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Abstract

Transfer learning, in the form of domain adaptation, seeks to overcome challenges associated with a lack of available health-

state data for a structure, which severely limits the effectiveness of conventional machine learning approaches to structural 

health monitoring (SHM). These technologies utilise labelled information across a population of structures (and physics-based 

models), such that inferences are improved, either for the complete population, or for particular target structures — enabling 

a population-based view of SHM. The aim of these methods is to infer a mapping between each member of the population’s 

feature space (called a domain) in which a classifier trained on one member of the population will generalise to the remain-

ing structures. This paper introduces the domain-adapted Gaussian mixture model (DA-GMM) for population-based SHM 

(PBSHM) scenarios. The DA-GMM, infers a linear mapping that transforms target data from one structure onto a Gauss-

ian mixture model that has been inferred from source data (from another structure). The proposed model is solved via an 

expectation maximisation technique. The method is demonstrated on three case studies: an artificial dataset demonstrating 

the approach’s effectiveness when the target domain differs by two-dimensional rotations; a population of two numerical 

shear-building structures; and a heterogeneous population of two bridges, the Z24 and KW51 bridges. In each case study, 

the method is shown to provide informative results, outperforming other conventional forms of GMM (where no target 

labelled data are assumed available), and provide mappings that allow the effective exchange of labelled information from 

source to target datasets.

Keywords Population-based structural health monitoring · Domain adaptation · Domain-adapted Gaussian mixture model · 

Transfer learning

1 Introduction

Data-based approaches to structural health monitoring (SHM) 

are often limited by the range of available labelled health–state 

data in training. This lack of available health-state data means 

that most approaches are limited to novelty detection, or only 

being able to identify previously-seen health-states. Population-

based structural health monitoring (PBSHM) is a branch of SHM 

that seeks to overcome these challenges by expanding the set of 

available labelled health-state data by considering a population of 

structures [1–4]. By pooling together datasets from a population, 

there is likely to be more labelled information available and an 

increase in the potential to diagnose more health-states of interest.

A significant challenge in adopting PBSHM is that the feature 

spaces between structures will not be aligned; this will occur for 

several reasons. First, the structures themselves can be different, 

whether because of manufacturing variations in homogeneous 

populations (i.e. nominally-identical structures), or because the 

Lawrence A. Bull, Nikolaos Dervilis and Keith Worden have 

contributed equally to this work.

 * Paul Gardner 

 p.gardner@sheffield.ac.uk

 Lawrence A. Bull 

 lbull@turing.ac.uk

 Nikolaos Dervilis 

 n.dervilis@sheffield.ac.uk

 Keith Worden 

 k.worden@sheffield.ac.uk

1 Department of Mechanical Engineering, University 

of Sheffield, Mappin Street, Sheffield S1 3JD, UK

2 The Alan Turing Institute, The British Library, 

London NW1 2DB, UK

http://orcid.org/0000-0002-1882-9728
http://crossmark.crossref.org/dialog/?doi=10.1007/s13349-022-00565-5&domain=pdf


 Journal of Civil Structural Health Monitoring

123

population is heterogeneous [1–4]. Second, issues arise because 

the monitoring setup is not exactly equivalent for each member 

of the population. Third, the environmental and operational con-

ditions for each member of the population are different, mean-

ing each member of the population may be observing a differ-

ent part of the feature space. These shifts in the feature space 

(also known as domain shift), mean that labelled data cannot be 

naïvely shared by directly applying a classifier trained on one 

member of the population to other members. Instead, a mapping 

must be inferred between the feature spaces such that a classi-

fier can be inferred on a harmonised dataset that will generalise 

between all members of the population.

Transfer learning, and more specifically domain adaptation, 

is a branch of machine learning that aims to achieve this goal of 

identifying a mapping between different domains (i.e. different 

feature spaces) [5–7]. By inferring a mapping that harmonises 

these domains based on some criteria (typically using statistical 

distances [8–14] and/or manifold assumptions [12, 15]), a classi-

fier can be inferred for a source domain where labelled informa-

tion is known, and be applied to unlabelled target domains. Sev-

eral domain adaptation methods have been used within the SHM 

literature, with most focussing on identifying a latent space where 

the two feature datasets are harmonised [8–17]. The majority of 

the approaches are deterministic in nature, and utilise a distance 

metric to infer the mapping. This paper takes a different view-

point, instead seeking to infer a mapping from the target domain 

directly onto the source domain (rather than to a latent space). 

In addition, the method outlined in this paper is probabilistic and 

uses a maximum likelihood criteria to infer the mapping.

The method outlined in this paper— named the domain-

adapted Gaussian mixture model (DA-GMM)— is an extension 

of work proposed by Paaßen et al. [18], that inferred a linear map-

ping between a fully-labelled target dataset and a source Gaussian 

Mixture Model. The novelty in this paper is that the method has 

been extended to the scenario where the target is unlabelled (and 

even the scenario where the source is unlabelled as well). This 

extension makes the approach practical for PBSHM scenarios, 

with the method demonstrated on three case studies: an artificial 

dataset, a population of two numerical shear-building structures, 

and the Z24 [19] and KW51 [20] bridge datasets. A MATLAB 

implementation accompanies this paper—https:// github. com/ 

pagard/ Engin eerin gTran sferL earni ng.

