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ABSTRACT

Recent studies of extractive text summarization have leveraged

BERT for document encoding with breakthrough performance.

However, when using a pre-trained BERT-based encoder, existing

approaches for selecting representative sentences for text summa-

rization are inadequate since the encoder is not explicitly trained

for representing sentences. Simply providing the BERT-initialized

sentences to cross-sentential graph-based neural networks (GNNs)

to encode semantic features of the sentences is not ideal because

doing so fail to integrate other summary-worthy features like sen-

tence importance and positions. This paper presents MuchSUM, a

better approach for extractive text summarization. MuchSUM is a

multi-channel graph convolutional network designed to explicitly

incorporate multiple salient summary-worthy features. Specifically,

we introduce three specific graph channels to encode the node tex-

tual features, node centrality features, and node position features,

respectively, under bipartite word-sentence heterogeneous graphs.

Then, a cross-channel convolution operation is designed to distill

the common graph representations shared by different channels.

Finally, the sentence representations of each channel are fused

for extractive summarization. We also investigate three weighted

graphs in each channel to infuse edge features for graph-based

summarization modeling. Experimental results demonstrate our

model can achieve considerable performance compared with some

BERT-initialized graph-based extractive summarization systems.

CCS CONCEPTS

· Artificial intelligence → Natural language processing; ·

Retrieval tasks and goals→ Summarization.
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1 INTRODUCTION

Extractive text summarization produces a summary by identifying

the most representative sentences in a document. Most of the exist-

ing techniques in extractive text summarization [5, 11, 14, 15, 25,

35, 37] formulate the problem as a sequence labeling task, where

the labels indicate if a sentence should be included in the generated

summary. Most of the recent approaches in this direction employ

pre-trained language models such as BERT [1] to learn sentence

representation for text summarization, achieving some of the state-

of-the-art results [11, 33, 36].

While promising, the sentence representations used by existing

BERT-based methods still have room for improvement. Existing

language models model sentences word-by-word, but doing so

ignores the semantic relations among sentences [3]. Indeed, recent

studies have shown that the sentence representations given by a

vanilla BERT are inadequate to distinguish sentences with different

semantics [10, 19, 31].

Efforts have been made to better capture inter-sentence rela-

tionships by modeling summarization graphs. Early studies, such

as unsupervised LexRank [2] and TextRank [13], built similarity

graphs among sentences leveraged PageRank [16] to rank them

by estimating summary-worthy features of sentence importance.

Recently, some works have applied graph representation learning

techniques on various semantic graphs [3, 5, 6, 17, 28, 32] with con-

sideration of semantic similarity and the natural topology. However,

they usually rely on external tools to construct the graphs, in which

the error propagation problem is serious. Furthermore, there is no

consensus on the best neural graph formulation to leverage the

topological centrality of a cross-sentential summarization graph.

There is an extensive body of work [9, 26, 36] showing that

the success of an extractive summarization system heavily re-

lies on learning sentence position information. For example, the

work in [11] empirically shows that LEAD-3 gives similar perfor-

mance compared with abstractive or extractive Transformer mod-

els. Zhong et al. [35] find that Transformer encoder [24] equipped

with lexical embeddings has similar or even inferior performance



to the model that only equips positional embeddings. These stud-

ies provide compelling evidence, showing the positive impact of

position features on extractive summarization.

We present MuchSUM, a multi-channel convolutional graph neu-

ral network (GNN) for modeling summarization graphs. MuchSUM

is designed to explicitly integrate summary-related features, like

sentence semantics and importance and position. Specifically, we

introduce a semantic encoding channel to learn sentence linguistic

features, a centrality encoding channel to learn sentence importance

features, and a position encoding channel to learn sentence position

features. Besides, considering the same topology of the heteroge-

neous bipartite word-sentence graph used in the three channels, we

use the common convolution module optimized by the consistency

constraints to distill the ‘common’ property among three specific

feature spaces. Meanwhile, the three feature channels are optimized

by disparity constraints to ensure the specific embeddings in each

feature space. The rationale is that these summary-worthy features

aggregated by the same bipartite topological structures comple-

ment can be fused to derive deeper inter-sentence relationships for

better recognizing summary sentences. We evaluate MuchSUM by

applying it to the CNN/DailyMail benchmark dataset. Experimen-

tal results show that our approach outperforms BERT-initialized

summarization graph models with distinctive performance gains.

