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ABSTRACT Modern vehicles equipped with on-board units (OBU) are playing an essential role in the
emerging smart city revolution. The vehicular processing resources, however, are not used to their full
potential. The concept of vehicular clouds is proposed to exploit the underutilized vehicular resources to
supplement cloud computing services to relieve the burden on centralized cloud data centers and improve
quality of service. In this paper we introduce a vehicular cloud architecture supported by fixed edge
computing nodes and a central cloud data center. A mixed integer linear programming (MILP) model
is developed to optimize the allocation of the processing demands in the distributed architecture while
minimizing the overall power consumption. The results show power savings as high as 84% compared to
processing in the conventional cloud.Variations in the test cases to include processing demand and traffic
demand splitting showed power saving of 71% and 16% respectively, even for large demand volumes.
A heuristic algorithm with performance approaching that of the MILP model is developed to validate the
MILP model and allocate processing demands in real time.

INDEX TERMS Vehicular clouds, edge computing, fog, power optimization, distributed processing, MILP.

I. INTRODUCTION
Cloud computing has introduced new possibilities for data
processing and storage. This paradigm provides remote ser-
vices over the Internet that relieve the end users from handling
data processing and storage in their own devices[1]. It reduces
the cost for users by eliminating the need to deploy and
maintain hardware and software resources. On the providers
side, the costs of provisioning cloud services are expected to
be well compensated through the profit of the growing cloud
services. The demand for cloud services is growing expo-
nentially with 30-40% annual traffic growth[2]. Data centers
are reported as the main contributors of the total cost and
power consumption in the Information and Communication
Technology (ICT) field [1]–[4]. In addition, large data centres
tend to be located away from the end users, which increases
the latency and power consumption of the networks inter-
connecting users to the cloud. Also, some applications such
as smart city produce high volumes of data that have only
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local relevance making storing or processing them remotely
in the cloud an unnecessary burden on the network and cloud
resources[3].

Efforts are made to tackle the issues of cloud comput-
ing from different perspectives. Mathematical optimization
modelling is used as a valuable tool to formulate alternative
network solutions with the objective of energy minimization.
We benefit from our previous contributions in MILP and
energy efficiency for a range of areas. The studies in [5]–[7]
looked at green and renewable energy resources in core
networks. Analysis of big data and its impact on networks
energy consumption is studied in [8]–[11]. Optical networks
architecture designs and a number of resilience and fault tol-
erance schemes are tackled in [12]–[18]. The authors in [4],
[19]–[21] designed content distribution schemes for better
resources utilization and improved energy efficiency. The
authors of [22] modelled energy efficient virtualization in
cloud networks. Also, the work in [23] introduced models
for virtual machine (VM) placement in cloud-fog networks
subject to inter-VM traffic overheads. Paradigms such as
IoT [24]–[30] and Fog Computing [31], [32] benefiting from
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resources in end users’ proximity, are being actively investi-
gated. The resilience of such paradigms is explored in [27],
[33] which is an important measure of their reliability and
quality of service as alternatives for cloud. The term vehicular
cloud [34]was coined to describe the exploitation of underuti-
lized vehicular processing resources to deliver cloud services
to end users. This approach usually goes hand in hand with
the use of edge and cloud computing [35], [36] to complement
the vehicles limited processing capacities, maintain quality of
service, and facilitate system management.

Our work in [47] introduced an energy efficient vehicu-
lar cloud architecture, to be used in distributed processing.
In addition to vehicular processing, the architecture pro-
vided processing at edge nodes and the conventional cloud.
Generic smart city applications were considered to evaluate
the performance of the architecture. We evaluated scenarios
of multiple requests of varied sizes and showed promis-
ing results of 70-90% power savings over the conventional
cloud approach for small-sized requests and 20-30% for
medium and large requests, respectively. In this paper, more
test cases are reported to further establish the merits of the
energy efficient vehicular cloud architecture. To the best of
our knowledge, work in literature focused on showing the
benefits of vehicular clouds but has not provided any solid
numerical comparison between the power consumption of
the vehicular cloud and conventional cloud, which this paper
provides. The contributions of this paper can be summarized
as (i) presenting for the first time the mixed integer linear
programming (MILP) model developed to optimally allocate
processing demands to the three layers of the architecture
with the objective of minimizing the power consumption,
(ii) comparing the energy efficiency of processing scenarios
considering different processing layers, (iii) evaluating dif-
ferent test cases considering varying demand sizes, varying
number of demands and the impact of processing demand
splitting, (iv) developing a heuristic to allocate processing
demands in real time and comparing its performance to the
MILP model. The subsequent sections of the paper are orga-
nized as follows: The proposed architecture and the MILP
model are introduced in Section II. The results of the model
are presented and analyzed in Section III. The heuristic and
its results are given in IV and the paper is concluded in V.

II. RELATED WORK
Research on vehicular networks has continuously growing.
At early stages, the efforts were focused on benefiting from
smart vehicle resources in transportation and safety related
applications and services [37]. The concept of vehicular net-
works is still evolving, and research efforts are investigating
different perspectives. In [38], [39] the energy efficiency and
quality of service (QoS) were studied for different routing and
base stations optimization schemes for vehicular networks in
a city environment. The same authors in [40] and [41] devel-
oped position-based routing schemes for vehicular networks
which they proved had a better performance than flood-based
protocols. In [42], the authors envisioned the use of resources

available in vehicles parked in long term parking of airports
and introduced the idea of using these resources as a data
center. Also, a two-tier data center system in a parking lot
was introduced in [43], in which the cost of communication
with the conventional data centers was reduced by using
storage resources of vehicles in parking lots instead. In [44],
the authors improved the energy efficiency of content dis-
tribution to city vehicular users by using renewable energy
and adaptive caching points. They also studied the impact
of load adaptive caching points on the energy efficiency
in [45], and several vehicular network scenarios with energy
efficient adaptive/non-adaptive fog servers with renewable/
non-renewable energy in [46]. A multi objective resource
allocation model in vehicular clouds was proposed in [48].
The work in [49], [50] explored Sensors as a Service in
vehicular networks where the mobility of vehicles broadens
the sensors coverage area.

III. PROPOSED VEHICULAR CLOUD ARCHITECTURE
Figure 1 presents the proposed energy efficient vehicu-
lar cloud architecture and in the following subsections we
describe the architecture from three different perspectives:
the processing layers, network communication interfaces, and
control and coordination.

