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Abstract

A new two-parameter “full exponential cardioid” radial growth model for two-
dimensional geometric objects is proposed and analyzed. The model depends ad-
ditionally on two rotation parameters and on two seeds about which the growth
is centered, plus a choice of three possible assumptions about statistical errors. If
the seeds are assumed known, the remaining parameters can be estimated in closed
form. Comparisons are given to earlier approaches. Two examples are given, one
for a set of simulated data and one for a set of rat calvarial data.

1 Introduction

This paper revisits the Todd and Mark (1981a) “revised cardioid strain (RCS) radial
growth model”, a simple mechanistic model for craniofacial growth. Ramanathan et al.
(2009) give a recent summary of its history and applications. A key property of the
model is that the growth rate is greater near the bottom of the head than at the top
so that it captures some of the key characteristics of real growth for humans and other
animals. Further, the model gives a very simple description of growth, with only one
growth parameter (plus 6 registration parameters, often treated as known) to fit.

The two key assumptions of the model are that (a) there is a “seed” inside the skull
about which growth is centered, and (b) the rate of growth at a particular point on the
head depends only on the angle from vertical. Various attempts have been made to justify
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the model in terms of physical principles. For example, Todd and Mark (1981a) motivate
the model using hydrostatics and gravity.

The cardioid growth model can be considered as a very simplified version of the pattern
theoretic growth model of Grenander et al. (2007) and Portman (2009, p. 19), which
is based on infinitesimal growth patterns about a seed. However, the pattern theoretic
growth model is much richer, albeit more complicated, because cumulative growth involves
a series of iterated diffeomorphisms and many different seeds.

The use of the cardioid model as a “real” description of biological growth has been
hugely controversial. See especially the Letter to the Editor by Bookstein (1981) in the
same volume as Todd and Mark (1981a); there is also a rejoinder by the authors (Todd and
Mark, 1981b). One of the main objections is the existence of a constant seed. Another is
the simplistic assumption that growth depends on a single parameter. The full exponential
cardioid (FEC) radial growth model developed below in (4) includes two parameters for
growth.

The RCS model was firstly used to characterize craniofacial growth. However, this
model has been also found useful to effectively approximate ageing on frontal photographs
of faces. See, for example, Miyoshi and Hyodo (2006); Ramanathan and Chellappa (2006);
Ramanathan et al. (2009) and Yamaguchi and Oda (1999), especially for female faces and
faces that appear childlike.

One of the main successful uses of the cardioid model has been in psychological ex-
periments, where experimenters artificially age outlines or images of human heads using
this model, with the aim of getting subjects to visually react to the perceived age; see, for
example, Yamaguchi and Oda (1999). For this purpose it is not necessary for the model to
be fully accurate biologically. It is only necessary that the subjects perceive appropriate
differences in age as the image is altered.

The purpose of this paper is to develop statistical shape methodology to assess the
strengths and weaknesses of the cardioid growth model. To facilitate the statistical anal-
ysis, we emphasize a modified version of the growth model, which differs from the original
RCS model in three ways.

(a) Growth is modelled on a log scale rather than a linear scale.

(b) There are two parameters to model growth (essentially an intercept and slope pa-
rameter) instead of a single slope parameter in the original RCS model.

(c) Explicit assumptions are introduced to model the statistical error. Three possibili-
ties are described.

It is a pleasure to include this paper in a volume dedicated to C R Rao’s 100th birthday
as it relates to two research areas where he has made substantial contributions. He did
pioneering work in growth starting from Rao (1958) and subsequently he worked on shape
analysis based on landmark data starting from Rao and Suryawanshi (1996).
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2 Radial growth models for two-dimensional objects

Let X and Y denote two geometric objects in the plane where every point x′j ∈ X has
a unique counterpart y′j ∈ Y , j = 1, . . . , J . A radial growth model states that after
appropriate centering and rotation, the X and Y configurations are related by a simple
parametric transformation in polar coordinates.

It is convenient to represent points in the plane by complex numbers. Given “seeds”
µ, ν ∈ C define “centered” points by

xj = x′j − µ, yj = y′j − ν

with polar coordinates

xj = x′j − µ = rj exp(iθj), yj = y′j − ν = sj exp(iφj). (1)

Thus rj, sj are the radial components and θj, φj are the angular components of the
centered data.