This paper makes the following contributions:

• It is the first to transfer the multi-channel GCN for extractive

summarization under bipartite word-sentence graphs.

• It provides a comprehensive study on how to aggregate three

kinds of summary-worthy features in an explicit manner based

on the multi-channel graph convolution operation.

• It demonstrates how weighted graphs can be employed to aggre-

gate node features of neighbors in word-sentence graphs.

2 MUCHSUM: THE PROPOSED METHOD

We present an overall structure of the proposed MuchSUM in Fig-

ure 1, where an input will be fed into the three convolutional

graph modules, semantics graph G𝑆 = (A,X𝑆 ), centrality graph

G𝐶 = (A,X𝐶 ) and position graph G𝑃 = (A,X𝑃 ). Further, consider-

ing that the three specific graphs have common features because

of their unique topology, we use a common convolution module

with parameter sharing strategy to learn the common embeddings

Z𝑚𝑠 , Z𝑚𝑐 and Z𝑚𝑝 . During optimizing by downstream sentences

classification, a consistency constraint L𝐶 is employed to enhance

the common property of Z𝑚𝑠 , Z𝑚𝑐 and Z𝑚𝑝 . Meanwhile, a dispar-

ity constraint L𝑑 is to ensure the independence between Z𝑆 and

Z𝑚𝑠 , Z𝐶 and Z𝑚𝑐 , as well as Z𝑃 and Z𝑚𝑝 . Then we fuse these six

embeddings Z𝑆 , Z𝐶 , Z𝑃 , Z𝑚𝑠 , Z𝑚𝑐 and Z𝑚𝑝 optimally to obtain the

final embedding Z for the sentence binary classification task.

2.0.1 Node Lexical Feature Encoding Channel. We explore the po-

tential of BERT to initialize textual representations of graph nodes.

Thus, the textual features of graph nodes are initialized by BERT.

Specifically, the single input document after tokenization is de-

noted 𝐷 =

{
𝑤1𝑠1 , ..., 𝑠1, ...,𝑤1𝑠𝑛 , ..., 𝑠𝑛

}
in which token of 𝑤𝑖𝑠 𝑗 is

𝑖-th word in 𝑗-th sentence and the sentence representation 𝑠𝑖 is 𝑖-th

[CLS] token in BERT. The initialized node representation H
(0)
𝑠 =

𝐵𝐸𝑅𝑇 (
{
𝑤1𝑠1 , ..., 𝑠1, ...,𝑤1𝑠𝑛 , ..., 𝑠𝑛

}
). The lexical feature X𝑠 of graph

nodes is, X𝑠 = H
(0)
𝑠 . We use GCN [8] as the module to encode

𝓛𝒅

𝓛𝒄

𝒁𝒔

𝒁𝒎𝒔
𝒁𝒎𝒄 𝒁𝒎𝒑
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Figure 1: The overview architecture of the MuchSUM with

three specific graph convolutional channels and a common

convolutional channel shared by the three graph channels.

We denote three specific channels as Node Lexical Feature

Encoding Channel (A,X𝑠 ), Node Centrality Feature Encoding

Channel (A,X𝑐 ) andNode Position Feature EncodingChannel

(A,X𝑝 ). In the bipartite word-sentence heterogeneous graph,

each sentence node (solid node) is connected to its contained

word-related nodes (hollow nodes) and takes the weight of

the relation as their edge feature. Different thicknesses of

edges represents different edge weights.

lexical channel, which is defined as:

Z
(𝑘+1)
𝑠 = 𝑅𝑒𝑙𝑢

(
D̃
− 1

2 ÃD̃
− 1

2 Z
(𝑘−1)
𝑠 W

(𝑘)
𝑠

)
, (1)

where D̃ is the diagonal degree matrix of Ã and Ã = A + I which is

the adjacency matrix of the lexical graph and 𝐴𝑖, 𝑗 = {0, 1}. W
(𝑘)
𝑠 ∈

R
𝑑𝑘−1×𝑑𝑘 is parameter matrix of the lexical channel. Z

(0)
𝑠 = X𝑠 is

the input representation matrix of the model. Each row Z𝑖 ∈ R
𝑑 is

the 𝑑-dimension representation of node 𝑖 . We denote the last layer

output embedding as Z𝑆 in lexical feature space.