The outline of this paper is as follows. Sect. 2 introduces 

the DA-GMM and the expectation maximisation algorithm 

used to solve the model. An artificial dataset is introduced in 

Sect. 3, to demonstrate the flexibility of the linear mapping 

in the context of two-dimensional rigid rotations. A case 

study inferring the mapping between a population of two 

numerical shear-building structures is presented in Sect. 4, 

where the approach is benchmarked against several other 

GMM models. In Sect. 5, the method is applied in a com-

pletely unsupervised manner between two bridges, the Z24 

and KW51. Finally, conclusions are drawn in Sect 6.

2  Domain‑adapted‑Gaussian mixture model

The domain-adapted Gaussian mixture model (DA-GMM), an 

extension of the work by Paaßen et al. [18], seeks to learn a 

mapping from a target dataset onto a finite Gaussian Mixture 

Model (GMM) learnt in a supervised manner from a labelled 

source domain dataset {X
s
, y

s
} (where X

s
∈ ℝ

D×N
s are the fea-

ture data and y
s
∈ ℝ

1×N
s are the corresponding labels1). Spe-

cifically, the approach seeks to learn a linear mapping via a 

projection matrix H ∈ ℝ
D×D that transforms the distribution 

of the unlabelled target feature data X
t
∈ ℝ

D×N
t such that the 

likelihood of the transformed data X̂
t
= HX

t
∈ ℝ

D×N
t being 

generated by the k-component source GMM is maximised. 

The underlying distribution of the transformed target data is, 

therefore, assumed to be defined by a k-component mixture 

model, where each of the k components is defined by a Gauss-

ian distribution,

where k indexes the class group k ∈ {1,… , K} , where the 

latent variable z(i) ∈ {1,… , K} represents the mixture com-

ponent for the feature data x̂(i)
t

 , and the mean �(k)
s

 and covari-

ance Σ(k)
s

 of each component are defined by the supervised 

source domain GMM, with the source GMM being inferred 

from the labelled dataset {X
s
, y

s
} , (and hence fixed in the 

following inference).

The latent variable that governs the mixture 

z(i) ∈ {1,… , K} is categorically distributed such that,

and 
∑K

k=1
�
(k) = 1 , where � = {�(1),… ,�(k)} define the mix-

ing proportions.

The posterior probability of each class, given a trans-

formed data point is,

where p(z(i) = k | Hx
(i)
t ) = r(i,k) , aptly named the responsi-

bility matrix. A maximum likelihood estimate of the labels 

ŷ
t
 can be obtained by selecting the class with the highest 

probability in the responsibility matrix for each observation,

(1)p(x̂(i)

t
| z(i) = k) = N(Hx

(i)
t | �(k)

s
,Σ(k)

s
),

(2)P(z(i) = k) = �
(k)

(3)p(z(i) = k � x̂
(i)

t
) =

p(x̂(i)

t
� z(i) = k)P(z(i) = k)

∑K

k=1
p(x̂(i)

t
� z(i) = k)P(z(i) = k)

,

(4)p(z(i) = k � x̂
(i)

t
) =

𝜋
(k)N(Hx

(i)
t � �(k)

s
,Σ(k)

s
)

∑K

k=1
𝜋(k)N(Hx

(i)
t � �(k)

s ,Σ
(k)
s )

,

1 These labels provide insight into the physical phenomena repre-

sented by the feature data, for example, a label may indicate that data 

points correspond to a damage state, which may indicate location on 

the structure.

https://github.com/pagard/EngineeringTransferLearning
https://github.com/pagard/EngineeringTransferLearning
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Parameter inference can be performed for the projection 

matrix H, as well as the mixing proportions for the trans-

formed target data � , using a maximum likelihood approach. 

The complete data (i.e. X̂
t
 and Z combined) log likelihood of 

the projected target data given the parameter set � = {H,�} 

is defined as,

which can be maximised using Expectation Maximisation 

(EM).

EM is a maximum likelihood technique for performing 

inference when missing values causes the marginal likeli-

hood to be intractable [21], as is the case with the DA-GMM, 

where the latent variables Z are unobserved and their distri-

bution is unknown. Instead, EM iterates between an expecta-

tion step (E-step) and a maximisation step (M-step), to find a 

maximum likelihood estimate of the marginal likelihood. The 

E-step requires the definition of the auxiliary function Q(�,�0) , 

which, using the current parameter estimates �
0
 , is the expec-

tation of the complete log likelihood function with respect to 

the current posterior distribution of the latent variables. The 

M-step then finds a new set of parameter estimates � by max-

imising the auxiliary function with respect to the parameters. 

The steps are repeated until convergence criteria are met [21].

The auxiliary function (the expected complete data log 

likelihood) for the DA-GMM is,

where the expectation can be rewritten as,

which in turn can be simplified using an indicator function 

I(⋅) for the mixing component for the ith data point and sub-

stituting Eq. (6),

where p(z(i) |x̂(i)
t
�0)I(z

(i) = k) = p(z(i) = k | x̂
(i)

t
) = r(i,k) . This 

expression simplifies to,

(5)ŷ
(i)
t = argmax

k∈1,…,K

[
p(z(i) = k | Hx

(i)
t )

]
.