For graphical purposes, let an angle θ be measured counterclockwise from vertical.
Thus θ = 0 points upwards and θ = π/2 points to the left. Thus a complex number
with positive real part lies in the upper half-plane and a complex number with positive
imaginary part lies in the left half-plane.

Let a function M(θ) = exp{L(θ)}, taking an angle to a positive number, be called a
radial deformation function, following Grenander et al. (2007). The specific choice

M(θ; a0, b) = exp{L(θ)} = exp(a0 − b cos θ) (2)

is called the full exponential cardioid (FEC) radial deformation function. The minus sign
is chosen so that if b is positive, then M(θ; a0, b) > M(0; a0, b) for θ 6= 0; in particular,
the growth rate is smallest in the upwards vertical direction and largest in the downwards
vertical direction.

Consider a two-dimensional side or sagittal view of a human head, with a seed inside
the head but near the top of the skull. Suppose the head has been rotated so that the
direction from the seed to the top of the head points upwards (the preferred orientation),
with angle θ = 0. Then the FEC radial deformation function can capture the property
that for babies and children, the growth rate is greater near the bottom of the head than
at the top.

In general, the configurations X and Y may need to be rotated to their preferred
orientations by angles α and β, say, before the deformation function can be applied. Given
a radial deformation function, a general radial growth model from X to Y is defined by

e−iβyj =M(θj − α)e−iαxj =M∗(θj)e
−iαxj (3)

where the angles α and β are nuisance orientation parameters and M∗(θ) =M(θ − α) is
the adapted version of the M function.
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For the FEC radial growth model, the adapted log radial deformation function can be
written

L∗(θ) = L(θ − α) = a0 − b cos(θ − α) = a0 − a1 cos θ − a2 sin θ, say. (4)

Note that

b = (a21 + a22)
1/2 and α = atan2(a2, a1) (5)

can be recovered from a1 and a2. Here atan2, a function found in many computing
languages, is a version of the atan function, modified to ensure that the result is in the
correct quadrant, so that (a1, a2) = b(cosα, sinα).

For any radial growth model there are 6 registration parameters (two complex seeds
and two orientation parameters). For the FEC radial growth model, there are additionally
two growth parameters, a0 and b. Under any radial growth model, the angular part does
not change, φj − β = θj − α; it is only the radial part that changes. That is, the angular
part of e−iβyj is the same as that of e−iαxj; the radial part sj of yj depends on the radial
part rj of xj through the radial deformation function. Although the phrase “growth”
model is used for simplicity, shrinkage can occur when M(θ) < 1.

If b is near 0, then the FEC radial growth model can be approximated by the full
linear cardioid (FLC) radial growth model with deformation function

MFLC(θ; k1, k2) = k1 − k2 cos θ, (6)

with k1 = exp(a0), k2 = b exp(a0). If θ is allowed to range around the whole circle then the
constraints k1 > 0 and k1 + |k2| > 0 are needed to ensure that MFLC(θ) =MFLC(θ; k1, k2)
is always positive. However, in many applications the possible values of θj for points in
X lie in a smaller arc θ(0) < θ < θ(1), say, and in such a situation the constraints on k1
and k2 can be relaxed somewhat.

The full linear cardioid radial growth model (6) includes two one-parameter special
cases.

(a) The case k1 = 1 and k2 = kCS in (6), with parameter kCS, is known as the cardioid
strain (CS) model (Shaw et al., 1974). The analogous restriction for the FEC model
(2) is a0 = 0.

(b) The case k1 = 1+kRCS and k2 = kRCS, with parameter kRCS, is known as the revised
cardioid strain (RCS) model (Todd and Mark, 1981a). The analogous restriction
for the FEC model (2) is a0 = b.

These models are called “strain” models because a physical justification can be attempted
in terms of mechanical strain. For the other models there is no claim of any physical
motivation.

If growth is viewed as a continuous activity, then the growth model of equation (6)
requires the choice of a unit time interval. After n time units with constant registration
parameters, the model has overall radial deformation function MFLC(θ; k1, k2)

n and it is
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not defined for non-integer values of time. On the other hand, a continuous version of (2)
can be defined for all values of time t ≥ 0 through a time-dependent radial deformation
functionMt(θ) = exp{tL(θ)}. Hence the second model feels more natural when the choice
of a unit time interval is arbitrary.

