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A B S T R A C T   

Modern gasoline and diesel vehicles are equipped with highly effective emission control systems that result in 
low emissions of pollutants such as nitrogen oxides (NOx) when new. However, with increasing age or mileage, 
the emissions performance of vehicles can deteriorate over time, leading to increased emissions. In this work we 
use comprehensive vehicle emission remote sensing measurements collected over a wide range of conditions, 
together with individual vehicle measured mileage to quantify vehicle emissions deterioration. A quantile 
regression modelling approach is used to provide a more complete understanding of the distribution of deteri-
oration effects that is not captured by considering mean changes over time. The approach accounts for factors 
such as driving conditions and ambient temperature, as well as determining whether deterioration affects whole 
populations of vehicles or a smaller subset of them. Accounting for these factors, we find that for most pollutants 
the rate of deterioration of emissions from pre-Euro 5 gasoline passenger cars is highly skewed. Between 5% and 
10% of pre-Euro 5 gasoline passenger cars have emissions similar to a Euro 5 diesel car, suggesting that policies 
should be developed to accelerate their removal from the fleet. Furthermore, we find evidence that there are 
differences between vehicle manufacturers in the way emissions of NOx deteriorate.   

1. Introduction 

Worldwide, progressively more stringent vehicle emissions legisla-
tion has been developed to reduce the emissions of many important air 
pollutants from road vehicles. These developments have resulted in 
increasingly more sophisticated technologies being used to reduce 
emissions. The introduction and refinement of technologies such as the 
three way catalyst, particle filters and selective catalytic reduction (SCR) 
systems have led to considerable reductions in emission species such as 
nitrogen oxides (NOx) and particulate matter (Wang et al., 2014; Pra-
veena and Martin, 2018; Miller and Jin, 2019). While much of the focus 
of vehicle emission measurements is on newer vehicles with improved 
emission control technology, it is imperative to quantify the change in 
emissions from vehicles over their full lifetime, which can exceed 20 
years. As a vehicle is driven, changes in emission behaviour can occur 
due to wear of engines, deterioration of emissions control systems and 
after-treatment technologies such as catalysts and particle filters. 

Moreover, with increasingly complex and sophisticated after-treatment 
technologies being adopted, it is important to ensure their effective 
performance throughout the lifetime of the vehicle. 

In Europe, the legislation for the most recently regulated vehicles 
(Euro 6) specifies “Manufacturers’ obligations”, among which include 
an obligation that any technologies which limit tailpipe and evaporative 
emissions are effective “throughout the normal life of the vehicles under 
normal conditions of use” (Council of European Union, 2014; Williams 
and Minjares, 2016). It is stipulated that, a), in-service conformity 
testing eligibility continues until a vehicle is either 5 years old or has 
driven 100,000 km, and b), manufacturers must conduct pollution 
control system durability tests to over 160,000 km of driving. Recently, 
the Consortium for ultra Low Vehicle Emissions (CLOVE) has suggested 
bringing future Euro 7 legislation in-line with US Tier 3, which defines a 
“normal life” for a vehicle as either 15 years or 150,000 miles (roughly 
240,000 km) (United States Environmental Protection Agency, 2014; 
ICCT5, 2021). 
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Emission factors and inventories recognise that emissions deterio-
ration occurs and attempt to provide pragmatic approaches to account 
for such deterioration. In Europe, the joint European Monitoring and 
Evaluation Programme (EMEP)/European Environment Agency (EEA) 
air pollutant emission inventory guidebook 2019 (Ntziachristos and 
Samaras, 2019) details the use of correction factors to account for 
emission deterioration due to vehicle age. Importantly, deterioration 
factors are only applied to gasoline vehicles and it is assumed that the 
carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbon emis-
sions of Euro 3 and later gasoline cars and light commercial vehicles stop 
deteriorating at 160,000 km. The Handbook Emission Factors for Road 
Transport (HBEFA) version 4.1 updated its deterioration factors for CO, 
NOx and hydrocarbon emissions (Matzer et al., 2019) based on vehicle 
emission remote sensing data from the large European CONOX database 
(Sjödin et al., 2018). The updated deterioration functions cover Euro 1 
through to projected Euro 7 diesel and gasoline light duty vehicles 
within a mileage range of 0–200,000 km. They report that NOx emis-
sions are less than 1.5 times higher for all Euro standards of diesel ve-
hicles at 200,000 km compared to 50,000 km. Gasoline vehicles, 
however, are found to be over 3 times as high for Euro 3 and 2.5 times as 
high for Euro 5, though the ratio for Euro 6 vehicles is only around 1.25. 

Emission deterioration functions are typically based on a limited 
number of chassis dynamometer tests in a limited range of mileages 
(Keller et al., 2017; Ntziachristos and Samaras, 2019). An unavoidable 
aspect of in-lab and even on-board methods (e.g., Portable Emission 
Measurement Systems (PEMS)) is a small sample size owing to the time 
and cost requirements to measure a vehicle. Furthermore, these methods 
are typically used to measure newer vehicles, so there are sparse data for 
older or higher mileage vehicle emissions. Using these methods to get a 
broad sample of vehicles of different model years, meeting different 
Euro standards, and from different manufacturers, would be prohibi-
tively expensive and time consuming. 