(6)log p(X̂t, Z | �) =
N∑

n=1

log

K∑

k=1

𝜋
(k)N(Hx

(i)
t | �(k)

s
,Σ(k)

s
),

(7)Q(�,�0) = �Z|X̂t ,�0

[
log p(X̂t, Z | �)

]
,

(8)Q(�,�0) =
∑

Z

p(Z |X̂t �0) log p(X̂t, Z | �),

(9)

Q(�,�0) =

N∑

i=1

p(z(i) |x̂(i)
t
�0)

K∑

k=1

I(z(i) = k)

log
[
𝜋
(k)N(Hx

(i)
t | �(k)

s
,Σ(k)

s
)

]
,

(10)

Q(�,�0) =

N∑

i=1

K∑

k=1

r(i,k)
(

log
[
�
(k)
]
+ log

[
N(Hx

(i)

t | �(k)
s

,Σ(k)
s
)

])
.

The auxiliary function can be maximised with respect to 

the mixing proportions � analytically, by adding a Lagrange 

multiplier (to ensure that 
∑K

k=1
�
(k) = 1 ) and setting the par-

tial derivative to zero,

The maximisation step with respect to the projection matrix 

H, only requires maximising the part of the auxiliary func-

tion dependent on H,

which can be expanded to,

where the constants with respect to H can be omitted, lead-

ing to the minimisation of a weighted quadratic error,

It can be shown that �Q(H) is convex [18], and the gradient 

is,

meaning that the maximisation step with respect to H can be 

solved using a gradient-based optimiser. In the case where 

Σ
k
= Σ ,∀k , the projection matrix H can be found in closed 

form as,

where M =
[

�
(1),… ,�(k)

]

∈ ℝ
D×K and R(i, k) = r

i,k , where 

R ∈ ℝ
K×N . This result is similar to a least-squares solution 

for a multiple-output linear regression, and, therefore, leads 

to the possibility of extending the mapping to being nonlin-

ear and adding a prior over H.

The algorithm is shown in Algorithm 1. The linear projec-

tion matrix needs to be initialised either randomly, or given 

some prior knowledge about the mapping. The number of 

classes K is defined completely by the labels if the source 

GMM is supervised, or should be selected via a model selec-

tion approach if an unsupervised GMM is utilised. 

(11)�
(k) =

1

N

N
∑

i=1

r
(i,k)

.

(12)max
H

N∑

i=1

K∑

k=1

r
(i,k) log

[
N(Hx

(i)

t
| �(k)

s
,Σ(k)

s
)

]

(13)

max
H

N∑

i=1

K∑

k=1

r
(i,k) log

[
(2�−

n

2 |Σ(k)

s
|−

1

2 )

]

× −
1

2
(Hx

(i)

t
− �

(k)

s
)T (Σ(k)

s
)−1(Hx

(i)

t
− �

(k)

s
),

(14)

min
H

N
∑

i=1

K
∑

k=1

r(i,k)(Hx
(i)

t − �
(k)
s
)T (Σ(k)

s
)−1(Hx

(i)

t − �
(k)
s
) =∶ �Q(H).

(15)∇H�Q(H) = 2

K
∑

k=1

(Σ(k)
s
)−1

N
∑

i=1

r(i,k)(Hx
(i)

t − �
(k)
s
)x

(i)

t
T

(16)H = MRX
T

t
(XT

t
X

t
)−1

,
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Algorithm 1 DA-GMM

1: {µ
(k)
s , Σ

(k)
s }K

k=1 = GMM(Xs, ys, K)
2: E ← ∞, H ← H0, π(k) ← 1/k ∀ k ∈ K

3: while true do

4: E-step

5: for i = 1 : N do

6: for k = 1 : K do

7: r(i,k) = Eqn. 4
8: end for

9: end for

10: M-step

11: for k = 1 : K do

12: π(k) = Eqn. 11
13: end for

14: H = minH EQ(H) ⊲ Using Eqn. 14
15: E′ = EQ(H)

16: Convergence check

17: if |E − E′| < ǫ then return H
18: end if

19: E ← E′

20: end while

Table 1  Gaussian components of the artificial dataset and number 

of training data points in the source and target domains ( N
s
 and N

t
 , 

respectively). Gaussian distributions are parametrised by a mean � 

and covariance Σ , N(�,Σ)

k � Σ N
(k)
s N

(k)

t
Label, y

1 [−4.0 − 1.0]
T

[

0.60 0.10

0.10 0.60

]

500 100 0

2 [1.0 − 0.5]
T

[

0.40 − 0.30

−0.30 0.40

]

150 50 1

3 [4.5 0.2]
T

[

0.48 0.28

0.28 0.48

]

100 50 2

4 [−6.0 2.0]
T

[

0.30 0.20

0.20 0.30

]

75 50 3

Fig. 1  Comparison of testing accuracies (—) on the target dataset for 

different rotations of the artificial dataset

3  Artificial dataset

To demonstrate the capability of the linear transform H in the 

DA-GMM, an artificial dataset is utilised to evaluate the meth-

od’s ability to infer linear rotation matrices. The dataset con-

sists of four, two-dimensional Gaussian components, as stated 

in Table 1. The source dataset was obtained by directly sam-

pling from these distributions X
s
= X , whereas the target data 

were created by applying a rotation to the data obtained from 

these distributions, i.e, X
t
= HX , where H is parametrised 

given some angle � , as,

The target test data are obtained from 1000 observations 

of each class transformed by the same rotation matrix (i.e. 