A comparison between radial deformation functions for the RCS and the FEC growth
models is given in Figure 1 for different choices of kRCS, with a0 = b = kRCS. The
differences are small for small kRCS and increase for larger kRCS.
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Figure 1: Radial deformation functions with kRCS = −0.2,−0.1, 0.0, 0.1, 0.2. Model 1 =
RCS model (blue); Model 2 = analogous FEC model (red).

The choice of the model specification may be based on biological/scientific arguments.
For example, the CS model shows no growth in the direction θ = 90◦ while the RCS
shows no growth in the direction θ = 0◦. When there are no scientific reasons to prefer
one version over the other, it can be more useful to work with the full model, either in
continuous (2) or discrete (6) form. This paper emphasizes the continuous models.

The study of growth models can viewed as part of the subject of statistical shape
analysis. Technically, the shape of an object consists of the information that remains
after location, rotation and size effects have been removed. However, in growth models
it is important to retain information abut the size of an object. Hence growth models
can be more accurately described as examples of size-and-shape analysis (e.g. Dryden and
Mardia, 2016, p. 66).

For convenience here is a reminder of the key abbreviations in the paper for various
radial growth models:

CS : cardioid strain
RCS: revised cardioid strain
FLC: full linear cardioid, equation (6)
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FEC: full exponential cardioid, equation (2).

3 Fitting the FEC growth model for landmark data

3.1 Landmark data

In general, an object in the plane can be represented either by a finite set of landmarks
or by a continuous outline. In this section we focus on the landmark case. The outline
case is covered below.

Thus the two objects are described in terms of J landmarks, X = {x′1, . . . , x
′

J} and
Y = {y′1, . . . , y

′

J} with x′j known to correspond to y′j, j = 1, . . . , J .

3.2 Statistical models

There are several ways to introduce statistical errors into the FEC radial growth model.
In each case the ǫj are assumed to follow independent complex normal distributions
CN(0, σ2), so the real and imaginary parts are independent N(0, σ2). We assume σ2

is “small” in each case. Recall the polar coordinates θj, φj for the centered landmarks
are given in (1). In addition the notation L∗

j = L∗(θj) = L(θj − α) in (4) is used for the
adapted log radial FEC value at the data points to simplify the formulas.

• (multiplicative errors)

e−iβyj = e−iαeL
∗

jxj (1 + ǫj) . (7)

• (additive-in-x errors)

e−iβyj = e−iαeL
∗

j (xj + ǫj) . (8)

• (additive-in-y errors)

e−iβyj = e−iα
(

eL
∗

jxj + ǫj
)

. (9)

The model with additive-in-y errors is closest in character to a standard regression
model.

To fit these models it is convenient to write complex numbers in polar coordinates and
to look at the resulting models for the log radial and angular components. In particular,
write ǫj = ǫj1 + iǫj2 in terms of its real and imaginary components and note that the
radial and angular components satisfy

|1 + ǫj| =
{

(1 + ǫj1)
2 + ǫ2j2

}1/2
≈ 1 + ǫj1,

so that log |1 + ǫj| ≈ ǫj1, and

arg(1 + ǫj) = atan2(ǫj2, 1 + ǫj1) ≈ ǫj2,
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where the error in the approximations is O(|ǫj|
2). Hence the multiplicative error model

can be written approximately as

log(sj/rj) = L∗

j + ǫj1 (10)

φj − θj = ψ + ǫj2 (11)

where ψ = β−α. In (10) the left-hand side of the equation can be viewed as the response
variable in a linear regression and the right-hand side contains the regressor variables.
The second equation (11) involves angles with small random errors about a common
mean. It is convenient to approximate the the normal distribution for ǫj2 by a von Mises
distribution.

The von Mises distribution VM(ψ, κ) with mean direction ψ and concentration pa-
rameter κ has density

f(η) =
1

2πI0(κ)
exp{κ cos(η − ψ)}, 0 ≤ η < 2π

(e.g. Mardia and Jupp, 2000). The normalizing constant I0(κ) is a modified Bessel func-
tion. For large concentration parameter κ,

I0(κ) ≈ eκ/(2πκ)1/2, (12)

and the von Mises distribution is approximately the same as a normal distribution with
variance σ2 = 1/κ. Hence the angles φj − θj are approximately i.i.d. VM(ψ, κ), a von
Mises distribution with mean direction ψ and concentration parameter κ = 1/σ2.