Vehicle emission remote sensing has the potential to overcome some 
of these issues. The non-selective, real-world nature of remote sensing 
ensures that, with a sufficiently large sample size, the full spectrum of 
age, mileage and emission deterioration of a fleet will be captured. 
Furthermore, with the large data-sets obtained using remote sensing, 
multivariate statistical analysis can be conducted to isolate the effect of 
deterioration from other influences such as driving characteristics (e.g., 
instantaneous engine power) or ambient conditions. Indeed, much of the 
literature on emission deterioration focuses on the use of vehicle emis-
sion remote sensing (Borken-Kleefeld and Chen, 2015; Bishop et al., 
2016; Chen and Borken-Kleefeld, 2016; Bishop and Stedman, 2008; 
Zhan et al., 2020; Sjödin and Andréasson, 2000), although a smaller 
number of studies using other methods such as PEMS (Huo et al., 2012) 
and chassis dynamometers (Chiang et al., 2008; Zhang et al., 2017, 
2018) do feature. An important limitation of many of these remote 
sensing studies is that individual vehicle mileage is not available, 
leading to vehicle age being a frequent proxy. For example, in Bor-
ken-Kleefeld and Chen (2015) and Chen and Borken-Kleefeld (2016) the 
difference between the year of measurement and the year of first 
registration is taken to be a vehicle’s age, which is then used to estimate 
mileage using statistics from the Swiss government. 

Deterioration factors as used in emission factor development 
generally provide fleet-average linear relationships to correct an emis-
sion from a vehicle when assumed to be new. However, these factors do 
not capture potentially important information on the nature of deteri-
oration, such as whether all vehicles tend to deteriorate similarly over 
time or whether the changes are dominated by significant deterioration 
from relatively few vehicles. These considerations are important from a 
policy perspective because different responses might be required 
depending on the nature of emissions deterioration. For example, it is 
arguably more efficient and cost effective to identify and fix (or remove) 
a small population of high emitters than it is to deal with a large pop-
ulation of vehicles that deteriorate by a more modest amount. To un-
derstand these issues, there is a need to consider large populations of 

vehicles and to establish the full distribution of effects rather than a 
mean response. 

In this study, comprehensive vehicle emission remote sensing data is 
paired with measured vehicle mileage from individual vehicles using 
data from annual passenger car technical inspections. These paired data 
are used to study the deterioration of emissions from passenger cars, as 
well as consider the appropriateness of vehicle age as a mileage proxy. 
This study uses measured mileage data from 197,000 gasoline and diesel 
passenger cars. The nature of any deterioration effects on emissions is 
complex and is not fully described by simple relationships that relate 
mileage and emissions. Therefore, this study adopts a quantile regres-
sion approach to consider the entire conditional distribution of effects. 
This approach allows for the control of other factors such as vehicle 
driving conditions and ambient temperature which also affect measured 
emissions. Finally, with large sample sizes available, we consider 
manufacturer effects on how emissions deteriorate with mileage. 

2. Materials and methods 

2.1. Vehicle emission remote sensing 

The principles of vehicle emission remote sensing have been 
described in extensive detail elsewhere (Bishop and Stedman, 1996; 
Burgard et al., 2006), so only a short summary is provided here. Remote 
sensing is a non-obtrusive, curbside method for measuring real-world 
vehicle emissions. A remote sensing device is typically deployed to be 
as unobstructive as possible, ensuring vehicles can drive through the 
set-up unimpeded. As a vehicle drives through, each individual module 
of the remote sensing device simultaneously activates. These are an 
ultraviolet/infrared (UV/IR) source and detector to measure exhaust 
emissions, optical speed-acceleration bars to capture instantaneous 
driving conditions, a camera to photograph number plates, and sensors 
to record ambient conditions such as temperature, pressure and relative 
humidity. As the triggering of all these modules is achieved in just a 
fraction of a second, remote sensing observations are often referred to as 
‘snapshots’ of a vehicle’s journey. 

Spectrometry is achieved with a collinear beam of IR and UV light. 
Carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons and a 
background reference are measured using the IR component, and 
ammonia (NH3), nitrogen oxide (NO) and nitrogen dioxide (NO2) by the 
UV component. 100 measurements are taken of each plume in just half a 
second. Pollutant concentrations are typically given as a ratio to CO2, 
which is assumed to remain constant as the plume disperses. These ratios 
can be used to calculate fuel-specific (g kg−1) emissions (Burgard et al., 
2006). 

The photographed vehicle number plates can be cross-referenced 
with vehicle technical databases to obtain key information about the 
measured vehicles, such as fuel type, emissions standards and manu-
facturers. In this study, technical information was sourced from the 
Driver and Vehicle Licensing Agency and the Society of Motor Manu-
facturers and Traders Motor Vehicle Registration Information System. 
These data were obtained from the commercial supplier CDL Vehicle 
Information Services Ltd. (Cheshire Datasystems Limited, 2018). 