N
test

t
= 4000).

Figure  1 states the testing accuracy on the target 

domain dataset against the rotation in degrees (where 

� = {5, 10,⋯ , 355} ). The results shown correspond to the 

greatest accuracy from 25 random initialisations of the EM 

algorithm (with the training and testing data remaining the 

same for all 25 repeats), ensuring an optimal solution has been 

(17)H(�) =

[

cos(�) − sin(�)

sin(�) cos(�)

]

.
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obtained. Despite the stochastic nature of the random initial 

conditions, the test accuracies are consistent with rotation 

(with all ≈ 100% ). This is clear evidence that the DA-GMM 

approach is robust to rotations in two-dimensions. As an illus-

tration of the approach, Fig. 2 depicts the source and target 

datasets, along with the transformed target dataset from the 

DA-GMM, for a rotation of 80◦ (i.e. X
t
= H(80)X).

4  Case study: shear‑building structures

Within the field of PBSHM a challenging problem is to 

identify mappings between heterogeneous populations. 

This difficulty arises because, as structures become 

increasingly different, their features spaces are more dis-

similar, typically making the mapping more complex. This 

case study considers a population of two numerical four 

degree-of-freedom shear-building structures, constructed 

from different material properties (one aluminium and the 

other steel) and geometries.

The numerical simulations are obtained from four 

degree-of-freedom lumped-mass models, where the out-

puts of the model were four damped natural frequencies 

{�1,�2,�3,�4} (calculated in a similar way to [3, 12]). 

The mass of each floor was parametrised by a length lf  , 

width wf  , thickness tf  and density � . The stiffness between 

each floor is formed via four rectangular cross-sectioned 

cantilever beams parametrised by length l
b
 , width w

b
 , 

thickness t
b
 and Young’s Modulus E. Damage is intro-

duced to the beams via an open crack, using the stiffness-

reduction model proposed by Christides and Barr [22]. 

For each structure, five damage scenarios were considered, 

based on a localisation problem; the undamaged condition 

y = 0 , and an open crack on one of the beams at each of 

the four floors ( y = {1, 2, 3, 4} numbered from the ground 

floor upwards). For each location, the crack had a length of 

5% of the beam width and was located at 10% of the way 

up the beam’s length.

To introduce variability, the material properties {�, E} 

and damping coefficients c were defined as random vari-

ables, where each output observation was obtained by a 

random draw from an underlying distribution. The prop-

erties for the two structures are shown in Table 2. The 

labelled training data for Structure One consisted of 100 

observations of y = 0 , and 75 observations for each of the 

four damage classes y = {1, 2, 3, 4} (i.e. N
s
= 400 ). The 

unlabelled training data for Structure Two comprised 50 

observations of y = 0 and 30 observations of each damage 

class y = {1, 2, 3, 4} (i.e, N
t
= 170 ). The level of class imbal-

ance was chosen to reflect SHM problems, where typically 

more normal condition data ( y = 0 ), are available than for 

each damage class individually. For both structures the test 

datasets were comprised of 1000 observations of each class 

( N test

s
= N

test

t
= 5000).

The PBSHM scenario was to infer a mapping from Struc-

ture One to Structure Two, such that the labelled data in 

Structure One can aid in classifying the unlabelled data 

from Structure Two, i.e. Structure One is the source domain 

and Structure Two the target. To aid visualisation, the fea-

tures in this analysis were the first two principal compo-

nents of the four damped natural frequencies (calculated 

from the training data from each domain individually), i.e. 

X
s
∈ ℝ

2×N
s and X

t
∈ ℝ

2×N
t , for structures One and Two, 

respectively. The feature spaces are visualised in Fig. 3, 

where it can be seen that the source and target domains are 

very different and there is a large amount of overlap between 

classes y = {1, 2, 4} in the target domain. It is hoped that the 

Fig. 2  An example of the artificial dataset when � = 80
◦ . Panels (a) 

and (b) present the source data X
s
 ( ⋅ ), and the untransformed target 

data X
t
 ( ⊲ ), respectively. Panels (c) and (d) show the DA-GMM pre-

dictions on the transformed target X̂
t
 ( △ ) training and testing data, 

respectively (where Panel (c), includes the source data for reference). 

Panels (a), (c) and (d) include visualisations of the inferred source 

Gaussian mixture model clusters denoted by � (+) and 2Σ (—)

Table 2  Geometric and material properties of the shear-building structures (1 and 2). Gaussian distributions are parametrised by a mean � and 

variance �2 , N(�, �2) , and Gamma distributions by a shape � and scale � , G(�, �)

{lf , wf , tf } , mm {l
b
, w

b
, t

b
} , mm � , kg/m3 E, GPa c, Ns/m

1 {350, 254, 25} {200, 25, 6.25} N(2800, 1) N(71, 1.2 × 10−9) G(50, 0.1)

2 {300, 250, 24} {210, 24, 6.24} N(8000, 5) N(210, 1.1 × 10−9) G(50, 0.1)
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DA-GMM will aid both in labelling the target domain and 

improving separability between these classes.