A. PROCESSING LAYERS
The proposed distributed architecture is composed of three
processing layers:

1) VEHICULAR PROCESSING LAYER
The first layer is composed of vehicles equipped with high-
performance on-board units (OBUs). Other vehicles can serve
the demand if they are willing to share their resources. The
vehicles can dynamically cluster to form temporary clouds.
Each vehicular cloud is formed under the control of an edge
node.

2) EDGE PROCESSING LAYER
The second layer is formed by edge nodes equipped with
mini servers dedicated for smart city applications. This layer
provides users with another nearby processing destination.
In addition to the mini servers, the edge node encompasses
an access point (AP) to communicate with vehicles and an
optical network unit (ONU) to connect to the passive optical
access network (PON).

3) CLOUD PROCESSING LAYER
The last layer is the conventional cloud, which is geograph-
ically distant but has powerful computing capabilities. The
cloud is connected to a core network node through switches
and routers.

The MILP formulation introduced in the next section iden-
tifies the optimum solutions given the trade-off between hav-
ing powerful energy efficient servers located at the cloud,
accessed by traversing multiple network layers, and using
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FIGURE 1. The proposed architecture.

the less powerful, less energy efficient closer processing
resources offered by vehicles and edge nodes.

B. COMMUNICATION INTERFACES
The use of vehicles provides communication technologies
heterogeneity, which is both an attractive and challenging
feature of vehicular networks. Vehicles support different
communication interfaces including dedicated short-range
communication (DSRC), bluetooth, WiFi, and cellular, and
a lot of effort is dedicated to the optimal usage of these
interfaces [48], [49]. In the proposed architecture, vehicles
communicate with each other using DSRC as it provides high
data rate and good coverage [50], [51]. The vehicle to vehicle
(V2V) communication is not limited to the same vehicular
cloud. Vehicles belonging to different clouds within the com-
munication range of each other can communicate peer to
peer using DSRC. For communication between vehicles and
edge nodes (V2E), WiFi is used. Edge nodes communicate
with each other in peer-to-peer manner using WiFi. Higher

data rate V2V communication can also be supported through
the WiFi interface. Edge nodes, as mentioned above, are
equipped with an ONU to connect to higher layers through
a PON access network. The inter-communication between
the devices composing an edge node is through Ethernet of
high speed and low energy per bit, so the power consumed is
negligible.

C. CONTROL AND COORDINATION
The decisions of where to serve a user demand? how much
of this demand is to be served in a specific location? how
the data associated with the processing demand is routed to
that location? all fall under the umbrella of system control.
These decisions need to be optimized to reduce the power
consumption. Generally, the main challenge of the vehicular
architecture is the dynamicity and variation of the resources.
Keeping track of these changes is crucial to making informed
decisions. As previously mentioned, each vehicular cloud is
controlled by an edge node. Each edge node is assumed to
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have knowledge of the vehicles under its control and Edge
nodes exchange information about their vehicular clouds
resource availability. Based on this information each edge
node takes decisions on where to process demands com-
ing from its vehicular cloud. In this work, the overhead
created by the control and coordinating data is not consid-
ered. In such a distributed control architecture the concept
of software- defined networks (SDN) comes into play [52].
The centralized SDN controller, which has a global view of
the network is responsible for overseeing and coordinating
the edge nodes. Whether using the distributed or central-
ized approach, the need for dynamic response and frequent
updates on the architecture remain the same.

IV. MILP MODEL
The performance of the architecture is addressed through
solutions to the problem of resource allocation optimization.
The architecture is modeled as a graph G(N ,L), where N is
the set of all the nodes and L is the link between any two
nodes. A node n ∈ N can have a demand that can be serviced
in d ∈ N where n 6= d . Each n ∈ N has processing capacity
measured in MIPS and there is a maximum data rate for each
link between any two nodes.

A MILP model is developed to optimize the placement
of processing demands and route the traffic between the
source nodes and destination nodes while minimizing the
power consumption, which is composed of processing power
consumption and networking power consumption. To the best
of our knowledge, this is the first MILP modelled to study
the problem of distributed processing in a Vehicular Network
environment. The parameters and variables are shown in the
next column.

SETS
ND set of vehicles.
ED set of edge nodes.
SD set of cloud servers.
OLT set of OLT devices.
MD set of metro nodes.
CD set of core nodes.
N set of all nodes in the system.
Nmn set of all neighbouring nodes

to node n, ∀n ∈ N .

PARAMETERS
Us Processing demand generated by node s

(MIPS), ∀s ∈ N .
Vs Traffic demand generated by node s

(Mbps),∀s ∈ N .
Cn Processing capacity of node n (MIPS),

∀n ∈ N .
Kn Processing efficiency of node n (W/MIPS),

∀n ∈ N .
S Maximum number of processing nodes to

process a demand.

Bnm Maximum data rate on the link between n
and m (Mbps),∀n ∈ N ,m ∈ Nmn.

Bn Maximum data rate node n can
support,∀n ∈ N .

BVE Maximum data rate of the WiFi interface
of a vehicle (this parameter is defined in
addition to Bn, ∀n ∈ ND to account for the
two communication interfaces of vehicles).

BONU Data rate of ONU at an edge node (this
parameter is defined in addition to Bn,
∀n ∈ ED to account for the two communi-
cation interfaces of edge nodes).

Dnm Distance between node pair n,m ∈ N .
NMn Maximum power consumption of network-

ing at node n ∈ N (W).
NIn Idle power consumption of networking at

node n ∈ N (W).
PMn Maximum power consumption of process-

ing at node n ∈ N (W).
PIn Idle power consumption of processing at

node n ∈ N (W).
NMONU Maximum power consumption of ONU in

edge node.
NIONU Idle power consumption of ONU in edge

node.
TX The maximum transmission power con-

sumption of wireless interface.
Tnm Wireless transmission energy per bit over

link (n,m) where n,m ∈ ND ∪ ED.
RX Receiver sensitivity of wireless interface.
Rmn Wireless reception energy per bit at node n

over link (m, n) where n,m ∈ ND ∪ ED.
ε Power amplifier factor for wireless commu-

nication.
En Energy per bit of networking at node n, n ∈

OLT ∪MD ∪ CD ∪ ED.
PUEn Power usage effectiveness of node n,

∀n ∈ N .
A,M large constants.

