

This is a repository copy of Being positive is not everything – experimental and computational studies on the selectivity of a self-assembled, multiple redox-state receptor that binds anions with up to picomolar affinities.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/185760/</u>

Version: Supplemental Material

Article:

Zubi, A., Alnafisah, H.A., Turega, S. et al. (4 more authors) (2022) Being positive is not everything – experimental and computational studies on the selectivity of a selfassembled, multiple redox-state receptor that binds anions with up to picomolar affinities. Chemistry – A European Journal, 28 (5). e202102465. ISSN 0947-6539

https://doi.org/10.1002/chem.202102465

This is the peer reviewed version of the following article: A. Zubi, H. A. Alnafisah, S. Turega, I. Marques, J. R. B. Gomes, J. A. Thomas, V. Félix, Chem. Eur. J. 2022, 28, e202102465, which has been published in final form at

https://doi.org/10.1002/chem.202102465. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be **probab**ited.

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Being positive is not everything – experimental and computational studies on the selectivity of a selfassembled, multiple redox-state, receptor that binds anions with up to picomolar affinities

Ahmed Zubi,^{‡a} Hawazin A Alnafisah,^{a,b} Simon Turega,^c Igor Marques,^d José R. B. Gomes,^d Jim A. Thomas,^a* and Vítor Félix^d*

^a Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK

^c Department of Bioscience and Chemistry, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK

^{*d*} CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal

[‡] Current address: Chemistry Department, Faculty of Science Misurata University, Misurata, Libya

^b Department of Chemistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia

NMR Titrations

Fig. S1. Details of ¹H NMR (400 MHz) spectra of $\mathbf{1}^{3+}$ upon addition of equivalents of TBAClO₄. Solvent CD₃CN; temperature: 293 K; $[\mathbf{1}^{3+}] = 1.5 \times 10^{-6}$ mol dm⁻³. Top: Shifts in N–H signals of 9MA bridging ligand. Bottom: Thiacrown region.

Fig. S2. Details of ¹H NMR (400 MHz) spectra of **1**³⁺ upon addition of equivalents of TBAAcO. Solvent CD₃CN; temperature: 293 K; [**1**³⁺] =1.5×10⁻⁶ mol dm⁻³. Top: Shifts in N–H signals of 9MA bridging ligand. Bottom: Thiacrown region.

Fig. S3. Details of ¹H NMR (400 MHz) spectra of $\mathbf{1}^{3+}$ upon addition of equivalents of TBAH₂PO₄. Solvent CD₃CN; temperature: 293 K; $[\mathbf{1}^{3+}] = 1.5 \times 10^{-6}$ mol dm⁻³. Top: Shifts in N–H signals of 9MA bridging ligand. Bottom: Thiacrown region.

Fig. S4. Details of ¹H NMR (400 MHz) spectra of $\mathbf{1}^{3+}$ upon addition of equivalents of TBAHSO₄. Solvent CD₃CN; temperature: 293 K; $[\mathbf{1}^{3+}] = 1.5 \times 10^{-6}$ mol dm⁻³. Top: Shifts in N–H signals of 9MA bridging ligand. Bottom: Thiacrown region.

Fig. S5. Details of ¹H NMR (400 MHz) spectra of $\mathbf{1}^{3+}$ upon addition of equivalents of TBANO₃. Solvent CD₃CN; temperature: 293 K; $[\mathbf{1}^{3+}] = 1.5 \times 10^{-6}$ mol dm⁻³. Top: Shifts in N–H signals of 9MA bridging ligand. Bottom: Thiacrown region.

Fig. S6. A – Example of ¹H-NMR-based Job plot for the interaction of $\mathbf{1}^{3+}$ with acetate in d_3 -MeCN; **B** – ¹H-NMR-based titration with the same anion using shifts in N–H protons of the 9MA. The continuous line is a fit to a 1:1 binding isotherm.

Electrochemical Data

Fig. S7. SWV of macrocycle 1^{3+} upon the addition of aliquots of perchlorate anion.

Fig. S8. SWV of macrocycle 1^{3+} upon the addition of aliquots of nitrate anion.

Fig. S9. SWV of macrocycle 1^{3+} upon the addition of aliquots of acetate anion.

Table S1	Maximum	electrochemical	l shifts (mV	') for [1]((PF ₆)₃ induce	ed by a	addition of	oxo anic	ons."
----------	---------	-----------------	--------------	----------------------	----------------------------	---------	-------------	----------	-------

Anion	$\Delta Ep(1)$	ΔEp(2)	ΔEp(3)
ClO ₄ -	-10	-10	-35
NO ₃ ⁻	-50	-70	-45
CH₃COO [_]	-15	-115	0

 $a^{(a)}$ In these conditions, the three oxidations of [1] (PF₆)₃ on its own were observed at 0.775 V, 0.910 V, and 1.270 V, respectively.

Crystallographic Studies

Fig. S10. **A** – Hexagonal channels defined by the interaction between the host and anions; **B** – Hexagonal channels filled with the remaining hexafluorophosphate anions.

Computational Studies

Detailed Methods

All DFT calculations were carried out with Gaussian09,^[1] using the CAM-B3LYP^[2] functional with Grimme's D3 dispersion correction^[3] and a polarised continuous solvent model (IEFPCM)^[4] for MeCN. Tight SCF convergence criterium was used, together with an ultrafine grid for numerical integrations. The ruthenium centres were described with the LANL2TZ(f) basis set,^[5] while the 6-31+G(d) basis set was used for the remaining elements. The stability of the wavefunction in all DFT optimised structures was assessed by the use of the Gaussian keyword "stable=opt". In the initial DFT optimisation of the *ls*- 1^{5+} systems, the wavefunction revealed to be instable. These systems were re-optimised with the newly calculated wavefunction as guess. Finally, each DFT optimised structure was ascertained to be a minimum, as no imaginary frequencies were found.

The electrostatic potential distributions of free $\mathbf{1}^{n+}$ were mapped onto their electron density surfaces (V_s , estimated at 0.001 ea_0^{-3}) with MultiWFN 3.6^[6] along the four oxidation states. The V_s of all anions was determined following the same approach, leading to their $V_{s,min}$ values and molecular volumes (see main text). The interactions

between $\mathbf{1}^{n+}$ and the anion guests were evaluated through the Quantum Theory of Atoms in Molecules (QTAIM)^[7] as implemented in MultiWFN 3.6,^[6a] as well as by the Natural Bond Orbital (NBO) analysis,^[8] using NBO 6.0.^[9]

The binding enthalpy (ΔH_{HG}) for the host-guest associations between $\mathbf{1}^{n+}$ and the anions was estimated through the following equation:

$$\Delta H_{HG} = H_{HG} - H_H - H_G$$
 Eq. S1

where H_{HG} , H_{H} and H_{G} correspond to the enthalpies estimated from the DFT IEFPCM ground state optimised structures of the host-guest association (HG), the macrocyclic host (H), and the oxo-anion guest (G), respectively. Each individual enthalpy term was obtained as $H = \mathcal{E}_0 + \mathcal{E}_{tot} + RT$, where \mathcal{E}_0 is the total electronic energy, \mathcal{E}_{tot} is the total internal energy, accounting the contributions from the translational, rotational, vibrational and electronic motions, while RT is the thermal correction, R being the constant for ideal gases and T the temperature. Furthermore, \mathcal{E}_{tot} already includes the zero-point vibrational energy correction. Negative ΔH_{HG} values indicate that the formation of the host-guest association is favourable.

Supplementary Tables

Table S2. Comparison between the average Ru-S and Ru-N distances (Å) in the X-ray crystal structure of 1^{3+} ·PF₆⁻ and in the DFT optimised structures of free 1^{n+} .

Distance	1 ³⁺ ·PF ₆ ⁻	1 ³⁺	1 ⁴⁺	/s- 1 ⁵⁺	hs- 1 5+	/s- 1 ⁶⁺	hs- 1 ⁶⁺
Ru–S	2.293 ± 0.006	2.360 ± 0.006	2.375 ± 0.025	2.388 ± 0.027	2.388 ± 0.026	2.398 ± 0.019	2.398 ± 0.019
Ru–N	2.159 ± 0.014	2.152 ± 0.007	2.131 ± 0.047	2.115 ± 0.057	2.115 ± 0.057	2.103 ± 0.060	2.105 ± 0.061

Table S3. Energy differences (kcal mol⁻¹)^{*a,b*} between the high- and low-spin electron configurations of free and anion associated 1^{5+} and 1^{6+} , calculated using the DFT optimised structures.^{*c*}

		Host			
Binding pocket	Guest anion	1 ⁵⁺	1 ⁶⁺		
		0.004	0.835		
	CH₃COO [−]	0.066	1.007		
	NO ₃ -	0.075	1.076		
	CIO ₄ ⁻	0.011	1.078		
	HSO ₄ -	-0.293	0.958		
a	$H_2PO_4^-$	0.028	1.041		
u	F [−]	0.065	1.160		
	Cl-	0.094	1.114		
	Br-	0.181	1.052		
	Ι-	-0.115	0.989		
	PF ₆ ⁻	0.143	0.895		
	CH₃COO ^{-d}	0.158	0.840		
	CH₃COO ^{_e}	0.564	1.379		
	NO ₃ ⁻	0.277	0.841		
	CIO ₄ -	-0.217	1.096		
	HSO ₄ -	0.025	0.905		
β	H ₂ PO ₄ ⁻	0.036	0.777		
	F-	1.007	1.130		
	CI-	-0.124	0.855		
	Br-	0.181	0.862		
	I-	0.088	0.860		
	PF ₆ -	0.040	0.933		

^{*a*}) Electronic energies, corrected with the zero-point vibrational energies; ^{*b*}) the energy values were not corrected for basis set superposition errors; ^{*c*}) positive values mean that the low-spin electron configuration is more favourable; ^{*d*}) the methyl group is pointing inwards the binding pocket; and ^{*e*}) the carboxylate group is pointing inwards the binding pocket.