Five scenarios were examined, demonstrating the com-

parative performance of the DA-GMM approach against 

conventional maximum likelihood GMMs, with their accu-

racies compared in Table 3. The first scenario (a prereq-

uisite for the DA-GMM), was training the source domain 

supervised GMM, where a testing accuracy of 100% was 

achieved. The second analysis applied the source domain 

GMM directly to the untransformed target data, as seen in 

Figure 3a, where a testing classification accuracy of 44.0% 

was achieved. This result shows that there is a need for per-

forming domain adaptation, as there is domain shift between 

the source and target datasets. The second scenario in Fig-

ure 3b is where the target data have been transformed using 

the DA-GMM. The target data have been expanded to match 

the source GMM and as such have improved the testing 

accuracy to 81.5%. It is noted that the misclassification that 

has occurred is because of the overlap in the untransformed 

target data and its effect on the mapping.

The final two scenarios consider the target data alone (i.e. 

there is no attempt to transfer knowledge), with Figure 3c 

showing the results of the fully supervised GMM trained on 

a labelled target dataset, and Figure 3d displaying the unsu-

pervised GMM2 results (where classes have been assigned 

by the proximity of the inferred unsupervised clusters to 

the supervised model). These results show that with per-

fect information, a testing accuracy of 95.6% is achieved, 

and with no label information, the best accuracy one could 

achieve (assuming classes can be assigned with inspection 

knowledge) would be 76.8%. This evidences the fact that the 

DA-GMM provides better classification accuracy than an 

unsupervised model on the target domain (if labels could be 

assigned), and is a robust way of labelling the target domain 

from source domain observations.

5  Case study: Z24 and KW51 bridges

Inferring mappings between structures such that label infor-

mation can be shared is an important aspect of PBSHM. By 

linking structures via mappings, any labelled data obtained 

for one structure can be applied to the rest of the population. 

In this section, domain adaptation is performed, such that a 

mapping is obtained in a heterogeneous population of two 

partially-labelled3 bridge datasets, from the Z24 [19] and 

KW51 bridges [20]. By learning a mapping between the 

two bridge datasets, any future label information obtained 

for one structure can be directly applied to the other. This 

is particularly important for managers of bridge infrastruc-

ture, as any observation of damage, from any member of 

the population, can be used in diagnosing that health-state 

for any bridge in the population (given that a mapping can 

be inferred).

5.1  Z24 and KW51 datasets

The Z24 bridge dataset has been well-studied within the 

literature, with numerous analyses managing to identify the 

key events in the dataset [23–32]. The Z24 bridge, located in 

the canton Bern near Solothurn, Switzerland, was a concrete 

Fig. 3  Comparison of Gaussian mixture models and their predic-

tions for the shear-building case study on the training data; y = 0 is 

the normal condition, and y = 1, 2, 3, 4 denote damage at each floor. 

Source data X
s
 (⋅) , target data X

t
 (⊲) and transformed target data X̂

t
 

(△) are depicted against the inferred Gaussian mixture model clus-

ters denoted by � (+) and 2Σ (—). Panel (a) shows the source model 

applied to the target data and Panel (b) displays the DA-GMM pre-

dictions. Panels (c) and (d) show the supervised and unsupervised 

Gaussian mixture models inferred from the target data (where the 

unsupervised labels are determined by the proximity of the inferred 

clusters to the supervised model)

Table 3  Training and testing accuracies for the different Gaussian 

mixture model scenarios. GMM
a
(X

b
 ) denotes a supervised Gaussian 

mixture model trained on domain a and applied to dataset X
b
 , where 

the subscript un denotes an unsupervised mixture model. It is noted 

that the unsupervised model labels are determined by the proximity 

of the inferred clusters to the supervised model and the accuracies are 

used here as a reference measure

GMM
s

(X
s
)

GMM
s

(X
t
)

GMM
s

(X̂
t
)

GMMun

t

(X
t
)

GMM
t
(X

t
)

Training 100.0% 55.9% 84.7% 70.0% 94.7%

Testing 100.0% 44.0% 81.5% 76.8% 95.6%

3 These datasets are said to be partially-labelled, as labels are only 

recorded for experimental damage introduced to the Z24 dataset [19] 

and for the retrofit condition in the KW51 dataset [20] and not for all 

data points, i.e. the various normal condition states.

2 The unsupervised GMM was trained using expectation-maximisa-

tion.
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highway bridge that was used as an experimental structure 

for an SHM campaign before its demolition in 1998, as part 

of the SIMCES project [19]. The monitoring campaign 

occurred during the year before demolition, in which a range 

of environmental data, as well as the acceleration response 

at 16 locations, were measured. The acceleration responses 

were processed using operational modal analysis (OMA), 

such that the first four natural frequencies of the structure 

were obtained. Damage was introduced incrementally into 

the bridge, with relatively small scale damage beginning on 

the 10th August 1998 — the pier was incrementally lowered 

by a few centimetres — with more substantial damage occur-

ring after the 31st August 1998, beginning with the failure of 

the concrete hinge. For a complete description of the bench-

mark dataset, the reader is referred to [19]. It is noted that 

model-updating approaches [23, 26, 27] have been able to 

detect when the pier was lowered by between 80–95mm, 

which occurred on the 17–18th August. In contrast, several 

data-based approaches [24, 28–32] have detected the onset 

of the smallest damage introduced to the Z24 bridge, a low-

ering of the pier by 20 mm on the 10th August, with several 

even detecting when the installation equipment was brought 

onto the bridge (9th August).

