
This is a repository copy of Portable Acceleration of Materials Modeling Software : 
CASTEP, GPUs, and OpenACC.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/185650/

Version: Published Version

Article:

Smith, Matthew, Tamerus, Arjen and Hasnip, Phil orcid.org/0000-0002-4314-4093 (2022) 
Portable Acceleration of Materials Modeling Software : CASTEP, GPUs, and OpenACC. 
Computing in Science and Engineering. pp. 46-55. ISSN 1521-9615 

https://doi.org/10.1109/MCSE.2022.3141714

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



THEME ARTICLE: THE EXCALIBUR PROJECT

Portable Acceleration of Materials Modeling
Software: CASTEP, GPUs, and OpenACC
Matthew Smith and Arjen Tamerus , University of Cambridge, CB3 0HE, Cambridge, U.K.

Phil Hasnip , University of York, YO10 5DD, York, U.K.

In this article, we present work to port the CASTEP first-principles materials

modeling program to accelerators using open accelerator (OpenACC). We discuss

the challenges and opportunities presented by graphical processing units (GPU)

architectures in particular, and the approach taken in the CASTEP OpenACC port.

Whilst the port is still under active development, early performance results show

that significant speed-ups may be gained, particularly for materials simulations

using so-called “nonlocal functionals,” where speed-ups can exceed a factor of ten.

T
he introduction first-principles materials model-

ing is an invaluable tool for scientists to investi-

gate the chemical, physical, and electronic

properties of matter, especially in the solid-state.2 The

term “first-principles” refers to any of a number of

methods based on parameter-free quantum mechani-

cal models; of these, the most ubiquitous is density

functional theory (DFT), especially in the popular

plane-wave pseudopotential approach.

At the heart of a DFT simulation is the solution of

the Kohn–Sham equations,1 which for a material take

the form of a set of nonlinear eigenvalue problems.

Each eigenvalue problem corresponds to a particular

choice of the wavevector (called a “k-point”) of the

particle wavefunctions; for a particular choice of k,

we have

Hk½r�cbkðrÞ ¼ EbkcbkðrÞ (1)

where Hk½r� is the so-called Hamiltonian matrix, cbk

and Ebk are the spatially varying Kohn–Sham wave-

function and energy corresponding to particles in

state b (known as “bands”) with wavevector k, and r is

the probability density of the electrons (also spatially

varying).

There are solutions to (1) for any particular choice of

the wavevector k, and the general solution is found by

integrating (numerically) over the possible wavevectors

(those within the first Brillouin zone). Thus, the probabil-

ity density of the electrons is

rðrÞ ¼
X

bk

fbk cbkðrÞj j2 (2)

where fbk is the probability of a particle being in band b

with wavevector k, and cbkðrÞj j2 is the probability den-

sity of that band. For fermions, such as electrons, no

two particles may be in the same state, so 0 � fbk � 1.

The summation over b accounts for the contributions

from all the possible states of the particles; the sum-

mation over discrete k is an approximation to the inte-

gral over all k.

At first sight, the equations at different k-points in

(1) appear independent; however, since the Hamilto-

nian matrix depends on r, and r involves a summation

over k [see (2)], the equations are coupled, albeit not

tightly. Moreover, the solution of (1) requires knowl-

edge of the density rðrÞ in order to yield cbkðrÞ, yet

rðrÞ itself depends on cbkðrÞ. For these reasons, the

usual approach is to solve (1) and (2) iteratively, start-

ing from an initial guess for rðrÞ and cbkðrÞ.

PLANE-WAVE BASIS SET
The size of the eigenvalue problem depends on the

representation of cbkðrÞ. For materials modeling, a

common approach is to exploit the periodicity of the

electronic unit cell of the material and express all the

quantities in a Fourier basis. The density, rðrÞ, is cell-

periodic (i.e., has the same periodicity as the elec-

tronic unit cell), and the complex-valued wavefunc-

tions are “quasi-periodic”; that is, their magnitudes are

cell-periodic, as may be seen from (2), but the periodic-

ity of their phase is determined by the wavevector k. It

This work is licensed under a Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 License. For more informa-

tion, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Digital Object Identifier 10.1109/MCSE.2022.3141714

Date of publication 10 January 2022; date of current version

14 March 2022.

Computing in Science & Engineering Published by the IEEE Computer Society January/February 202246



is convenient to express cbkðrÞ as the product of the

phase-factor eik�r and a cell-periodic magnitude, which

may be expanded in a Fourier basis. In 3-D, the Fourier

basis components are plane-waves, and the wave-

functions are expressed as

cbkðrÞ ¼ eik�r
X

G

cGbke
iG�r

¼
X

G

cGbke
iðGþkÞ�r (3)

where cGbk is a complex coefficient and each G is a

reciprocal lattice vector (often known as a “G-vector”);

reciprocal lattice vectors are wavevectors for which

eiG�r has the periodicity of the material.

Any linear combination of reciprocal lattice vectors

gives the correct periodicity, and the complete basis

set is, therefore, infinite. As jGj increases, however, the

corresponding coefficients tend asymptotically to

zero, and thus, the expansion may be truncated safely

at some cut-off wavevector magnitude, Gc. Denoting

the number of plane-waves in the basis set asNp, each

wavefunction is completely determined by the set of

Np complex coefficients, and the Hamiltonian is a com-

plex Hermitianmatrix of orderNp �Np.