Table S4. Electrostatic potential maxima assessed in the electron density surface of the α and β pockets of $\mathbf{1}^{n+}$ (kcal mol⁻¹).

Binding	Host									
pocket	1 ³⁺	1 ⁴⁺	/s- 1 ⁵⁺	hs- 1 5+	/s- 1 ⁶⁺	hs- 1 ⁶⁺				
α	204.101	276.914	348.970	345.491	417.143	412.115				
β	134.175ª	213.180	290.615	284.309	359.785	352.083ª				
Δα-β	69.926	63.734	58.355	61.182	57.357	60.032				

^{*a*}) These species display three distinguishable $V_{\rm S}$ points with comparable values, which were averaged and have standard deviations of 0.073 and 0.137 kcal mol⁻¹ for **1**³⁺ and *hs*-**1**⁶⁺, respectively.

Pinding pockat	Guest anion –			Host		
Binding pocket	Guest amon	1 ⁴⁺	/s- 1 ⁵⁺	hs- 1 ⁵⁺	/s- 1 ⁶⁺	hs- 1 ⁶⁺
	CH₃COO-	0.001 ; 0.687 ; 0.002	-0.670 ; -0.002 ; 0.784	0.645 ; 0.015 ; 0.779	0.775 ; -0.765 ; 0.795	0.796 ; 0.769 ; 0.789
	NO ₃ -	0.719 ; 0.001 ; 0.001	0.681;0.002;-0.781	0.656 ; 0.013 ; 0.773	0.810 ; 0.767 ; -0.779	0.806 ; 0.786 ; 0.786
	CIO ₄ -	0.002 ; 0.708 ; 0.001	-0.676 ; -0.001 ; 0.795	0.652 ; 0.012 ; 0.788	0.784 ; -0.796 ; 0.806	0.803 ; 0.803 ; 0.803
	HSO ₄ -	0.002 ; 0.705 ; 0.002	-0.800 ; 0.669 ; 0.002	0.656 ; 0.012 ; 0.790	0.787 ; -0.793 ; 0.804	0.807 ; 0.800 ; 0.800
<i></i>	$H_2PO_4^-$	0.001 ; 0.002 ; 0.712	0.672 ; 0.002 ; -0.796	0.648 ; 0.013 ; 0.790	0.781 ; -0.788 ; 0.806	0.801 ; 0.794 ; 0.802
u	F-	0.679 ; 0.002 ; 0.000	0.768 ; -0.641 ; -0.003	0.615 ; 0.014 ; 0.759	-0.760 ; 0.769 ; 0.746	0.765 ; 0.764 ; 0.767
	CI-	0.706 ; 0.003 ; 0.001	-0.793 ; 0.670 ; 0.003	0.648 ; 0.015 ; 0.782	-0.795 ; 0.802 ; 0.784	0.804 ; 0.801 ; 0.805
	Br-	0.710 ; 0.002 ; 0.001	0.796 ; -0.674 ; -0.002	0.654 ; 0.014 ; 0.786	0.809 ; 0.783 ; -0.798	0.807 ; 0.804 ; 0.807
	I_	0.712 ; 0.002 ; 0.001	0.797 ; -0.680 ; -0.002	0.658 ; 0.013 ; 0.788	0.810 ; 0.789 ; -0.797	0.807 ; 0.809 ; 0.805
	PF_6^-	0.703; 0.001; 0.002	-0.001; 0.787; -0.668	0.787; 0.648; 0.011	0.773; -0.782; 0.793	0.790; 0.790; 0.789
	CH₃COO ^{−α}	0.001 ; 0.677 ; 0.001	-0.630 ; 0.002 ; 0.768	0.610 ; 0.008 ; 0.766	-0.763 ; 0.792 ; 0.736	0.762 ; 0.785 ; 0.753
	CH₃COO ^{−b}	0.002 ; 0.661 ; -0.001	0.723 ; -0.609 ; 0.001	0.013 ; 0.744 ; 0.584	0.682 ; -0.743 ; 0.751	0.706 ; 0.749 ; 0.740
	NO ₃ ⁻	0.665 ; 0.000 ; 0.002	0.627;-0.001;-0.747	0.751 ; 0.599 ; 0.011	-0.747 ; 0.766 ; 0.712	0.753 ; 0.757 ; 0.733
	CIO ₄ -	0.000 ; 0.001 ; 0.660	-0.001 ; -0.762 ; 0.626	0.010 ; 0.758 ; 0.601	0.736 ; -0.758 ; 0.760	0.756 ; 0.751 ; 0.750
	HSO ₄ -	0.002 ; 0.653 ; 0.000	-0.001 ; -0.752 ; 0.609	0.010 ; 0.742 ; 0.592	-0.741 ; 0.756 ; 0.718	0.745 ; 0.746 ; 0.739
β	$H_2PO_4^-$	0.673 ; -0.001 ; 0.002	-0.741 ; 0.599 ; -0.001	0.738 ; 0.573 ; 0.010	0.703 ; -0.736 ; 0.742	0.726 ; 0.741 ; 0.727
	F-	0.671 ; 0.000 ; 0.001	0.001;0.728;-0.601	0.009 ; 0.753 ; 0.550	0.694 ; -0.722 ; 0.728	0.715 ; 0.722 ; 0.709
	CI-	0.659 ; 0.000 ; 0.001	0.609 ; -0.001 ; -0.750	0.010 ; 0.744 ; 0.593	-0.739 ; 0.745 ; 0.725	0.745 ; 0.734 ; 0.748
	Br-	0.661 ; 0.000 ; 0.001	0.753 ; -0.617 ; 0.001	0.010 ; 0.746 ; 0.595	-0.741 ; 0.748 ; 0.729	0.747 ; 0.737 ; 0.752
	I-	0.667 ; 0.000 ; 0.001	0.001 ; 0.753 ; -0.624	0.010 ; 0.749 ; 0.601	-0.746 ; 0.749 ; 0.735	0.750 ; 0.740 ; 0.755
	PF_6^-	0.659; 0.000; 0.001	-0.758; 0.621; -0.001	0.755; 0.597; 0.009	-0.751; 0.764; 0.735	0.751; 0.753; 0.754

Table S5. Mulliken spin densities (a.u.) on Ru centres in anion associations of $\mathbf{1}^{n+}$ (n = 4, 5 or 6).

^{a)} The methyl group is pointing inwards the binding pocket; and ^{b)} the carboxylate group is pointing inwards the binding pocket.

Oxidation	- ·			α pocket					β pocl	ket		
state	Energy term	CH₃COO [_]	NO ₃ ⁻	ClO ₄ ⁻	HSO ₄ -	$H_2PO_4^-$	CH₃COO ^{−i}	CH₃COO ^{-j}	NO ₃ -	CIO ₄ ⁻	HSO ₄ -	$H_2PO_4^-$
	$\Delta \mathcal{E}_0$	-17.84	-15.56	-17.04	-19.61	-21.21	-10.57	-4.92	-6.06	-10.49	-9.92	-7.51
	ΔZPE	1.89	1.23	1.36	1.42	1.64	1.65	1.03	0.97	1.10	1.24	1.35
	ΔE	-15.62	-13.55	-14.86	-17.47	-19.04	-8.36	-3.06	-4.15	-8.57	-7.96	-5.51
1 ³⁺	ΔH	-16.21	-14.14	-15.45	-18.06	-19.63	-8.95	-3.65	-4.75	-9.16	-8.56	-6.10
	$T\Delta S$	-14.59	-12.52	-13.45	-13.76	-14.31	-14.10	-12.85	-12.24	-13.86	-14.57	-14.60
	ΔG	-1.62	-1.62	-2.00	-4.30	-5.32	5.15	9.20	7.49	4.70	6.01	8.51
	ΔG^{SS}	-3.51	-3.51	-3.89	-6.19	-7.21	3.26	7.31	5.60	2.81	4.12	6.62
	$\Delta \mathcal{E}_0$	-24.58	-20.44	-20.90	-24.41	-28.04	-12.63	-9.47	-10.08	-15.01	-15.38	-14.07
	ΔZPE	1.05	0.96	0.83	0.99	1.37	0.98	0.62	0.80	0.74	0.81	1.10
	ΔE	-22.88	-18.60	-19.08	-22.57	-26.09	-10.79	-7.92	-8.27	-13.26	-13.64	-12.18
1 ⁴⁺	ΔH	-23.48	-19.19	-19.67	-23.16	-26.68	-11.38	-8.51	-8.87	-13.86	-14.23	-12.78
	$T\Delta S$	-12.78	-12.13	-12.46	-13.09	-13.98	-12.48	-12.71	-12.06	-12.67	-13.11	-13.57
	ΔG	-10.70	-7.07	-7.21	-10.07	-12.70	1.10	4.20	3.20	-1.19	-1.11	0.80
	ΔG^{SS}	-12.59	-8.96	-9.10	-11.96	-14.59	-0.79	2.31	1.31	-3.08	-3.00	-1.09
	$\Delta \mathcal{E}_0$	-29.90	-25.12	-24.71	-29.53	-34.33	-15.18	-15.54	-14.95	-19.50	-20.64	-20.19
	ΔZPE	1.76	1.07	1.31	1.54	1.57	1.10	1.73	0.89	0.83	0.95	0.83
	ΔE	-27.80	-23.25	-22.59	-27.35	-32.28	-13.25	-13.29	-13.04	-17.69	-18.81	-18.36
/s- 1 ⁵⁺	ΔH	-28.39	-23.85	-23.19	-27.94	-32.87	-13.84	-13.88	-13.64	-18.29	-19.40	-18.95
	$T\Delta S$	-14.29	-12.46	-13.56	-14.01	-14.22	-12.83	-14.52	-12.08	-12.89	-13.46	-13.11
	ΔG	-14.10	-11.39	-9.63	-13.93	-18.65	-1.01	0.64	-1.56	-5.39	-5.94	-5.84
	ΔG^{SS}	-15.99	-13.28	-11.52	-15.82	-20.54	-2.90	-1.25	-3.45	-7.28	-7.83	-7.73
	$\Delta \mathcal{E}_0$	-29.86	-25.06	-24.71	-29.84	-34.31	-15.15	-13.69	-14.49	-19.52	-20.67	-20.21
	ΔZPE	1.78	1.09	1.31	1.55	1.57	1.22	0.59	0.70	0.85	1.00	0.88
	ΔE	-27.75	-23.19	-22.59	-27.68	-32.26	-13.17	-12.16	-12.65	-17.70	-18.75	-18.36
hs- 1 5+	ΔH	-28.34	-23.79	-23.19	-28.27	-32.85	-13.76	-12.76	-13.25	-18.29	-19.35	-18.96
	$T\Delta S$	-14.35	-12.50	-13.67	-14.33	-14.36	-13.36	-12.63	-11.11	-12.89	-13.27	-13.30
	ΔG	-13.99	-11.28	-9.52	-13.94	-18.49	-0.40	-0.13	-2.14	-5.40	-6.07	-5.66
	ΔG^{SS}	-15.88	-13.17	-11.41	-15.83	-20.38	-2.29	-2.02	-4.03	-7.29	-7.96	-7.55
	$\Delta \mathcal{E}_0$	-36.78	-30.18	-28.43	-34.53	-40.52	-16.82	-20.72	-19.55	-24.01	-26.21	-26.70
	ΔZPE	1.88	1.51	0.95	1.23	1.29	2.00	1.44	1.26	1.16	1.19	1.15
	ΔE	-34.67	-28.15	-26.65	-32.69	-38.74	-14.32	-18.72	-17.41	-22.00	-24.22	-24.78
/s- 1 ⁶⁺	ΔH	-35.26	-28.74	-27.24	-33.28	-39.33	-14.92	-19.31	-18.00	-22.59	-24.81	-25.38
	$T\Delta S$	-14.31	-13.56	-12.69	-13.94	-13.95	-13.86	-13.69	-11.87	-13.28	-13.52	-13.98
	ΔG	-20.95	-15.18	-14.55	-19.33	-25.38	-1.06	-5.62	-6.13	-9.32	-11.29	-11.40
	ΔG^{SS}	-22.84	-17.07	-16.44	-21.22	-27.27	-2.95	-7.51	-8.02	-11.21	-13.18	-13.29