An important aspect of the current work is the use of measured 
mileage information. While vehicle age is readily available, it is not an 
ideal metric for emissions deterioration. Data relating to the total 
mileage of each vehicle at its last annual “MOT” test was obtained 
through CDL for vehicles greater than three years old. Vehicles younger 
than three years do not require an annual technical inspection in the UK. 
As a result, the proportion of mileage information available for Euro 6 
vehicles (introduced in 2016) is lower than that for older Euro standards 
(24% of Euro 6 observations have associated mileage information, 
compared to 63–76% for Euro 3–5). The date at which the mileage in-
formation is available and the emissions measurement date could be up 
to 12 months different, i.e. the measured mileages available would tend 
to underestimate the actual mileage at the time the emissions 
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measurements were made. 
Vehicle emission measurements were conducted between 2017 and 

2020 at 39 sites across 14 regions in the United Kingdom mainly using 
the Opus AccuScan RSD 5000 (OPUS5, 2018), augmented with a rela-
tively small number of measurements using the Denver FEAT instrument 
(University of Denver, 2011). Previous literature has shown good 
agreement between the two remote sensing devices, so the combination 
of these data sets is appropriate (Rushton et al., 2018). Of interest to this 
study are measurements of diesel passenger cars or gasoline passenger 
cars. 197,000 of these measurements include mileage data from annual 
technical inspection “MOT” tests (Carslaw et al., 2019) and are therefore 
relevant to this study. Note that these are not 197,000 unique vehicles; 
available number plate data shows that around 13% of vehicles in the 
data set were measured twice, 4% three times, and 3% four or more 
times. 

A statistical summary of these measurements is provided in Table 1. 
The speed ranges reflect that remote sensing is typically conducted in 
urban conditions, but this is not likely to be of detriment to the objec-
tives of this study; it is unlikely that deterioration patterns would 
meaningfully differ under rural, motorway or any other driving condi-
tions. Measurements being taken in urban areas may mean that a small 
proportion include cold start emissions, though this is unlikely as 
exhaust after-treatment technologies tend to reach effective operating 
temperatures in a few minutes (Han et al., 2021). The majority of 
emission measurements can therefore be assumed to be of hot, stabilised 
emissions. 

2.2. Statistical methods 

While ordinary least squares (OLS) linear regression may provide 
some insight into emission deterioration, it is intuitively likely that 
different vehicles deteriorate at different rates. An important question to 
address is whether it is the case that there is a general deterioration in 
the emissions performance of all vehicles or whether there is a smaller 
population of much higher emitters that have a disproportionate effect. 

For this reason, a quantile regression-based approach was used, which 
can account for the full distribution of responses and not just the mean 
response that is considered by OLS. 

Linear quantile regression can be understood in analogue to linear 
OLS regression; while an OLS regression line minimizes the sum of the 
squared differences between it and the data, a quantile regression line 
ensures that some proportion of the data is below and above it. For 
example, the quantile regression line for the median (τ = 0.50) ensures 
that half of the data is above it and half below. For the 75th percentile (τ 

= 0.75), 75% of the data would be found below the line and 25% would 
be above. A more thorough description of quantile regression can be 
found in the Supplementary Information (Section S1). 

In this study, quantile regression — using the quantreg R package 
(Koenker, 2021) – is used to explore the relationship, a), between 
vehicle age, AGE, and cumulative vehicle mileage, MIL and, b), between 
cumulative vehicle mileage and fuel-specific (g kg−1) emissions. In the 
former case, a second-order polynomial was used. This is given in 
Equation (1), where μ̂(τ|AGE) represents the predicted quantile of 
vehicle mileage. 
μ̂(τ|AGE) = β̂

0
+ β̂

1
(τ)⋅AGE + β̂

2
(τ)⋅AGE2 (1) 

When examining emissions, four air pollutants are initially explored: 
nitrogen oxides (NOx), carbon monoxide (CO), ammonia (NH3) and 
particulate matter (PM, measured by the OPUS remote sensing device 
using percentage UV opacity). Note that NH3 is only pertinent to the 
gasoline vehicles and Euro 6 diesel vehicles, the latter of which have 
after-treatment systems that use SCR systems which can result in emis-
sions of NH3. When fitting models, multivariate analysis is used to 
predict fuel-specific emissions using vehicle mileage and additional 
covariates with known influences on vehicle emissions. The key covar-
iate is vehicle specific power, VSP (Equation (2)), though for diesel NOx 
emissions ambient temperature, AT, is also included (Equation (3), 
Grange et al. (2019)). B-splines, denoted using f, are used to smooth 
these covariates, both set to 3 degrees of freedom. 

Table 1 
A statistical summary of the vehicle emission remote sensing data, split into diesel and gasoline passenger cars. Statistics provided are only for measurements with an 
associated mileage value. Statistics presented: 1Mean (Standard deviation); 2Number of measurements (Percentage of the column total). Generated using the 
gtsummary R package (Iannone et al., 2021; Sjoberg et al., 2021).  