In principle, (1) may now be solved via standard

matrix diagonalization methods, which would yield all

Np eigenstates and eigenvalues of the Hamiltonian.

The plane-wave basis set is computationally efficient

for many operations, including differentiation and inte-

gration, but Np is usually large and grows with the size

of the simulated volume. Simulations of small systems

typically require several thousand plane-waves, and

large research simulations may comprise millions of

plane-waves; thus, direct diagonalization of the Np �

Np Hamiltonian matrix is computationally expensive

(direct diagonalization methods scale as the cube of

the matrix size, N3
p ). Furthermore, direct diagonaliza-

tion yields all Np eigenstates, which is typically two

orders of magnitude more than the � N required to

model the behavior of the N particles. For these rea-

sons, when using a plane-wave basis set, it is common

to use an iterative diagonalization method, which

allows the calculation to be restricted to the � N

eigenstates of interest.

In iterative diagonalization, a set of � N trial eigen-

vectors is improved by successive iterations until

appropriate convergence criteria are satisfied. There

are many possible iterative methods for solving eigen-

value problems; two important classes of approach

are subspace methods (e.g., block-Davidson, Arnoldi)

and quasi-Newton methods (e.g., conjugate gradients,

L-BFGS). Almost all of these methods proceed by

repeated application of a matrix to the set of trial

states and, in the present context, do not require the

construction and storage of the Hamiltonian matrix

explicitly, only the ability for it (and related matrices)

to be applied to trial eigenvectors.

KOHN–SHAMHAMILTONIAN
MATRIX

The Hamiltonian at each k-point comprises the follow-

ing three core terms: the kinetic energy of the par-

ticles (T ), the local potential (Vloc), and a nonlocal

potential (Vnl)

Hk½r� ¼ T þ Vloc þ Vnl: (4)

The local potential describes not only the electron-

nuclei Coulomb attraction and interelectron Coulomb

repulsion, but also the purely quantum mechanical

exchange–correlation interaction between the elec-

trons themselves. The nonlocal potential mimics the

effect of the innermost (“core”) electrons, allowing the

computational effort to be focused only on the outer-

most (“valence”) electrons, which are the chemically

and electronically active ones. In thisway, both the Cou-

lomb attraction of the valence electrons to the nuclei

and the Coulomb and exchange–correlation interaction

with the core electrons are replaced by an effective

interaction with composite “ions”; the resultant effec-

tive potential is known as a “pseudopotential.”

The kinetic energy matrix is diagonal in Fourier

space, which is the native space when working in a

plane-wave basis. In contrast, the local potential matrix

is diagonal in direct space, so the most efficient algo-

rithm is to transform the wavefunction to direct space

(an inverse Fourier transform), apply the local potential,

and then Fourier transform back into the plane-wave

basis. The nonlocal pseudopotential matrix is repre-

sented as a low-rank matrix update, and may be

applied efficiently in either space (Fourier or direct); in

this work, we apply thematrix update in Fourier space.

The exact formof the electron–electron interaction is

not known due to the exchange–correlation component,

and so must be approximated in practice. The Hamilto-

nian expression given in (4) corresponds to an important

class of approximations known as semilocal exchange–

correlation functionals. When using an approximation of

this form, the exchange–correlation potential at a point

in space depends only on the density, and perhaps its

derivative, at that point in space, and it may be included

in Vloc. An alternative approach generalizes the Kohn–

Sham method and introduces a class of nonlocal

exchange–correlation (NLXC) approximations. The Ham-

iltonian subsequently acquires an extra potential term

(Vnlxc), which is additive and fully nonlocal.

January/February 2022 Computing in Science & Engineering 47

THE EXCALIBUR PROJECT



CASTEP
CASTEP is a leading implementation of the plane-

wave pseudopotential DFT method.4 It was originally

developed in the 1980s and 1990s, but was completely

redesigned and rewritten from the ground up from

1999 to 2001 with a focus on usability, portability, and

parallel efficiency. The first official release of the new

CASTEP was in 2001, and it has been developed con-

tinually ever since. CASTEP simulations annually sup-

port over 1000 peer-reviewed publications in the

scientific literature. CASTEP is dual-licensed: full

source code is available world-wide for academic use

under a cost-free license, and a paid-for commercial

license is available from BIOVIA.

CASTEP was written in modern Fortran, using Mes-

sage Passing Interface (MPI) to enable distributed-

memory parallelism. Open multiprocessing (OpenMP)

threading was added in 2014–2015, to reduce

CASTEP’s memory usage and improve parallel scaling

on multicore architectures, and CASTEP simulations

using OpenMP-MPI demonstrate excellent scaling

across a range of simulations and computer hardware.

However, the advent of exascale computing, in partic-

ular, the move toward heterogeneous computing,

presents a significant challenge.

TOWARD EXASCALE COMPUTING
WITH ACCELERATORS

Delivering exascale computing is challenging, and the

majority of exascale machines are anticipated to have

heterogeneous architectures. These machines will

typically have a conventional CPU to manage the

overall system, including the operating system and

input/output (I/O), but a substantial fraction of the

computational power will be delivered by accelerators.

At present, accelerators generally fall into the fol-

lowing two categories: field-programmable gate arrays

and general-purpose graphical processing units (GPU).