Table S6. Uncorrected electronic binding energies ($\Delta \mathcal{E}_0$),^{*a*} Zero Point Corrections (ΔZPE),^{*b*} thermal corrected binding energies (ΔE),^{*c*} binding enthalpies (ΔH),^{*d*} binding entropies term contribution ($T\Delta S$),^{*e*} binding free energies (ΔG),^{*f*} and standard state binding free energies (ΔG^{SS})^{*g*} (in kcal mol⁻¹) for the oxo-anion associations of **1**^{*n*+.^{*h*}}

Table S6. (continued)

	$\Delta \mathcal{E}_0$	-36.73	-30.07	-28.34	-34.41	-40.38	-16.80	-20.62	-19.48	-23.84	-26.17	-26.62
	ΔZPE	2.01	1.63	1.11	1.23	1.35	1.99	1.88	1.19	1.25	1.22	1.02
	ΔE	-34.56	-27.96	-26.47	-32.56	-38.56	-14.29	-18.35	-17.36	-21.77	-24.16	-24.76
hs- 1 ⁶⁺	ΔH	-35.15	-28.55	-27.06	-33.15	-39.15	-14.88	-18.94	-17.95	-22.37	-24.76	-25.35
	$T\Delta S$	-14.76	-13.67	-13.17	-13.66	-13.99	-13.33	-14.58	-11.45	-13.32	-13.43	-13.24
	ΔG	-20.40	-14.89	-13.89	-19.49	-25.15	-1.55	-4.37	-6.50	-9.05	-11.33	-12.11
	ΛG^{SS}	-22.29	-16.78	-15.78	-21.38	-27.04	-3.44	-6.26	-8.39	-10.94	-13.22	-14.00

^{a)} The energy values were not corrected for basis set superposition errors; ^{b)} ΔZPE is included in the ΔE , ΔH and ΔG terms; ^{c)} $\Delta E = \Delta E_0 + \Delta E_{Tot}$, where ΔE_{Tot} accounts for the differences in the internal energy due to translational, vibrational and electronic motions; ^{d)} $\Delta H = \Delta E + \Delta nRT$, where *n* is -1 for a 1:1 host-guest systems, *R* is the ideal gas constant and *T* is the temperature (298.15 K); ^{e)} ΔS accounts for the differences in entropy due to in the translational, rotational, vibrational and electronic motions; ^{f)} $\Delta G = \Delta H - T\Delta S$; ^{a)} $\Delta G^{SS} = \Delta G + (-1.89 \text{ kcal mol}^{-1})$, which corresponds to the free energy change converting from the standard state at 1 atm (1 mol per 24.46 L) to 1 M (1 mol/L);^[10] h] the absolute energy terms are defined in the Detailed Methods section; ⁱ⁾ the methyl group is pointing inwards the binding pocket; and ^{j)} the carboxylate group is pointing inwards the binding pocket.

Host	Parameter	CH₃COO-	NO ₃ -	CIO ₄ -	HSO ₄ -	H ₂ PO ₄ ⁻
	N…O	3.003 ± 0.068	3.043 ± 0.060	3.112 ± 0.001	3.085 ± 0.026	3.014 ± 0.023
1 ³⁺	H…O	2.093 ± 0.061	2.157 ± 0.048	2.233 ± 0.001	2.195 ± 0.025	2.107 ± 0.023
	N–H…O	148.2 ± 3.5	145.3 ± 3.0	144.5 ± 0.1	145.8 ± 1.2	147.8 ± 1.2
	N…O	2.931 ± 0.041	2.997 ± 0.072	3.066 ± 0.011	3.034 ± 0.023	2.971 ± 0.050
1 ⁴⁺	H…O	2.008 ± 0.020	2.103 ± 0.076	2.178 ± 0.008	2.134 ± 0.011	2.055 ± 0.065
	N–H…O	149.5 ± 3.3	146.4 ± 4.9	145.6 ± 2.4	147.0 ± 1.8	148.9 ± 4.0
	N…O	2.917 ± 0.102	2.923 ± 0.048	3.018 ± 0.016	2.987 ± 0.025	2.926 ± 0.023
/s- 1 ⁵⁺	H…O	1.988 ± 0.105	2.019 ± 0.041	2.121 ± 0.006	2.077 ± 0.026	2.000 ± 0.034
	N–H…O	150.4 ± 5.8	147.2 ± 4.4	146.5 ± 1.8	148.0 ± 1.0	150.0 ± 1.9
	N…O	2.914 ± 0.096	2.923 ± 0.046	3.019 ± 0.019	2.985 ± 0.016	2.926 ± 0.023
hs- 1 5+	Н…О	1.986 ± 0.098	2.020 ± 0.037	2.122 ± 0.009	2.076 ± 0.027	2.000 ± 0.034
	N–H…O	150.3 ± 5.6	147.1 ± 4.4	146.4 ± 1.8	148.0 ± 2.7	150.0 ± 1.9
	N…O	2.870 ± 0.093	2.879 ± 0.036	2.980 ± 0.004	2.951 ± 0.021	2.899 ± 0.020
/s- 1 ⁶⁺	Н…О	1.929 ± 0.087	1.965 ± 0.028	2.074 ± 0.004	2.032 ± 0.020	1.963 ± 0.021
	N–H…O	151.7 ± 3.9	148.2 ± 2.1	147.4 ± 0.1	149.1 ± 1.0	151.1 ± 0.8
	N…O	2.872 ± 0.095	2.880 ± 0.037	2.981 ± 0.003	2.953 ± 0.024	2.899 ± 0.021
hs- 1 ⁶⁺	H…O	1.931 ± 0.090	1.965 ± 0.028	2.074 ± 0.002	2.033 ± 0.024	1.962 ± 0.021
	N–H…O	151.7 ± 3.8	148.3 ± 2.2	147.5 ± 0.2	149.1 ± 1.0	151.1 ± 0.9

Table S7. Average N···O and H···O distances (Å) and N–H···O angles (°) of the hydrogen bonds between $\mathbf{1}^{n+}$ and the α pocket hosted oxo-anions, computed from the DFT optimised structures.

Table S8. $A_c \cdots N_3^{a,b}$ distances (Å) between $\mathbf{1}^{n+}$ and the hosted oxo-anions in the DFT optimised structures.

Binding pocket	Host	CH₃COO ⁻	NO ₃ -	CIO ₄ -	HSO4-	H ₂ PO ₄ ⁻
	1 ³⁺	3.616	3.677	4.036	3.975	3.917
	1 ⁴⁺	3.546	3.597	3.987	3.925	3.858
_	/s- 1 5+	3.474	3.541	3.933	3.873	3.821
α	hs- 1 5+	3.477	3.544	3.934	3.862	3.822
	/s- 1 ⁶⁺	3.387	3.496	3.883	3.818	3.781
	hs- 1 ⁶⁺	3.382	3.491	3.879	3.815	3.776
	1 ³⁺	3.999 ^c ; 5.575 ^d	4.888	4.878	4.953	5.206
	1 ⁴⁺	3.977 ^c ; 4.564 ^d	4.567	4.627	4.623	4.804
0	/s- 1 5+	3.888 ^c ; 4.266 ^d	4.328	4.464	4.436	4.424
р	hs- 1 5+	3.893 ^c ; 4.289 ^d	4.277	4.464	4.441	4.425
	/s- 1 ⁶⁺	4.015 ^c ; 4.062 ^d	4.065	4.322	4.269	4.233
	hs- 1 ⁶⁺	4.011 ^c ; 4.060 ^d	4.062	4.317	4.256	4.221

 a^{j} A_c denotes the anion's central atom, *i.e.*, A_c = S, P, N, Cl or C_{COO} in HSO₄⁻, H₂PO₄⁻, NO₃⁻, ClO₄⁻ or CH₃COO⁻ anions, respectively; b^{j} the N₃ plane is determined by the three N atoms from the N–H groups of the 9MA bridging ligands; c^{j} A_c denotes the C_{Me} carbon atom; d^{j} A_c denotes the C_{COO}- carbon atom.