Moreover, we consider edge weights in the semantic graph chan-

nel and infuse TF-IDF values in the 𝐴𝑖, 𝑗 as the edge weights. The

TF is the number of times𝑤𝑖 occurring in 𝑠 𝑗 , and the IDF is made

as the inverse function of the out-degree of𝑤𝑖 .

2.0.2 Node Centrality Feature Encoding Channel. For graph sum-

marization, keywords (excluding stop words) appear in many sen-

tences, and key sentences share many keywords. The centrality is

to quantify the importance of the nodes that are the closest to all

other nodes in the network.

In MuchSUM, we develop a centrality feature encoding chan-

nel to learn the sentence importance. The centrality feature 𝑋𝑐

of graph nodes is X𝑐 = H
(0)
𝑐 and H

(0)
𝑐 ∈ R𝑛×𝑑 is initialized by

four typical centrality features1: degree centrality, Katz centrality,

closeness centrality and load centrality. The dimension of each

1The detail introduction are shown in https://networkx.org/documentation/stable/
reference/algorithms/centrality.html



feature embedding occupies R𝑛×(𝑑/4) . We also use tools of feature

discretization2 to decompose each feature into a set of bins, here

equally distributed in width. The discrete feature values are then

one-hot encoded for each centrality and will be appended as the

final 𝐻
(0)
𝑐 . The centrality channel is defined as:

Z
(𝑘+1)
𝑐 = 𝑅𝑒𝑙𝑢

(
D̃
− 1

2 ÃD̃
− 1

2 Z
(𝑘−1)
𝑖 W

(𝑘)
𝑐

)
, (2)

where W
(𝑘)
𝑐 ∈ R𝑑𝑘−1×𝑑𝑘 is parameter matrix of the centrality chan-

nel. Z
(0)
𝑐 = X𝑐 is the input representation matrix of the model. The

last layer output embedding is denoted as Z𝐶 .

Moreover, we also consider the edge weights calculated by the

betweenness centrality for edges. We then infuse the edge weights

into the 𝐴𝑖, 𝑗 as the weight matrix.

2.0.3 Node Position Feature Encoding Channel. It has been proved

by Ke et al. [7] that the design of a separate 3 position encoding can

remove the randomness in token-to-position or position-to-token

correlations in graphs. Inspired by their works, we compute the

positional correlation in a separate channel with its own parameter-

izations. The position feature X𝑝 = H
(0)
𝑝 is to be learned to obtain

the sequential nature of tokens in the original text. H
(0)
𝑝 ∈ R𝑛×𝑑

is initialized by absolute position features, inspired by the BERT’s

position embeddings. Further, the position channel is defined as:

Z
(𝑘+1)
𝑝 = 𝑅𝑒𝑙𝑢

(
D̃
− 1

2 ÃD̃
− 1

2 Z
(𝑘−1)
𝑝 W

(𝑘)
𝑝

)
, (3)

whereW
(𝑘)
𝑝 ∈ R𝑑𝑘−1×𝑑𝑘 is parameter matrix of the position channel.

Z
(0)
𝑝 = X𝑝 is the input representation matrix of the model. The last

layer output embedding is denoted as Z𝑃 .

Besides, inspired by the relative position embeddings proposed

by Shaw et al. [21], we normalize the relative position as the relative

positionweights into the𝐴𝑖, 𝑗 to capture relative position differences

between nodes:

𝐴𝑖, 𝑗 = 𝑐𝑙𝑖𝑝 ( 𝑗 − 𝑖, 𝑘)/
∑︁

𝑗
𝑐𝑙𝑖𝑝 ( 𝑗 − 𝑖, 𝑘), (4)

𝑐𝑙𝑖𝑝 (𝑥, 𝑘) =𝑚𝑎𝑥 (𝑘,𝑚𝑖𝑛(2𝑘, 𝑥 + 𝑘)) . (5)

Here, we obtain the weight 𝐴𝑖, 𝑗 of relative position between node 𝑖

and 𝑗 . By using the node relative position weights as edge weight

in the adjacency matrix, this channel expects the neighboring posi-

tions are embedded closer than the faraway ones.