Of these two classes, GPU-based accelerators are the

most widely available, and have the most mature soft-

ware development frameworks. There are the following

two attractive features of GPUs for large-scale high-

performance computing: computational power and

memory bandwidth. At the time of writing, an AMD

Rome CPU can deliver around 2.5 TFLOPs in double-

precision and 200GB/smemory bandwidth, so a typical

two-socket cluster node can achieve 4 TFLOPs from

the CPU and 400GB/s total memory bandwidth. In con-

trast, a single NVIDIA V100 GPU can deliver almost

eight TFLOPs in double-precision and an A100 GPU can

deliver nearly 10 TFLOPs, with on-card memory band-

widths of 0.9 and up to 2 TB/s, respectively. Node

architectures are available which feature eight GPUs

per node, yielding almost 80 TFLOPs and 16 TB/s per

node—over 20 times the computational power and

memory bandwidth of the two CPUs.

The high memory bandwidth of GPUs is delivered

via HBM2 on the GPUs themselves; when data is being

moved from system RAM, the memory bandwidth is

throttled by the link between the GPU and the mother-

board. On a PCI Express 4.0 link the maximum band-

width is 64 GB/s, and even the promised 128 GB/s from

PCIe 5.0 is considerably less than the CPU memory

bandwidth, let alone that of the GPU. This figure

improves with specialist communication links such as

NVIDIA’s NVLink, which can deliver 600 GB/s; neverthe-

less, data movement remains relatively slow and can

easily become a bottleneck in scientific computation.

As GPU hardware has evolved to become a more

general-purpose computational resource, new soft-

ware frameworks have been developed to provide

more hardware abstraction and performance. For For-

tran-based software such as CASTEP, there are essen-

tially three main choices of software technology: CUDA

Fortran, OpenMP (from 4.0 onward), and open accelera-

tor (OpenACC). CUDA is a parallel programming frame-

work developed by NVIDIA for the specific purpose of

running computational software on GPUs. CUDA itself

is essentially a proprietary extension to C/C++ to

enable GPU calculations andmanagememory between

the host (CPU) and device (GPU); CUDA Fortran is the

corresponding extension to the Fortran language.

CUDA Fortran enables fine-grained control of the data

movement, memory management, and calculation

details of computational kernels, but it is also a proprie-

tary extension supported only byNVIDIA’s Fortran com-

piler, and can only target NVIDIAGPU hardware.

OpenMP is a directives-based programming frame-

work, whichwas originally developed as a shared-mem-

ory parallel framework to exploit multicore CPUs. It is

well-supported by a wide range of C, C++, and Fortran

compilers, including commercial compilers from Intel,

Cray, and NVIDIA, as well as Open Source compilers

such as the GNU Compiler Collection (GCC). Support

for offloading OpenMP regions to accelerators was

only introduced in OpenMP 4.0, and this has subse-

quently been extended (first in OpenMP 4.5 and then

further in OpenMP 5).

OpenACC is also a directives-based programming

framework but, unlike OpenMP, is specifically designed

to enable computation to be offloaded to accelerators.

OpenACC-enabled compilers are available for C, C++,

and Fortran, including NVIDIA’s compilers. Limited sup-

port for OpenACC was also introduced in the Open

Source GCC compiler suite with version 5.1, and was

48 Computing in Science & Engineering January/February 2022

THE EXCALIBUR PROJECT



developed steadily over successive versions; however,

it was only with the advent of GCC 10 that a sufficient

subset of OpenACC was available for large research

software to use it efficiently.

In this work, OpenACC is the software framework

of choice, principally because it is a mature, open

standard for offloading computational work to accel-

erators and is not tied to a particular compiler suite or

hardware vendor. The same may hold for OpenMP in

the future, but at present it is neither as fully featured

nor as lightweight as OpenACC.

CASTEP’S COMPUTATIONAL
KERNELS

The main workload in a CASTEP calculation is the

application of the Hamiltonian matrix, as described

earlier. The kinetic energy matrix is trivial to apply in

Fourier space, and takes negligible time in most practi-

cal calculations. In contrast, the local potential matrix

is most efficiently applied in direct space, and thus,

every band b at wavevector k requires a pair of inverse

and forward fast Fourier transforms (FFTs); the inverse

FFT transforms cbk into direct space, permitting effi-

cient application of the potential Vloc, and the forward

FFT returns cbk to its native Fourier space. The stan-

dard 3-D FFT methods scale favorably with simulation

size (for a single band at a single k-point), but have a

relatively large prefactor and so take a significant

amount of computational time for small- and medium-

sized simulations. This is in part because the compute

intensity is low for FFTs, leading to the algorithm being

memory-bound in many cases, and also because each

application of the Hamiltonian in plane-wave DFT

requires two FFTs for every band at every k-point.

GPUs typically benefit from extremely high memory-

bandwidth, which means that FFTs can be much

quicker when compared to the CPU performance

once the data has been offloaded to the GPU. The

data transfer itself, however, can be a bottleneck, pre-

cisely because the compute intensity is low, and care

must be taken both to maximize data locality with

respect to the CPU or GPU, and also to maximize the

data operations performed on the GPU.

The nonlocal pseudopotential matrix is a low-rank

matrix update, which may be applied efficiently using

standard linear algebra packages (e.g., OpenBLAS).