Table S9. Average electron density (ρ , ea_0^{-3}), Laplacian of the density ($\nabla^2 \rho$, ea_0^{-3}), potential energy density (\mathcal{V} , Hartrees), and energy of the hydrogen bonds (E_{HB} , kcal mol⁻¹) at the bond critical points in the N–H…O interactions between the $\mathbf{1}^{n+}$ hosts and oxo-anions hosted in the α pocket.^{*a*}

Host	Parameter	CH₃COO ⁻	NO ₃ ⁻	CIO ₄ -	HSO ₄ -	$H_2PO_4^-$
	ρ (×10)	0.19 ± 0.02	0.16 ± 0.01	0.13 ± 0.00	0.14 ± 0.00	0.18 ± 0.01
13+	∇²ρ (×10)	0.66 ± 0.10	0.58 ± 0.06	0.49 ± 0.00	0.54 ± 0.03	0.64 ± 0.03
T	V (×10)	-0.16 ± 0.02	-0.13 ± 0.01	-0.11 ± 0.00	-0.12 ± 0.00	-0.15 ± 0.01
	Енв	-5.02 ± 0.57	-4.12 ± 0.31	-3.33 ± 0.01	-3.77 ± 0.15	-4.79 ± 0.19
	ρ (×10)	0.23 ± 0.01	0.18 ± 0.02	0.15 ± 0.00	0.16 ± 0.01	0.20 ± 0.02
14+	∇ ² ρ (×10)	0.78 ± 0.06	0.66 ± 0.10	0.55 ± 0.00	0.60 ± 0.02	0.72 ± 0.09
1	V (×10)	-0.19 ± 0.01	-0.15 ± 0.02	-0.12 ± 0.00	-0.14 ± 0.01	-0.18 ± 0.02
	Енв	-6.09 ± 0.24	-4.79 ± 0.60	-3.85 ± 0.06	-4.39 ± 0.16	-5.49 ± 0.64
	ρ (×10)	0.24 ± 0.04	0.21 ± 0.01	0.17 ± 0.00	0.19 ± 0.01	0.23 ± 0.01
/a 1 5+	∇ ² ρ (×10)	0.84 ± 0.19	0.77 ± 0.07	0.61 ± 0.01	0.68 ± 0.04	0.80 ± 0.06
15-1	V (×10)	-0.21 ± 0.04	-0.19 ± 0.01	-0.14 ± 0.00	-0.16 ± 0.01	-0.20 ± 0.01
	Енв	-6.60 ± 1.23	-5.83 ± 0.36	-4.46 ± 0.12	-5.06 ± 0.29	-6.22 ± 0.41
	ρ (×10)	0.25 ± 0.04	0.21 ± 0.01	0.17 ± 0.00	0.19 ± 0.01	0.23 ± 0.01
bc 15+	∇ ² ρ (×10)	0.84 ± 0.18	0.77 ± 0.06	0.61 ± 0.02	0.68 ± 0.04	0.80 ± 0.06
115-1	V (×10)	-0.21 ± 0.04	-0.19 ± 0.01	-0.14 ± 0.00	-0.16 ± 0.01	-0.20 ± 0.01
	Енв	-6.62 ± 1.16	-5.82 ± 0.33	-4.45 ± 0.14	-5.08 ± 0.20	-6.21 ± 0.42
	ρ (×10)	0.28 ± 0.03	0.24 ± 0.01	0.18 ± 0.00	0.21 ± 0.01	0.25 ± 0.01
/c 1 6+	∇ ² ρ (×10)	0.94 ± 0.19	0.86 ± 0.06	0.67 ± 0.01	0.74 ± 0.04	0.86 ± 0.04
13-1	V (×10)	-0.24 ± 0.04	-0.21 ± 0.01	-0.16 ± 0.00	-0.18 ± 0.01	-0.22 ± 0.01
	Eнв	-7.52 ± 1.12	-6.64 ± 0.29	-5.02 ± 0.04	-5.65 ± 0.19	-6.78 ± 0.26
	ρ (×10)	0.28 ± 0.03	0.24 ± 0.01	0.19 ± 0.00	0.21 ± 0.01	0.25 ± 0.01
hc 1 6+	∇ ²ρ (×10)	0.94 ± 0.20	0.86 ± 0.06	0.67 ± 0.00	0.74 ± 0.04	0.86 ± 0.04
115-1-1	\mathcal{V} (×10)	-0.24 ± 0.04	-0.21 ± 0.01	-0.16 ± 0.00	-0.18 ± 0.01	-0.22 ± 0.01
	Енв	-7.51 ± 1.15	-6.63 ± 0.28	-5.02 ± 0.01	-5.64 ± 0.23	-6.78 ± 0.26

^{a)} The assessed properties were averaged over the three N–H···O hydrogen bonds of the DFT optimised structures.

Table S10. 2nd-order perturbation (E^2) stabilisation energies of $n_0 \rightarrow \sigma^*_{N-H^a}$ (kcal mol⁻¹) for the N–H…O interactions in the DFT optimised structures of the $\mathbf{1}^{n+}$ oxo-anions associations.

Host	CH ₃ COO ⁻	NO ₃ ⁻	ClO ₄ -	HSO ₄ ⁻	H ₂ PO ₄ ⁻
1 ³⁺	25.42	18.00	12.25	15.40	22.90
1 ⁴⁺	34.62	17.25	15.43	19.63	28.43
/s- 1 ⁵⁺	39.03	30.27	19.45	24.59	34.67
hs- 1 5+	39.25	30.23	19.47	24.67	34.67
/s- 1 ⁶⁺	48.13	37.21	23.74	29.46	40.10
hs- 1 ⁶⁺	48.04	37.27	23.85	29.42	40.38

^{a)} Considering the three N–H binding units together.

Table S11. $X \cdots N_3^{a,b}$ distances (Å) between $\mathbf{1}^{n+}$ and the hosted halides in the DFT optimised structures.

Binding pocket	Host	F-	CI-	Br-	-
	1 ³⁺	2.122	3.046	3.320	3.736
	1 ⁴⁺	2.084	2.935	3.207	3.600
~	/s- 1 ⁵⁺	2.031	2.842	3.098	3.482
ά	hs- 1 5+	2.033	2.845	3.101	3.474
	/s- 1 ⁶⁺	1.986	2.773	3.008	3.380
	hs- 1 ⁶⁺	1.980	2.771	3.007	3.380
	1 ³⁺	5.449	5.534	5.729	5.783
	14+	4.936	4.625	4.697	4.886
0	/s- 1 ⁵⁺	3.291	3.887	4.035	4.423
р	hs- 1 ⁵⁺	4.001	3.847	4.039	4.421
	/s- 1 ⁶⁺	2.530	3.563	3.807	4.183
	hs-16+	2 489	3 562	3 808	4 820

 $a^{(j)} X = F^{-}, Cl^{-}, Br^{-} \text{ or } l^{-}; b^{(j)}$ the N₃ plane is determined by the three N atoms from the N–H groups of the 9MA bridging ligands.