The KW51 bridge is a steel bowstring railway bridge 

in Leuven, Belgium. A 15-month monitoring campaign 

occurred between 2018 and 2019, in which the acceleration 

response, the strains in the deck and gauges of the rails, 

the displacement at the bearings, as well as environmental 

data were all recorded [20]. The acceleration responses were 

processed using OMA to obtain the first 14 natural frequen-

cies of the structure. During the monitoring campaign, every 

diagonal member was retrofit with a steel box to strengthen 

the design of the bridge, with details of the retrofit speci-

fied in [20]. The bridge condition before the retrofit was 

measured from 2 nd October 2018 until the 15th May 2019, 

at which point the retrofitting process was carried out. The 

retrofit was completed on 27th September 2019. Novelty 

detection has been successfully performed on this dataset 

using robust principal component analysis (PCA) and linear 

regression methods [33]. For a complete overview of the 

dataset the reader is referred to [20].

Although the two bridges are very different in design (form-

ing a heterogeneous population), there are similarities in their 

modal responses4. Despite different absolute values in natural 

frequencies, the first and third natural frequencies of the Z24 

have correspondence with the tenth and twelfth natural fre-

quencies of the KW51; both represent vertical bending modes 

of the deck, with effectively the same nodal and anti-nodal 

pattern (see [19] and [20] for a visualisation of the Z24 and 

KW51 mode shapes, respectively). In addition, both bridges 

undergo a stiffening effect caused by cold temperature condi-

tions. Figures 4 and 5 show the two datasets against ambient 

temperature, where it can be seen that the below-freezing con-

ditions lead to a ‘stiffening-effect’ on the natural frequencies; 

in the Z24, the asphalt stiffens, compared to freezing of the 

rail ballast in the KW51. It is noted that, although these low-

temperature conditions correlate to a below-freezing condition, 

there are no ‘ground truth’ labels available for these conditions 

in either dataset. Given the similarities in modal response and 

the existence of at least two normal conditions (normal ambi-

ent and low temperature), the datasets form a transfer learning 

problem which can be solved using the DA-GMM.

The datasets were divided into training and testing data for 

the DA-GMM mapping. The first 99 days of monitoring data 

from the Z24 are used as training data, as this time period 

Fig. 4  Z24 dataset. Ambient temperature, first ( �
1
 ) and third ( �

3
 ) nat-

ural frequencies. Horizontal line indicates 0 °C and the vertical black 

line the training and testing data split, with the red solid line denoting 

the onset of damage

Fig. 5  KW51 dataset. Ambient temperature, tenth ( �
10

 ) and twelfth 

( �
12

 ) natural frequencies. Horizontal line indicates 0◦ C and the ver-

tical black line the training and testing data split, with the red solid 

lines denoting the start and end of the retrofit period

4 For knowledge transfer to be attempted, structures in a population 

should have some physical correspondence [1–3]; this is to reduce the 

likelihood of negative transfer [3], in which transfer learning degrades 

the performance of the classifier.
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covers both normal condition behaviours; the remaining data, 

including when damage occurred, are used to test the map-

ping. The KW51 training data were formed from the first 1500 

data points covering the two temperature conditions, with the 

remaining pre-retrofit and post-retrofit data being used as test-

ing data for the mapping. The training and testing divisions for 

both datasets are indicated on Figs. 4 and 5.

5.2  Statistic alignment and the unsupervised 
domain‑adapted Gaussian mixture model

The aim of the analysis in this section was to find a mapping 

using the DA-GMM approach that aligns the data from these 

two bridges for the two environmental conditions in a completely 

unsupervised manner (as no ‘ground truth’ labels are known for 

either dataset for these conditions). Although completely unla-

belled, the Z24 is considered as the source dataset (i.e. it forms 

the dataset where the GMM is inferred) and the KW51 is consid-

ered as the target domain (i.e. the KW51 is mapped onto the Z24 

dataset). This change means that line one of Algorithm 1 is modi-

fied such that the source mean and covariances are inferred using 

an unsupervised GMM (i.e. no source labels y
s
 are required) 

using an EM maximum-likelihood approach.

