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Abstract 

Currently, remote sensing platforms provide state-of-the-art data for multiple purposes including applications related 

to coastal wetlands. Mangrove above-ground biomass (MAGB) together with its extent is considered well correlated 20 

with the habitats’ environmental and economic values. Above-ground biomass can be estimated by models that 

integrate remote sensing, field data and statistical information. However, it remains difficult to decide which model 

and which data offer the best performance for any one study location. Hence, this study aims to assess the spatial 

change in MAGB over a 45-year period and investigate different approaches to quantify this change through linear 

and multi linear regression models. Specifically, we test a non-linear model (Multivariate Adaptive Regression 25 

Splines; MARS), and non-parametric machine learning models, to predict MAGB using vegetation indices and 

biophysical variables derived from optical remote sensing data from Sentinel-2, Landsat-8, SPOT-7 and synthetic 

aperture radar remote sensing data from ALOS-2. The multi linear regression (MLR) and the MARS models were 

trained by field measured MAGB data to a good level of accuracy (R2 = 0.80 and RMSE = 5.56 Mg ha−1 for MLR and 

R2 = 0.89, RMSE = 5.42 Mg ha−1 for MARS). These models were subsequently applied to Landsat 2, 5 and 8 time-30 

series images to assess changes in MAGB values and mangrove forest extent over the period 1975 to 2020. To ensure 

accurate training data for the models, we conducted field work to measure MAGB in 24 plots measured in May 2019. 

Findings showed that the MARS model generated MAGB values with higher accuracy than linear regression and multi 

linear regression models. Uses of vegetation indices (Normalized Differenced Vegetation Index, Soil-adjusted 

Vegetation Index, Green-Normalized Differenced Vegetation Index, Simple Ratio, and Red-edge Simple Ratio) 35 

generated MAGB values with accuracy slightly higher than using biophysical variables (Leaf area index, Fraction of 

Absorbed Radiation, Fractional vegetation cover, and Leaf chlorophyll content). Sentinel-2 and Landsat 8 were 

effective data sources for MAGB estimates, while SPOT-7 and ALOS-2 produced acceptable MAGB accuracy. 

Modelling the Landsat time series found an increase in both MAGB values and forest extent over the 1975-2020 

period. The MARS model, Sentinel-2, Landsat 8 and vegetation indices are the recommended models and data to use 40 
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to measure MAGB and could be used to understand changes in MAGB and forest extent at national and regional 

scales. 

Keywords: regression model; MARS; vegetation indices; biophysical variables; Thuy Truong commune 

1. Introduction 

Mangrove forests are one of the most diverse ecosystems on Earth and deliver numerous provisioning, regulating, 45 

cultural and supporting services that benefit coastal and inland communities (Menéndez et al., 2020, Worthington et 

al., 2020, Iqbal, 2020). Recognizing these benefits, strategies for mangrove preservation and growth have been 

developed by the Vietnamese government to reduce global climate change impacts and secure the livelihoods of 

coastal communities, and have been implemented in the five northern coastal provinces since the 1980s (VEA, 2016). 

One key strategy has been forest plantation and restoration, which has attracted domestic investment and foreign 50 

donors (such as Denmark and Japan). Alongside the conversion of some mangrove areas to aquaculture, rice and salt 

farming, this strategy has led to fluctuations in mangrove forest extent in the Red River Delta (RRD) over the ensuing 

decades (Hoa, 2016, Quang et al., 2020). 

Above-ground biomass (AGB), accounts for the living biomass above the soil. This includes stems, bark, branches, 

foliage, and seeds, and constitutes the main carbon pool in trees with a diameter at breast height (DBH) greater than 55 

10 cm (Spawn et al., 2020). Mangrove above-ground biomass (MAGB), together with its spatial extent, is well 

correlated with environmental and economic values (Baloloy et al., 2018). In tropical regions, mangroves and seagrass 

are one of the most carbon-rich ecosystems, storing up to 1023 t C ha−1 (Laffoley and Grimsditch, 2009), therefore 

MAGB is important to estimating the above-ground carbon pool (Clark and Clark, 2000), for monitoring forest 

changes and in creating management protocols.  60 

With the advantages of observation at large spatial scales and across multiple decades, remote sensing data (e.g. 

hyperspectral, multispectral, radar, and light detection and ranging (LiDAR)) are a valuable resource for mapping 

mangrove extent, distribution and change (Green et al., 1998, Zhang et al., 2012), and for extracting vegetation 

biophysical parameters such as chlorophyll content (Gitelson et al., 2005, Zhang et al., 2012). Among the available 

optical remote sensing data, SPOT and Landsat images are most commonly used and users can choose between many 65 

different image processing techniques. Suitable data and techniques depend on the objective of the study. At large 

spatial scales satellite sensors are more appropriate than airborne and unmanned aerial vehicles (UAVs), and for better 

spatial coverage space and airborne data should be used rather than in situ point measurement (Congalton, 1991). 

Remote sensing-based methods have demonstrated their effectiveness for assessing MAGB for large forests, and 

compared to traditional above ground biomass estimates, remote sensing offers a non-destructive more robust 70 

approach, enabling continuous, spatially explicit biomass assessment (Herold and Johns, 2007) at low cost (Pham et 

al., 2019, Castillo et al., 2017). Despite these advantages, remote sensing techniques can be limited because a single 

data pixel will contain information for a number of different individual trees. The complexity of mangrove 

communities and the low spatial resolution of remote sensed images can therefore result in lower accuracy in 

estimating MAGB (Pham et al., 2019).  75 



Various MAGB models using remote sensing data have been developed to improve MAGB estimation accuracy 

(Argamosa et al., 2018), with more modern approaches generating higher accuracy (Pham et al., 2019). However, 

MAGB is a highly heterogeneous parameter that varies across different regions, species, ages, forest types (natural 

and plantation) and climates, hence it is difficult to find a single “best” model to predict MAGB for all types of 

mangrove forests. Therefore, the aim of this study is to assess the abilities of different approaches to estimate MAGB 80 

in a region of the Red River Delta in Vietnam, to discover which model and what data will produce the most accurate 

MAGB values. Approaches to estimate MAGB include parametric regression models (Rosillo-Calle et al., 2015, Avtar 

et al., 2017) with frequent use of vegetation indices and biophysical variables (Baloloy et al., 2018) and non-parametric 

machine learning methods (Jachowski et al., 2013). We tested and compared simple but effective linear regression, 

multi linear regression, and a non-linear regression model (Multivariate Adaptive Regression Splines; MARS), and 85 

recent common machine learning models. We have used three different machine learning algorithms: Artificial Neural 

Network (ANN), random forest (RF) and Support Vector Machines (SVM) with data from different optical images 

from Sentinel-2, Landsat-8, SPOT-7 and SAR remote sensing data from ALOS-2. Finally, a Landsat time-series was 

used to spatially assess change in MAGB and mangrove forest extent over the last 45 years.  