	- ·		α pocke	et			β pocket	t	
Oxidation state	Energy term	F [_]	CI-	Br [_]	I-	F-	CI-	Br-	I-
	$\Delta \mathcal{E}_0$	-17.78	-12.50	-12.70	-11.85	-2.31	-4.08	-4.71	-5.61
	ΔZPE	1.04	0.74	0.30	0.41	0.31	0.27	0.25	0.19
	ΔE	-16.92	-11.63	-12.04	-11.11	-1.41	-3.21	-3.83	-4.79
1 ³⁺	ΔH	-17.51	-12.22	-12.63	-11.70	-2.01	-3.80	-4.42	-5.38
	$T\Delta S$	-9.67	-9.46	-8.76	-9.29	-6.65	-6.86	-7.12	-7.58
	ΔG	-7.84	-2.77	-3.87	-2.41	4.64	3.05	2.70	2.20
	ΔG^{SS}	-9.73	-4.66	-5.76	-4.30	2.75	1.16	0.81	0.31
	$\Delta \mathcal{E}_0$	-27.38	-18.20	-17.42	-15.23	-4.69	-6.75	-7.75	-8.79
	ΔZPE	0.28	0.30	0.07	-0.14	0.14	0.06	-0.16	-0.16
	ΔE	-27.03	-17.65	-16.94	-14.84	-3.88	-5.99	-7.11	-8.13
1 ⁴⁺	ΔH	-27.62	-18.24	-17.53	-15.43	-4.48	-6.59	-7.71	-8.72
	$T\Delta S$	-8.40	-8.83	-8.62	-8.28	-6.22	-6.61	-6.45	-6.43
	ΔG	-19.23	-9.42	-8.92	-7.15	1.74	0.03	-1.26	-2.30
	ΔG^{SS}	-21.12	-11.31	-10.81	-9.04	-0.15	-1.86	-3.15	-4.19
	$\Delta \mathcal{E}_0$	-36.21	-24.10	-22.39	-18.95	-8.02	-10.48	-11.70	-12.12
	ΔZPE	0.65	0.60	0.12	-0.02	-0.20	0.42	0.10	-0.04
	ΔE	-35.66	-23.37	-21.89	-18.47	-7.55	-9.50	-10.89	-11.43
/s- 1 ⁵⁺	ΔH	-36.26	-23.97	-22.48	-19.06	-8.14	-10.09	-11.48	-12.02
	$T\Delta S$	-9.11	-9.27	-8.57	-8.47	-6.71	-7.18	-7.14	-7.39
	ΔG	-27.14	-14.70	-13.91	-10.59	-1.43	-2.91	-4.34	-4.63
	ΔG^{SS}	-29.03	-16.59	-15.80	-12.48	-3.32	-4.80	-6.23	-6.52
	$\Delta \mathcal{E}_0$	-36.11	-24.11	-22.40	-18.95	-7.44	-10.18	-11.46	-12.14
	ΔZPE	0.61	0.70	0.31	-0.14	0.23	-0.02	0.04	0.07
	ΔE	-35.60	-23.32	-21.76	-18.58	-6.66	-9.46	-10.73	-11.38
hs- 1 5+	ΔH	-36.19	-23.91	-22.35	-19.18	-7.25	-10.05	-11.33	-11.98
	$T\Delta S$	-9.18	-9.49	-8.97	-8.67	-7.32	-6.54	-7.41	-7.64
	ΔG	-27.01	-14.43	-13.39	-10.51	0.07	-3.51	-3.92	-4.34
	ΔG^{SS}	-28.90	-16.32	-15.28	-12.40	-1.82	-5.40	-5.81	-6.23
	$\Delta \mathcal{E}_0$	-44.73	-30.01	-27.47	-22.81	-14.63	-14.85	-15.86	-15.98
	ΔZPE	0.70	0.86	0.38	-0.13	-0.06	0.42	0.26	0.21
	ΔE	-44.32	-29.23	-26.91	-22.55	-14.18	-13.98	-15.06	-15.17
/s- 1 ⁶⁺	ΔH	-44.91	-29.82	-27.50	-23.14	-14.77	-14.57	-15.65	-15.76
	$T\Delta S$	-9.64	-9.99	-9.49	-8.93	-7.01	-7.81	-7.83	-7.48
	ΔG	-35.27	-19.83	-18.02	-14.21	-7.76	-6.77	-7.82	-8.28
	ΔG^{SS}	-37.16	-21.72	-19.91	-16.10	-9.65	-8.66	-9.71	-10.17

Table S12. Uncorrected electronic binding energies ($\Delta \mathcal{E}_0$),^{*a*} Zero Point Corrections (ΔZPE),^{*b*} thermal corrected binding energies (ΔE),^{*c*} binding enthalpies (ΔH),^{*d*} binding entropies term contribution ($T\Delta S$),^{*e*} binding free energies (ΔG),^{*f*} and standard state binding free energies (ΔG^{SS})^{*g*} (in kcal mol⁻¹) for the halide associations of **1**^{*n*+.^{*h*}}

Table S12. (continued)

	$\Delta \mathcal{E}_0$	-44.49	-29.82	-27.31	-22.69	-14.68	-14.77	-15.80	-15.95
	ΔZPE	0.78	0.95	0.44	-0.09	0.26	0.37	0.23	0.20
	ΔE	-44.00	-28.98	-26.71	-22.40	-14.02	-13.93	-15.02	-15.14
hs- 1 ⁶⁺	ΔH	-44.60	-29.57	-27.30	-23.00	-14.62	-14.52	-15.61	-15.73
	$T\Delta S$	-9.38	-9.93	-9.39	-8.82	-7.49	-7.52	-7.65	-7.40
	ΔG	-35.22	-19.64	-17.91	-14.18	-7.12	-7.01	-7.96	-8.33
	ΛG^{SS}	-37.11	-21.53	-19.80	-16.07	-9.01	-8.90	-9.85	-10.22

^{*a*)} The energy values were not corrected for basis set superposition errors ; ^{*b*} ΔZPE is included in the ΔE , ΔH and ΔG terms; ^{*c*)} $\Delta E = \Delta E_0 + \Delta E_{Tot}$, where ΔE_{Tot} accounts for the differences in the internal energy due to translational, vibrational and electronic motions; ^{*d*)} $\Delta H = \Delta E + \Delta nRT$, where *n* is -1 for a 1:1 host-guest systems, *R* is the ideal gas constant and *T* is the temperature (298.15 K); ^{*e*} ΔS accounts for the differences in entropy due to in the translational, rotational, vibrational and electronic motions; ^{*f*} $\Delta G = \Delta H - T\Delta S$; ^{*a*} $\Delta G = \Delta H - T\Delta S$; ^{*a*} $\Delta G = \Delta G + (-1.89 \text{ kcal mol}^{-1})$, which corresponds to the free energy change converting from the standard state at 1 atm (1 mol per 24.46 L) to 1 M (1 mol/L);¹¹⁰ and ^{*h*} the absolute energy terms are defined in the Detailed Methods section.

Host	Parameter	F-	CI-	Br-	-
	N…X	2.764 ± 0.006	3.526 ± 0.004	3.769 ± 0.006	4.147 ± 0.001
1 ³⁺	H…X	1.818 ± 0.006	2.635 ± 0.004	2.889 ± 0.006	3.280 ± 0.002
	N–H…X	152.1 ± 0.3	146.6 ± 0.2	145.7 ± 0.2	144.6 ± 0.1
	N…X	2.732 ± 0.067	3.426 ± 0.006	3.668 ± 0.019	4.023 ± 0.029
1 ⁴⁺	H…X	1.780 ± 0.086	2.520 ± 0.015	2.770 ± 0.016	3.136 ± 0.026
	N–H…X	152.8 ± 4.5	148.4 ± 1.7	147.7 ± 1.3	146.8 ± 0.9
	N…X	2.688 ± 0.035	3.347 ± 0.008	3.573 ± 0.017	3.919 ± 0.032
/s- 1 5+	H…X	1.726 ± 0.047	2.428 ± 0.009	2.661 ± 0.013	3.016 ± 0.026
	N–H…X	153.8 ± 3.0	149.9 ± 1.6	149.3 ± 1.3	148.6 ± 1.1
	N…X	2.687 ± 0.033	3.349 ± 0.014	3.575 ± 0.024	3.910 ± 0.025
hs- 1 5+	H…X	1.726 ± 0.044	2.430 ± 0.012	2.663 ± 0.020	3.007 ± 0.021
	N–H…X	153.7 ± 2.9	149.9 ± 1.3	149.3 ± 1.1	148.5 ± 1.0
	N…X	2.659 ± 0.005	3.293 ± 0.002	3.501 ± 0.004	3.833 ± 0.010
/s- 1 ⁶⁺	H…X	1.688 ± 0.006	2.362 ± 0.003	2.576 ± 0.004	2.916 ± 0.010
	N–H…X	154.9 ± 0.1	151.4 ± 0.2	151.0 ± 0.3	150.3 ± 0.1
	N…X	2.659 ± 0.003	3.295 ± 0.002	3.503 ± 0.005	3.835 ± 0.010
hs- 1 6+	H…X	1.687 ± 0.003	2.364 ± 0.003	2.578 ± 0.006	2.918 ± 0.010
	N–H…X	155.0 ± 0.1	151.4 ± 0.2	151.0 ± 0.3	150.3 ± 0.1

Table S13. Average N···X and H···X distances (Å) and N–H···X angles (°) of the hydrogen bonds between $\mathbf{1}^{n+}$ and the α pocket hosted halides, computed from the DFT optimised structures.^{*a*}

^{a)} X = F⁻, Cl⁻, Br⁻ or l⁻.

Table S14. Average electron density (ρ , ea_0^{-3}), Laplacian of the density ($\nabla^2 \rho$, ea_0^{-3}), potential energy density (\mathcal{V} , Hartrees), and energy of the hydrogen bonds (E_{HB} , kcal mol⁻¹) at the bond critical points in the N–H···X^b interactions between the $\mathbf{1}^{n+}$ hosts and halides hosted in the α pocket.^a

Host	Parameter	F-	CI-	Br-	-
	ρ (×10)	0.34 ± 0.00	0.11 ± 0.00	0.08 ± 0.00	0.05 ± 0.00
13+	∇²ρ (×10)	1.08 ± 0.02	0.36 ± 0.00	0.26 ± 0.00	0.15 ± 0.00
T	V (×10)	-0.34 ± 0.00	-0.07 ± 0.00	-0.04 ± 0.00	-0.02 ± 0.00
	E _{нв}	-10.72 ± 0.16	-2.11 ± 0.02	-1.31 ± 0.02	-0.70 ± 0.00
	ρ (×10)	0.38 ± 0.07	0.14 ± 0.00	0.10 ± 0.00	0.07 ± 0.00
14+	∇²ρ (×10)	1.22 ± 0.25	0.44 ± 0.01	0.32 ± 0.01	0.20 ± 0.01
1	V (×10)	-0.38 ± 0.07	-0.09 ± 0.00	-0.06 ± 0.00	-0.03 ± 0.00
	Енв	-11.95 ± 2.27	-2.85 ± 0.11	-1.80 ± 0.08	-0.99 ± 0.06
	ρ (×10)	0.42 ± 0.04	0.17 ± 0.00	0.13 ± 0.00	0.09 ± 0.00
/c- 1 5+	∇ ² ρ (×10)	1.37 ± 0.14	0.52 ± 0.01	0.39 ± 0.01	0.25 ± 0.01
/s- 1 ⁵⁺	V (×10)	-0.43 ± 0.04	-0.12 ± 0.00	-0.08 ± 0.00	-0.04 ± 0.00
	Eнв	-13.40 ± 1.34	-3.63 ± 0.09	-2.42 ± 0.09	-1.33 ± 0.09
	ρ (×10)	0.42 ± 0.04	0.17 ± 0.00	0.13 ± 0.00	0.09 ± 0.00
hs-15+	∇²ρ (×10)	1.37 ± 0.14	0.52 ± 0.01	0.39 ± 0.02	0.25 ± 0.01
113-1	V (×10)	-0.43 ± 0.04	-0.11 ± 0.00	-0.08 ± 0.00	-0.04 ± 0.00
	Eнв	-13.39 ± 1.27	-3.61 ± 0.13	-2.41 ± 0.14	-1.36 ± 0.07
	ρ (×10)	0.46 ± 0.01	0.19 ± 0.00	0.15 ± 0.00	0.11 ± 0.00
/c 1 6+	∇²ρ (×10)	1.49 ± 0.02	0.58 ± 0.00	0.45 ± 0.00	0.29 ± 0.00
13-1	V (×10)	-0.46 ± 0.01	-0.14 ± 0.00	-0.10 ± 0.00	-0.05 ± 0.00
	Енв	-14.59 ± 0.20	-4.30 ± 0.03	-3.04 ± 0.03	-1.71 ± 0.04
	ρ (×10)	0.46 ± 0.00	0.19 ± 0.00	0.15 ± 0.00	0.11 ± 0.00
hs-16+	∇²ρ (×10)	1.50 ± 0.01	0.58 ± 0.00	0.44 ± 0.00	0.29 ± 0.00
113-1	V (×10)	-0.46 ± 0.00	-0.14 ± 0.00	-0.10 ± 0.00	-0.05 ± 0.00
	E _{нв}	-14.59 ± 0.11	-4.28 ± 0.03	-3.02 ± 0.04	-1.70 ± 0.04