The calculations for the additive models are similar but a bit more involved. Start
with the additive-in-x error model. Since the complex normal distribution is invariant
under rotations of the complex plane about the origin, ǫ′j = exp(−iθj)ǫj is also CN(0, σ2).
Then

|xj + ǫj| = | rj + ǫ′j| =
{

(

rj + ǫ′j1
)2

+ ǫ
′2
j2

}1/2

≈ rj + ǫ′j1,

so that log | rj + ǫ′j| ≈ log rj + ǫ′j1/rj, and

arg(xj + ǫj) = θj + arg(rj + ǫ′j) = θj + atan2(ǫ′j2, rj + ǫ′j1) ≈ θj + ǫ′j2/rj,

Hence the additive-in-x error model can be written approximately as

log(sj/rj) = Lj + ǫ′j1/rj (13)

φj − θj = ψ + ǫ′j2/rj. (14)

Thus (13) represents a weighted regression model, where the jth term has variance σ2/wj

in terms of the weights

wj = r2j = |xj|
2. (15)
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Similarly, in (14), the angles φj − θj are independently distributed from a von Mises
distribution with a common mean direction ψ and with jth concentration parameter
κj = wj/σ

2.

The expansion for the additive-in-y error model is similar, except the weights are now

given by
(

eL
∗

j |xj|
)2
. However, eL

∗

j |xj| is not observed, so it is approximated by |yj| to give
the weights

wj = s2j = |yj|
2 (16)

which are used below for estimation.

Assuming for the moment that σ2 is known, the parameters of both the radial and the
angular models can be estimated by maximum likelihood. Details are given in the next
section.

4 Estimation

In this section details are given for estimating the parameters of the FEC model, either
in its multiplicative or additive form. The estimation procedure takes the same form in
all three cases, but with different “weight terms”. Define

w
(1)
j = 1, w

(x)
j = |xj|

2 = r2j , w
(y)
j = |yj|

2 = s2j . (17)

For the multiplicative model, the weight term is wj = w
(1)
j . For the additive models in x

and y, the weight terms are wj = w
(x)
j and wj = w

(y)
j , respectively.

If the seeds µ and ν are known, the estimation can be carried out in closed form.
The details for the radial and angular parts are given in the next two subsections, and
combined in the following subsection. Finally the estimation of the seeds is discussed.

4.1 Estimation for the radial model

The model for the log radial component is a linear regression model where the response
variable vj = log(sj/rj) has mean Lj = a0 + a1 cos θj + a2 sin θj and normally distributed
N(0, w−1

j σ2) error, j = 1, . . . , J . Hence the parameters a0, a1, a2 can be estimated by
minimizing the weighted sum of squares

∑

wj(vj − Lj)
2.

The minimum sum of squares RSS1, say, is given by

RSS1 = vT (W −H)v.

Here H = WX(XTWX)−1XTW is the weighted “hat” matrix based on the J × 3 design
matrix

X =
[

1 c s

]
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where 1 is a vector of ones, and c and s are vectors with entries − cos θj, − sin θj. The ma-
trix W = diag(wj) is a diagonal matrix containing the weights. The parameter estimates
are given by





â0
â1
â2



 = (XTWX)−1XTWv,

where v is a vector containing the vj.

4.2 Estimation for the angular model

The angular differences φj − θj = ηj, say, can be modelled using a normal distribution

ηj = φj − θj ∼ N(ψ, σ2
j/wj) mod 2π.

However, since angles are only defined up to a multiple of 2π, it is more convenient, and
nearly equivalent, to express the model in terms of the von Mises distribution

ηj ∼ VM(ψ, κj),

with mean direction ψ and concentration parameter κj = wjκ, where κ = 1/σ2.

If the weights κj are treated as known, the log likelihood for ψ becomes

∑

κj cos(ηj − ψ)−K =
∑

κj{cos ηj cosψ + sin ηj sinψ} −K

= (
∑

κj){C cosψ + S sinψ} −K,

where K =
∑

log{2πI0(κj)}, and

C =
∑

(wj cosφj)/
∑

wj, S =
∑

(wj sinφj)/
∑

wj.