2. Materials and Methods 90 

2.1. Study area  

Here, we focus on the mangrove forests of the Red River Delta, Vietnam. Specifically, this research focuses on Thuy 

Truong commune located in Thai Thuy district in the north-east of Thai Binh province at the mouth of the Thai Binh 

River (central coordinates: 106°38’00E and 20⁰36’00N) (Fig. 1). Thuy Truong commune covers 9.3 km2 and is home 

to approximately ten thousand people (Quang et al., 2020). The main livelihoods are based on agriculture (rice), 95 

aquaculture and the harvesting of clams, fish and crabs from nearby mangrove forests (Pham, 2007). The mangrove 

forest in this region plays an important role in providing habitat for birds, snakes and other animals, protecting local 

citizens from strong storms and waves (Mazda et al., 1997), and as a source of food for consumption or sale (Hoa, 

2016). As a result, the forest is protected by the government, and by local citizens. The area has benefited from forest 

plantation supported by the Danish and Japanese Red Cross programs, both of which ended in 2006. Hence, although 100 

the general picture of total mangrove extent in Vietnam as a whole is one of decline (Powell et al., 2011), the Thuy 

Truong mangrove forest has increased in extent by about 3.5 km seaward (Quang et al., 2020). The forest comprises 

three main mangrove species: Sonneratia caseolaris, Kandelia obovata and Aegiceras corniculatum (Quang et al., 

2020, Loan et al., 2020). The study area has four distinct seasons; spring from February to May, summer from June 

to August, autumn from September to November, and winter from December to January, and the climate of the region 105 

is influenced by the South-East Asian tropical monsoon. As the maximum and minimum monthly average 

temperatures are approximately 28°C in July and 16°C in January, the mangrove is not seasonally deciduous, staying 

green all year round. Hence, the mangrove leaf biomass does not display much seasonal variation. 



 

Fig. 1. Location of Thuy Truong commune on the SPOT-7 natural color composition image, the red circles 110 

denote 24 plots in which field mangrove above ground biomass (MAGB) measurements were taken in May 

2019. 

2.2. Data collection 

2.2.1. Remote sensing data 

For the purposes of establishing MAGB models, we collected different remote sensing data with sensing dates as close 115 

as possible to the dates of the field measurements (Table 1) to minimize MAGB differences due to seasonal and/or 

growth effects. These data were Sentinel-2, Landsat-8 and SPOT-7 images and ALOS-2/PALSAR-2 (AL2). The 

Sentinel-2 scene (optical) was at level 1-C obtained freely from Copernicus Open Access Hub of the European Space 

Agency (ESA). The Landsat-8 OLI was obtained from the United States Geological Survey (USGS) at level 1, and 

SPOT-7 data were purchased from the Airbus group. The SAR remote sensing image of ALOS-2 was provided by the 120 

Japan Aerospace Exploration Agency (JAXA) at level 1.5 (L15) and used for estimating MAGB, and for comparison 

with the results from the optical images using identical methods of regression and machine learning. A time series of 

Landsat images for each 5-year period from 1975 to 2020 with minimal cloud cover (in October and November) were 

acquired to analyze MAGB changes over time. Metadata is summarized within Table 1. 



Table 1 125 

Remote sensing data covering the Thuy Truong commune, Thai Binh province; where B and BQA stand 

for band and band quality, respectively; MSS is Multispectral Scanner Sensor; TM stands for Thematic 

Mapper; OLI is Operational Land Imager; Mul and Pan are short for multispectral and panchromatic bands, 

respectively; GPL is geometric processing level; RPL is radiometric processing level; and GRD is ground-

range detected. V and H are vertical and horizontal, respectively, and coupled letters of VH and VV indicate 130 

SAR cross-polarizations. 

2.2.2. Field measurements for estimating mangrove above-ground biomass 

Field measurements of MAGB were undertaken in May 2019 with clear skies and low cloud cover. Areas 

characterized by different mangrove species were measured in different plots, resulting in 24 distinct measurement 

plots. All field measurement activities were undertaken in 24 10m × 10m plots for three mangrove types of S. 135 

caseolaris plots for K. obovata and A. corniculatum. Plot borders were demarked using ropes. A GPS (Garmin 

Montana 680) with an integrated 5M camera was used to position the four corners of each plot. Plot locations are 

shown in Fig. 1 with the points corresponding to the center of each plot. The GPS was used for measuring the 

coordinates of the plots which subsequently enables to overlay the extraction of remote sensing-based MAGB values 

with plot-based data for comparison. 140 

The above-ground biomass (AGB) values for each mangrove species were estimated using established allometric 

equations (Table 2), using parameters of tree height (H), diameter at breast height (DBH), and stem diameter at the 

Sensors Product level Bands Spatial resolution (m) Acquisition date 

Sentinel-2 Multispectral image- 

L1C 

B2-B8, B11, B12 10 (B2-4, B8) 

20 (B5-7, B11,12) 

2019/06/25  

Landsat-8 OLI L1TP 1–11, BQA 30 2019/05/18  

SPOT-7 GPL: Sensor RPL: 

Basic 

Band 0–3 (Mul) Pan 6 (Mul) 

1.5 (Pan) 

2019/05/17 

ALOS-2 L15 (level 1.5, 

terrain correction) 

HH, and VH 3.125 2019/07/31 

(Ascending) 

Landsat-X 

Time series 

(X=2, 5 and 8) 

(2) L1TP 

(5) L1TP 

(5) L1TP 

(5) L1TP 

(5) L1TP 

(5) L1TP 

(8) L1TP 

(8) L1TP 

(8) L1TP 

(2) 4–6 

(5) 1–7, BQA 

(5) 1–7, BQA 

(5) 1–7, BQA 

(5) 1–7, BQA 

(5) 1–7, BQA 

(8) 1–11, BQA 

(8) 1–11, BQA 

(8) 1–11, BQA 

(2) 60m 

(5) 30m 

(5) 30m 

(5) 30m 

(5) 30m 

(5) 30m 

(8) 30m  

(8) 30m 

(8) 30m 

1975/04/20 (2MSS) 

1988/11/04 (5TM) 

1993/11/02 (5TM) 

1998/10/15 (5TM) 

2003/10/10 (5TM) 

2008/11/11 (5TM) 

2013/10/08 (8OLI) 

2018/10/06 (8OLI) 

2020/05/20 (8OLI) 



position of 10% of the tree height (D0.1) (Hoque et al., 2011). The total height and diameter at 1.3 meters above the 

ground (DBH) of S. caseolaris individuals and the tree height and diameter at 10% of the tree height (D0.1) of K. obovata 

and A. corniculatum were measured.  145 

To calibrate the allometric equations for predicting biomass, a sample of measured (diameter and height) trees were 

cut down at ground level. After harvesting, the stems, branches and leaves of each individual were separated and 

immediately weighed to record fresh biomass. 200 – 1000 g of stems or branches and 100 g of leaves were sampled 

from each cut tree and weighed before drying in an oven at 105°C until a constant weight to establish the relationship 

between dry and fresh weight. For S. caseolaris, the cut trees (n=12) had a height and DBH that ranged from 0.6 – 6.0 150 

m and 2.5 – 25 cm, respectively. K. obovata (n=28) and A. corniculatum (n=15) individuals had heights and D10 that 

ranged from 0.8 – 4.6 m and 3.5 – 12 cm, respectively. The coefficient of determination between D0.1
2H or DBH

2H and 

individual tree biomass (R2) values greater than 0.9 and square error (SE) values less than 2.3 kg presented the 

allometric equations predicted accurate MAGB values.  

Table 2 155 

 Allometric equations developed for each mangrove species in the study site (P < 0.001) 

Mangrove Species AGB allometric equations Parameter R2 SE 

(kg) 

Sonneratia 

caseolaris 

Biomass (kg) = 0.2123×(DBH
2H)0.7083 DBH (cm), H (m) 0.982 0.251 

Aegiceras 

corniculatum 

Biomass (kg) = 0.0463×(D0.1
2H)0.761 D0.1 (cm), H (m) 0.887 0.182 

Kandelia obovata Biomass (kg) = 0.0513× (D0.1
2H)0.8416 D0.1 (cm), H (m) 0.928 0.246 

Note: AGB is the above-ground biomass, DBH is stem diameter at breast height (1.3m), D0.1 is stem diameter at 

the position of 10% of the height, and H is the height of the tree. 