a) The assessed properties were averaged over the three N–H···X hydrogen bonds of the DFT optimised structures; b) X = F⁻, Cl⁻, Br⁻ or I⁻.

Table S15. E^2 stabilisation energies of $n_X \rightarrow \sigma^*_{N-H^a}$ (kcal mol⁻¹) for the N–H···X^b interactions in the DFT optimised structures of the $\mathbf{1}^{n+}$ halide associations.

Host	F [−]	CI-	Br-	I [_]
1 ³⁺	56.91	12.62	8.12	4.13
1 ⁴⁺	68.41	19.04	12.4	6.95
/s- 1 ⁵⁺	80.33	26.34	18.22	10.74
hs- 1 5+	80.08	26.12	18.11	10.98
/s- 1 ⁶⁺	90.98	33.65	24.75	15.44
hs- 1 ⁶⁺	91.15	33.56	24.65	15.34

^{*a*)} Considering the three N–H binding units together; ^{*b*)} X = F⁻, Cl⁻, Br⁻ or l⁻.

Table S16. HOMO energy values (eV) in the DFT optimised structures of free $\mathbf{1}^{n+}$ and their α pocket anion associations.

Anion	1 ³⁺	1 ⁴⁺	/s- 1 ⁵⁺	hs- 1 5+	/s- 1 ⁶⁺	hs- 1 ⁶⁺
	-6.81	-7.11	-7.67	-7.72	-8.92	-9.14
CH₃COO ⁻	-6.54	-6.84	-7.39	-7.45	-8.62	-8.84
NO ₃ -	-6.59	-6.91	-7.46	-7.52	-8.72	-8.93
CIO4-	-6.64	-6.94	-7.52	-7.57	-8.76	-8.98
HSO ₄ -	-6.58	-6.89	-7.46	-7.52	-8.72	-8.93
$H_2PO_4^-$	-6.52	-6.84	-7.41	-7.46	-8.65	-8.87
F⁻	-6.41	-6.75	-7.31	-7.36	-8.55	-8.76
CI-	-6.56	-6.86	-7.42	-7.48	-8.66	-8.89
Br	-6.6	-6.89	-7.46	-7.52	-8.63	-8.64
-	-6.66	-6.95	-7.52	-7.57	-8.06	-8.06

Table S17. Adiabatic and Koopmans' theorem ionisation energies (IP_A and IP_K , respectively),^{*a*} determined for the DFT optimised structures of free $\mathbf{1}^{n+}$ and their α pocket hosted anion associations.

Ionisation energies (eV)			IP _A		IPĸ	(
Host	1 ³⁺	1 ^{4+b}	1 ^{5+c}	1 ³⁺	1 ⁴⁺	1 ^{5+d}
	5.34	5.64 ; <i>5.64</i>	6.02 ; <i>6.06</i> ; <u>6.02</u> ; 6.06	6.81	7.11	7.67 ; 7.72
CH₃COO [−]	5.05	5.41 ; <i>5.41</i>	5.72 ; <i>5.77</i> ; <u>5.72</u> ; 5.76	6.54	6.84	7.39 ; 7.45
NO ₃ -	5.13	5.43 ; 5.44	5.80 ; <i>5.85</i> ; <u>5.80</u> ; 5.85	6.59	6.91	7.46 ; 7.52
CIO ₄ ⁻	5.17	5.47 ; 5.47	5.86 ; <i>5.91</i> ; <u>5.86</u> ; 5.90	6.64	6.94	7.52 ; 7.57
HSO4 ⁻	5.13	5.42 ; 5.40	5.80 ; <i>5.85</i> ; <u>5.82</u> ; 5.86	6.58	6.89	7.46 ; 7.52
H ₂ PO ₄ ⁻	5.04	5.36 ; 5.37	5.75 ; <i>5.80</i> ; <u>5.75</u> ; 5.80	6.52	6.84	7.41 ; 7.46
F-	4.92	5.25 ; 5. <i>26</i>	5.65 ; <i>5.70</i> ; <u>5.65</u> ; 5.70	6.41	6.75	7.31 ; 7.36
CI⁻	5.09	5.38 ; <i>5.38</i>	5.76 ; <i>5.82</i> ; <u>5.76</u> ; 5.81	6.56	6.86	7.42 ; 7.48
Br	5.13	5.42 ; 5. <i>42</i>	5.80 ; <i>5.85</i> ; <u>5.80</u> ; 5.85	6.60	6.89	7.46 ; 7.52
-	5.19	5.48 : 5.48	5.85 : <i>5.90</i> : 5.85 : 5.90	6.66	6.95	7.52 : 7.57

^{a)} Ionisation energies determined as $IP_A = \mathcal{E}_0^{(n+1)+} - \mathcal{E}_0^{n+}$, with *n* ranging from 3 to 5, and $IP_K = -\mathcal{E}_{HOMO}$; ^{b)} unformatted values for $IP_A = \mathcal{E}_0(Is-\mathbf{1}^{5+}) - \mathcal{E}_0(Is-$

Hect	Daramotor	X-Ra	ау		DFT	
HOSL	Parameter	α pocket	β pocket	α pocket	β pocket	α & β pocket (1:2)
	N…F	3.623 ± 0.243	-	3.142 ± 0.006	-	3.173 ± 0.010
13+	H…F	2.832 ± 0.252	-	2.404 ± 0.006	-	2.440 ± 0.012
1	N–H…F	152.1 ± 9.6	-	129.0 ± 0.1	-	128.6 ± 0.5
	P…N₃	4.504	5.986	4.048	5.128	4.078 (α) ; 5.379 (β)
	N…F	-	-	3.086 ± 0.018	-	-
14+	H…F	-	-	2.319 ± 0.032	-	-
Τ	N–H…F	-	-	131.5 ± 1.7	-	-
	P…N ₃	-	-	3.997	4.958	-
	N…F	-	-	3.036 ± 0.021	-	-
/a 1 5+	H…F	-	-	2.245 ± 0.035	-	-
15-1-	N–H…F	-	-	133.6 ± 1.6	-	-
	P…N₃	_	-	3.955	4.799	_
	N…F	-	-	3.057 ± 0.024	-	-
bc 15+	H…F	-	-	2.266 ± 0.040	-	-
115-1	N–H…F	-	-	133.9 ± 2.2	-	-
	P…N₃	-	-	3.976	4.799	-
	N…F	-	-	2.995 ± 0.004	-	-
/c 16+	H…F	-	-	2.174 ± 0.008	-	-
13-1-	N–H…F	-	-	136.7 ± 0.8	-	-
	P…N₃	-	-	3.920	4.699	-
	N…F	-	-	2.994 ± 0.005	-	-
hc 16+	H…F	-	-	2.173 ± 0.008	-	-
113-1-	N–H…F	-	-	136.8 ± 0.8	-	-
	P…N₃	-	-	3.918	4.700	-

Table S18. Comparison of the hydrogen bonding dimensions (distances in Å and angles in °) and the $P \cdots N_3$ distances (Å) observed in the crystal structure of $\mathbf{1}^{3+} \cdot PF_6^-$ and in the DFT optimised structures of $\mathbf{1}^{n+} \cdot PF_6^-$ associations.^{*a*}

 $^{a)}$ the N₃ plane is determined by the three N atoms from the N–H groups of the 9MA bridging ligands.