Characteristic Euro 3 Euro 4 Euro 5 Euro 6 
Gasoline Passenger Cars 
# Measurements 22,952 36,327 38,855 10,776 
# Manufacturer Groups 23 23 20 20 
(with ≥100 Measurements) 18 18 15 13 
Vehicle & Ambient Characteristics 1 

VSP (kW t−1) 7.61 ± 7.65 7.80 ± 7.07 8.12 ± 6.88 8.96 ± 5.08 
Speed (km h−1) 36.4 ± 9.2 36.6 ± 9.3 37.0 ± 9.5 38.4 ± 9.4 
Acceleration (km h−1 s−1) 0.96 ± 2.33 0.99 ± 2.19 1.02 ± 2.15 1.07 ± 1.66 
Ambient Temp. (K) 287.9 ± 5.4 288.1 ± 5.2 288.2 ± 5.2 288.2 ± 4.8 
Cumulative Mileage (104 km) 15.7 ± 6.9 12.2 ± 5.6 7.1 ± 3.9 4.6 ± 2.5 
Vehicle Age (years) 14.4 ± 1.6 10.4 ± 1.8 6.0 ± 1.9 4.1 ± 1.0 
Remote Sensing Device 2 

OPUS RSD 5000 20,387 (89%) 33,236 (91%) 36,181 (93%) 10,501 (97%) 
Denver FEAT 2565 (11%) 3091 (8.5%) 2674 (6.9%) 275 (2.6%) 
Diesel Passenger Cars 
# Measurements 9143 24,030 44,442 10,475 
# Manufacturer Groups 22 22 21 18 
(with ≥100 Measurements) 14 17 16 12 
Vehicle & Ambient Characteristics 1 

VSP (kW t−1) 8.26 ± 8.38 8.09 ± 7.70 8.23 ± 7.56 8.72 ± 6.14 
Speed (km h−1) 36.3 ± 9.4 36.5 ± 9.8 36.6 ± 9.8 37.1 ± 9.8 
Acceleration (km h−1 s−1) 1.06 ± 2.38 1.07 ± 2.26 1.14 ± 2.27 1.19 ± 1.79 
Ambient Temp. (K) 288.2 ± 5.5 288.1 ± 5.4 287.9 ± 5.2 287.8 ± 4.9 
Cumulative Mileage (104 km) 24 ± 13 19 ± 10 11 ± 7 7 ± 5 
Vehicle Age (years) 14.0 ± 1.5 10.2 ± 1.8 5.7 ± 1.8 3.9 ± 1.2 
Remote Sensing Device 2 

OPUS RSD 5000 8223 (90%) 21,894 (91%) 40,692 (92%) 10,146 (97%) 
Denver FEAT 920 (10%) 2136 (8.9%) 3750 (8.4%) 329 (3.1%)  
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An interaction effect with some vehicle category, VC, is also 
included. The first category considered is Euro standard, to gain an 
understanding for the potential differences in deterioration as emission 
control technology has changed with legislation. The second category 
considered is vehicle manufacturer group, used to examine the differ-
ences in deterioration between the varying technologies employed by 
different vehicle manufacturers. In this second case, models are fit 
separately for each of Euro 3, 4 and 5; Euro 6 is excluded due to limited 
data and range of mileage. 
μ̂(τ|MIL,VSP,VC) = β̂

0,VC(τ) + β̂MIL,VC(τ)⋅MIL

+fVSP,VC(τ,VSP)
(2)  

μ̂(τ|MIL,VSP,AT,VC) = β̂
0,VC(τ) + β̂MIL,VC(τ)⋅MIL

+fVSP,VC(τ,VSP)
+fAT,VC(τ,AT)

(3) 

Data processing was carried out using the R programming language 
(R Core Team, 2021), with uncertainties calculated and term signifi-
cance estimated using bootstrap resampling. The tidymodels (Kuhn and 
Wickham, 2020; Silge et al., 2021) collection of R packages was used for 
the bootstrapping simulations. The bootstrap function was used with 100 
resamples with the sampling stratified (using the strata argument) by the 
relevant interaction term (Euro standard or manufacturer group) and 
otherwise default parameters. The stratification by the vehicle category 
ensures proportionally smaller categories (i.e. Euro 3 or 6 vehicles, or 
more niche manufacturers) are well represented in the bootstrap 
samples. 

The “percentile” method was used to calculate 95% confidence in-
tervals around the coefficients. If the 95% confidence interval of the 
bootstrapped mileage coefficients includes 0, the p-value is taken to be 
less than 0.05 and the term (and therefore the vehicle category’s rate of 
deterioration) is judged to be insignificant. Furthermore, if the 95% 
confidence intervals of the difference between any given terms includes 
0, it is taken that they are not significantly different from one another. 

3. Results 

3.1. Mileage and age characteristics for light duty vehicles 

In this section the potential drawbacks of using vehicle age as a 
measure of emissions deterioration are considered, highlighting the 
benefits of this study’s use of measured mileage. Second-order poly-
nomial quantile regression fits for measured cumulative vehicle mileage 
as a function of vehicle age from the remote sensing data are shown in 
Fig. 1. Diesel London taxis (“black cabs”, n = 556, 0.5% of the measured 

diesel passenger car fleet) have unique technical data relating to their 
body type so can be treated separately to the rest of the diesel passenger 
cars. 