The scaling of the matrix with system size is linear in

the number of updates and the size of each update,

and is consequently quadratic in the overall storage

requirements and cubic in computational cost with

regards to a straightforward application. This cubic

scaling means that applying Vnl becomes a significant

fraction of the total computational time for large simu-

lations. A real-space truncation method can reduce

this to linear scaling in memory and quadratic scaling

in time, but reduces accuracy to a level which is unac-

ceptable in many research applications. However, this

operation is entirely composed of cache-friendly

matrix–matrix operations, for which GPUs excel. Fur-

thermore, for large simulations, the quadratic scaling

of the data volume renders the CPU-to-GPU (or GPU-

to-CPU) transfer time negligible compared with the

cubically scaling workload.

CASTEP GPU PORT
The work presented here is based on the CASTEP 18.1

codebase, augmented with OpenACC directives to con-

trol the allocation, deallocation, and transfer of data

structures, generation of GPU kernels and interfacing to

optimized libraries (cuFFT for FFTs and cuBLAS for linear

algebra). As far as possible, the directives were

restricted to CASTEP’s low-level “utility” modules, with

an additional “accelerator”module to handle meta-data

and control logic specific to the OpenACC code-paths.

For performance reasons, some OpenACC directives

were introduced into CASTEP’s mid-level “fundamental”

modules, which define operations on, for example,

wavefunctions, densities and potentials, and a small

number in higher level “Functional”modules (principally

those operations involving nonlocal potentials). These

additions are comparable in scope to the existing

OpenMP directives for threading on CPUs, and in many

cases are in the same areas of the codebase.

GPU Performance
The performance of the GPU port was tested on the

Bede Tier-2 HPC facility. Bede is an IBM Power9-based

system, with 32 GPU-based nodes, as well as 4 “infer-

ence” nodes. Each of the GPU nodes has 32 Power9

cores and 4 NVIDIA V100 GPUs, each with NVLink 2.0.

Initial tests focused on the single-GPU performance,

using 8 MPI processes with and without a single V100

(shared between the processes), and on small CASTEP

simulations to enable rapid development-test-opti-

mize cycles. These initial results showed that offload-

ing only the nonlocal potential to the GPU gave a

small speed-up of x1.1, whereas offloading the local

potential gave a speed-up of x1.7; combining the two

gave a speed-up of over x1.8. Further optimization to

reduce the density calculation time, data movement,

and extend the offloaded operations led to a speed-up

of x1.95.

The benchmark simulation was chosen from an

active research project investigating the effect of

January/February 2022 Computing in Science & Engineering 49

THE EXCALIBUR PROJECT



disorder in the Heusler alloy Fe2VAl. This system was

initially constructed from 12 primitive cells, and has 24

Fe atoms, 12 V atoms, and 12 Al atoms. The Brillouin

zone was sampled with a 6� 6� 5 Monkhorst-Pack

grid, giving 90 k-points in the symmetrized set.

CASTEP’s on-the-fly ultrasoft pseudopotentials were

used, with a well-converged plane-wave cut-off energy

of 800 eV. The semilocal PBE functional was used as

the exchange–correlation functional.

Parallelization Strategies
Exascale computing will of course not be achieved

with a single accelerator, and it is important that any

GPU port is able to use multiple CPUs and GPUs effi-

ciently. The most efficient way to exploit multiple

cores in CPU-only calculations is by distributing the

data and workload over the k-points. Since the con-

struction and application of the Hamiltonian matri-

ces may be performed almost independently at

different k-points, this was also expected to be an

efficient use of the GPU port. Figure 1 shows the

time, performance, and parallel scaling of the GPU-

port from 8 to 90 CPU cores of Bede (1 to 12 GPUs). In

these calculations, up to 8 MPI processes share each

GPU, and all the results presented used NVIDIA’s

CUDA multiprocess service, which allows concurrent

execution of kernels from different processes. The

GPU port shows a good performance across the

whole range of CPU and GPU counts, consistently

achieving approximately x2 the performance of the

CPU-only calculation and scaling well with increased

numbers of CPUs and GPUs.

The benchmark calculation has 90 k-points, which

are divided as uniformly as possible amongst the MPI

tasks. Where a uniform division is not possible, there

will be a load imbalance between different MPI tasks,

with some tasks having one more k-point than the

others. Whenever communication is required between

the tasks, those tasks with fewer k-points will arrive at

the communication point first and must inevitably

wait for the more heavily loaded tasks to catch up.

This effect is negligible for small numbers of MPI

tasks, where a single k-point is only a modest fraction

of the total assigned to each MPI task, but it becomes

significant as the number of MPI tasks increases, and

the corresponding number of k-points per task

decreases. For large numbers of tasks, such load

imbalance degrades the parallel performance severely

and can completely skew the apparent parallel effi-

ciency. For this reason, we have restricted our larger

parallel calculations to the load-balanced choices of

30, 45, and 90 MPI tasks, corresponding to 3 k-points,

2 k-points, and 1 k-point per MPI task, respectively.

For a simulation using 90 k-points, it is clear that

no more than 90 MPI tasks may be used when running

with k-point parallelism only. In CPU-only CASTEP sim-

ulations, additional cores would usually be exploited

by distributing the Fourier coefficients for each

k-point. On 180 CPU cores, for example, each pair of

cores would share the Fourier coefficients for a single

k-point.