2.3. Methodology 

To estimate and map MAGB we developed a flowchart of the methodology (Fig. 2) which consisted of the following 

steps; (i) pre-processing of optical images from Sentinel-2, Landsat-8 and SPOT-7 and SAR images of ALOS-

2/PALSAR-2 (AL2) before they were all co-registered and projected in the singular coordinate system of the Universal 160 

Transverse Mercator World Geodetic System 1984 (UTM-WGS 84) zone 48 North (section 2.3.1); (ii) calculation of 

vegetation indices from optical remote sensing bands (section 2.3.2); (iii) calculation of biophysical variables also 

from optical remote sensing bands (section 2.3.3); (iv) setting up three MAGB estimation and modelling approaches 

(section 2.3.4); (v) processing the Landsat-X time series with a pre-processing step (section 2.3.5); and (vi) mapping 

of MAGB (section 2.3.6). The best linear regression (LR) (and variable), multiple linear regression (MLR) and 165 

multivariate adaptive regression spline (MARS) models were used to generate time-series MAGB maps. 



 

Fig. 2. Work flow for mangrove above-ground biomass (MAGB) estimation, where: V and H are vertical and 

horizontal, respectively, and coupled letters HH and VH indicate polarization configurations for a SAR system, SRTM 

DEM stands for Shuttle Radar Topography Mission Digital Elevation Model, VI and BA are vegetation indices and 170 

biophysical variable respectively, MLR stands for Multiple linear regression, MARS is the Multivariate Adaptive 

Regression Splines model, ML is machine learning and BF is basic function, and UTM-WGS84, zone 48N is the 

Universal Transverse Mercator World Geodetic System 1984, zone 48 North. 

2.3.1. Image pre-processing 

To combine multi-source remote sensing images, all the data were pre-processed including radiometric calibration 175 

into top-of-atmosphere (ToA), resampling in order to homogenize the spatial resolution of all images to 10m (using 

cubic convolution method, and an output pixel size of 10m), terrain correction for the Sentinel-2 images using the 

Shuttle Radar Topography Mission Digital Elevation Model (0.1degree resolution). The ESA Sen2Cor toolbox was 

used for the Sentinel-2 image atmospheric corrections. The Fast Line-of-sight Atmospheric Analysis of Hypercubes 



(FLAASH) tool was applied for the Landsat-X image atmospheric corrections. Next, the surface reflectance of all the 180 

pre-processed optical images were used for the vegetation index and biophysical variable calculations. The AL2 SAR 

image at level 1.5, was calibrated to reduce image radiometric bias, filled using the Lee filtering method (Ali et al., 

2015) to reduce image speckles, and converted to the backscattering coefficient (𝜎0 in decibel (dB)) using Equation 

(1) where CF is the calibration factor and set at −83 dB: 𝜎𝑑𝐵0 = 10 × log10 𝜎0 + 𝐶𝐹    (1) 185 𝜎0 =  𝐷𝑁2𝐴𝑑𝑛2 × 1𝐺𝑒𝑎𝑝2 × ( 𝑅𝑅𝑟𝑒𝑓)3 × sin (∝)    (2) 

 

Where 
1𝐺𝑒𝑎𝑝2  is the elevation antenna pattern (EAP) correction (2-way), ( 𝑅𝑅𝑟𝑒𝑓)3

indicates the range spreading loss (RSL) 

correction, 𝐴𝑑𝑛2  is the product final scaling from internal SLC to final SLC or GRD, ∝ is the local incidence angle and 𝐷𝑁2 is the average product intensity and has a value of 22142.71. 190 

All optical and SAR images were then projected in the unique Universal Transverse Mercator World Geodetic System 

1984 zone 48 northern hemisphere (UTM-WGS 84, zone 48N) to enable overlay. 

2.3.2. Calculation of vegetation indices 

Numerous vegetation indices can be derived from remote sensing data by transformation of multispectral information. 

Since the Normalized Difference Vegetation Index (NDVI), Soil-adjusted Vegetation Index (SAVI), Green NDVI 195 

(GNDVI), Simple Ratio (SR) and Red-edge Simple Ratio (SRre) have been most frequently applied to mangrove data 

(Green et al., 1998), we selected them for our model inputs. The indices were calculated using the formulas presented 

in Table 3. 

Table 3 

Equations for the vegetation indices used in the biomass models 200 

Vegetation index Formula Reference 

Normalized Difference 

Vegetation Index (NDVI) 

(NIR-R) / (NIR + R) (Rousel et al., 1974) 

Green NDVI (GNDVI) (NIR-G) / (NIR + G) (Gitelson et al., 1996) 

Soil Adjusted vegetation 

Index (SAVI) 

(𝑁𝐼𝑅−𝑅)(𝑁𝐼𝑅+𝑅+𝐿)×(1 + L) (Huete, 1988) 

Simple ratio (SR) NIR/R (Jordan, 1969) 

Red-edge simple ratio 

(SRre)* 

NIR/R-edge (Gitelson and Merzlyak, 1994) 

Note: NIR is the near infrared band ( 8̴33 nm), R is red band ( ̴665 nm), G is green band ( ̴560 nm), L is the 

correction factor, for the higher vegetation density of mangrove forests L values of 0.75 are recommended 

(Huete, 1988), * is not applicable for Landsat 8 and SPOT-7. 

2.3.3. Calculation of biophysical variables  



Biophysical variables are useful for biomass estimation as they describe the spatial distribution of vegetation state and 

dynamics (Widlowski et al., 2004) and are central to the use of multispectral remotely-sensed images to understand 

the correlation between the spectral reflectance of mangrove forests and their biophysical parameters (Pham et al., 

2019). We selected Leaf Area Index (LAI), fraction of absorbed photosynthetically active radiation (fAPAR), 205 

fractional vegetation cover (FVC), and leaf chlorophyll content (Cla) because they are the most sensitive parameters 

for MAGB estimation (Bilgili et al., 2010). These were calculated using the built-in Biophysical processor within 

SNAP Toolbox (Kganyago et al., 2020) supporting Sentinel-2 and Landsat 8 images. Since SPOT images have no 

biophysical variables included in their products, we calculated the LAI, FVC and Cla using the following equations 

(Ali et al., 2015); 210 𝐿𝐴𝐼𝑁𝐷𝑉𝐼 = − log(1−𝐹𝑉𝐶𝑁𝐷𝑉𝐼)𝑘(Ɵ)    (3) 

Where 𝐿𝐴𝐼𝑁𝐷𝑉𝐼  is NDVI-derived leaf area index, 𝐹𝑉𝐶𝑁𝐷𝑉𝐼 is the fractional vegetation cover based on NDVI and k(Ɵ) 

indicates the light extinction coefficient for a given solar zenith angle (range between 0.4 and 0.65) and set at value 

of 0.5. The 𝐹𝑉𝐶𝑁𝐷𝑉𝐼 in equation 3 is solved by equation 4. 𝐹𝑉𝐶𝑁𝐷𝑉𝐼 = 𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑠𝑁𝐷𝑉𝐼𝑣−𝑁𝐷𝑉𝐼𝑠        (4) 215 

Where 𝑁𝐷𝑉𝐼𝑠 is NDVI for bare soil and 𝑁𝐷𝑉𝐼𝑣 is NDVI for vegetated land. 