VARIABLES
TP Total power consumption of the architecture.
Wn Total power consumption at node n ∈ N .
WNn Networking power consumption at node n ∈ N .
WPn Processing power consumption at node n ∈ N .
�sd The amount of processing demand of source

node s served by processing node d , ∀s, d ∈ N .
Fsd Traffic demand between source node s and pro-

cessing node d , ∀s, d ∈ N .
λsdnm The amount of traffic demand between source

node s and processing node d traversing link
(n,m) where s, d, n,m ∈ N .

αsd αsd = 1 if demand of source node s is served by
processing destination d , otherwise αsd = 0.

Qs Total number of processing nodes serving
demand of source s, ∀s ∈ N .
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TABLE 1. Traffic and processing requirements in smart environment
applications.

βNETn βNETn = 1 if node n is used for networking, n ∈
N , otherwise βNETn = 0.

βPRn βPRn = 1 if node n is used for processing, n ∈ N ,
otherwise βPRn = 0.

βONUn βONUn = 1 if ONU at node n is used, n ∈ ED,
otherwise βONUn = 0.

A. DEMAND GENERATION
The work of [76], [77] provided an extensive list of VC
smart city applications that range from traffic management,
urban surveillance, datacenters, infotainment, healthcare, and
emergency management. Similar applications are anticipated
to use the services of the proposed architecture. The appli-
cation demands in this work are generated by the vehicles.
However, the model is generic to accommodate situations
where the demands are produced by any node type, and this
would provide further test cases for evaluation in future work.
The demands cannot be locally processed, i.e., it is assumed
that a vehicle cannot process its own demands (partly due to
capacity constraints and partly to encourage cooperation with
other vehicles). However, a vehicle having a demand can still
process the demands of other vehicles. Our assumption is that
for vehicular clouds to be applicable, cooperation of vehicles
owners is required. This can be achieved if they are provided
with the proper incentive to provide services to others while
discouraging local service of their own jobs.

The demands are assumed to be periodic and subjected
to service level agreement SLA specifying the data rate and
processing speed requirements. Examples of such demand in
public service applications such as CCTV camera systems
and climate sensors, to name a few. Accordingly, they are
composed of two parts, the data to be sent (in bps) and the pro-
cessing it requires in MIPS. The two parts are related based
on the estimation in [57] for smart environment applications,
which are summarized in Table 1. On average, one Mbps
is sent for each 2000 MIPS of processing demand. Also,
we choose the minimum size of traffic demand as 2 Mbps,
which gives a processing demand of 4000 MIPS. The choice
is made to allow for distributed processing among vehicles.

B. POWER CONSUMPTION
The processing and networking devices are assumed to follow
a linear profile where the power consumption is composed of
an idle power consumption which is the power consumed to
activate the device and load dependent power consumption

FIGURE 2. Linear power profile.

as seen in Figure 2. The load dependent power consumption
is obtained by multiplying the device load by the energy
per bit. For the processing power consumption, the load
dependent part is calculated by multiplying the processing
demand by processing efficiency. For the wireless commu-
nication (DSRC/WiFi), the networking power consumption
is also distance dependent as power amplification is required
to avoid signal fading over distance.

1) IDLE POWER
The idle power consumption is significant in conventional
cloud servers. It is expected to have major impact on
the power consumption of the system. Whenever possible,
a value for the maximum and idle power consumption is
obtained from datasheets when running the model. The idle
power consumption value specifically is not always pre-
sented. Therefore, idle power consumption for networking
devices is taken as 90% of the maximum power, based on
estimations in [71]. According to [70], machine to machine
(M2M) traffic will be 7% of the global traffic by 2022.
Connected cars traffic and connected cities, as part of the
M2M traffic, are the fastest growing types of applications.
Together they are assumed to make 13% of the traffic [70].
So, for the portion of the idle power consumption of network
devices attributed to our application types, we are assuming
(0.07 X 0.13) of the total idle power of each device. Accord-
ing to [68], the idle processing power consumption of servers
is about 60% of the maximum, but we are assuming a more
efficient modern server which consumes an idle power of
around 50% of the maximum.

2) POWER USAGE EFFECTIVENESS (PUE)
The PUE is the ratio of the total power consumed by the
node’s IT equipment (networking and processing devices)
and non-IT equipment (cooling, ventilation,..etc) to the power
consumed by the IT equipment alone. It is an important
measure of efficiency as modern computing and networking
nodes require non-computing components for their operation,
such as cooling and ventilation systems. An ideal PUE is
equal to 1, which means all the power is consumed in per-
forming IT operations.
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In the following we give a detailed model of the network
power consumption and processing power consumption of
the different nodes in the network.

3) FOR VEHICULAR NODES

WNn = βNETn NIn +
∑
s∈N

∑
d∈N

∑
m∈Nmn

λsdnmTnm

+

∑
s∈N

∑
d∈N

∑
m∈Nmn

λsdmnRmn ∀n ∈ ND (1)

Equation (1) gives the networking power consumption
of a vehicular node as the sum of the OBU communica-
tion interface idle power consumption, the traffic-dependent,
distance-dependent transmission power consumption, and the
traffic-dependent reception power.

4) FOR EDGE NODES

WNn = βNETn NIn

+

∑
s∈N

∑
d∈N

∑
m∈(Nmn∩(ND∪ED))

λsdnmTnm

+

∑
s∈N

∑
d∈N

∑
m∈(Nmn∩(ND∪ED))

λsdmnRmn

+βONUn NIONU

+

∑
s∈N

∑
d∈N

∑
m∈(Nmn∩OLT )

(λsdmn + λ
sd
nm)En

+ ∀n ∈ ED (2)

The edge node has two communication interfaces, theWiFi
interface through its AP, and PON interface through theONU.
In equation (2), the first three terms calculate the AP (WiFi
interface) power consumption, while the last two terms are
for the PON interface power consumption. The PON interface
power consumption is found by multiplying the traffic routed
from the edge node ONU to the OLT by the energy per bit
of the ONU. The idle power of the ONU is also added to the
calculation.

5) WIRELESS TRANSMISSION AND RECEPTION ENERGY PER
BIT
The traffic-dependent distance-dependent energy per bit for
wireless transmission (Tnm) is given as

Tnm =
TX
Bnm
+ εD2

nm

∀n ∈ (ND ∪ ED),m ∈ (Nmn ∩ (ND ∪ ED)) (3)

The first term of equation (3) gives the traffic dependent
part found by dividing the transmitter maximum power con-
sumption (TX ) by the link maximum data rate. The second
term gives the distance-dependent power consumption as a
function of transmission distance and the power amplifier
factor.