Before applying the DA-GMM, pre-processing is per-

formed to aid transfer, in a similar manner to how normalisa-

tion is performed as part of best practice in machine learning 

algorithms. The pre-processing performs statistic alignment 

[7], a process of aligning the lower-order statistics of the fea-

ture space. In this case, the statistics of the first 100 data points 

( N = 100 ) are aligned to the target domain, with the aim of 

centring both datasets around the normal condition i.e.,

(18)X
t
=
�

t
− �

1∶N
(�

t
)

�
1∶N

(�
t
)

where �
s
 and �

t
 are the set of natural frequencies for each 

bridge, �
1∶N

(⋅) and �
1∶N

(⋅) find the mean and standard devia-

tion of the first N data points of their arguments, and X
s
 

and X
t
 are the source and target pre-processed features. The 

statistically-aligned features are presented in Fig. 6, where it 

can be seen that the offset between the source and target has 

been removed (removing the need for X
t
 to be augmented 

by a matrix of ones), and the problem has been simplified 

to one of learning a rotation matrix between the source and 

target datasets. The pre-processing steps mean that the DA-

GMM algorithm can be modified, with the parameter set 

becoming � = {�,�} , where the linear projection matrix is 

parametrised as in Eq. (17) and � is the angle of rotation; this 

reduces the number of parameters that need to be inferred by 

the DA-GMM model.

Figures 4 and 5 indicate that there is class imbalance 

between the ambient and low temperature classes. This 

prior assumption, that there will be fewer data points in the 

low temperature class when compared to the ambient tem-

perature class, can be encoded into the DA-GMM to learn 

an optimal mapping that equally prioritises both classes. In 

this case study, the maximisation step is modified such that 

Eq. (14) becomes,

where w
k
 are a prior imbalance weight for each class. In this 

case study, the values of the weight vector w are assigned 

based on the portion of the target training dataset below 

0 ◦ C, where the ambient condition is down-weighted and 

the low temperature is up-weighted; w = {0.055, 0.945} for 

the ambient and low temperature conditions, respectively.

5.3  Domain adaptation results

A two-class unsupervised DA-GMM was inferred on the 

Z24 (unlabelled source), and KW51 (unlabelled target), 

statistically-aligned feature data. The inferred projection 

and source GMM are presented in Fig. 7a, with the natural 

frequencies of the bridges labelled according the predic-

tive classes of the GMM displayed in Fig. 7b and c. It 

can be seen in Fig.7a, that the target data have been well-

aligned with the source data, and that the inferred feature 

space retains physical meaning. The ambient normal con-

dition is centred around the origin and can be viewed as 

the ‘baseline’ relative natural frequencies, with the low 

temperature effect causing an increase in the feature val-

ues, corresponding to stiffening behaviour. The GMM has 

(19)X
s
=

(

�
s
− �1∶N

(�
s
)

�1∶N
(�

s
)

)

�1∶N
(X

t
) + �1∶N

(X
t
),

(20)

�Q(H) = min
H

K
∑

k=1

wk

N
∑

i=1

r(i,k)(Hx
(i)

t − �
(k)
s
)T (Σ(k)

s
)−1(Hx

(i)

t − �
(k)
s
),

Fig. 6  Statistic-aligned Z24 (source) X
s
 , and KW51 (target) X

t
 , fea-

tures. Dashed line indicates data points used to statistically align the 

data, the solid black lines indicate training and testing data splits and 

the solid red lines denote the onset of damage and the retrofit states, 

respectively
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identified the transition from the ambient to low tempera-

ture classes for both bridges, as shown in Fig. 7b and c, 

meaning that one GMM can be used to diagnose behaviour 

on both bridges. This result demonstrates the power of 

the DA-GMM, that two bridges of different design can be 

mapped onto a single feature space where classification 

can be performed for the complete population.

Once the mapping has been inferred, any future data 

can be projected onto the harmonised feature space. The 

testing data for the Z24 and KW51 were mapped into this 

space and an unsupervised GMM inferred using maxi-

mum-likelihood EM. Given that the number of classes is 

unknown, model selection was performed. The number of 

components in the GMMs were varied from two to nine, 

and the Bayesian information criterion (BIC) was used to 

select the appropriate model (given the criterion’s abil-

ity to penalise model complexity along with assessing the 

model’s fit). The Bayesian information criterion is,

where m is the number of parameters in the model, N the 

number of data points used in training and L̂ the estimate 

of the complete data likelihood of the unsupervised GMM. 

Figure 8 presents the BIC for each of the models considered, 

where ten repeats were performed to account for the varia-

bility in the EM algorithm from the random initialisations of 

(21)BIC = m ln N − 2 ln L̂

the parameters. A seven-component mixture model produced 

the lowest BIC and, therefore, was selected as the most 

appropriate model. It is noted that analysis using an infinite 

Gaussian mixture model (also know as a Dirichlet process 

Fig. 7  Unsupervised domain-adapted Gaussian mixture model pre-

dictions of the Z24 and KW51 bridge datasets. Panel (a) is a com-

parison of the two features for each bridge against the probability of 

being in either class, with the inferred (source) unsupervised Gauss-

ian mixture model for reference ( � (+) and 2Σ (—)). The Z24 is 

denoted X
s
 ( ⋅ ) and the KW51 X̂

t
 ( △ ). Panels (b) and (c) are the Z24 

( �
1
 and �

3
 ) and KW51 ( �

10
 and �

12
 ) natural frequencies against sam-

ple point

Fig. 8  Comparison of the BIC for unsupervised GMMs, with the 

number of components ranging from two to nine. The GMMs were 

trained on the joint Z24 and KW51 datasets in the transformed space. 