Chlorophyll-a green (ClaGreen) was obtained using the Green Chlorophyll Index model (CIGREEN) developed by 

Gitelson et al. (2003) for comparison with the Sentinel-2. 𝐶𝐿𝑎𝐺𝑟𝑒𝑒𝑛 = (𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛) − 1   (5) 

Where Green is the green band (0.530 µm – 0.590 µm) of the SPOT-7 and Landsat 8 image. 220 

The SPOT-7 fAPAR was computed from the leaf area index (LAI) using equation (6) suggested by Yuan et al. (2015): fAPAR = 0.2058 ∗ ln(𝐿𝐴𝐼) + 0.5378   (6) 

2.3.4. MAGB models 

 Linear and multiple linear regression models 

A linear regression is a simple but effective method to estimate MAGB, not only of mangrove forest but other types 225 

of vegetation, based on linear correlation between a single remote sensing band layer or other indices and the target 

variable (MAGB etc.). Relationships between a response variable 𝑦, and a single explanatory variable 𝑥, given a set 

of data that includes observations for both of these variables for a particular sample, is estimated by a simple linear 

regression (Tranmer and Elliot, 2008). For example, the above ground biomass of mangrove forest (𝑀𝐴𝐺𝐵) as a 

response variable can be predicted from examination of the results of the calculation of vegetation indices or by using 230 

a single reflectance band from remote sensed images - the explanatory variable (𝑉𝑖). 𝑀𝐴𝐺𝐵 =  𝛽0 + 𝛽1 ∗ 𝑉𝑖 + 𝑒𝑖    (7) 

Where 𝛽0 is the intercept also called the constant. 𝛽1 is the slope of the line – this is how much the value of 𝑀𝐴𝐺𝐵 

increases and 𝑒𝑖 is the error term for the explanatory variable (𝑉𝑖). 
More than one explanatory variable (𝑉𝑛𝑖) is included in multiple linear regression (MLR) (Tranmer and Elliot, 2008, 235 

Marill, 2004) to estimate a single dependent outcome variable 𝑀𝐴𝐺𝐵𝑖 and each linear regression has its own slope 

(𝛽1,2…n). 



𝑀𝐴𝐺𝐵 =  𝛽0 + 𝛽1 ∗ 𝑉1𝑖 + 𝛽2 ∗ 𝑉2𝑖 + ⋯ + 𝛽n ∗ 𝑉𝑛𝑖 +  𝑒𝑖 (8) 

In this study, we grouped explanatory variables (𝑉𝑛𝑖) into three groups of vegetation indices and biophysical variables 

for Sentinel-2, Landsat-8 and SPOT-7 and two dual polarizations HH and VH and ratios HH+VH and (HH×VH)0.5 of 240 

the ALOS-2 backscatters by compartments (Soares and Schaeffer-Novelli, 2005). The MLR models were developed 

after hundreds of loops of slope (𝛽i) and intercept or constant (𝛽0) adjustments from the initial models. This procedure 

was repeated for the three groups of the target variables (MAGB). The initial models were established from linear 

regression models (LRM) of individual explanatory variables, and the Pearson's correlation coefficient (PCC) of each 

LRM was used as its weight for the adjustments (increment and reduction). After each increment and reduction, 245 

RMSEs were calculated and compared to the previous values. Loops were stopped when the RMSE values approached 

minimum values. 

 Multivariate adaptive regression splines model 

Multivariate Adaptive Regression Splines (MARS) is a regression and data mining technique developed by Friedman 

(Friedman, 1991). Basic functions in modeling the predictor and response variables are used in this method. The 250 

generated basic functions were employed as the new set of predictor variables to generate the final model. A forward 

algorithm, which selects all possible basic functions and their corresponding knots (constants of the basic functions) 

is used in the initial step of MARS. Next, the backward algorithm discards basis functions which do not contribute 

significantly to the accuracy of the fit. In the final step, the model selects the remaining basic functions (Bilgili et al., 

2010). We applied the MARS model to estimate MAGB in this study (Fig. 3) as an extension of the overall study 255 

work flow presented in Fig. 2. The vegetation indices (VI), biophysical variables (BV) and ALOS-2 polarizations 

(VV, VH) calculated from previous steps were pruned to eliminate redundant basic functions (BFs) before they were 

selected to estimate MAGB. BFs were chosen to compute MAGB and the condition that the coefficient of 

determination (R2) and RMSE values were greater than the expected ratios from field measured MAGB were checked. 

This process continued until the final model results consisted of the best matched calculated MAGB with field 260 

measured MAGB and a set of BFs based on the highest R2 and lowest RMSE values. In theory, single remote sensing 

bands and mixed parameters could be used in one model. However, in order to allow comparisons, we grouped VIs, 

BVs and SAR data for the MARS runs separately. This also shortened the time taken for model runs and reduced the 

complexity of the model. 
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Fig. 3. Sub-work flow for mangrove above-ground biomass (MAGB) estimation-MARS model; where: R2 is 

coefficient of determination, RMSE stands for root-mean-square error, BF is basic function and MARS is the 

Multivariate Adaptive Regression Splines model. 

 Machine learning approaches 

Non-parametric algorithms in machine learning have been increasingly applied because they increase the robustness 270 

of image supervised classification methods (Maxwell et al., 2018, Ou et al., 2019), model complex class signatures, 

and accept a variety of training data, and are routinely found to have higher accuracies than the maximum likelihood 

method (Yu et al., 2014). The artificial neural network (ANN), random forest (RF), and support vector machine (SVM) 

methods were selected from among the many available because they are considered robust and suitable for MAGB 

estimations (Pham et al., 2019, Pham et al., 2020b, Hu et al., 2020, Pham et al., 2020a).  275 



Machine learning methods have been well explained and documented (Quang et al., 2020, Jachowski et al., 2013, Hu 

et al., 2020, Pham et al., 2020b, Pham et al., 2019), however they can be applied differently. In this study, we have 

applied these three methods using combinations of all the VIs and BVs from each optical image and a combination of 

SAR polarizations (HH, VH) and HH+VH and (HH×VH)0.5 inputting into the machine learning classifiers. As they 

are all supervised classifiers, training data are required, but field collected training data form the 24 plots were 280 

considered insufficient for machine learning methods. To create training data, we applied image segmentation for all 

the combinations. A multi-resolution algorithm was applied with an equal weighting of 1 for all image bands and the 

scale parameter, shape and compactness were set at 10, 0.3 and 0.8 respectively. The ML model training dataset of 

216 polygons (segments) and the data for the model accuracy evaluation of 81 polygons were taken from vector layers 

as results of the image segmentation and labeled based on the segment values at the 24 field measured plots. 285 

 Model evaluation 

The coefficient of determination (R2) and the root-mean-square error (RMSE), calculated using equations 9 and 10 

respectively, were used to evaluate the performance of the proposed models. These error-indicative indices are 

frequently utilized to evaluate the differences between measured and predicted MAGB data.  𝑅2 = ∑ (𝑚𝑏𝑒𝑖−𝑚𝑏𝑒)(𝑚𝑏𝑚𝑖−𝑚𝑏𝑚)𝑛𝑖=1√(𝑚𝑏𝑒𝑖−𝑚𝑏𝑒)2(𝑚𝑏𝑚𝑖−𝑚𝑏𝑚)2      (9) 290 

𝑅𝑀𝑆𝐸 =  √∑ (𝑚𝑏𝑒𝑖−𝑚𝑏𝑚𝑖)2𝑛𝑛1      (10) 

Where 𝑚𝑏𝑒𝑖 is the model estimated MAGB value, 𝑚𝑏𝑚𝑖 is the measured MAGB value obtained from field 

measurements, n is the total number of sampling plots, and 𝑚𝑏𝑒 and 𝑚𝑏𝑚 are mean values of 𝑚𝑏𝑒𝑖 and 𝑚𝑏𝑚𝑖, 
respectively. 

Applying machine learning methods, twelve confusion matrices or contingency matrices, user, producer and overall 295 

accuracies, and Kappa statistics were computed for each ML classification (Congalton, 1991). 