There is a clear distinction between the three vehicle types. Gasoline 
passenger cars are among the oldest of the three categories, but have the 
lowest maximum mileage. The maximum age decreases and maximum 
mileage increases progressing through the gasoline cars, the diesel ve-
hicles, and finally the taxis. 

The quantile regression fits shown in Fig. 1 highlight a weakness of 
using simple linear regression to derive mileage from vehicle age, in that 
it would not fully represent the underlying and significant distribution of 
cumulative vehicle mileages of vehicles of the same age. For example, 
the average age of a vehicle in the vehicle emission remote sensing data 
set is around 8 years. Using a second-order polynomial ordinary least 
squares (OLS) model, 8 year-old gasoline passenger cars have driven 
98,000 km. This is similar to the median vehicle according to quantile 
regression, which has driven 94,300 km (−3.8% of the OLS). However, 
the lowest mileage 5% of these vehicles have only driven 41,700 km 
(−57.4% of the OLS), whereas the 5% highest mileage have driven 
163,000 km (+66.3% of the OLS). The top 1% have driven 206,000 km 
(+110%). Similarly, an ordinary least squares approach indicates an 8 
year-old diesel non-taxi passenger car has driven 148,000 km. The me-
dian vehicle from quantile regression has driven 136,000 km (−8.1% of 
the OLS), the bottom 5% have driven 68,100 km (−54.0%), the top 5% 
266,000 km (+79.7%), and the top 1% 383,000 km (+157%). 

While it could be argued that the “average” vehicle modelled using 
ordinary least squares is similar to the median vehicle modelled using 
quantile regression, relying on OLS regression ignores a significant 
distribution of vehicle mileage at any given vehicle age. A straightfor-
ward assumption that mileage increases linearly with age is useful in the 
absence of measured mileage data, but is not optimal in representing the 
inherent distributions of mileages that exist. This is particularly relevant 
if considering taxi fleets or other commercial vehicle fleets that may 
likely have a distinct mileage-age relationship, as clearly demonstrated 
in Fig. 1. Moreover, if high mileage vehicles have emissions that are 
significantly different from average-age vehicles, then the estimated 
emissions response will also be erroneous. 

3.2. Exploratory analysis of emission deterioration 

We first explore the relationship between vehicle mileage and 
emissions without taking account of the influence of other factors such 
as Euro standard, ambient temperature and engine power demand. The 
distribution of vehicle NOx and PM emissions at different cumulative 
mileages is given in Fig. 2. The equivalent figure for CO and NH3 is given 
in Fig. S2. 

These distributions highlight the benefit of a quantile regression- 
based approach. The median intensity of emissions from the species 
typically increase at higher mileage deciles to various extents, which 
suggests the presence of a mileage-based deterioration effect. More 
relevant for quantile regression, it also appears that for some species-fuel 
type combinations the spread of emission values (seen in both ranges 
between the 25th and 75th, and the 5th and 95th percentiles) appears to 
increase at higher deciles of mileage. This suggests that the rate of in-
crease in emissions is itself greater at higher emission quantiles, indi-
cating that an ordinary least squares linear regression may not fully 
represent the true range of responses different emitters have to 
increasing cumulative mileage. 

From this exploratory analysis, it is clear that the species behave 
distinctively from one another with respect to mileage deterioration. 
The four species, NOx, PM, CO and NH3, will now be discussed in turn. 

NOx emissions show clear differences between the two vehicle types. 
The five visualised quantiles of fuel-specific NOx in diesel vehicles all 
appear to show a gentle increase from the lowest to highest mileage 
deciles across all Euro standards, with the exception of the 95th 
percentile of Euro 6. The large interquartile ranges seen in the diesel 

Fig. 1. Second-order polynomial quantile regression fits for cumulative vehicle 
mileage as a function of vehicle age at the date of their MOT (Equation (1)), 
where τ ∈ {05, .10, .30, .50, .70, .90, .95, .99}. τ ∈ {05, .50, .95, .99} are solid 
and labelled; the dotted lines represent the unlabelled quantiles. τ = 0.99 is not 
shown for the taxis due to the limited number of observations; the 99th 
percentile would represent just 5 vehicles. 
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passenger cars (6.9–19.5 g kg−1 across all Euro standards) are consistent 
with the wide range of NOx performance in diesel vehicles widely re-
ported in the literature (Davison et al., 2020; Bernard et al., 2018; 
Dallmann et al., 2018a,b). 

The distributions of the gasoline passenger car NOx emissions differ 
considerably from the diesel passenger cars and between the Euro 
standards. Euro 5 and 6 gasoline vehicles show a flat trend across the 
mileage deciles, and very small interquartlile ranges (2.4–2.7 and 
1.8–2.2 g kg−1 respectively). Conversely, the Euro 3 and 4 gasoline 
vehicles show relatively larger interquartile ranges (3.2–8.8 and 2.4–4.0 
g kg−1), flatter trends for the lower NOx quantiles and much steeper 
trends in the higher NOx quantiles. The differences in the 95th percentile 
of fuel-specific NOx between the first and tenth mileage deciles are 
+30.5 g kg−1 in Euro 3, +12.3 g kg−1 for Euro 4, +0.7 g kg−1 for Euro 5 
and -0.3 g kg−1 for Euro 6. For comparison, the highest equivalent value 
for the diesel vehicles is seen in Euro 3 at +6.11 g kg−1. All of this 
suggests a small proportion of high NOx emitters among the Euro 3 and 4 
gasoline fleets that are particularly sensitive to deterioration. 