The far geographical location of the conventional cloud
is one of the motivations to have VC and edge processing.
Therefore, the physical distance between any two nodes is a

parameter that impacts the performance The distance factor
has a special importance in VC architectures, due to the ad
hoc topology of the vehicles (affecting the networking power
consumption), or/and the mobility of the vehicles which
makes the distance a changing parameter.

The reception energy per bit for wireless transmission
(Rmn) is found by dividing the node receiver sensitivity RX
by the link maximum data rate.

Rmn =
RX
Bmn

∀n ∈ (ND ∪ ED),m ∈ (Nmn ∩ (ND ∪ ED))

(4)

6) THE ENERGY PER BIT IS En GIVEN AS

En =
(NMn − NIn

Bn
∀n ∈ (OLT ∪MD ∪ CD) (5)

En =
(NMONU

− NIONU )
BONU

∀n ∈ ED (6)

7) FOR OLT, METRO, CORE NODES

WNn = βNETn NIn +
∑
s∈N

∑
d∈N

∑
m∈Nmn

λsdmnEn

∀n ∈ (OLT ∪MD ∪ CD) (7)

The networking power consumption for the nodes from
OLT to the core node is calculated by multiplying the net-
working energy per bit of each node, which is calculated
in equations (5-6) by the traffic traversing it, as shown in
equation (7).

8) PROCESSING POWER CONSUMPTION
The processing power consumption at any node is given in
equation (9) considering the processing idle power consump-
tion and the processing load dependent power consumption
which is a function of the node processing efficiency (the
power consumed per MIPS as shown in equation (8)).

Kn =
(PMn − PIn)

Cn
∀n ∈ N (8)

WPn = βPRn PIn +
∑
s∈N

�snKn

∀n ∈ N (9)

The objective of the model is to minimize the architecture
power consumption as follows:

Minimize:

TP =
∑
n∈N

Wn (10)

where:

Wn = PUEn(WNn +WPn) ∀n ∈ N (11)
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Equation (10) gives the total power consumption of each
node in the architecture. The power consumption is com-
posed of processing-induced part and networking-induced
part. In addition, the impact of the power usage effective-
ness (PUE) is accounted for at each node, as shown in
equation (11).

Subject to the following constraints:

Us =
∑
d∈N

�sd ∀s ∈ N (12)

Constraint (12) states that the processing demand for a source
node must be fully served by the processing destinations and
the demand cannot be locally processed.∑

s∈N

�sd ≤ Cd ∀d ∈ N (13)

�sd ≥ αsd ∀s, d ∈ N , s 6= d (14)

�sd ≤ Aαsd ∀s, d ∈ N , s 6= d (15)

Constraint (13) ensures that the processing demands served
by a processing node do not exceed its processing capacity.
A binary variable is set to indicate that a node is selected
as a processing destination for a demand source as shown in
constraints (14) and (15).

Fsd = Vsαsd ∀s, d ∈ N , s 6= d (16)

The processing demand can be served in several nodes.
Each one would receive the full traffic demand from the
source, as stated by constraint (16).

∑
m∈Nmn

λsdnm −
∑

m∈Nmn

λsdmn =


Fsd n = s
−Fsd n = d
0 otherwise
∀s, d, n ∈ N , s 6= d (17)

Constraint (17) is a flow conservation constraint. It ensures
that the amount of traffic received by an intermediate node
is equal to the amount re-transmitted. It also ensures that
the traffic enters and leaves the node fully at the source and
destination nodes respectively.∑

s∈N

∑
d∈N

∑
m∈Nmn

λsdnm +
∑
s∈N

∑
d∈N

∑
m∈Nmn

λsdmn ≤ Bn

∀n ∈ (OLT ∪MD ∪ CD) (18)∑
s∈N

∑
d∈N

∑
m∈(Nmn∩ND)

λsdnm

+

∑
s∈N

∑
d∈N

∑
m∈(Nmn∩ND)

λsdmn ≤ Bn

∀n ∈ ND (19)∑
s∈N

∑
d∈N

∑
m∈(Nmn∩(ND∪ED))

λsdnm

+

∑
s∈N

∑
d∈N

∑
m∈(Nmn∩(ND∪ED))

λsdmn ≤ Bn

∀n ∈ ED (20)∑
s∈N

∑
d∈N

∑
m∈(Nmn∩OLT )

λsdnm

+

∑
s∈N

∑
d∈N

∑
m∈(Nmn∩OLT )

λsdmn ≤ B
ONU

∀n ∈ ED (21)

Constraint (18) ensures that the maximum data rates of
the OLT, metro, and core nodes is not exceeded. For vehi-
cles, constraint (19) preserves the DSRC interface data rate
(ie ensures that the interface data rate is not exceeded), which
is used to communicate with vehicles. Similar constraints for
the WiFi interface between vehicles and edge node are sepa-
rately implemented in constraint (20). Similarly, for the edge
node when using the optical communication link through the
ONU, the data rate is preserved through constraint (21).

Qs =
∑
d∈N

αsd ∀s ∈ N (22)

Qs ≤ S ∀s ∈ N (23)

The VC architecture derives its usefulness from the util-
isation of number of resources that can collectively deliver
services like the ones provided by conventional cloud. To ben-
efit from the distributed processing resources, the division
of the processing demand into smaller sub-tasks is allowed.
Constraints (22) and (23) state the number of splits allowed.∑

s∈N

∑
d∈N

∑
m∈Nmn

λsdnm

+

∑
s∈N

∑
d∈N

∑
m∈Nmn

λsdmn ≥ β
NET
n

∀n ∈ N (24)∑
s∈N

∑
d∈N

∑
m∈Nmn

λsdnm

+

∑
s∈N

∑
d∈N

∑
m∈Nmn

λsdmn ≤ Aβ
NET
n

∀n ∈ N (25)

Equations (24) and (25) set a binary variable to 1 for nodes
used in networking, i.e. transmit, receive, or relay nodes.∑

s∈N

�sd ≥ β
PR
d ∀d ∈ N (26)∑

s∈N

�sd ≤ β
PR
d ∀d ∈ N (27)

Another binary variable is set to 1 in (26) and (27) to
identify nodes used for processing.∑

s∈N

∑
d∈N

∑
m∈(Nmn∩OLT )

λsdnm

+

∑
s∈N

∑
d∈N

∑
m∈(Nmn∩OLT )

λsdmn ≥ β
ONU
n

∀n ∈ ED (28)∑
s∈N

∑
d∈N

∑
m∈(Nmn∩OLT )

λsdnm

+

∑
s∈N

∑
d∈N

∑
m∈(Nmn∩OLT )

λsdmn ≤ Aβ
ONU
n

∀n ∈ ED (29)

VOLUME 10, 2022 41417



F. S. Behbehani et al.: Optimized Processing Placement Over Vehicular Cloud

FIGURE 3. Car park setting.