2.3.5. Applying the best MLR and MARS model for Landsat-X time series 

Ideally, every estimate should be trained if a sufficiently comprehensive set of training data is obtainable. However, 

for a long time series of remote sensing imagery this condition is not always met. Therefore, calibrated models used 

for other data sets could be a suitable alternative option (Green et al., 1998) to deliver acceptable outputs (Quang et 300 

al., 2020). Here, we applied the best-fit MLR and the final MARS models trained for the three different sets of 

vegetation indices (which produced better results compared to the biophysical variables (Baloloy et al., 2018)) of 

Sentinel-2, Landsat 8 and SPOT-7 for the time-series Landsat-2, 5 and 8 images to enable a rough estimation of 

changes in MAGB and mangrove extent over time. 

2.3.6. Mapping of mangrove above-ground biomass 305 

The results of the MLR and MARS model are point-based models that have the closest fit to MAGB values from field 

measured data. To generate maps of the whole forest, we applied the MLR for the group of variables (vegetation 

indices, biophysical variables and SAR polarizations) and best MARS model for each remote sensing image. Machine 

learning models are pixel-based models; hence all pixels were ready labeled with predicted values. MAGB grid layers 

were converted to vector shape-file format and refined in QGIS. The vector mangrove MAGB maps have seven classes 310 



based on the range of MAGB values from lowest to highest. An identical mapping method was applied to the Landsat 

time-series images. 

3. Results 

3.1. Estimated MAGB from field measurements 

Table 4 presents the plot MAGB values in total calculated for individual mangrove species using the MAGB allometric 315 

equations (Table 2), and percentages of dominant mangrove species in each plot. The mangrove plots can be divided 

into groups of 1-3 which were planted mature mangroves with S. caseolaris occupying around 70% and a group of 

plot 19-25 were newer mangroves planted in 2013 and 2016 with nearly pure S. caseolaris. A mixture of the three 

mangroves in plots 11-18 were natural-original species and in degrading stage, hence the MAGB values (lower than 

Mg ha−1) lower than the well-growing mangrove trees in the plot 4-9 with dominant of K. obovata. 320 

Table 4 

Above ground biomass calculations for individual mangrove species and total plots, * new planted mangroves in 2016. 

 

Plot 

No. 

MAGB  

(Mg ha−1) 

Dominant 

species 

Percentage 

(%) 

Plot 

No. 

MAGB  

(Mg ha−1) 

Dominant species Percentage 

(%) 

1 26.05 S. caseolaris 

K. obovata 

36.20 

63.80 

13 68.19 A. corniculatum 

K. obovata 

S. caseolaris 

26.61 

15.58 

57.81 

2 17.49 K. obovata 

S. caseolaris 

26.68 

73.32 

14 69.41 A. corniculatum 

K. obovata 

S. caseolaris 

20.30 

8.37 

71.34 

3 34.74 K. obovata 

S. caseolaris 

20.44 

79.56 

15 43.93 A. corniculatum 

K. obovata 

S. caseolaris 

33.66 

14.28 

52.06 

4 43.11 A. corniculatum 

K. obovata 

5.14 

94.76 

16 35.34 K. obovata 

S. caseolaris 

33.45 

66.55 

5 93.25 A. corniculatum 

K. obovata 

2.25 

97.75 

17 34.42 K. obovata 

S. caseolaris 

40.49 

59.51 

6 90.96 K. obovata 99.68 18 40.93 K. obovata 

S. caseolaris 

40.46 

59.54 

7 124.77 A. corniculatum 

K. obovata 

8.26 

86.46 

19 7.88 S. caseolaris 99.89 

8 89.84 A. corniculatum 

K. obovata 

7.58 

86.88 

20 13.56 S. caseolaris 99.24 

9 64.82 A. corniculatum 

K. obovata 

4.56 

95.44 

21 11.04 K. obovata 

S. caseolaris 

4.08 

95.92 

10 22.26 A. corniculatum 

K. obovata 

S. caseolaris 

13.37 

3.86 

82.76 

22* 0.303 S. caseolaris 100 

11 33.38 A. corniculatum 

S. caseolaris 

15.47 

84.19 

23* 0.319 S. caseolaris 

 

100 

12 31.96 A. corniculatum 

S. caseolaris 

17.00 

82.40 

24* 0.25 S. caseolaris 

 

100 



High correlations were found between MAGB and biophysical parameters (D2H) of the 9 plots (Fig. 4) with an R2 of 

0.98 for Sonneratia caseilaris, 0.89 for Aegiceras corniculatum and 0.93 for Kandelia obovata. These data were used 325 

for training and accuracy assessment of the multiple linear regression (MLR) and MARS model, and in generating the 

training data set for the machine learning models. 

 

Fig. 4. Correlations between ratio D2H and mangrove above-ground biomass (MAGB); D is the stem diameter of the 

stem at 1.3 m above the ground, while for A. corniculatum and K. obovata, it is the diameter at 10% of the height of 330 

the stem; and H is the mangrove tree height. 

3.2. Mangrove above ground biomass multiple linear regression 

3.2.1. Final multiple linear regression models 

The MLR models (Table 5) had various slope values even with the same group of vegetation indices (VI), biophysical 

variables and SAR backscattering layers. Mostly, the slopes of NDVI and GNDVI were larger than SAVI and SR, 335 

and SRre’s slopes were lowest in the VI group. Slopes of FVC and GNDVI were higher than those of LAI and NDVI 

in the biophysical variable group. The Cla’s slopes were lowest in all cases. The ratio of (HH×VH)0.5 variable had the 

most influence on the ALOS-2 MAGB prediction (with slope of −2.24). The errors for the explanatory variables (𝑒𝑖) 

varied from a lowest value of ±5.27 (Sentinel-2) to a highest value of ±7.75 (ALOS-2). The best fit MAGB model 

was the model of Landsat 8 using the vegetation indices. 340 



Table 5 

Results of final multi linear regression models  

Sensor Multiple linear regression model Error 

Sentinel-2 𝑀𝐴𝐺𝐵𝑉𝑖 = 67.89 ∗ 𝑁𝐷𝑉𝐼 + 73.34 ∗ 𝐺𝑁𝐷𝑉𝐼 + 46.60 ∗𝑆𝐴𝑉𝐼 + 10.617 ∗ 𝑆𝑅 − 0.86 ∗ 𝑆𝑅𝑟𝑒 − 484.36 + 𝑒𝑖   (𝑒𝑖 = ±6.07) 

 𝑀𝐴𝐺𝐵𝐵𝑉 = 21.64 ∗ 𝐿𝐴𝐼 + 27.17 ∗ 𝑓𝐴𝑃𝐴𝑅 + 55.48 ∗𝐹𝑉𝐶 + 0.49 ∗ 𝐶𝑙𝑎 − 394.26 + 𝑒𝑖   (𝑒𝑖 = ±6.42) 

Landsat 8 𝑀𝐴𝐺𝐵𝑉𝑖 = 29.46 ∗ 𝑁𝐷𝑉𝐼 + 48.11 ∗ 𝐺𝑁𝐷𝑉𝐼 + 13.16 ∗𝑆𝐴𝑉𝐼 + 17.55 ∗ 𝑆𝑅 − 494.61 + 𝑒𝑖 # 

 (𝑒𝑖 = ±5.56) 

 𝑀𝐴𝐺𝐵𝐵𝑉 = 59.05 ∗ 𝐿𝐴𝐼 + 31.96 ∗ 𝑓𝐴𝑃𝐴𝑅 + 44.74 ∗𝐹𝑉𝐶 + 0.47 ∗ 𝐶𝑙𝑎 + 54.49 + 𝑒𝑖   (𝑒𝑖 = ±5.27) 

