenient to compare the uncertainty of different environmental
phenomena, and different estimates of the same phenomenon, using the Uncertainty Score
(US) on a common scale from 0 to 8, but the presence of different degrees of individual con-
ceptualization uncertainties in different estimates may not be reflected in the corresponding
US values. Thus, an estimate of desertification is ranked: (a) as understructuralized if
it has one form of understructuralization or all three; and (b) as using proxies whether
this occurs for just one attribute or all of them. One way to tackle this is to extend the
scale when comparing the uncertainties of multiple estimates of the same phenomenon.
Wider application of the UAF will lead to further critical evaluation of its advantages and
disadvantages, and to refinements to counter the latter.

While the Earth is a “small planet” [127], it is worrying that current estimates of
the magnitudes of global environmental change phenomena continue to be so uncertain.
This is of particular concern now that human impacts on the planet have reached global
proportions [82] and the world’s governments have agreed on ambitious Sustainable
Development Goals which include a considerable environmental component [8]. To address
this shortcoming, it is vital to give greater priority to fundamental research into the origins
of global environmental uncertainties and how to evaluate them. Using the UAF more
extensively to evaluate present uncertainty about other global environmental change
phenomena, e.g., forest area change, forest carbon change, and biodiversity loss, will enable
their US values to be compared with the mean of 6.8 reported here for desertification and
inform the monitoring of other targets in SDG 15. Another priority is to devise new rules
for constructing reliable global environmental information, so disparities between different
planetary measurements using different methods can be reduced. The initial set of seven
rules derived from the UAF that are proposed in this paper could provide a starting point
for this work.
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More research of this kind will benefit global environmental governance, and human-
ity’s capacity to tackle its global impacts. Politicians often wrongly assume that scientists
provide them with ‘certain’ knowledge. Countering this assumption remains a challenge,
but scientists could also do more to evaluate the uncertainty of information about global en-
vironmental changes which they communicate to politicians, and to reduce this uncertainty
by realizing the full potential of planetary measurement.
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