FIGURE 1. Performance of the CASTEP GPU port on Bede, for

a research simulation of disorder in the Heusler alloy Fe2VAl.

Core counts are chosen to give good load balancing, as dis-

cussed in the text. (Top) Time per iteration for both CPU-only

and CPU+GPU simulations; (Middle) The performance of the

GPU port compared to CPU-only; (Bottom) The parallel scal-

ing of the CPU+GPU simulations, using 1 GPU per 8 CPU

cores. Vertical dashed lines indicate node boundaries.

50 Computing in Science & Engineering January/February 2022

THE EXCALIBUR PROJECT



This distribution is efficient for most of the compu-

tational operations, but the distribution of the Fourier

data means that the 3-D FFTs can no longer be per-

formed by a single process; each 3-D FFT is instead

decomposed into three successive sets of 1-D FFTs

(one set of FFTs along the Cartesian x-direction, fol-

lowed by a set along y, followed by a set along z). A

global data transposition is required between each

FFT set, such that the data passed to the 1-D FFT

library is local to the MPI process and contiguous in

memory. For example, if the MPI tasks’ local data is

contiguous along the x-direction (with data at differ-

ent y and z coordinates distributed over MPI tasks)

then each task may perform its portion of the set of

1-D FFTs along x. The next stage of the method is to

perform the set of 1-D FFTs along y, but these data are

distributed across the MPI tasks, and even the local

portion of the data is contiguous in x, not y. The global

data transposition exchanges and reorders the data

between all relevant MPI tasks such that the set of

1-D FFTs along y may be performed; a similar data

transposition is then performed in preparation for the

set of 1-D FFTs along z.

THE DISTRIBUTION OF THE FOURIER

DATAMEANS THAT THE 3-D FFTs CAN

NO LONGER BE PERFORMED BY A

SINGLE PROCESS.

This parallel FFT algorithm poses several chal-

lenges to the optimization of the GPU port. 1-D FFTs

have a lower compute intensity than 3-D transforms,

so offloading these operations to the GPU intrinsically

yields a lower speed-up than obtained in the 3-D case.

Distributing the 1-D FFTs also reduces the volume of

data for each GPU, and consequently the GPU perfor-

mance for large parallel calculations is more suscepti-

ble to latency in both the data transfer and the

launching of the computational kernels on the GPU.

(In fact, kernel launch latency can also be a significant

factor for 3-D FFTs, as will be seen in a later section.)

The global data transpositions, which are required

in between each set of FFTs, involve an all-to-all com-

munication which exchanges and reorders data

amongst all of the participating MPI tasks. In the cur-

rent CASTEP GPU port, all communications are han-

dled by the MPI tasks on the CPUs, which introduces

additional GPU-to-CPU and CPU-to-GPU data trans-

fers when the FFTs are offloaded to GPUs. Use of a

“CUDA-aware” MPI environment would ameliorate

this problem by allowing the MPI library to send and

receive GPU data directly, circumventing the interme-

diate data copies to and from the CPUs. Unfortu-

nately, the packaging of the wavefunction data into

the MPI buffers requires not only nonunit-stride data

accesses, which are inefficient on GPUs, but also a

separate OpenACC kernel to be launched for each

remote process. As the number of participating MPI

processes in a calculation increases, so too does the

number of kernels launched, but the workload per ker-

nel decreases. This simultaneously increases the ker-

nel launch latency and reduces the vector efficiency

of each kernel.

One alternative parallel strategy is to keep 90 MPI

tasks, but exploit additional CPU resources using

OpenMP threads. In this approach, each MPI task has

a number of OpenMP threads associated with it and,

in order to exploit this fully, each subroutine in

CASTEP must be threaded using OpenMP directives.

OpenMP is a shared-memory parallel paradigm, which

avoids the need for the Fourier coefficients to be dis-

tributed, since each thread has access to the whole

dataset. In this mode of parallel operation, the Fourier

transforms remain full 3-D FFTs, and the excellent

GPU performance is retained; CPU-only calculations

may instead use threaded 3-D FFT libraries.

The memory associated with an MPI task is shared

amongst all of its OpenMP threads, and this presents

an opportunity for operations to be parallelized over

threads in ways which would not be possible for the

entire calculation. In particular, when applying the

nonlocal potential Vnl, of (4), the operation may be

threaded over the matrix updates themselves, rather

than the wavefunction to which they are applied. This

gives an efficient way to parallelize the application of

Vnl, which is independent of any other parallelization

methods. The present OpenACC port contains some

regions, which are only threaded in the non-OpenACC

code paths, meaning that CPU-only calculations gain

more benefit from threading than calculations using

GPUs. Nevertheless, running the benchmark calcula-

tion on 180 cores via 90 MPI tasks, and 2 OpenMP

threads per task, the GPU version still achieves a

speed-up of over x1.6, with an iteration time of 107 s

compared to 174.3 s for the CPU-only simulations.

NLXC PERFORMANCE
In the preceding section, much of the acceleration

of CASTEP when using the GPUs was driven by the

performance improvement of the 3-D FFTs in the

application of the local potential. Because the local

potential requires two Fourier transform for every

January/February 2022 Computing in Science & Engineering 51

THE EXCALIBUR PROJECT



one of the Nb bands at Nk k-points, the total compu-

tational cost scales as NbNkN logN , where N is the

size of a single FFT.