An unavoidable aspect of the data when making comparisons be-
tween Euro standards is that Euro 5 and 6 data is for a much lower range 
of cumulative mileage than the Euro 3 and 4 data, owing to the former 
vehicles being much younger. It is therefore possible that at higher cu-
mulative mileages that are present in the remote sensing data set, Euro 5 
and 6 gasoline passenger cars may show similar patterns of deterioration 
to the Euro 3 and 4 vehicles. However, it should be noted that there is 
overlap between the cumulative mileages of the four gasoline Euro 
standards. Even up to 135,000 km of cumulative mileage (representing 

the tenth mileage decile of Euro 5 and fifth decile of Euro 3), the Euro 3 
and 4 distributions are widening, suggesting a deterioration effect, 
whereas the Euro 5 and 6 distributions remain flat, suggesting well 
controlled emissions. 

A limited number of recent remote sensing studies focus on PM 
emissions (Chen et al., 2020; Smit et al., 2021), with Chen et al. (2020) 
noting that black smoke emissions have been following PM legislation 
limits, unlike many gaseous tailpipe emissions which have continued to 
exceed their respective limits. Gautam et al. (2010) sets a threshold of 
1.5 g kg−1 of PM as a flag for a potentially compromised diesel partic-
ulate filter (DPF), which is well outside of the distributions of the 
DPF-equipped Euro 5 and 6 vehicles in Fig. 2. The fuel-specific PM 
emissions of Euro 5 and 6 diesel passenger cars appear to be well 
controlled overall, with a flat trend across mileage deciles at most PM 
quantiles. However there does appear to be evidence of deterioration at 
the higher quantiles of Euro 3 and 4 vehicles. 

Carbon monoxide is generally understood to be well controlled and 
CO emissions are typically comfortably below emission limits (Chen and 
Borken-Kleefeld, 2014). While not visualised in Fig. 2, both gasoline and 
diesel vehicles appear to show similar trends — the five fuel-specific CO 
quantiles all increase at higher mileage deciles, with the difference be-
tween the lowest and highest deciles being greatest at τ = 0.95, not 
unlike the trends seen in Euro 3 and 4 gasoline NOx emissions. The key 
difference between the gasoline and diesel passenger cars is the lower 
absolute emissions of CO for diesel vehicles, particularly in the older 
Euro standards. 

Recently, more attention has been paid toward ammonia emissions 

Fig. 2. Fuel-specific emissions (g kg−1) of NOx and PM as a function of vehicle mileage. The box plots show the distribution of emissions per decile of mileage, with 
each decile plotted at its median mileage value. The lowest, highest and middle mileage deciles are coloured to aid in comparison between panels. The hinges of the 
boxplots represent the 25th and 75th emission percentiles, and the whiskers the 5th and 95th percentiles. 
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using remote sensing (Zhang et al., 2021; Farren et al., 2020), including 
limited analysis on their deterioration (Farren et al., 2021). There is 
some evidence of the deterioration of ammonia emissions for gasoline 
vehicles which is most pronounced in Euro 4 and 5. The gasoline vehi-
cles tend to show a relatively low median but high 95th percentile 
fuel-specific NH3 emission, reflecting the skewed nature of NH3 emis-
sions seen in Zhang et al. (2021). There appears to be no significant 
deterioration effect for the Euro 6 diesel passenger cars, suggesting that 
SCR-equipped vehicles are robust as far as NH3 emissions are concerned. 

Statistical modelling has some clear advantages over this sort of 
exploratory and visual analysis as it can be difficult to make real-world 
inferences from simple statistical tools like box plots. Firstly, there is 
arbitrariness that often comes with binning continuous data like vehicle 
mileage. More importantly, a key limitation is the inability to easily 
isolate the influences of other variables known to be important — in this 
case the instantaneous driving condition of the vehicle and ambient 
conditions. A modelling framework removes some of this arbitrariness 
and allows for the control of other covariates, as well as providing what 
could be described as a “rate of deterioration” as a function of vehicle 
mileage. 

3.3. Multivariate statistical modelling 

The introduction of new Euro standards tends to be associated with 
improvements in emissions control technologies and it is therefore 
important to consider how emissions deteriorate within a single Euro 
standard. Two pollutants were chosen to be further examined in a 

multivariate framework; NOx due to being of significant interest owing 
to its air pollution impacts, and PM due to the considerable health effects 
associated with fine particulate matter. 

We first consider deterioration effects over the normal lifetime of a 
vehicle, i.e., after 160,000 km of driving under Euro 6 legislation 
(Council of European Union, 2014). The models given in Equation (2) 
for gasoline NOx and diesel PM and Equation (3) for diesel NOx were fit 
with τ ∈ {05, .10, .30, .50, .70, .90, .95} and used to predict emissions at 
0 and 160,000 km of cumulative mileage. VSP and ambient temperature 
were taken to be 7 kW t−1 and 288 K respectively, equal to the mean 
value of the variables in the remote sensing data set. Fig. 3 presents the 
predicted absolute deterioration of the fuel-specific NOx and PM emis-
sions for different quantiles for gasoline and diesel passenger cars. These 
values are also tabulated in Table S1. 