A binary variable is set to 1 in (28) and (29) to indicate the
use of the ONU in an edge.

V. EVALUATION AND RESULTS
We evaluate the energy efficiency of the proposed architec-
ture considering stationary vehicles in a parking lot. Vehicles
in a parking lot offer resources for variable lengths of time,
from short-term (half-hour to 3 hours) to long-term (over
3 hours to days and weeks) [53]. This accounts for and
is due to vehicular mobility in and out of the car park.
These resources are idle in congested business districts
(e.g., employees’ cars during working hours), or in urban
areas with supermarkets and shopping malls, creating oppor-
tunities to exploit these resources in smart city applications.

Figure 3 illustrates a small parking area of 45 meters X
45 meters, accommodating up to 25 vehicles, with a stan-
dard parking space of 4.8 meters X 2.4 meters per car [54].
In our setting, we have 16 vehicles in the parking lot with
the distance between two vehicles ranging from 2 meters to
24 meters. The parking lot is surrounded by 4 edge nodes,
placed at an average distance of 30 meters away from the
vehicles. Both DSRC and WiFi have communication ranges
of several hundred meters [55], [56]. Each edge node serves
a vehicular cloud of 4 vehicles.

To calculate parameters for the vehicles as shown in
Table 2, the following points were considered: begin

• Based on [58], highly efficient intel processors execute
4 instructions per cycle. Accordingly, 2 instructions per
cycle per core are assumed for OBU in vehicles.

• From [59], OBU processor has 2 cores with
Speed = 800 MHz which will be used to calculate the
processing capacity in MIPS. Also, Maximum power is
(OBUMAX = 10 W) and the idle power is
(OBUI = 5 W).

• Based on [46], [60], a general-purpose computer spends
58% of its operational power on processing, 21% on
storage (RAM and Disk), 21% on communication.

TABLE 2. Vehicles parameters values.

• So, for vehicles OBU, Processing Max/idle power =
((0.58 processing+ 0.21 storage) X OBUMAX/OBUI).

• For networking, Networking Max/idle power= (0.21 X
OBUMAX/OBUI)

• For WiFi, separate low power transceiver is added to the
vehicle.

• For DSRC, modulation power (TX = +22 dBm
[61] = 158 mW) and transceiver sensitivity (RX =
−77 dBm [59]) values are used to find the energy per
bit for transmission and reception, respectively.

• Similarly, for WiFi, modulation power (TX=+14 dBm
[62] = 25 mW), and transceiver sensitivity
(RX = − 72 dBm [62]) are used.

• For the vehicles PUE, the OBU is assumed to be small
and efficient enough not to require ventilation system of
any significant power consumption.

To calculate parameters for the edge nodes as shown in
Table 3, the following points were considered:
• As stated before, the edge node is composed of access
point, server, and ONU, collocated in one place.

• For a server, a raspberry Pi processor is used.
• Based on [58], we assume 2 instructions per cycle for
the raspberry Pi processor, with 4 cores of speed =
1200 MHz [65], [66].

• The power consumption of the raspberry Pi is dedicated
for processing, and this assumption is used to find the
processing efficiency.

• For the transmission and reception energy per bit, the
transmit power (TX = 28 dBm [63] = 630 mW) and
reception sensitivity (RX = −104 dBm [63]) of the
access point are used.

• The idle power of an edge node = sum of idle power
of the three devices (Raspberry + AP + ONU). Using
ON/Off power profile so only the component used is
included the calculation.

• The three devices of the edge node are collocated in
one place, but they are not contained or boxed, which
provides natural cooling and ventilation and the PUE can
be set to 1.

• The devices of the edge node are integrated together,
so the inter-communication between them is ignored in
this work.
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TABLE 3. Edge nodes parameters values.

TABLE 4. Cloud parameter values.

To calculate parameters for the cloud as shown in Table 4,
the following points were considered:

• Based on [58], the server is assumed to run 4 instructions
per cycle (highly efficient)

• The power consumption of the cloud is dedicated for
processing, and this assumption is used to find the pro-
cessing efficiency.

• Transmission power of cloud is ignored as it only
receives data, the return of the result (small) to the source
node is not considered.

To calculate parameters for metro and core routers and
switches, as shown in Table 5, the following points were
considered:

• The values for the PUE in the network devices (routers
and switches) are derived from [4]

• For switches, it is assumed the devices become more
power hungry as they get closer to the core and data-
centre. For example, core switches are in the backbone
of the network and deal with multiple aggregations and
require more complicated functionalities for security,
fault tolerance, and networking. Therefore, the aggrega-
tion switches are set to consume the typical power val-
ues in [72] and the cloud switches consume the typical
power value stated in the datasheet [72].

• For the core and cloud routers, the port power consump-
tion is estimated from [73], by diving the total power
consumption (1450W) by the number of ports (48 ports)
as all ports have the same capacity.

• For the aggregation router, the port power consumption
is estimated from [73], by dividing the maximum power
consumption (420 W) by the maximum throughput

TABLE 5. Network devices parameters values.

(800 Gbps) to get the W/Gbps, which was then multi-
plied by the port capacity of 10 Gbps.

• The processing capacity of OLT, routers and switches in
metro and core is set to zero.

The main aim of this work is to produce quantitative results
that determine the power consumption in the distributed
resources in the VC and edge, in comparison to the use of the
conventional cloud as baseline. The evaluation test cases were
chosen to reflect several factors that were expected to have
an effect in a distributed architecture such as traffic demand
size, processing demand splitting and the competition over
resources betweenmultiple demands.We have test cases with
only one vehicle generating a demand and other cases where
we have demands generated by several vehicles. The number
of splits allowed in the processing demand provide another
evaluation perspective. As the processing demand is split, the
associated traffic is delivered to each allocated destination.
Also, the traffic associated with processing demand can be
delivered fully or partially to the allocated processing node.
An example of the full traffic delivery is a pedestrian collision
avoidance application where one image is delivered to two
processors and one of the processors is assigned to search for
pedestrians for example, while the other processor searches
for vehicles. An example of partial traffic delivery is sending
half of the image to one processor and sending the other half
of the image to the second processor where each processor
searches for pedestrians in front of vehicles.