The maximizing value of ψ is atan2(S,C). If we define

RSS2 = 2(
∑

wj)(1−R) = 2σ2(
∑

κj)(1−R)

whereR = {C
2
+S

2
}1/2 is the weighted resultant length, then the maximized log-likelihood

becomes

−
1

2σ2
RSS2 −K +

∑

κj.

Once ψ and α have been estimated, then β can be estimated using the identity ψ = β−α.

4.3 Overall estimation

Maximum likelihood estimation for the overall model requires several additional consid-
erations.
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(a) (Known seeds) Assume the seeds µ and ν are known. Define an overall “residual
sum of squares”

RSS = RSS1 + RSS2. (18)

Then using the approximation (12), the log-likelihood maximized over the param-
eters a0, a1, a2, ψ (or equivalently, over a0, b, α, β) is given up to a constant term
by

l = −
1

2
{RSS/σ2 + 2J log σ2 − 2

∑

logwj}. (19)

Further, maximizing (19) over σ2 yields a profile log-likelihood

l = l(µ, ν) = −
1

2
{2J + 2J log(RSS/(2J))− 2

∑

logwj}, (20)

depending just on the seeds µ and ν.

(b) (Standardization) Unfortunately, the log-likelihood in (20) is not suitable for com-
paring different seeds. The reason is that the response variables vj = log(sj/rj) in
(13) and ηj = φj − θj in (14) measure changes in relative positions of the final land-
mark yj with respect to the seed ν. To appreciate the problem for fixed data values
x′j, y

′

j, j = 1, . . . , J , let the seeds take the form µ = ν = c > 0, where for simplicity
attention is restricted to the case c real. Then for large c, vj ≈ (|y′j| − |x′j|)/c and
ηj ≈ Im(x′j − y′j)/c. For the multiplicative model, wj = 1 and so RSS = O(1/c) for
large c. For both of the additive models, wj ≈ c2 and RSS = O(1). In all three
cases, (20) is approximately −1

2
{−2J log(c2)} = J log(c2) → ∞ as c→ ∞. That is,

the likelihood is maximized at the singular solution c = ∞.

The solution is to scale the response variables vj and ηj to |yj|vj and |yj|ηj so that
they measure changes in absolute positions instead of relative positions. The effect
on the log-likelihood is to include an extra term. The profile log-likelihood for the
scaled responses becomes

lscaled = lscaled(µ, ν) = −
1

2
{2J+2J log(RSS/(2J))−2

∑

logwj+2
∑

logw
(y)
j }. (21)

(c) (Regularization) However, there is additional problem that arises when using (21)
to compare different seeds. If the seed ν converges to one of the yj, then the

corresponding log weight diverges, logw
(y)
j → −∞. Thus for the multiplicative

model and the additive-in-x model, the log-likelihood has a singular maximum at
this limiting choice of seed.

The basic cause of the problem is that the polar decomposition of the error model
breaks down when the radial value is close to 0. A simple way to resolve the problem
is to “regularize” the log-likelihood by approximating J−1

∑

logwj, the log of the
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geometric mean of the weights, by log(J−1
∑

wj), the log of the arithmetic mean.
This substitution yields the “regularized” scaled log-likelihood

lscaled,reg = lscaled,reg(µ, ν)

= −
1

2
{2J + 2J log(RSS/(2J))− 2J log(J−1

∑

wj) + 2J log(J−1
∑

w
(y)
j )}.

(22)

This approach works for all three models. However, note that for the additive-in-y
model, the final two terms in (21) cancel one another out and it does not matter
whether or not the scaled log-likelihood is regularized. In this case equations (21)
and (22) are identical to one another.

(d) (Optimization) The value of −lscaled,reg(µ, ν) can then be minimized numerically over
the four parameters ℜ(µ),ℑ(µ),ℜ(ν),ℑ(ν), e.g. using the black-box minimizer nlm
from R. Once µ and ν have been estimated, the regression parameters a0, a1, a2
and the angular parameter ψ can be estimated using Sections 4.1 and 4.2 respec-
tively. Call the resulting estimator the approximate maximum likelihood estimator
(AMLE).