A well-known problem with semilocal exchange–

correlation functionals is that the energies of localized

states, such as those of d- and f-electrons, are often

too high, compared to other states. This incorrect

energy can lead to the simulation predicting the wrong

electronic states being occupied, and can change the

chemical bonding, leading to inaccurate simulations

of important material properties, such as electrical

conductivity or whether the material is magnetic.

The main cause of this error can be avoided by

using the aforementioned class of NLXC approxima-

tions. In these methods, the extra term in the Hamilto-

nian, Vnlxc, is constructed from the pairwise density

rbkb0k0ðrÞ ¼ fbkcbkðrÞc
�
b0k0

ðrÞ: (5)

The construction and application of Vnlxc requires two

FFTs per pair of bands and k-points; i.e., the total

computational cost scales as N2
bN

2
kN logN . This is a

substantial increase in the computational workload

compared to semilocal exchange–correlation, and

usually means that the computational time is domi-

nated by the FFTs even for relatively large simulations.

Indeed, it is common for FFTs to comprise over 95% of

the total simulation time.

INDEED, IT IS COMMON FOR FFTs TO

COMPRISE OVER 95% OF THE TOTAL

SIMULATION TIME.

As was seen in the earlier section, the performance

of 3-D FFTs is improved greatly on GPUs, and it is nat-

ural to expect that NLXC calculations should see a

large performance improvement. Because much of

the accelerator code was encapsulated in low-lying

utility modules, extending CASTEP’s GPU port to

NLXC operations required relatively few explicit Open-

ACC clauses. Since the computational cost of NLXC

calculations is much larger than that of semilocal sim-

ulations, a smaller test case was chosen for testing

and benchmarking: a 2� 2� 2 supercell of the primi-

tive unit cell of Fe2VAl, consisting of eight formula

units (i.e., 32 atoms in total). The simulations were per-

formed on another Power9-V100 machine, the Ascent

system at Oak Ridge National Laboratory. Each node

of the Ascent machine has two 22-core Power9 CPUs

(only 21 cores are available for computation on each

CPU) and 6 V100 GPUs, with an NVLink 2.0 intercon-

nect. The Power9 processor cores have a theoretical

peak double precision performance of 24.6 GFLOPs

each, and a memory bandwidth of 21.3 GB/s per chan-

nel (each socket having eight channels). Considering

the 42 available compute cores per node, this leads to

a theoretical per-node CPU performance of 1.0

TFLOPs and a memory bandwidth of 0.34 TB/s, com-

pared to 46.8 TFLOPs and 5.4 TB/s for the 6 V100 s

combined.

The performance benchmarking was carried out on

a single node of Ascent, using two MPI tasks (one per

CPU socket). For the CPU-only simulations, each MPI

task used 21 OpenMP threads; for the GPU-enabled

simulations, each MPI task was pinned to a different

GPU, so in this work only two GPUs were utilized. The

average iteration time for the CPU-only simulation was

approximately 642 s; the initial GPU port of NLXC com-

pleted the same calculation with an iteration time of 80

s, a speed-up of x8. This performance improvement

over the CPU-only calculation is approximately four

times that achieved for the simulations using semilocal

exchange–correlationmethods, confirming the impres-

sive performance of 3-D FFTs on GPUs. Nevertheless,

detailed timeline and performance analysis of the sim-

ulations showed that the GPUs were underutilized, and

an analysis of the CUDA calls generated at run-time

showed that over 90% of all calls to the CUDAAPI were

launching compute kernels and waiting to synchronize

kernels and data transfers (see Table 1). These opera-

tions took a sizeable amount of time, and the detailed

profile highlighted that the computational workload

itself was accelerated considerably more than the

observed x8 speed-up.

Most of the kernels launched were forward- and

inverse FFTs, as expected, and the large number of ker-

nels was due to the NLXC operations being performed

on a single pair of bands at a time. Refactoring the code

to work on blocks of bands enabled the FFTs to be car-

ried out in batches, reducing the number of kernels

launched and simultaneously increasing the computa-

tional work per kernel, which itself allows greater GPU

utilization. The refactoring also extended the OpenACC

regions to fuse OpenACC kernels, further reducing the

TABLE 1. Analysis of the calls to the CUDA API with the initial

CASTEP-GPU port of NLXC.

CUDA operation Time (s) Proportion of API calls

LaunchKernel 50.8 61%

StreamSynchronise 26.0 31%

The simulation is for the bulk Fe2VAl system described in the text.

52 Computing in Science & Engineering January/February 2022

THE EXCALIBUR PROJECT



number of kernels launched and increasing thework per

kernel, aswell as optimizing datamovement.

Benchmark simulations of the new code showed

that the refactoring had improved the GPU perfor-

mance substantially, further reducing the iteration

time by over 40% to 45 s; thus, the overall speed-up

was over x14 compared to the baseline CPU-only sim-

ulations (see Figure 2). This speed-up is close to the

theoretically ideal speed-up of x15.8, calculated from

the ratio of the per-node GPU and CPU memory

bandwidths.

CHALLENGES AND FURTHER
WORK

Although OpenACC has many advantages for widely

used, portable software such as CASTEP over proprie-

tary software technologies, there remain a number of

challenges to be tackled. A major reason behind the

decision to adopt OpenACC for the porting was that it

is an open standard, which is relatively hardware-

agnostic, and capable of offloading calculations to dif-

ferent accelerator architectures. In practice, however,

few Fortran compilers have an OpenACC implementa-

tion, and the work here was carried out using the NVI-

DIA Fortran compiler (which will only target NVIDIA

GPU accelerators).