We evaluate 4 scenarios of processing resources availabil-
ity. In the first scenario requests can only be processed in
vehicles (V scenario). The second scenario optimizes the allo-
cation of the processing request at vehicles and edge nodes
only (VE scenario). In the third scenario, only conventional
cloud has processing capacity (C scenario). The C scenario is
the one used as benchmark for comparison. The last scenario
optimizes the allocation of processing resources at the three
processing layers (VEC scenario). The following sections
present the results obtained from running the model with the
above-mentioned scenarios over number of test cases.
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FIGURE 4. Total power consumption when serving a single demand
considering the different processing scenarios.

A. DEMAND SIZE VARIATION
We consider a single vehicle to generate the demand. The
processing demand is varied between 4000-60000 MIPS
to reflect tasks with low processing requirements to high
processing requirements. A processing demand can be split
among any number of processing destinations, i.e. S is set to
the maximum number of available processing nodes in the
MILP model.

For the V scenario, the results showed that the model sat-
urates the vehicles in the same vehicular cloud of the vehicle
generating the demand before moving to other VC. In the VE
and VEC scenarios, edge nodes are preferred because of their
higher processing capacity and efficiency, so one edge node
is packed before activating more vehicular processing nodes
as the demand grows larger in size.

Figure 4 shows the total power consumption, with process-
ing is the dominating contributor to the power consumption.
The figure shows the merits of having the edge nodes as
supporting processing resources that further lower power
consumption due to the tendency to consolidate the demand
to avoid more node activation and increase in idle power.
The VE scenario matches the optimal solution given by the
VEC scenario, except for the last demand where the optimal
solution is to serve the request in the cloud due to capacity
limits of the vehicle and edge nodes.

Further inspection of the figure shows that for the V sce-
nario, the total power exceeds the power consumed in the
conventional cloud scenario. Also, it is worth mentioning that
for the larger demands not served in the V and VE scenarios,
the bottleneck is the networking capacity and not the process-
ing capacity, e.g. for the largest traffic demand of 30 Mbps,
the associated processing demand is 60000 MIPS while the
total capacity of vehicles and edge nodes is 86400 MIPS.
Therefore, increasing the bandwidth capacity can go a long
way in improving the performance and power saving of the
architecture.

In Figure 5, we break down the networking power con-
sumption. Figure 6 shows a surge in the networking power
consumption of the V scenario serving a traffic demand
of 8 Mbps. This is because 5 processing vehicles are

FIGURE 5. Networking power consumption when serving a single
demand considering the different processing scenarios.

FIGURE 6. Processing power consumption when serving a single demand
considering the different processing scenarios.

needed to fully serve the demand (8 Mbps is associated
with 16000 MIPS). This generates a total traffic of 40 Mbps
to be transmitted from source to the processing destinations,
which exceeds the capacity of the DSRC and necessitate the
use of the WiFi and therefore leads to the increase seen in
the power consumption. The other surge of the V scenario
at 14 Mbps is due to edge nodes communicating through the
PON access networks as the edge nodes WiFi APs cannot
support this data rate.

Figure 6 breaks down the processing-induced power con-
sumption. For the VEC scenario, the vehicle OBU are optimal
as long as the total idle power of processing vehicles is lower
than that of a single edge node. For example, at 2 Mbps
(4000 MIPS), it is optimal to split the demand between
two vehicles, while for the 4 Mbps demand (8000 MIPS),
activating one edge server is more efficient than activating
3 vehicles OBUs. A combination of OBUs and edge node
servers resulting in minimum power consumption is activated
to serve higher processing demands.

Figure 7 shows the power savings of the three distributed
processing scenarios (V, VE and VEC) in comparison with
processing in the conventional cloud. Optimized processing
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FIGURE 7. Power saving of the three distributed processing scenarios
(V, VE, VEC) in comparison with conventional cloud (single demand).

FIGURE 8. Total power consumption of the VEC scenarios with varying
splits limits.

in the VEC scenario resulted in power savings up to 84%
compared to processing in the cloud. Limiting processing to
the vehicles and edge nodes (VE scenario) gave themaximum
power savings for traffic demands as high as 20 Mbps. The
energy efficiency of the vehicular only processing decreases
as the size of the demand increases. Processing a demand
of 14 Mbps in the vehicular cloud proves to be less efficient
than cloud processing by 23%.

B. PROCESSING DEMAND SPLITTING LIMITATION
Having the flexibility of splitting processing demands can
improve resource utilization and consequently the energy
efficiency. It can also reduce the total processing time and
avoid exhaustion of computational resources. In this subsec-
tion we study the impact of limiting the number of processing
nodes that can serve the request as opposed to the unlimited
processing demand splits studied in the previous subsection.

Figure 8 shows the total power consumption of the VEC
scenario under different splitting limits. It shows that a split-
ting limit of 2 is enough to achieve the minimum power
consumption in this case. Splitting a request of 5.5 Mbps
traffic demand between two processing destinations in a VEC
scenario improves the energy efficiency by 71% compared to
processing without splitting which results in processing the
request in the cloud as seen in Figure 9.

From Figure 9, we can also infer that the usability of V
scenario is limited when no splitting was allowed. Splitting
traffic demands of 2-3 Mbps allows them to be processed in

FIGURE 9. Processing power consumption of the VEC scenarios with
varying splits limits.

FIGURE 10. Networking power consumption of the VEC scenarios with
varying splits limits.

the vehicular cloud which slightly increases the processing
power consumption, as seen in Figure 9, due to the lower
processing efficiency of the OBUs. On the other hand, avoid-
ing communicating with the edge nodes by processing in the
vehicular cloud significantly reduces the networking power
consumption as seen in Figure 10 although traffic is repli-
cated to the two vehicular processing destinations serving the
demand. The overall power reduction from the no splits case
is 2-3%.