The highest quantiles of Euro 3 and 4 gasoline vehicles increase by 
17.1 and 9.1 g kg−1, respectively. To put these values in context, the 
mean emissions of NOx from Euro 3, 4, 5 and 6 passenger cars are 5.3, 
2.9, 1.9 and 1.5 g kg−1 for gasoline and 21.0, 17.1, 15.9 and 8.2 g kg−1 

for diesel. This analysis of absolute deterioration reveals some important 
characteristics for NOx emissions. First, that the rate of deterioration of 
NOx emissions is greater for a population of high-emitting gasoline 
passenger cars compared to diesel passenger cars. Second, Euro 5 and 6 
gasoline passenger cars appear to have much better NOx control than 
Euro 3 or 4 vehicles over the same range of cumulative mileage. 

The trends in particulate matter for diesel vehicles reveal some 
interesting characteristics. For context, Euro 3 legislation did not require 
the use of a diesel particulate filters (DPF) whereas Euro 5 onward did. 

Fig. 3. Plot showing the modelled linear deterioration of passenger cars from 0 to 160,000 km of cumulative mileage (a vehicle’s “normal life” under Euro 6 
legislation (Council of European Union, 2014)). 
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DPF technology became more widespread for Euro 4 vehicles even 
though they were not necessary, so the Euro 4 observations in the 
remote sensing data will contain a mixture of DPF and non-DPF- 
equipped vehicles. The results show that there are small populations 
of Euro 3 and Euro 4 diesel passenger cars where there is evidence of 
increased emissions of PM due to deterioration. However, Euro 5 and 6 
vehicles appear to be well-controlled, suggesting that DPF technology 
provides a robust way of controlling particulate emissions over the 
lifetime of a vehicle. 

One benefit of a statistical modelling approach is being able to 
comment directly on the magnitude and statistical significance of the 
rates of deterioration (represented by the models’ mileage coefficients), 
which can provide a more comprehensive assessment of deterioration 
than is shown in Fig. 3. The magnitudes and bootstrapped confidence 
intervals of these rates of deterioration are tabulated in Table S2 and 
Table S3, and are briefly discussed below. When tabulated and presented 
in-text, deterioration rates are provided with their 95% confidence in-
terval in parentheses and are expressed in the units of g kg−1 per 104 km 
driven for NOx and mg kg−1 per 104 km driven for PM. 

Gasoline passenger cars can be considered in two groups. First, Euro 
3 and 4 gasoline vehicles show an exponential increase in their rates of 
deterioration as a function of τ. All terms are significant with the 
exception of τ ∈ {05, .10} for Euro 3 vehicles. These Euro standards both 
reach maxima at τ = 0.95, at 1.06 (0.87–1.3) and 0.57 (0.49–0.67), 
respectively. Second, the Euro 5 and 6 gasoline vehicles show a rela-
tively flat trend in rates of deterioration that are almost all insignificant. 
At higher quantiles (τ ≥ 0.50), Euro 5 and 6 are the only Euro standards 
where the differences are insignificant from one another, confirming 
well-controlled emissions for these vehicles. 

For NOx emissions from diesel passenger cars there is no consistent 
pattern of rates of deterioration changing with τ. The rates of Euro 3, 4 
and 6 diesel cars reach maxima of 0.15 (0.12–0.18) at τ = 0.30, 0.087 
(0.064–0.11) at τ = 0.50 and 0.094 (0.054–0.12) at τ = 0.50 respec-
tively, suggesting that the highest emitting vehicles are not necessarily 
any more sensitive to mileage-based deterioration than average emit-
ters. Conversely, the deterioration rates of Euro 5 diesel cars reach a 
maxima of 0.24 (0.18–0.34) at τ = 0.95, with rates increasing roughly 
linearly with τ(R2 = 0.91). This pattern of behaviour is consistent with 

diesel passenger cars having a wide range of NOx emissions, but emis-
sions that do not show evidence of increases with mileage. 

Across all four studied Euro standards, the rates of deterioration of 
diesel PM emissions possess a slight positive gradient with respect to τ 

up to τ = .70. After this point the Euro standards deviate; the deterio-
ration rates of the high emitting (τ > 0.70) Euro 3 and 4 vehicles increase 
rapidly, reaching maxima of 53 (27–86) and 30 (16–46) mg kg−1 

respectively, whereas the rates for Euro 5 and 6 remain low. Impor-
tantly, all but one of the deterioration rates for Euro 3 and 4 are seen to 
be significant, whereas the majority of the rates for Euro 5 and 6 are 
insignificant. This reinforces the insight from Fig. 3 that the PM emis-
sions of DPF-equipped vehicles are well controlled. 