Table S19. Uncorrected electronic binding energies $(\Delta \mathcal{E}_0)$,^{*a*} Zero Point Corrections (ΔZPE) ,^{*b*} thermal corrected binding energies (ΔE) ,^{*c*} binding enthalpies (ΔH) ,^{*d*} binding entropies term contribution $(T\Delta S)$,^{*e*} binding free energies (ΔG) ,^{*f*} and standard state binding free energies $(\Delta G^{SS})^g$ (in kcal mol⁻¹) for the PF₆⁻ associations of **1**^{*n*+.^{*h*}}

Binding pocket	Oxidation state	$\Delta \mathcal{E}_0$	ΔZPE	ΔE	ΔH	T∆S	∆G	ΔG^{SS}
	1 ³⁺	-12.79	1.37	-10.52	-11.11	-13.56	2.44	0.55
	1 ⁴⁺	-15.54	1.04	-13.46	-14.05	-12.83	-1.22	-3.11
	/s- 1 ⁵⁺	-18.48	1.26	-16.30	-16.90	-13.64	-3.25	-5.14
ά	hs- 1 ⁵⁺	-18.46	1.37	-16.17	-16.76	-13.74	-3.02	-4.91
	/s- 1 ⁶⁺	-21.58	0.89	-19.72	-20.31	-13.17	-7.14	-9.03
	hs- 1 ⁶⁺	-21.63	0.99	-19.70	-20.29	-13.21	-7.08	-8.97
	1 ³⁺	-9.48	1.05	-7.53	-8.13	-13.93	5.80	3.91
	1 ⁴⁺	-14.00	0.73	-12.19	-12.78	-12.81	0.03	-1.87
0	/s- 1 ⁵⁺	-18.43	0.98	-16.38	-16.97	-12.94	-4.03	-5.92
р	hs- 1 5+	-18.43	1.02	-16.37	-16.96	-13.07	-3.90	-5.79
	/s- 1 ⁶⁺	-22.52	1.19	-20.44	-21.04	-13.29	-7.75	-9.64
	hs- 1 ⁶⁺	-22.56	1.32	-20.42	-21.02	-13.75	-7.27	-9.16
α & β pocket (1:2)	1 ³⁺	-21.06	2.46	-16.82	-18.01	-27.76	9.75	7.86

^{*a*)} The energy values were not corrected for basis set superposition errors ; ^{*b*}) ΔZPE is included in the ΔE , ΔH and ΔG terms; ^{*c*}) $\Delta E = \Delta E_0 + \Delta E_{Tot}$, where ΔE_{Tot} accounts for the differences in the internal energy due to translational, rotational, vibrational and electronic motions; ^{*d*}) $\Delta H = \Delta E + \Delta n RT$, where *n* is -1 for a 1:1 host-guest systems, *R* is the ideal gas constant and *T* is the temperature (298.15 K); ^{*e*}) ΔS accounts for the differences in entropy due to in the translational, rotational, vibrational and electronic motions; ^{*f*}) $\Delta G = \Delta H - T\Delta S$; ^{*a*}) $\Delta G^{SS} = \Delta G + (-1.89 \text{ kcal mol}^{-1})$, which corresponds to the free energy change converting from the standard state at 1 atm (1 mol per 24.46 L) to 1 M (1 mol/L);⁽¹⁰⁾ and ^{*h*}) the absolute energy terms are defined in the Detailed Methods section.

Table S20. Average electron density (ρ , ea_0^{-3}), Laplacian of the density ($\nabla^2 \rho$, ea_0^{-3}), potential energy density (\mathcal{V} , Hartrees), and energy of the hydrogen bonds (E_{HB} , kcal mol⁻¹) at the bond critical points in the N–H…F interactions between the $\mathbf{1}^{n+}$ hosts and PF₆⁻ in the α pocket, a together with the E^2 stabilisation energies of $n_F \rightarrow \sigma^*_{N-H}$ (kcal mol⁻¹)^b between $\mathbf{1}^{n+}$ and PF₆⁻.

Host	ρ (×10)	∇²ρ (×10)	V (×10)	Енв	E ²
1 ³⁺	0.08 ± 0.00	0.39 ± 0.00	-0.07 ± 0.00	-2.190 ± 0.038	4.17
1 ⁴⁺	0.10 ± 0.01	0.45 ± 0.02	-0.09 ± 0.01	-2.784 ± 0.220	6.28
/s- 1 ⁵⁺	0.12 ± 0.01	0.51 ± 0.03	-0.11 ± 0.01	-3.405 ± 0.284	8.86
/s- 1 ⁵⁺	0.11 ± 0.01	0.49 ± 0.03	-0.10 ± 0.01	-3.213 ± 0.333	8.24
/s- 1 ⁶⁺	0.14 ± 0.00	0.56 ± 0.01	-0.13 ± 0.00	-4.082 ± 0.073	10.83
hs- 1 ⁶⁺	0.14 ± 0.00	0.56 ± 0.01	-0.13 ± 0.00	-4.090 ± 0.075	10.92

^{*aj*} The assessed properties were averaged over the three N–H···O hydrogen bonds; ^{*bj*} considering the three N–H binding units together.

Supplementary Figures

Fig. S11. DFT optimised structure of free 1^{3+} , together with the overlap of the optimised structures of 1^{n+} in the four oxidation states and spin multiplicities, showing the structural similarities between them (1^{3+} – red; 1^{4+} – green; $ls-1^{5+}$ – blue; $hs-1^{5+}$ – yellow; $ls-1^{6+}$ – magenta; and $hs-1^{6+}$ – cyan). The C–H hydrogen atoms were hidden for clarity.

Fig. S12. Distribution of the electrostatic potential mapped on the 0.001 ea_0^{-3} isodensity surface of $\mathbf{1}^{n+}$, in the top (left), side (centre) and bottom views (right). The blue to red colour scales, in kcal mol⁻¹, range from 85 to 195 ($\mathbf{1}^{3+}$), from 140 to 250 ($\mathbf{1}^{4+}$), from 205 to 315 ($\mathbf{1}^{5+}$), and from 265 to 375 ($\mathbf{1}^{6+}$).

Fig. S13. Highest V_S values (kcal mol⁻¹) in the α (\blacktriangle) and β pockets (\neg) of $\mathbf{1}^{n+}$ vs. its oxidation state, together with their linear fits ($R^2 \ge 0.999$), calculated for the DFT optimised structures of the free hosts. The high-spin electron configurations of the $\mathbf{1}^{5+}$ and $\mathbf{1}^{6+}$ hosts are represented by the open points \triangle and ∇ , respectively.

1³+•CH₃COO⁻

1⁴⁺·CH₃COO⁻

ls-1^{5+,}CH₃COO⁻

hs-1⁵⁺·CH₃COO⁻

Fig. S14. DFT optimised structures of the 1^{n+} ·CH₃COO⁻ associations, with the anion hosted in the α pocket. The N–H···O hydrogen bonds are drawn as pink dashed lines. The hosts' C–H hydrogen atoms were hidden for clarity.

1⁴⁺·CH₃COO⁻

ls-1^{5+,}CH₃COO⁻

hs-1⁵⁺·CH₃COO⁻

Fig. S15. DFT optimised structures of the $\mathbf{1}^{n+}$ -CH₃COO⁻ associations, with the anion hosted in the β pocket and its methyl group pointing inwards the cavity. The hosts' C–H hydrogen atoms were hidden for clarity.

1⁴⁺·CH₃COO⁻

ls-1⁵+•CH₃COO⁻

hs-1^{5+,}CH₃COO⁻

Fig. S16. DFT optimised structures of the 1^{n+} -CH₃COO⁻ associations, with the anion hosted in the β pocket and its carboxylate group pointing inwards the cavity. The hosts' C–H hydrogen atoms were hidden for clarity.

1³⁺·NO₃[−]

1⁴⁺·NO₃[−]

Is-1⁶⁺·NO₃⁻

Fig. S17. DFT optimised structures of the $1^{n+} \cdot NO_3^-$ associations, with the anion hosted in the α pocket. The N-H···O hydrogen bonds are drawn as pink dashed lines. The hosts' C-H hydrogen atoms were hidden for clarity.

14+·NO3-

/s-1⁵+·NO₃-

*h*s-1⁵⁺·NO₃⁻

Fig. S18. DFT optimised structures of the $\mathbf{1}^{n+}$ ·NO₃⁻ associations, with the anion hosted in the β pocket. The hosts' C–H hydrogen atoms were hidden for clarity.

1³⁺•ClO₄[−]

1⁴⁺·ClO₄[−]

*l*s-**1**⁵⁺⋅ClO₄⁻

hs-**1**⁵+∙ClO₄⁻

Fig. S19. DFT optimised structures of the $\mathbf{1}^{n+}$ ·ClO₄⁻ associations, with the anion hosted in the α pocket. The N–H···O hydrogen bonds are drawn as pink dashed lines. The hosts' C–H hydrogen atoms were hidden for clarity.

14+.CIO_4-

ls-1⁵+·ClO₄-

hs-1⁵+∙ClO₄⁻

Fig. S20. DFT optimised structures of the 1^{n+} ·ClO₄⁻ associations, with the anion hosted in the β pocket. The hosts' C–H hydrogen atoms were hidden for clarity.

1³⁺·HSO₄[−]

1⁴⁺•HSO₄⁻

Fig. S21. DFT optimised structures of the $\mathbf{1}^{n+}$ ·HSO₄⁻ associations, with the anion hosted in the α pocket. The N–H···O hydrogen bonds are drawn as pink dashed lines. The hosts' C–H hydrogen atoms were hidden for clarity.

Fig. S22. DFT optimised structures of the 1^{n+} -HSO₄⁻ associations, with the anion hosted in the β pocket. The hosts' C–H hydrogen atoms were hidden for clarity.

14+.H2PO4-

ls-1⁵⁺·H₂PO₄[−]

hs-1⁵⁺·H₂PO₄⁻

Fig. S23. DFT optimised structures of the $\mathbf{1}^{n+}$.H₂PO₄⁻ associations, with the anion hosted in the α pocket. The N–H···O hydrogen bonds are drawn as pink dashed lines. The hosts' C–H hydrogen atoms were hidden for clarity.

Fig. S24. DFT optimised structures of the $\mathbf{1}^{n+} \cdot H_2 PO_4^-$ associations, with the anion hosted in the β pocket. The hosts' C–H hydrogen atoms were hidden for clarity.

Fig. S25. Bond critical points (light blue spheres) of the N–H…O hydrogen bonds in the DFT optimised structures of 1^{3+} ·CH₃COO⁻ and 1^{3+} ·H₂PO₄⁻. The hosts' C–H hydrogen atoms were hidden for clarity.