SPOT-7 𝑀𝐴𝐺𝐵𝑉𝑖 = 52.34 ∗ 𝑁𝐷𝑉𝐼 + 90.05 ∗ 𝐺𝑁𝐷𝑉𝐼 + 15.87 ∗𝑆𝐴𝑉𝐼 + 24.15 ∗ 𝑆𝑅 − 210.69 + 𝑒𝑖   (𝑒𝑖 = ±7.67) 

 𝑀𝐴𝐺𝐵𝐵𝑉 = 96.74 ∗ 𝐿𝐴𝐼 + 60.29 ∗ 𝑓𝐴𝑃𝐴𝑅 + 189.02 ∗ 𝐹𝑉𝐶+ 0.03 ∗ 𝐶𝑙𝑎 − 4236.94 + 𝑒𝑖  (𝑒𝑖 = ±7.33) 

ALOS-2 𝑀𝐴𝐺𝐵𝑆𝐴𝑅 = 1.77 ∗ 𝐻𝐻 + 0.33 ∗ 𝑉𝐻 + 0.53 ∗ (𝐻𝐻 + 𝑉𝐻)−  2.24 ∗ (𝐻𝐻 ∗ 𝑉𝐻)0.5 + 499.43 + 𝑒𝑖 (𝑒𝑖 = ±7.75) 

# the best multi linear regression model and so was applied to the Landsat-X time-series  

3.2.2. Accuracy assessments of the linear/multi linear regression and MAGB estimation 

Table 6 shows the coefficients of determination (R2) and root mean square error (RMSE) values calculated (Eq. 6, 7) 

for individual vegetation indices, biophysical variables from optical images and the SAR ALOS-2 data, and for the 345 

MLR. Overall, Landsat 8 MAGB had the highest coefficient of determination (R2) with the field measured data, 

followed by Sentinel-1 and SPOT-7. The ALOS-2 MAGB had the poorest fit to the field measured data (R2 = 0.31 for 

VH and 0.54 for the ratio (HH×VH)0.5). Among the vegetation indices, SR was the most accurate predictor of MAGB 

with R2 greater than 0.7, except for the SPOT-7’s SR (R2 = 0.53). In contrast, the Rrep index was not a useful predictor 

of MAGB, particularly in the case of Sentinel-2’s Rrep with an R2 = 0.29. In the biophysical variable group, LAI and 350 

GNDVI were the most useful predictor variables, followed by SAVI and fAPAR. The accuracy of all the MLR models 

was approximately 8% higher than the most accurate VI and BV from the same remote sensing source. 

Table 6 

Linear/multi linear coefficient of determination (R2) between in-situ measured and satellite-

estimated MAGB and the root mean square error computed for the predictors of vegetation 355 

indices, biophysical variables and SAR remote sensing data (NA= not applicable) 

Sensor Predictor R2 RMSE 

(Mg ha−1) 

Resampled/original 

resolution (m) 

Sentinel-2 SR 0.71 6.84 10/20-60 

(Vegetation  GNDVI 0.68 7.46 10/20-60 

indices) NDVI 0.68 7.74 10/20-60 

 SAVI 0.62 8.10 10/20-60 

 SRre 0.29 10.17 10/20-60 

 MLR 0.81 6.07 10/20-60 

(Biophysical Cla 0.76 6.67 10/20-60 

variables) LAI 0.73 7.00 10/20-60 



 FVC 0.64 7.81 10/20-60 

 fAPAR 0.61 8.25 10/20-60 

 MLR 0.80 6.42 10/20-60 

Landsat 8 OLI SR* 0.70 6.66 10/30 

(Vegetation  GNDVI 0.68 6.85 10/30 

indices) NDVI 0.67 6.94 10/30 

 SAVI 0.67 6.94 10/30 

 SRre NA NA NA 

 MLR 0.80 5.56 10/30 

(Biophysical LAI 0.70 6.66 10/30 

variables) Cla 0.69 6.71 10/30 

 FVC 0.69 6.76 10/30 

 fAPAR 0.68 6.90 10/30 

 MLR 0.82 5.27 10/30 

SPOT-7 GNDVI 0.59 8.00 10/6 

(Vegetation  SR 0.53 8.47 10/6 

indices) NDVI 0.53 8.49 10/6 

 SAVI 0.53 12.80 10/6 

 SRre NA NA NA 

 MLR 0.66 7.67 10/6 

(Biophysical LAINDVI 0.52 8.40 10/6 

variables) FVCNDVI 0.52 8.53 10/6 

 CLaGreen 0.51 8.43 10/6 

 fAPAR 0.50 8.47 10/6 

 MLR 0.65 7.33 10/6 

ALOS-2 (HH×VH)0.5 0.54 8.21 10/3.125 

(polarization  HH 0.50 8.57 10/3.125 

and ratios) HH+VH 0.48 8.78 10/3.125 

 VH 0.31 10.05 10/3.125 

 MLR 0.60 7.75 10/3.125 

* the best fit vegetation index, subsequently applied to the Landsat-X time-series 

3.3. MARS model  

3.3.1. Mangrove above-ground biomass estimated by MARS model 

Fig. 5 shows that the MARS’s MAGB (black circles) estimated for the Sentinel-2 image and Landsat 8 data had the 

highest agreement with the field measured data (R2 = 0.901 for the former and R2 = 0.893 for the latte). Using Landsat 360 

8 and SPOT-7 (R2 of 0.884) and ALOS-2 (R2 of 0.880) scenes, the MARS model generated MAGB values slightly 

less accurate than the uses of Sentinel-2 and Landsat 8 images. Compared to the MLR, the MARS model performed 

better in terms of generating computationally complex models and predicting MAGB, shown by the black circles 

closer to the 1:1 diagonal line than the red triangles, blue diamonds and brown triangles of the MLRs. The MARS and 

MLR results deviate most from the measured MAGB of 40 Mg ha−1 using the optical Sentinel-2, Landsat 8 and SPOT-365 

7 images, while the largest deviation using the SAR AL2 was at the measured MAGB of 35 Mg ha−1. The MARS 

model over-estimated MAGB in the range of 40-60 Mg ha−1 and under-estimated MAGB above 80 Mg ha−1. The 

MARS model predicted MAGB well at < 40 Mg ha−1 in all cases. 



 

Fig. 5. The best MARS model results of mangrove above-ground biomass (back circles) on the vertical axis versus 370 

the field measured data on the horizontal axis in comparison with multi linear regression (MLR) using vegetation 

indices (light blue diamonds) and biophysical variables (red triangles) calculated from (a) Sentinel-2, (b) Landsat 8, 

(c) SPOT-7 images and (d) using backscatter data (brown triangles) of ALOS-2. The red and blue polylines illustrate 

the “hinge functions” with knots where the basic functions were changed and applied for each VI (red polylines) and 

BV (blue polylines) and for the SAR AL2 data (violet polylines). 375 

3.3.3. Accuracy evaluation for the MARS model 

Correlations between the MARS MAGB and field measured data, and the most important variables in the MARS 

model, are presented in Table 7. Variables are divided into three groups: vegetation indices and biophysical variables 

for the optical remote sensing data, and polarizations and ratios for the ALOS-2 data. In general, use of Sentinel-2 and 

ALOS-2 data produced the most accurate predicted MAGB, with R2 of 0.9 and RMSE < 5.33 and 6.53 Mg ha−1, 380 

respectively. The Landsat 8 image was the second most accurate and use of SPOT-7 achieved the lowest, although 

still good, coefficient of determination (lowest R2 = 0.81, highest RMSE = 7.57). Variable importance was identified 

based on sensitivity to model outputs. In the vegetation index group, SR, NDVI and GNDVI were the most critical 

variables, while SRre and SAVI were less influential on model outputs. In the biophysical variable group, LAI, Cla 

and FVC were the top three important variables, while fAPAR was of limited use. The combination of SAR 385 



polarization backscatter data (HH+VH and (HH×VH)0.5) was more importance to model output than the single ALOS-

2 polarization backscatter layer. Of the three groups of variables, the vegetation indices and SAR data were more 

correlated to the MARS MAGB than the biophysical variables. 