3.4. Vehicle manufacturer effects 

The differences between the real driving emissions of vehicles from 
different manufacturers is well reported (Davison et al., 2020, 2021; 
Grange et al., 2019, 2020; Borken-Kleefeld and Dallmann, 2018; Ber-
nard et al., 2018; Dallmann et al., 2018a), but little has been reported on 
the differences in emission deterioration between manufacturers. Gaso-
line vehicles are of particular interest in this study due to the evidence of 
deterioration effects for some Euro standards. The exponential increase 
in the rate of deterioration seen in Euro 3 and 4 vehicles may be driven 
by only certain manufacturers, for example. Conversely, some manu-
facturers of gasoline vehicles may have a significant deterioration effect 
for Euro 5 and 6 cars, despite no strong effect being present when 
considered on a bulk level. 

The density functions of the bootstrapped deterioration rates from 
Equation (2) using vehicle manufacturer group as the interaction effect 
are visualised in Fig. 4. The 8 most common manufacturer groups are 
shown for each Euro standard, each with at least 1000 observations. The 
distribution of cumulative mileage for each of these manufacturers are 
similar, although not identical (visualised in Fig. S3). 

There are clear differences between gasoline car manufacturers 
within each Euro standard. The influence of mileage on NOx emissions 
from almost all Euro 5 vehicles is insignificant; the confidence intervals 
includes 0 for most manufacturers and values of τ. The only Euro 5 
manufacturers with a significant mileage effect are Ford with 0.0294 

Fig. 4. Density functions of bootstrapped rates of 
deterioration from multivariate linear quantile 
regression fits (τ∈ {50, .70, .90, .95}) predicting NOx 
as a function of vehicle mileage and vehicle specific 
power for gasoline passenger car manufacturers 
(Equation (2)). Density functions are normalised per 
individual function, so their peak heights should not 
be directly compared. Manufacturers are ordered by 
the magnitude of their 95th percentile deterioration 
effect. The number of observations for each manu-
facturer, n, is shown. x = 0 is indicated with a solid 
black vertical line. The median value and the 95% 
confidence intervals are shown beneath each density 
function as circles and horizontal lines, respectively. 
Distribution functions and confidence intervals were 
calculated and visualised using the ggdist R package 
(Kay, 2021).   
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and General Motors with 0.0255 g kg−1 NOx per 104 at τ = 0.50, and 
General Motors with 0.373 g kg−1 NOx per 104 at τ = 0.95. For Euro 3 
and 4 manufacturers there is more evidence of diverging behaviours 
with some manufacturers demonstrating good NOx control across a 
range of quantiles and others showing much stronger deterioration ef-
fects, especially at higher quantiles. 

The analysis reveals that the progressive improvement of vehicle 
technology through Euro 3 to Euro 6 vehicles demonstrably led to im-
provements in vehicle emissions control. This finding is supported by the 
availability of vehicle-specific mileage information which shows that at 
160,000 km, Euro 5 and Euro 6 gasoline passenger cars have much 
improved emissions control than Euro 3 and 4 vehicles for the same 
mileage. 

The analysis of emissions deterioration of gasoline passenger cars 
shows that there exist small fractions of older vehicles in the fleet (Euro 
4 and older) that have emissions that are similar to Euro 5 diesel cars for 
NOx. From a policy perspective, it would be beneficial to target those 
vehicles for replacement or scrappage, given that there are relatively 
few of them. The current work broadly supports recent Low Emission 
Zone developments such as the ULEZ (Ultra Low Emission Zone) in 
London (Transport for London, 2021), which prohibits gasoline pas-
senger cars older than Euro 4 and pre-Euro 6 diesel cars. However, the 
analysis suggests that restricting pre-Euro 5 gasoline cars would be ad-
vantageous given the consistently low emissions of Euro 5 and 6 gasoline 
cars, even with high mileage. 

4. Conclusion 

The large data sets that can be acquired by vehicle emission remote 
sensing measurements provide many opportunities to develop a good 
understanding of vehicle emission characteristics. Such data also offers 
the potential to adopt more sophisticated analysis approaches that 
extend beyond simple aggregations such as mean emissions by Euro 
standard. By adopting statistical modelling approaches, inferences 
drawn from the data will be stronger, with valuable information pro-
vided on uncertainties. An important advantage of this approach is that 
in determining vehicle mileage effects on emissions, other influences 
such as ambient temperature and vehicle power demand can be 
controlled for. 

In the current work, the adoption of quantile regression as a tech-
nique fits well with the characteristics of the data being studied. The 
main benefit is the determination of whether all vehicles deteriorate 
similarly with increased mileage, or whether deterioration is controlled 
differently by different strata of a vehicle fleet. For gasoline passenger 
cars, where deterioration effects are most apparent, our results show 
that NOx emission deterioration is significantly greater in a small pop-
ulation of vehicles. 

In contrast to most other studies on vehicle emissions deterioration, 
the availability of measured mileage for individual vehicles in the cur-
rent study is a considerable benefit, which avoids the use of proxy 
vehicle age-based data. For particulate matter, only pre-DPF vehicles 
show evidence of increasing emissions at higher mileages, and that DPF- 
equipped vehicles retain effective PM control even at high mileages. The 
results also show that while there is evidence of different deterioration 
behaviour depending on vehicle manufacturer for pre-Euro 5 vehicles, 
post-Euro 4 vehicles show no such evidence. 
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