OpenACC was designed to enable “off-loading”

of work from a CPU to a GPU, and this is achieved

by choosing any relevant CPU data objects and map-

ping them to corresponding data objects on the

accelerator. However, when entire operations are

off-loaded to the GPU there are occasions when

some objects, for example, temporary arrays, are

only required on the accelerator. The OpenACC

“device_resident” attribute is designed for exactly

this use-case, but at present there are no functioning

implementations of it. There is also an acc_malloc

routine for exactly this situation, but it is only sup-

ported in C/C++, not Fortran. Similarly, the OpenACC

3.0 specification supports the mapping of CPU poin-

ters to GPU addresses (and vice versa), and thereby

facilitates the use of memory pools to avoid reallo-

cating memory unnecessarily, but this is also only

available in C/C++. This means that, at present,

dummy arrays must be created on the CPU, and the

data mapped between the CPU and accelerator

objects. This increases data copies, which are already

the bottleneck in many off-load operations, as well as

the memory footprint of the CPU.

In an earlier section, the hybrid OpenMP-MPI

approach was discussed as a way to parallelize

GPU-CASTEP calculations beyond the straightfor-

ward k-point parallelism. An alternative approach is

to distribute the data and workload by the bands

(index b) of the wavefunction, as well as the

k-points. The 3-D FFTs are performed on each band

independently, so this decomposition retains the

ability for each MPI task to offload entire 3-D FFTs

to the GPUs. The Hamiltonian matrix only depends

on the k-point, not the band index, so the same

Hamiltonian is applied to each of the bands at the

same k-point. In the current GPU implementation,

several MPI tasks share a GPU and each MPI task

transfers the Hamiltonian data to the GPU along

with its portion of the wavefunction. In band-parallel

calculations, this approach leads to a substantial

inefficiency because the Hamiltonian data is the

same for all the MPI tasks working on the same

k-point. Thus, the MPI tasks which share a GPU all

send identical copies of the data to the GPU. A

much more efficient approach would be for one MPI

task to send the data to the GPU, and for all of the

MPI tasks to share that data. Such sharing of GPU

data between MPI tasks is possible using CUDA and

IPC, but a pure OpenACC implementation is not

straightforward and is still under development.

Finally, for massively parallel calculations it is

desirable to be able to use CASTEP’s Fourier-parallel-

ism efficiently with GPUs, in addition to the other

parallel methods. The excellent performance of the

NLXC simulations suggests that some of the short-

comings of Fourier-parallelism could be addressed

by batching the 1-D FFTs, which results in fewer,

FIGURE 2. Performance of the initial and optimized GPU

ports, compared to a pure CPU calculation. The benchmark

was a “screened-exchange” NLXC simulation of bulk Fe2VAl.

All simulations were performed on the Ascent machine at

ORNL, using 2 MPI tasks; each task used either 21 CPU

threads or 1 GPU.

January/February 2022 Computing in Science & Engineering 53

THE EXCALIBUR PROJECT



larger data transfers and GPU kernels; unfortunately,

this is hindered by a shortcoming in the current

implementations of batched FFTs. Each of CASTEP’s

1-D FFTs are performed in-place, regardless of

whether they are along the x-, y-, and z-directions. In

the general case, the length of the transformations is

not the same in each of these directions, and so

CASTEP’s data buffers are allocated for the maxi-

mum size required, and shorter transform data is

padded with zeroes. Whilst the single 1-D FFT subrou-

tines handle this with ease, the current batched FFT

subroutines do not, requiring instead that the data

for the next FFT starts immediately following the pre-

vious FFT data. Repacking the data into a separate,

contiguous buffer would increase the memory foot-

print and, more importantly, introduce another set of

short, relatively inefficient kernels. This effectively

precludes the use of batched 1-D FFTs in CASTEP at

present.

CONCLUSION
We have presented the work-in-progress port of the

CASTEP first-principles materials modeling program

to accelerators. CASTEP is written in modern Fortran,

and the port used OpenACC directives to offload sev-

eral key computational kernels to accelerators. The

work demonstrates that OpenACC is a viable route to

porting large research software to accelerators. Nev-

ertheless, several specific issues have been identified,

in particular shortcomings in the present implementa-

tions, and situations where features available to

C/C++ programs are not available in modern Fortran.

Benchmarking on two Power9-based NVIDIA Volta

GPU systems shows a speed-up of x2 when using

GPUs to accelerate standard simulations, and x14 for

simulations using NLXC methods. GPU-based acceler-

ators are anticipated to be key components in the first

exascale HPC facilities, and this work also represents

the first steps to adapting CASTEP to exploit such

resources. The GPU port has been designed to be par-

allel from the outset, and we have already demon-

strated excellent scaling up to a dozen GPUs, even for

small simulation sizes; nevertheless, this falls far short

of the tens or hundreds of thousands of GPUs which

are likely to be required to deliver exascale computing.

The key immediate challenges have been identified

and discussed, as well as possible future approaches,

but achieving the extreme level of GPU-parallelism

required for exascale may well go beyond designing

efficient parallel offload models, and require deep,

novel algorithmic changes in the core of CASTEP

itself.