Table 7 

MARS’s versus measured mangrove above-ground biomass, and MARS’s important variables 390 

Variables Satellite 

data 

R2 RMSE 

(Mg ha−1) 

Important 

variables 

Vegetation 

Indices of 

(NDVI, SAVI, GNDVI, SR, 

SRre*) 

Sentinel-2 0.90 5.33 SR, NDVI, GNDVI, SAVI, 

SRre 

Landsat 8 0.89 5.42 SR, GNDVI, 

NDVI, SAVI 

SPOT-7 0.81 7.57 GNDVI, SR, NDVI, SAVI 

Biophysical variables of 

(LAI, fAPAR, FVC, CLa*, 

CLaGreen**) 

Sentinel-2 0.89 5.27 Cla, LAI, FVC, fAPAR 

Landsat 8 0.87 6.42 LAI, Cla, FVC, fAPAR 

SPOT-7 0.85 7.24 LAI, FVC, ClaGreen, fAPAR 

Polarizations and ratios ALOS-2 0.89 6.53 (HH×VH)0.5 

(HH, VH, HH+VH and 

(HH×VH)0.5) 

   HH+VH, HH, VH 

*not applicable for SPOT-7, ** for SPOT-7 only 

3.4. Machine learning models 

Twelve confusion matrices were calculated, examining the goodness of fit of ML classifications with field measured 

data. These are summarized by the mean producer, user accuracy, and Kappa coefficients in Table 8. Comparing 

between data sources, Sentinel-2 and Landsat-8 were generally better as most of their producer, user and Kappa 

coefficients (around 75%) were higher than those of SPOT-7 and ALOS-2 (approximately 63%). In addition, using 395 

ALOS-2 data generated MAGB with slightly higher accuracy than SPOT-7. Using higher spatial resolution data did 

not guarantee that the models would produce better MAGB predictions. Among the ML methods, the SVM produced 

the best MAGB estimates since all the accuracy indicators were higher than for ANN and RF. The ANN and RF 

generated MAGB estimates with similar accuracy (differences in R2 just 3% and Kappa only 0.1). 

Table 8 400 

Accuracy assessment of machine learning approaches of Artificial Neural Network (ANN), random forest 

(RF) and Support Vector Machines (SVM) for mangrove above-ground biomass classifications 

Data ML 

methods 

Mean producer 

accuracy (%) 

Mean user 

accuracy (%) 

Overall 

Accuracy 

(%) 

Kappa 

Coefficient 

Sentinel-2 ANN 
59.970 63.771 75.352 0.519 

(VI and BV RF 
51.767 43.320 53.535 0.440 

combination) SVM 
76.020 71.593 90.335 0.806 



Landsat 8 ANN 
64.308 65.652 67.600 0.589 

(VI and BV RF 
70.765 76.358 74.568 0.683 

combination) SVM 
75.265 81.537 79.969 0.748 

SPOT-7 ANN 
60.233 60.647 62.336 0.542 

(VI and BV RF 
58.922 61.050 60.377 0.516 

Combination) SVM 
63.072 59.392 67.243 0.595 

ALOS-2 ANN 
61.504 63.357 68.429 0.550 

(HH, VH, HH+VH, RF 
60.422 60.344 62.704 0.545 

 (HH×VH)0.5 

combination) 

SVM 
71.452 70.841 79.182 0.716 

3.5. MAGB estimates for time-series Landsat images 

The upper graph of Fig. 6 shows the fluctuation in mean unsupervised MAGB (Mg ha−1) estimated by the calibrated 

linear regression (LR), multi linear regression (MLR) and MARS model over a 45-year time period. All the models 405 

estimated higher average MAGB for the 1980s, 1990s and 2020s, with lower average MAGB in 2010s with values of 

around 40 Mg ha−1. Furthermore, the MLR estimated the highest MAGB, followed by LR and MARS. The standard 

deviation (STD) bars reveal the magnitude of variation in MAGB. The MLR produced MAGB with highest variation 

while there were no significant differences in STD between LR and MARS results. 

The lower graph in Fig. 6 shows a consistent growth of the mangrove forest in terms of total MAGB (from under 0.1 410 

to 1.3 million tons) and a tenfold (50 to 500 ha, based on MARS results) expansion in area, except for a decline in 

forest area in 2013 (even though total biomass still increased). The MLR repeatedly over estimated the total MAGB 

compared to the LR and MARS estimations. 



 

Fig. 6. Time-series mean mangrove above-ground biomass (MAGB) value (Mg ha−1) (upper graph) and total MAGB 415 

and forest area (lower graph) estimated by the linear regression (LR) using the simple ratios (SR) as the best vegetation 

index from Landsat 8, the best multi linear regression model (MRL) and the best Multivariate adaptive regression 

splines (MARS) model for the mangrove forest of Thuy Truong commune from 1975 to 2020. 

3.6. MAGB maps 

MAGB maps include results of LR for each VI, BV and SAR data layer, MLR and MARS model and the machine 420 

learning (ML) methods applied for each group of parameters and the maps of Landsat-X time-series images. Hence, 

in this section we focus on the most accurate results of the MARS, ML and Landsat-X time-series images. 

3.6.1. MARS model 

Fig. 7 depicts the most accurate MAGB values using the vegetation indices calculated from (a) Sentinel-2, (b) Landsat 

8, (c) SPOT-7 images and (d) ALOS-2 backscatter data. It is clearly shown in all maps that MAGB varies spatially, 425 

and is highest in the center of the forest. Higher values of MAGB (greater than 100 Mg ha−1) were concentrated in the 

south-west of the forest in maps generated using optical images. However, MARS generated more regular values 

across the entire ALOS-2 image. Landsat 8 and SPOT-7 produced lower MAGB values compared to Sentinel-2. The 

highest value for MAGB measured in situ was 124.77 Mg ha−1 for plot 7 (not in the forest center). Higher values (up 



to 160 Mg ha−1) were estimated using the MARS model. These values were located in the forest center, an area that 430 

is extremely difficult to physically access because of high tree density. 

 

Fig. 7. Mangrove above ground biomass (Mg ha−1) generated by the MARS model using (a) Sentinel-2, (b) Landsat 

8, (c) SPOT-7and (d) ALOS-2   

3.6.2. Machine learning methods 435 

We selected three machine learning algorithms for MAGB classification and the SVM presented the best performance 

(based on an accuracy assessment). Therefore, we only mapped the MAGB distributions of the SVM applied to the 

four remote sensing-based data, as shown in Fig. 8. The highest MAGB values were assigned for the SPOT-7 

classification where large areas had values of above 120 Mg ha−1. This may be an overestimate, while the result of 

Sentinel-2 was assessed as the most accurate prediction (overall accuracy of 90.335% and with lower MAGB values 440 

in general). Landsat 8 and ALOS-2 had medium values for MAGB. However, these two classifications had opposite 

MAGB distributions: higher values were predicted for the mangrove in the south of the Landsat 8 map and lower 

values were classified for the mangrove in the south of the ALOS-2 map. 