C. PROPORTIONAL TRAFFIC ASSIGNMENT
In all the previous subsections, we assumed that all pro-
cessing destinations receive the traffic demand in full, even
when serving part of the processing demand. This limits the
efficiency of processing demands splitting as it burdens the
network. However, for some types of applications, a pro-
cessing node serving part of the processing demand requires
access to only part of the data to be processed. An example
of this can be an application processing multiple images or
multiple videos as discussed earlier. In this subsection we
optimize the processing of a demand with traffic that can
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be proportionally split among the nodes serving the demand,
referred to as proportional traffic (PT) demand. This test case
is compared to the one where the full traffic (FT) demand is
delivered to every processing destination.

The MILP model is updated to represent PT requests,
by replacing constrain (16) with the following equation:

Fsd = Vs
�sd

Us
∀s, d ∈ N , s 6= d (30)

Constraint (30) ensures that the traffic delivered to a pro-
cessing node from a source node is proportional to the pro-
cessing carried by the processing node.

The comparison considers a single demand of varying sizes
for the 3 scenarios (V, VE, VEC), the C scenario is unaffected
by this change as the whole demand is sent to the cloud.

Figure 11 compares the FT and PT cases under the V
scenario in terms of processing and networking, respectively.
Proportionally splitting the traffic among the processing des-
tinations has not changed the number of processing desti-
nations compared to the FT case. However, the networking
power consumption was reduced. It improved the utiliza-
tion of the DSRC communication bandwidth and therefore
reduced the networking power consumption as theWiFi inter-
face and the PON network are used less. Proportionally split-
ting traffic also relieves the traffic bottleneck observed for FT
case for traffic demands higher than 14 Mbps. Similar trends
are observed for the VE scenario (not shown in the figures),
which improved utilization of the network bandwidth under
the PT case and allowed the VE scenario to serve 30 Mbps
demands.

Comparing the PT and FT cases under the VEC scenarios
in Figure 12 confirms that the cloud is the optimal processing
destination for the 30 Mbps demand even when the demand
traffic resulting from distributed processing in the vehicular
and edge layers can be supported by the network. This is due
to the energy efficiency of the cloud in processing such a
large demand compared to processing in the vehicular cloud
and edge nodes which requires activating multiple processing
destinations.

Proportional traffic impacts the power savings achieved
by the different processing scenarios compared to processing
in the conventional cloud, as seen in Figure 13. Proportion-
ally splitting the traffic improves the energy efficiency of
the V scenario compared to the FT case making processing
demands as high as 20 Mbps in the vehicular cloud more
efficient than cloud processing. As mentioned above, under
the PT case the VE scenario can process demands as high
as 30 Mbps. This is, however, less efficient than processing
in the cloud by 14%. For the VEC scenario, the power savings
improved from 6% for the FT case to 19% for the PT case for
a demand of 20 Mbps compared to processing in the cloud.

D. MULTIPLE DEMANDS SERVICE
In this section we examine multiple requests competing
for the available resources under the VEC scenario consid-
ering full traffic replication to all processing destinations.

FIGURE 11. Power consumption of the V scenario considering full
traffic (FT) and proportional traffic (PT) (a) processing Power
consumption, (b) networking power consumption.

Relative to the processing resources in vehicles and edge
nodes, three demand profiles are examined: low (Traffic
1 Mbps, Processing 2000 MIPS), medium (Traffic 3 Mbps,
Processing 6000 MIPS), and high (Traffic 5 Mbps, Process-
ing 10000 MIPS).The low demand can be served in single
vehicle, medium demand can be served in single edge node,
and the high demand exceeds the capacity of a single edge
node.

Figure 14 evaluates the total power consumption of up to
10 co-existing requests and illustrates the impact of varying
demand size/number on the processing and networking power
consumption.With the growing requirements, it becomes less
costly to operate the cloud as the difference between the high
idle power consumption of the cloud server and the idle power
consumption of themultiple vehicles and edge nodes required
to serve the demands decreases. Also, for higher demand
sizes the increase in the networking requirements cannot be
accommodated with the use of the vehicles and edge only.
The power savings of the VEC scenario rapidly decreases as
the demands increase in size/number, as shown in Figure 15.
For medium and high demands as the increase in the number
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FIGURE 12. Power consumption of the VEC scenario considering full
traffic (FT) and proportional traffic (PT) (a) processing Power
consumption, (b) networking power consumption.

FIGURE 13. Power saving of the (V, VE, VEC) FT and PT cases in
comparison to the C scenario.

of demands forced the use of the cloud, the power savings
drops to 0%.

VI. ENERGY EFFICIENT DEMAND ALLOCATION
HEURISTIC IN A VEHICULAR CLOUD ARCHITECTURE
A heuristic is developed based on insights obtained from
the model to allocate processing demands in real time. The
heuristic flowchart is shown in Figure 16. The heuristic
serves demands in descending order of their processing

FIGURE 14. Total power consumption when serving multiple demands of
varying sizes considering the VEC processing scenario.

FIGURE 15. Power saving when serving multiple demands of varying
sizes considering the VEC processing scenario.

requirements as the processing power consumption dom-
inates the power consumed to serve demands. For each
demand, the processing nodes are sorted based on the criteria
defined in equation (31), with the most fit candidate in the
beginning of the list and the least fit at the end. Sorting of the
processing nodes can be ascending or descending depending
on the demand size in comparison with the capacities of the
distributed processing nodes. Also, the counter (Trial) is set
to 1. This variable is set to give each demand two attempts to
find a processing destination(s) by going over the complete
list of processing nodes candidates and trying to route over
them.

SortingCriteriasd = NPowersd + PrPowersd
+IdledPUEd ∀s, d ∈ N , s 6= d (31)

where:
NPowersd is the power consumption of routing traffic

between source s and processing destination d over the min-
imum hops route.
PrPowersd is the processing power consumption of serv-

ing processing demand of source node s in processing
destination d .
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FIGURE 16. Heuristic flow chart.

The heuristic selects the most fit candidate from the sorted
list and tries to route the traffic demand over the minimum
hop route if the candidate has available processing resources.
If the minimum hop is not available due to networking
capacity limitations, the heuristic removes the link of limited
capacity from valid routes. The heuristics then selects the
next node in the sorted list and tries to route the traffic
demand on the minimum hop route. The heuristic examines

all the nodes in the sorted list until all the demand under
consideration is served. If all nodes are examined but the
demand is not fully served, the trial counter is incremented
by 1 and the heuristic examines nodes in the sorted list again.
Note that the availability of the minimum hop routes will
change in the second attempt, giving the processing nodes
that were skipped before due to networking limitation a new
chance in terms of the least hops route, and the processing
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FIGURE 17. Total power (Heuristics and MILP).

node might be used to serve. Each demand is allowed only
two attempts (more attempts can be allowed, at the cost of
increased complexity) of examining the nodes in the ordered
list to select a processing destination(s). Also, the number of
processing nodes used is counted to ensure they do not exceed
the allowed split limitation. Furthermore, a processing node
is packed before moving to the next node.