2.0.4 Common Convolution Module. The common convolution

channel with parameter sharing is to get the common features

shared by the three specific channels since these channels are un-

der the same topology of the word-sentence heterogeneous graph.

Specifically, the lexical feature embedding 𝑍𝑚𝑠 from lexical graph

channel is transformed into the common convolution channel:

Z
(𝑘+1)
𝑚𝑠 = 𝑅𝑒𝑙𝑢

(
D̃
− 1

2 ÃD̃
− 1

2 Z
(𝑘−1)
𝑚𝑠 W

(𝑘)
𝑚

)
, (6)

where, 𝑍𝑘−1
𝑚𝑠 is the lexical feature embedding of the 𝑘−1 layer and

𝑍
(0)
𝑚𝑠 = 𝑋𝑠 . Similarly, the centrality feature and position feature

2https://scikit-learn.org/0.20/modules/generated/sklearn.preprocessing.
KBinsDiscretizer.html
3It should be noted that the position embedding in the BERT-based lexical encoding
channel is used to distinguish the lexical semantics of the same word in different
positions. The separate position embedding here differentiates the position features.

embedding can be calculated in the same way:

Z
(𝑘+1)
𝑚𝑐 = 𝑅𝑒𝑙𝑢

(
D̃
− 1

2 ÃD̃
− 1

2 Z
(𝑘−1)
𝑚𝑐 W

(𝑘)
𝑚

)
, (7)

Z
(𝑘+1)
𝑚𝑝 = 𝑅𝑒𝑙𝑢

(
D̃
− 1

2 ÃD̃
− 1

2 Z
(𝑘−1)
𝑚𝑝 W

(𝑘)
𝑚

)
. (8)

Then, the final output of common embedding is:

𝑍𝑀 = (𝑍𝑚𝑠 + 𝑍𝑚𝑐 + 𝑍𝑚𝑝 )/3. (9)

2.0.5 Graph Representation Readout. Now we have three specific

representations Z𝑆 , Z𝐶 , Z𝑃 , and one common representations Z𝑀 .

Then we read out these representations and fuse them into the

representations of final sentences for the sentence binary classifica-

tion. We use the attention mechanism to fuse these representations

adaptively and then to obtain the final sentence representations Z:

Z = a𝑆 · Z𝑆 + a𝐶 · Z𝐶 + a𝑃 · Z𝑃 + a𝑀 · Z𝑀 , (10)

where a𝑆 , a𝐶 , a𝑃 , a𝑀 ∈ R𝑛×1 are three learnable attention values of

𝑛 sentence-related nodes with representations Z𝑆 , Z𝐶 , Z𝑃 , and one

common representations Z𝑀 , respectively.

2.0.6 Optimization. We use the disparity constraint and consis-

tency constraint reserved from AM-GCN [27]. The disparity con-

straint is used to ensure the independence between Z𝑆 and Z𝑚𝑠 ,

Z𝐶 and Z𝑚𝑐 , as well as Z𝑃 and Z𝑚𝑝 :

L𝑑 = 𝐻𝑆𝐼𝐶 (Z𝑆 ,Z𝑚𝑠 ) + 𝐻𝑆𝐼𝐶 (Z𝐶 ,Z𝑚𝑐 ) + 𝐻𝑆𝐼𝐶 (Z𝑃 ,Z𝑚𝑝 ), (11)

where the function of 𝐻𝑆𝐼𝐶 is the Hilbert-Schmidt Independence

Criterion [22] which is a kernel method to measure the statistical

dependence between two variables.