ACKNOWLEDGMENTS
The authors would like to thankMike Payne (Cambridge),

who facilitated the early stages of this project, and has

provided unfailing help, support, and encouragement

throughout. Filippo Spiga (formerly Cambridge, now NVI-

DIA) has proven to be a font of GPU wisdom and has

beenmost generouswith his time, providing considerable

help, advice, and guidance. Paul Calleja (Cambridge) has

also supported this workwithmuch-needed resources.

Ed Higgins (York) wrote much of CASTEP’s original

OpenMP code, and provided invaluable help with the

CASTEP GPU development during the hackathons; he

is involved in the on-going development of the CASTEP

GPU port, which will be the subject of a future publica-

tion. The authors would also like to thank NVIDIA, in

particular, Mark Berger (now retired), for encouraging

this project with enthusiasm and arranging training,

engineer time, and hardware resources to facilitate the

software development underpinning this work, and the

GPU hackathon teams, organizers, and mentors at the

University of Sheffield, U.K., and Oak Ridge National

Laboratory (ORNL), USA, in particular, Paul Richmond

(Sheffield), David Applehans (formerly of IBM, now NVI-

DIA), and Alan Gray (NVIDIA).

This work made use of the facilities of the N8 Cen-

tre of Excellence in Computationally Intensive

Research (N8 CIR) provided and funded by the N8

research partnership and EPSRC under Grant EP/

T022167/1. The Centre is coordinated by the Universi-

ties of Durham, Manchester, and York. Some of the

development, and all of the NLXC calculations, were

performed on the Ascent and Summit systems of the

Oak Ridge Leadership Computing Facility, ONRL,

which is supported by the Office of Science of the U.S.

Department of Energy under Contract DE-AC05-

00OR22725; access to Summit was provided by a

Director’s Discretionary Grant CHP108, which was

only possible with the support and assistance of Ada

Sedova and Anibal Ramirez Cuesta (ORNL). Develop-

ment work was also performed using resources pro-

vided by the Cambridge Service for Data Driven

Discovery (CSD3) operated by the University of Cam-

bridge Research Computing Service (www.csd3.cam.

ac.uk), provided by Dell EMC and Intel using Tier-2

funding from the Engineering and Physical Sciences

Research Council under capital Grant EP/P020259/1.

Financial support for this work was provided by

EPSRC through a Research Software Engineer Fellow-

ship (EP/R025770/1), the EPSRC Centre for Doctoral

Training in Computational Methods for Materials Sci-

ence (EP/L015552/1), the Materials and Molecular

Modelling Exascale Design & Development Working

Group (EP/V001256/1) and Cambridge Enterprise.

54 Computing in Science & Engineering January/February 2022

THE EXCALIBUR PROJECT



REFERENCES
1. W. Kohn and L. J. Sham, “Self-consistent equations

including exchange and correlation,” Phys. Rev., vol. 140,

1965, Art. no. A1133, doi: 10.1103/PhysRev.140.A1133.

2. P. J. Hasnip, K. Refson, M. I. J. Probert, J. R. Yates, S. J.

Clark, and C. J. Pickard, “Density functional theory in the

solid state,” Phil. Trans. R. Soc. A, vol. 372, 2014,

Art. no. 20130270, doi: 10.1098/rsta.2013.0270.

3. R. O. Jones, “Density functional theory: Its origins, rise

to prominence, and future,” Rev. Mod. Phys., vol. 87,

2015, Art. no. 897, doi: 10.1103/RevModPhys.87.897.

4. S. J. Clark et al., “First principles methods using

CASTEP,” Z. Kristallogr., vol. 220, pp. 567–570, 2005,

doi: 10.1524/zkri.220.5.567.65075.

MATTHEW SMITH is currently a Research Software Engi-

neer and a Ph.D. student. His work includes preparing

first-principles materials modeling software for use on

candidate exascale hardware; in addition to CASTEP’s

GPU port, his recent work includes optimizing CASTEP’s

3-D FFTs for massively parallel architectures. Contact him

at msmit1@bsc.es.

ARJEN TAMERUS is currently a High-Performance Com-

puting Consultant with the University of Cambridge, Cam-

bridge, U.K., where he extends, develops, and optimizes

research software on a range of hardware platforms,

including the CSD3 Tier-2 HPC service. He has worked on

several large research software projects, such as the

Square Kilometre Array, and in addition to contributing to

CASTEP’s OpenACC port, he has worked on a variety of

node-level optimizations for CASTEP, including OpenMP.

Contact him at at748@cam.ac.uk.

PHIL HASNIP is currently an EPSRC Research Software Engi-

neer Fellow and a Principal Author of the CASTEP first-princi-

ples materials modeling software. He has led many of

CASTEP’s technical developments, including the implementa-

tion of OpenMP- and band-parallelism, and the OpenACC

port. He is a co-investigator on the U.K. Car-Parrinello High-

End Compute Consortium and the U.K. Materials and Molec-

ular Modeling Exascale Design and Development Working

Group, and was a member of the Benchmarking Committee

for the U.K. Tier-1 ARCHER2 procurement. Contact him at

phil.hasnip@york.ac.uk.

January/February 2022 Computing in Science & Engineering 55

THE EXCALIBUR PROJECT