If the demand is not served after the two attempts, it will be
blocked and all the resources that were used to partially serve
it are released to be used by other demands. The heuristic then
moves to the next demand on the demands list and repeats the
above procedure. After completing all the demands list, the
total power consumption resulting from routing all demands
is calculated.

A. DEMAND SIZE VARIATION
Figure 17 shows a comparison between the total power con-
sumption of the heuristic and the MILP model results when
considering a single request of varying size in the VEC sce-
nario. Table 6 shows the gap in power consumption between
the two. The heuristic approaches the model with a gap of
0%-15% for most of the demand sizes. This gap is a result
of the heuristic sub-optimal selection of processing nodes,
as seen in Figure 18, resulting from the sequential allocation
of the processing based on the current status with no knowl-
edge of the upcoming demands. For the heuristics there is
a pattern of depleting the resources of the lower processing
layers before allocating demands to higher processing layers.
On the other hand, theMILPmodel allocates demands to edge
nodes or a combination of vehicular and edge nodes even
when vehicular nodes have more available resources.

The 30 Mbps demand is optimally processed in the cloud,
both in the model and the Heuristics. In this case, the traffic
demand exceeded the capacity available in the DSRC, which
led to the list of candidates to be sorted in descending order,
as stated in the flowchart. This arrangement pushed the cloud
node to the front of the sorted list, and it was chosen as
destination to serve the demand. If the processing nodes were
sorted ascendingly, the cloud would have been at the end
of the candidate list. As the heuristic would distribute the

FIGURE 18. Processing power (Heuristics and MILP).

TABLE 6. MILP vs heuristics power consumption difference for demand
size variation.

demand between the vehicles and edge node and when it tries
to serve the remainder of the demand in the cloud, it finds the
network capacity at the vehicles and edge node layers was
already occupied by the traffic of distributed processing in
the vehicular and edge layers.

B. PROCESSING DEMAND SPLITTING LIMITATION
As part of taking stock of the available resources, the heuris-
tics counts the minimum number of nodes needed to process a
specific demand in each processing layer. When it checks the
candidate processing capacity, it also checks if the number of
nodes required at the candidate layer is within the splitting
limitation. If not, then it is seen as insufficient, and the
heuristic moves to the next candidate. Table 7 shows the gap
between the power consumption values. For smaller demand
values, the results are identical for all splits limitations. For
demands of 3.5 Mbps and above, the results were identical
for smaller number of splits, but as the number of splits
increased, the heuristics produced higher power consump-
tion. The reason for this is that as the limits on the number
of processing nodes becomes larger, the possibility of serving
in the vehicles increases. The heuristics only ensures that the
number of processing nodes does not exceed the limit, while
the MILP tends to consolidate the demand in a destination
whenever possible, leading to fewer number of active nodes
and lower power consumption.

C. PROPORTIONAL TRAFFIC ASSIGNMENT
To implement the heuristics in this case, the same change
that was made in the model in equation (16) was also made
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TABLE 7. Heuristic vs MILP power consumption difference for demand
splitting limitation.

TABLE 8. Heuristic and MILP power consumption difference for
proportional traffic.

TABLE 9. Heuristic and MILP power consumption difference for
proportional traffic.

in the heuristics so that each destination receives traffic pro-
portional to the processing demand it serves. The results of
the heuristics for the proportional traffic in the V scenario
showed a complete match with the results of the MILP
model. The results for the VE scenario showeds higher power
consumption in the heuristic, with the difference shown in
Table 8. As was explained before, the difference in the power
consumption comes from the sequential allocation of the
demands in the heuristics. Even though it is not shown, the
VEC scenario had an exact match with the results of the V
and VE scenarios in the heuristics, except for the 30 Mbps
demand size, for which it made the same choice as the MILP
and processed in the cloud.

D. MULTIPLE DEMANDS SERIVCE
Results for the multiple demands were obtained from heuris-
tics using VEC scenario. As before, the heuristics sequential
approach gave priority for processing in the vehicles before
moving to the edge and then the cloud. The distribution
over more processing nodes and the choice of first sufficient
route with least hops increases the power consumption in the
heuristics. The behaviour is similar for low, medium, and
high demand sizes. However, for the high demand sizes with
the number of requests above 5, the demand requirements
exceeded the capacities of the vehicles and edge layers. The
heuristics sorted the candidates in descending order (refer to
the flowchart), therefore, the demands for these cases were
served in the cloud, similar to the model. The higher power

consumption of these cases is due mainly to the routing
decisions and not processing. Table 9 shows the difference in
the power consumption between the optimal solution (MILP)
and the heuristic.

VII. CONCLUSION
This paper has investigated the use of underutilised com-
puting resources in modern vehicles to create a processing
layer, referred to as the vehicular cloud, in proximity of
end users. The vehicular cloud complements conventional
cloud computing and fixed edge computing in a distributed
processing architecture. The architecture was modelled using
a MILP model with the objective of minimizing the total
power consumption. The results of theMILPmodel show that
the energy efficiency of processing in vehicles compared to
the cloud decreases as the size of the demand increases. Pro-
cessing in a combination of vehicles and edge nodes results in
average power savings of 6% compared to processing in the
cloud for demands of traffic as high as 18 Mbps. The limited
data rate of the vehicle wireless interfaces cannot support dis-
tributed processing in vehicles and edge nodes as the traffic is
replicated to all processing destinations. Therefore, vehicular
communication interfaces of higher data rate are essential
to improve the utilisation of vehicular clouds. The results
also illustrate that splitting a processing demand improves the
energy efficiency of processing in the vehicles and edge nodes
by 71%. Furthermore, the results show applications which
require proportional traffic splitting among the processing
destinations serving the demand. These applications can be
more efficiently processed by vehicles and edge nodes, thus
increasing the average power savings to 3%-16% compared
to cloud processing, even for demands up to 20Mbps. A real-
time heuristic for allocating processing demands is developed
based on insights from the model. The results show that the
heuristic has comparable performance to the MILP model.
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