 

Fig. 8. Mangrove above ground biomass (Mg ha−1) generated by the machine learning algorithm of support vector 445 

machine (SVM) using combinations of vegetation indices and biophysical variables from (a) Sentinel-2, (b) Landsat 

8, (c) SPOT-7 and (d) a combination of polarization of SAR ALOS-2 backscatters 

3.6.3. Spatial changes in MAGB over a 45-year time period 

Fig. 9 shows an increase in both MAGB (Mg ha−1) and mangrove extent from 1975 to 2020. Growth of the forest 

between 1975 and 1988 was gradual. Since 1993 the forest has been disturbed by the creation of aquaculture ponds, 450 

in the area marked by the red rectangle. Between 1993 and 2020, the forest grew quickly both in extent and MAGB, 

with a sharp increase between 2018 and 2020. By 2020, the mangrove had nearly disappeared in areas disturbed by 

aquaculture activities (red rectangle). At the same time the extent of area covered by mangrove in the east and south 

grew by approximately 80 m y−1 and MAGB increased in the center of the mangrove forest (darker green).  Although 

these are unsupervised estimations by the best MARS model, the model was trained using field measured MAGB 455 

data. As a result, while the unsupervised MAGB estimations may be uncertain, they were still considered as able to 

provide valuable information about changing mangrove biomass and extent. 



 

Fig. 9. Time-series of mangrove above ground biomass (Mg ha−1) generated by best MARS model using Landsat 2, 5 

and 8 images 460 

4. Discussion 

Despite advances in remote sensing, challenges remain. Complex stand structure and variety in species composition 

in mangroves leads above-ground biomass (AGB) estimation to be problematic (Steininger, 2000). The complexity of 

vegetation structures determines highly variable standing stocks of MAGB (Lu, 2006). Optical remote sensing sensors 

measure the reflectance or radiation emission from the vegetation canopy, hence uncertainty underneath the canopy 465 

should be taken into account. In struggling to overcome these limitations, research has to mine SAR remote sensing 

backscatters as some long wavelength SAR systems such as L and P bands penetrate through the canopy and have 

been found to be highly correlated with AGB (Kurvonen et al., 1999, Sun et al., 2002). However, each remote sensing 

system has pros and cons and the main issues with SAR data are the speckles known as noise and saturation, that can 

lead to underestimates of high AGB (Pham et al., 2019). This paper used different remote sensing data (optical and 470 

SAR) to compare the results from each method. Our findings offer insights to enable researchers to take the most 

appropriate approach according to the specific task they are addressing. 

Besides finding appropriate data sources, researchers have developed and deployed a large number of methods to 

estimate AGB in general and MAGB in particular. The most common approaches involve parametric linear regression 

and these remain useful due to their simplicity and acceptable accuracy (Chave et al., 2005). However, parametric 475 



linear regressions often suffer from rigidity and only consider individual parameters. Multi linear regression models 

gain advantages from group parameters and often claim better performance than linear regressions (Marill, 2004, 

Proisy et al., 2007, Soares and Schaeffer-Novelli, 2005). MAGB is complex and may not be in a linear relationship 

with vegetation parameters, so MAGB models have been developed to “break the lines” and improve the accuracy of 

MAGB estimation. These efforts include the MARS model (Baloloy et al., 2018, Friedman, 1991, Friedman and 480 

Roosen, 1995). Currently, machine learning approaches have proven their effectiveness for MAGB estimation using 

multispectral imagery (Jachowski et al., 2013) and SAR data (Pham et al., 2020b, Pham et al., 2018). Our results 

demonstrated that the complex model of MARS and non-parametric machine learning algorithms outperform 

parametric regression models. 

Accuracy assessment is often discussed because it determines model reliability. Uncertainty can result from the data 485 

used, methods and also the training data. It is sometimes difficult to determine whether the model performance is 

satisfactory or not (Hutchison et al., 2014) which will be dependent on both the aim and the scale (larger scales in 

general can accept lower accuracy). To evaluate model performance, it is common to use error-indicative indices, such 

as R2, RMSE, bias, or absolute error values based on reliable information, and commonly these are field measured 

data. At continental and global scales, frequently R2 and RMSE show that an accuracy of 50% can be acceptable 490 

(Rovai et al., 2016, Tang et al., 2018). In this study we obtained MARS R2 values of around 0.9 for all four different 

remote sensing data sources and RMSE around 5 Mg ha−1 at the commune scale with 900 ha mangrove forest. This 

was considered a satisfactory result and is supported by previous research in the same study site (Pham et al., 2020b). 

As uncertainty can come from early stage of image pre-processing, choosing an appropriate atmospheric correction 

model is crucial. FLAASH presented a robust tool with options of inputting local parameters such as local atmospheric 495 

and aerosol model and applying for a wide range of hyperspectral and multispectral sensors. Although the surface 

reflectance data of Landsat and Sentinel-2 are available globally, it is recommended to apply suitable model with local 

parameter manually for higher accuracy. Besides, remote sensing image resampling techniques enable harmonization 

of different resolutions when using multiple data sources, but they can have effects on the final results. Hence these 

techniques should be chosen with care in terms of methods and output resolutions. 500 

Each model may be differently sensitive to a parameter and variable or combination of variables depending on the 

variation sensitivity of the remote sensing sensor to vegetation index and biophysical metrics (Dube and Mutanga, 

2015). Hence, testing model sensitivities is a crucial step in the modelling process and offers useful guidance to enable 

future studies to select the most important variables to improve model calibration times and the accuracy of outputs 

(Argamosa et al., 2018). We found that the vegetation indices of Sentinel-2 and Landsat 8 were the most sensitive 505 

variables to MAGB, which guided us to select the Landsat 8 VIs for the Landsat-x time-series MAGB extractions. 

However, we cannot be sure the L8 VIs are the best option for all study sites.  

Finally, the increase in MAGB and mangrove forest extent in Thuy Truong commune identified through this work 

conflicts the general downward trend in mangrove cover in Vietnam, which has been estimated to have decreased by 

some 62% since 1996 (Macintosh and Ashton, 2002). Extending this work to a national and regional scale would 510 

enable a more accurate picture of mangrove biomass and extent to be built, and support endeavors to protect and 



conserve them for the benefits that they provide. It is also necessary to emphasize the benefits of the open Landsat 

archive, without which this work would be extremely difficult. 

5. Conclusion 

This work applied different approaches from simple to complex (linear regression to non-parametric machine learning) 515 

on different remotely sensed data (optical and SAR) to estimate mangrove above-ground biomass for a study site in 

northern Vietnam. We found that the MARS model produced the most accurate estimation of MAGB (with R2 greater 

than 0.85, RMSE ≈ 5.5 Mg ha−1 for Sentinel-2 and Landsat 8 images) than the linear and multi linear regression models 

(mean R2 ≈ 0.56 (LR), 0.7 (MLR), RMSE ≈ 6.5 Mg ha−1 (LR), 7.0 (MLR). Of the ML approaches of ANN, RF and 

SVM, the SVM generated more accurate MAGB estimates (highest overall accuracy of 90% and Kappa coefficient 520 

of 0.8) than ANN and RF. For both the MLR and MARS models, Sentinel-2 was most sensitive data to the ML SVM 

and produced the most accurate MAGB estimates. An unexpected outcome was that the employment of the higher 

spatial resolution of SPOT-7 and ALOS-2 did not generate the most accurate results. The best estimated MAGB from 

MARS and ML classifications were mapped for spatial comparison. In general, higher MAGB (> 120 Mg ha−1) was 

concentrated in the core of the forest and the lower values (< 60 Mg ha−1) were found near to the sea. The results of 525 

MAGB and forest extent changes was modelled and mapped over 45 years from 1975 to 2020 showing the expansion 

of the mangrove forest both in extent and mangrove above-ground biomass. Application of the most accurate models 

identified through this work to national and regional scales could provide important evidence in support of mangrove 

forest management and conservation efforts. 
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