The consistency constraint is designed to enhance the common-

ality among these embedding matrices Z𝑚𝑠 , Z𝑚𝑐 and Z𝑚𝑝 . Firstly,

they are normalized and then transformed into similarity matrices

separately. Three corresponding similarity matrices are S𝑆 , S𝐶 and

S𝑃 . S𝑆 = Z𝑚𝑠 ·Z
𝑇
𝑚𝑠 , S𝐶 = Z𝑚𝑐 ·Z

𝑇
𝑚𝑐 and S𝑃 = Z𝑚𝑝 ·Z

𝑇
𝑚𝑝 . Then, the

three similarity matrices are optimized by 𝐿2-normalization-based

consistency constraint:

L𝑐 = ∥S𝑆 − S𝐶 ∥
2
𝐹 + ∥S𝐶 − S𝑃 ∥

2
𝐹 + ∥S𝑃 − S𝑆 ∥

2
𝐹 . (12)

The consistency constraint implies that the two similarity matrices

are similar. We use the final sentence representation Z in Eq.(10)

for the sentence binary classification. The predication layer is a

sigmoid classifier:

Ŷ = 𝜎 (W · Z + b) . (13)

The classification loss is a cross-entropy loss:

L𝑦 = −
∑︁

𝑙 ∈𝐿

∑︁

𝑖∈𝑛

∑︁

𝑐∈𝐶

Y𝑙 𝑙𝑛Ŷ, (14)

where 𝑙 ∈ 𝐿 is a summarization graph of the training set and the

𝑖 ∈ 𝑛 is the 𝑖-th sentence node in the graph. 𝑐 ∈ 𝐶 is the real label of

the 𝑖-th sentence node. Nowwe have the following overall objective

function by combining the node classification task:

L = L𝑦 + 𝛼L𝑑 + 𝛽L𝑐 , (15)

where 𝛼 and 𝛽 are parameters of the consistency and disparity

constraint terms.
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Figure 2: Visualization of the learned node embeddings in testing each epoch. Red nodes are words (light) and sentence (heavy)

in labels of summary, while blue nodes are related to words (light) and sentences (heavy) in non-summaries. Purple nodes are

words shared by sentences between summaries and non-summaries.

Table 1: Results of our proposed models against released

salient BERT-based extractive summarization systems4on

CNN/DailyMail test sets using ROUGE F1. We obtain ROUGE

scores using the official ROUGE-1.5.5.pl script. ◦ means our

carefully re-implementation using their source code to re-

place their Glove [18] embeddings into BERT-initialized em-

beddings. ♠ means BERT-initialized graph-based models.

ID Model ROUGE-1 ROUGE-2 ROUGE-L
1 Oracle [11] 55.61 32.84 51.88
2 LEAD-3 [20] 40.42 17.62 36.67
3 TextRank (TF-IDF) [30] 33.22 11.80 29.60
4 TextRank (BERT) [30] 30.80 9.60 27.40
5 PacSum (TF-IDF) [34] 39.20 16.30 35.30
6 PacSum (BERT) [34] 40.70 17.80 36.90
7 PnBERT [36] 42.39 19.51 38.69
8 PnBERT w. RL 42.69 19.60 38.85
9 BERT [29] 43.07 19.94 39.44
10 HiBERT [33] 42.37 19.95 38.83
11 Multi-GraS [6] 43.16 20.14 39.49
12 Multi-GraS ◦♠ (BERT) 43.22 20.15 39.50
13 BERTSumExt [11] 43.25 20.24 39.63
14 HSG [25] 42.95 19.76 39.23
15 HSG ◦♠ (BERT) 43.30 19.81 39.35
16 DISCOBERT ♠ [29] 43.77 20.85 40.67
17 MuchSUM (ours) 43.85 20.93 40.72

3 EXPERIMENTS SETTINGS

Summarization Dataset.We conduct experiments on the classical

summarization CNN/Dailymail dataset [4]. We use the standard

splits of Hermann et al. [4] for training, validation, and testing

(90,266/1,220/1,093 CNN documents and 196,961/12,148/10,397 Dai-

lyMail documents). For data prepossessing, we split sentences with

the Stanford CoreNLP toolkit [12] and then preprocess the dataset

following the same setting as See et al. [20] have done. The ground

truth labels, which we call ORACLE, are extracted with the greedy

approach released by Wang et al. [25].

Implementation Details. We train our extractive model on a

Tesla V100-PCIE-32GB GPU card. The top-3 checkpoints are trained

based on the evaluation loss on the validation set and the aver-

aged results on the test set were reported. We use the vocabu-

lary of BERT with 30522 tokens. We filter stop words and punc-

tuations when creating word-related nodes. The filtered source

text keeps the original sequence of tokens used to represent the

graph’s word-related and sentence-related nodes. The input bipar-

tite word-sentence heterogeneous graph5 is truncated with 512

token nodes. The linguistic feature channel of MuchSUM uses

5Available at https://github.com/RingBDStack/MuchSum/SumGraph.