Fig. S26. Change in oxo-anion net charge (*e*) when hydrogen bonded to $\mathbf{1}^{n+}$ in the DFT optimised structures, together with the corresponding linear fits ($R^2 \ge 0.995$). Key: CH₃COO⁻ (\blacksquare), NO₃⁻ (\blacklozenge), ClO₄⁻ (\blacktriangle), HSO₄⁻ (\blacklozenge) or H₂PO₄⁻ (\bigtriangledown). The high-spin electron configurations are represented by the open points (\square O, \triangle \diamond and ∇), but they might overlap with the low-spin points, as some charge variations are comparable between both spin multiplicities.

Fig. S27. Variation of the E^2 stabilisation energies of $n_0 \rightarrow \sigma^*_{N-H}$ (kcal mol⁻¹) for N–H···O interactions in the DFT optimised structures of the $\mathbf{1}^{n_+}$ oxo-anion associations, together with the corresponding linear fits ($R^2 \ge 0.879$). Key: CH₃COO⁻ (\blacksquare , NO₃⁻ (\blacklozenge), ClO₄⁻ (\blacktriangle), HSO₄⁻ (\blacklozenge) or H₂PO₄⁻ (\blacktriangledown). The high-spin electron configurations are represented by the open points ($\square \bigcirc \bigtriangleup \diamondsuit \diamond$) and \bigtriangledown), but they might overlap with the low-spin points, as E^2 energies are comparable between both spin multiplicities.

1³⁺·F⁻

14+·F⁻

Fig. S28. DFT optimised structures of the $\mathbf{1}^{n+}$ - \mathbf{F}^- associations, with the anion hosted in the α pocket. The N-H…F⁻ hydrogen bonds are drawn as pink dashed lines. The hosts' C-H hydrogen atoms were hidden for clarity.

14+·F-

/s-**1**⁵+⋅F⁻

*h*s-**1**⁵+F⁻

Fig. S29. DFT optimised structures of the 1^{n+} F⁻ associations, with the anion hosted in the β pocket. The hosts' C–H hydrogen atoms were hidden for clarity.

1³+•Cl⁻

1⁴+•Cl⁻

/s-**1**⁵+·Cl⁻

hs-**1**⁵+⋅Cl⁻

Fig. S30. DFT optimised structures of the 1^{n+} ·Cl⁻ associations, with the anion hosted in the α pocket. The N–H···Cl⁻ hydrogen bonds are drawn as pink dashed lines. The hosts' C–H hydrogen atoms were hidden for clarity.

1⁴+•Cl⁻

*l*s-**1**⁵⁺·Cl⁻

hs-1⁵+·Cl⁻

Fig. S31. DFT optimised structures of the $\mathbf{1}^{n+}$ -Cl⁻ associations, with the anion hosted in the β pocket. The hosts' C–H hydrogen atoms were hidden for clarity.

1³⁺·Br⁻

1⁴+•Br⁻

*ls-*1⁵+⋅Br⁻

*h*s-**1**⁵+⋅Br⁻

Fig. S32. DFT optimised structures of the $\mathbf{1}^{n+}$ ·Br associations, with the anion hosted in the α pocket. The N-H···Br hydrogen bonds are drawn as pink dashed lines. The hosts' C-H hydrogen atoms were hidden for clarity.

1⁴+•Br⁻

*l*s-**1**⁵+⋅Br⁻

*hs-*1⁵+⋅Br⁻

Fig. S33. DFT optimised structures of the $\mathbf{1}^{n+}$ ·Br⁻ associations, with the anion hosted in the β pocket. The hosts' C–H hydrogen atoms were hidden for clarity.

1³+•|−

14+·l⁻

*l*s-**1**⁵+·l⁻

hs-**1**⁵+·l⁻

Fig. S34. DFT optimised structures of the $\mathbf{1}^{n+1}$ associations, with the anion hosted in the α pocket. The N-H···I⁻ hydrogen bonds are drawn as pink dashed lines. The hosts' C-H hydrogen atoms were hidden for clarity.

14+·l⁻

hs-**1**⁵+·l⁻

Fig. S35. DFT optimised structures of the 1^{n+} -I⁻ associations, with the anion hosted in the β pocket. The hosts' C–H hydrogen atoms were hidden for clarity.

Fig. S36. Variation of $\Delta\Delta H_{HG\alpha-\beta}$ (kcal mol⁻¹) vs. $\mathbf{1}^{n+}$ oxidation state in the DFT optimised structures of the F⁻ (\square), Cl⁻ (\triangle), Br⁻ (\diamond) and I⁻ (∇) host-guest associations (all $R^2 \ge 0.938$). The high-spin electron configurations are represented by the filled points ($\blacksquare \land \diamond$ and ∇), but they might overlap with the low-spin points as the $\Delta\Delta H_{HG\alpha-\beta}$ energy is comparable between the two spin states.

Fig. S37. Quantum parameters *vs.* $\mathbf{1}^{n+}$ oxidation state for the anion associations of $\mathbf{1}^{n+}$ and F^- (\Box), CI^- (Δ), Br^- (\diamond) and I^- (∇), together with the corresponding linear fits: **a** Variation of the ΔH_{HG} (kcal mol⁻¹) between $\mathbf{1}^{n+}$ and the halides ($R^2 \ge 0.998$); **b** Average E_{HB} energy values (kcal mol⁻¹) for the hydrogen bonds between $\mathbf{1}^{n+}$ and the halides ($R^2 \ge 0.996$); **c** Variation of the E^2 stabilisation energies of $n_X \rightarrow \sigma^*_{N-H}$ (kcal mol⁻¹, $X = F^-$, CI^- , Br^- or I^-) for the N–H···X interactions ($R^2 \ge 0.988$). The points for the high-spin electron configurations are not represented as they would overlap with the low-spin configurations data.

Fig. S38. Change in halide net charge (*e*) when hydrogen bonded to $\mathbf{1}^{n+in}$ the DFT optimised structures, together with the corresponding linear fits ($R^2 \ge 0.993$). Key: F⁻ (\square), Cl⁻ (\triangle), Br⁻ (\diamond) and I⁻ (∇). The points for the high-spin electron configurations are not represented as they would overlap with the low-spin configurations data.

1³⁺

1⁴⁺

/s-1⁵⁺

/s-1⁵+·NO₃-

hs-1⁵⁺·NO₃⁻

Fig. S39. HOMO surface plots (contour value 0.01 ea_0^{-3}) of 1^{n+} and their NO₃⁻ associations in the DFT optimised structures.

1⁴+•PF₆⁻

*ls-*1⁵+•PF₀⁻

hs-1⁵+•PF₅⁻

Fig. S40. DFT optimised structures of the $\mathbf{1}^{n+}$ ·PF₆⁻ associations, with the octahedral anion hosted in the α pocket. The N–H…F hydrogen bonds are drawn as pink dashed lines. The C–H hydrogen atoms were hidden for clarity.

Fig. S41. DFT optimised structures of the $\mathbf{1}^{n+}$ -PF₆⁻ associations, with the octahedral anion hosted in the β pocket. The hosts' C– H hydrogen atoms were hidden for clarity.

Fig. S42. Quantum descriptors assessed in the α pocket DFT optimised $\mathbf{1}^{n+}$ -PF₆⁻ associations (\blacklozenge), together with their linear fittings: **a** Variation of the ΔH_{HG} (kcal mol⁻¹) between $\mathbf{1}^{n+}$ and PF₆⁻ ($R^2 = 0.998$); **b** Average E_{HB} energy values (kcal mol⁻¹) for the hydrogen bonds between $\mathbf{1}^{n+}$ and PF₆⁻ vs. $\mathbf{1}^{n+}$ oxidation state ($R^2 = 0.999$); **c** Variation of the E^2 stabilisation energies of $n_F \rightarrow \sigma^*_{N-H}$ (kcal mol⁻¹) for the N–H…F interactions ($R^2 = 0.998$). The high-spin electron configurations are represented by the open points (\bigcirc), but they might overlap with the low-spin points as some given property is comparable between the two spin states.

Fig. S43. Variation of $\Delta\Delta H_{HG\alpha-\beta}$ (\bigstar , kcal mol⁻¹) *vs.* $\mathbf{1}^{n+}$ oxidation state in the DFT optimised structures of the PF₆⁻ host-guest associations ($R^2 = 0.964$). The high-spin electron configurations are represented by the open points (\bigcirc), but they might overlap with the low-spin points as the $\Delta\Delta H_{HG\alpha-\beta}$ energy is comparable between the two spin states.

Fig. S44. Bond critical points (red spheres) of the π -anion interactions between the PF₆⁻ anionic guest and the **1**³⁺ host. The hosts' C–H hydrogen atoms were hidden for clarity.

Fig. S45. DFT optimised structure of the 1^{3+} (PF₆⁻)₂ association, with the octahedral anions hosted in the α and β pocket. The N–H···F hydrogen bonds are drawn as pink dashed lines. The C–H hydrogen atoms were hidden for clarity.

References

[1] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; J. A. Montgomery, J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, Revision D.01; Gaussian, Inc.: Pittsburgh PA, **2013**.

- [2] T. Yanai, D. P. Tew, N. C. Handy, *Chem. Phys. Lett.* **2004**, *393*, 51-57.
- [3] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [4] B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, S. Gabriel, P. J. Stephens, J. Phys. Chem. A 2002, 106, 6102-6113.
- [5] L. E. Roy, P. J. Hay, R. L. Martin, J. Chem. Theory Comput. **2008**, *4*, 1029-1031.
- [6] (a) T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580-592; (b) T. Lu, F. Chen, J. Mol. Graph. Model. 2012, 38, 314-323.
- [7] R. F. W. Bader, *Atoms in Molecules: A Quantum Theory*, Oxford University Press, **1991**.
- [8] F. Weinhold, C. R. Landis, *Chem. Educ. Res. Pract.* **2001**, *2*, 91-104.
- [9] E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. **2013**, *34*, 1429-1437.
- [10] C. P. Kelly, C. J. Cramer, D. G. Truhlar, *J Phys Chem B* **2007**, *111*, 408-422.