The bars denote the minimum BIC over ten random initialisations, 

with the error bar denoting the maximum estimated BIC

Fig. 9  Unsupervised seven-component Gaussian mixture model pre-

dictions on the transformed Z24 and KW51 datasets. Panel (a) is a 

comparison of the two features for each bridge against the probability 

of being in one of seven classes, with the inferred (source and tar-

get) unsupervised Gaussian mixture model for reference ( � (+) and 

2Σ (—)). The Z24 is denoted X
s
 ( ⋅ ) and the KW51 X̂

t
 ( △ ). Panels 

(b) and (c) are the Z24 ( �
1
 and �

3
 ) and KW51 ( �

10
 and �

12
 ) natural 

frequencies against sample point. The black vertical lines in panels 

(b) and (c) denote the separation of the training data in the DA-GMM 

mapping, and the red vertical lines indicate the beginning of damage 

on the Z24 bridge — lowering of the pier by 20mm which occurred 

on 10/08/1998 — and the start of the retrofit state for the KW51 

bridge
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Gaussian mixture model) on the complete four-dimensional 

Z24 dataset, automatically selected seven distinct Gaussian 

clusters [30], highlighting that a seven-component model is 

appropriate for explaining the joint Z24 and KW51 datasets 

on the aligned two-dimensional feature space. The seven-

component model with the lowest BIC out of the ten repeats 

was used to analyse the bridge datasets.

The predictions from the unsupervised GMM are displayed in 

Fig. 9. The results indicate that, once a mapping is inferred, both 

bridges can be diagnosed together, with class information being 

shared between both bridges. Fig. 9b and c show that the key dam-

age and retrofit states have been well identified, with the GMM 

identifying the onset of the smallest damage extent on the Z24, a 

lowering of the pier by 20 mm on the 10th August 1998 (red line). 

This result is a significant achievement, given that the model has 

been inferred on a reduced dataset (only the first and third natu-

ral frequencies), and provides state-of-the-art performance when 

compared to existing methods applied to the Z24 in the literature 

[23–32]. As found in previous analysis on the Z24 dataset using 

an infinite Gaussian mixture model [30], the Z24 ambient normal 

condition is non-Gaussian and can be captured by two additional 

components; classes Five and Six. These Gaussian clusters show 

that the normal ambient condition (Class Four) starts to rotate 

and drift as the bridge experiences warmer environmental condi-

tions (see Fig. 4), which are captured by classes Five and Six. 

In addition, the low temperature condition can be described by 

more than one Gaussian component [30], classes Two and Three 

in this model. Finally, it is noted that the feature space inferred by 

the DA-GMM has retained physical meaning, something that is 

particularly useful in avoiding problems associated with negative 

transfer, i.e. the damage class shows a softening affect from the 

origin, and the retrofit shows a new stiffened behaviour.

6  Conclusions

Population-based SHM is a branch of structural health 

monitoring that seeks to utilise information from across a 

population of structures, to improve diagnostic capabilities. 

Specifically, PBSHM seeks to transfer label information 

between members of the population. One method of trans-

ferring label information is via domain adaptation, where 

a mapping can be inferred such that the source and target 

datasets are harmonised, meaning a classifier trained on 

one domain will generalise to others in the population. This 

paper developed and demonstrated the potential of a domain 

adaptation approach constructed from a Gaussian mixture 

model formulation, for use in an PBSHM context; namely 

the domain-adapted Gaussian mixture model.

The domain-adapted Gaussian mixture model seeks 

to identify a linear mapping from a target dataset onto a 

source Gaussian mixture model. The approach was demon-

strated on three datasets. The first was a numerical dataset, 

displaying the method’s ability to infer linear mappings in 

the form of two-dimensional rotations. The second data-

set presented a numerical case study involving a hetero-

geneous population of two shear-building structures. The 

approach was shown to outperform naïvely applying the 

source GMM to the untransformed target dataset, and to 

be an improvement on an unsupervised GMM trained on 

the target domain. The final dataset, involving the Z24 

and KW51 bridges, showed the approach in a completely 

unsupervised setting. An unsupervised GMM was inferred 

from the Z24 dataset, which was utilised in identifying a 

mapping for the KW51 bridge dataset onto the Z24 dataset. 

The inferred mapping aligned the two datasets allowing 

class information to be shared between the two bridges. 

The inferred feature space also retained physical meaning, 

something not possible with many of the existing domain 

adaptation technologies. The case study also demonstrated 

the potential of a PBSHM approach, even when no labels 

are known initially; as any future labels from one structure 

can be used in diagnosing the others in the population.

The DA-GMM presents an alternative to existing domain 

adaptation approaches, using a probabilistic framework 

and inferring a mapping directly from the target to source 

domains. Future research should seek to extend the mapping 

to be nonlinear, whether by a regression viewpoint, via a 

basis function approach or the kernel trick, or whether via 

normalising flows [34]. In addition, more robust estimates 

of the projection parameters and mixing proportions could 

be obtained if a Bayesian model was constructed by intro-

ducing priors on both these parameters. The model could 

then be solved using a variational inference approach that 

may be more robust to initial conditions. The DA-GMM is a 

promising tool for PBSHM and could also be used for more 

traditional concept drift scenarios on a single structure.
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