Table 2: Ablation study on CNN/DailyMail test sets.

Model ROUGE-1 ROUGE-2 ROUGE-L
MuchSUM w/o G𝑆 40.26↓3.59 18.76↓2.17 36.14↓4.58
MuchSUM w/o G𝑃 43.70↓0.15 20.56↓0.37 40.53↓0.19
MuchSUM w/o G𝐶 43.67↓0.18 20.77↓0.16 40.59↓0.13
MuchSUM w/o Common Graph Channel 43.62↓0.23 20.80↓0.13 40.50↓0.22
MuchSUM w/o Weighted Graph 43.72↓0.13 20.71↓0.22 40.43↓0.29

BERT-base-uncased for initialization with blocks N=12, the hid-

den size H=768, and the number of self-attention heads A=12. In

the centrality channel of MuchSUM, the feature score is decom-

posed into 10 bins, here equally distributed in width. The position

graph is also initialized with 768-dimensional feature embeddings.

During training, we use a batch size of 32 and apply Adam op-

timizer with 𝛽1 =0.9, and 𝛽2 =0.999. Our learning rate schedule

follows Liu and Lapata [11], Vaswani et al. [24] with warming-up:

𝑙𝑟 = 2𝑒−3 ·𝑚𝑖𝑛(𝑠𝑡𝑒𝑝−0.5, 𝑠𝑡𝑒𝑝 ·𝑤𝑎𝑟𝑚𝑢𝑝−1.5) and the step of warmup

is 10,000. We set the dropout with probability p=0.1 in all graph

layers to prevent overfitting. The best scores of parameters 𝛼 and

𝛽 are 3e-5 and 5e-8, respectively.

4 EXPERIMENTAL RESULTS.

The experimental results of extractive summarization on the dataset

of CNN/DailyMail are presented in Table 1. Row 1 is the sentence-

based oracle. Row 2-6 list unsupervised baseline models. Row 7-

15 are supervised extractive models, all of which are BERT-based

variants. Among them, HSG [25] and DISCOBERT [29] are graph-

based methods with BERT initialization, and HSG has the same

bipartite word-sentence graphs as ours.

Compared with the models in rows 2-6, our proposed neural

graph-based summarization surpasses all unsupervised methods.

Compared with the models in rows 7-15, our MuchSUM substan-

tially outperforms all the pure BERT-based methods and BERT-

initialized summarization graph models with a noticeable margin

on ROUGE performance. In particular, compared with HSG (BERT)

with the same bipartite word-sentence graph, our graph model has

distinct improvements, showing the effectiveness of MuchSUM,

which allows the model to better capture sentence relations by

modeling other summary-worthy features. To further demonstrate

the effectiveness of our proposed model in distinguishing summary

5We have verified these systems by their released source code. It should be noted

that there exist some graph-based extractive models, like HAHSum [5] and FS3 [3].
Despite our best efforts, we could not examine or re-produce these models since
their implementations (graph construction results and summarization model) are not
available in the public domain.



sentences, we use the output embedding on the last layer of Much-

SUM before softmax and plot the learned embedding of the test

set using t-SNE [23]. Apparently, the learned node embedding has

an apparent intra-class similarity and distinct boundaries among

summary and non-summary words and sentences classes.

To better understand the contribution of different graph channels

to the performance, we conducted an ablation study, and the results

are shown in Table 2. First, we have separately removed three

specific graph channels and the edge weights among three graph

convolution layers. Significantly, the semantics graph channel is the

most important than the importance graph channel and the position

graph channel. Besides, the common convolutional graph channel

plays an essential role in enlarging the advantage of MuchSUM

because there are ‘common’ properties in the summary sentences.

Moreover, the introduction of weighted edge features also shows

their effectiveness for distinguishing summary sentences.

4.1 Conclusions

To extract a good summary from a document, we propose a novel

multi-channel graph-based neural network to incorporate sentence

semantics, sentence importance, and sentence position and their

combinations in graphs. These features are fused adaptively for

extractive summarization. Our model outperforms salient neural

graph models initialized by BERT-based language models.
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