(e) (Interpretation) Estimates of the regression and variance parameters are reported
using the definitions in Section 4.2. That is, they are not affected by the scaling of
the response variables introduced in (21). Further, since the FEC model has eight
parameters, an “unbiased” estimate of the error variance can be defined by

σ̂2 =
RSS

2J − 8
(23)

where RSS is defined by (18).

(f) (Standard errors) Once the parameters have been estimated by the AMLE, it is
important to include standard errors. These can be obtained as follows. Sections 4.1
and 4.2 discuss optimization over the regression parameters a0, a1, a2 and the angular
parameter ψ, respectively. If these parameters are left in the model, then a version
of the approximation (22) is obtained for the log-likelihood, where RSS depends on
these parameters, as well as the four parameters in µ and ν. Differentiating this
version of (22) twice numerically at the AMLE and changing the sign yields the
8×8 approximate observed Fisher information matrix, Iobs, say. Inverting Iobs gives
the approximate variance matrix, Σ̂, say for the AMLE. In particular, the square
roots of the diagonal elements give the standard errors.

Further, the 2×2 submatrix of Σ̂ for the real and imaginary parts of the seed µ can
be used to construct a confidence ellipse for µ (and similarly for ν).

5 Outline data

In general, an object in the plane can be represented either by a continuous outline or by
a finite set of landmarks. So far the paper has focused on the landmark case.
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Mathematically an outline can be represented as a continuous curve {f(u) ∈ C :
u ∈ I}, where the index variable u ranges through an interval I = [a, b]. The curve is
either open if f(a) 6= f(b), or closed if f(a) = f(b). We note that the index variable
is a convenient tool to describe the curve, but is not an essential part of the curve. In
particular the curve can be re-parameterized by any monotone function Φ(u).

In general, given two curves, it is not possible to match a given point on the first curve
to a particular point on the second curve. In Biology, matching points on the two objects
are called homologous if they have the same biological interpretation. In the landmark case
it has been assumed above that the landmarks are homologous. However,in the outline
setting it is not assumed that any information about homology is available. Fortunately,
under the growth model approximate matching can be carried out mathematically.

To proceed further, make the simplifying assumption that X and Y are “star-shaped”
about their centers µ and ν respectively. A star-shaped curve can thus be written in polar
coordinates with the angular part θ playing the role of the index variable j. That is, for
the X outline, there is a radial function r(θ) such that we can write

x(θ) = eiθr(θ), θ ∈ [θ(0), θ(1)].

The curve is closed if θ(0) = 0, θ(1) = 2π and r(0) = r(2π). The name “star-shaped”
arises because the ray from the center µ at angle θ, θ ∈ [θ(0), θ(1)], intersects the X outline
exactly once.

A similar representation is assumed to hold for the Y outline holds. with radial
function s(θ) and, for a given value of θ, we declare x(θ) and y(θ) to be matched. Of
course this matching procedure assumes the registration parameters are known or at least
estimated.

The fitting of growth models to outline data is left to future work.

6 Three-dimensional version of the growth model

It is straightforward to define a three-dimensional version of the growth model. If a
direction on the unit sphere in R

d is represented by a unit vector u, say, and if the
standard basis directions are represented by the unit vectors

e1 =





1
0
0



 , e2 =





0
1
0



 , e3 =





0
0
1



 ,

then, with e3 denoting the polar direction, the growth function L can be written as

L(u) = a0 − buT
e3 = a0 − bu3.

Unfortunately, the elegance of complex arithmetic is no longer available to simplify
the fitting procedure.
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7 Numerical considerations

If the seeds µ and ν are known, the estimation of the remaining parameters is straight-
forward and can be computed using standard linear regression and directional statistics
algorithms. However, the estimation of the seed is more challenging. Here are some pre-
liminary recommendations. The objective function is given by changing the sign of the
regularized scaled log-likelihood (22).

(a) Start by doing a grid search for the seeds, looking for the smallest value of the
objective function.

(b) Then use a black box optimizer to refine the estimate of the seeds. In this paper
the nlm function in R has been used to minimize the objective function. The log-
likelihood given in (22), and the parameter is the 4-dimensional pair of seeds.

In general there do not seem to be numerical problems using the regularized scaled
log-likelihood, provided there is enough information in the data to estimate the seeds.
However, as illustrated in the next section, there can be a high correlation between the
estimates of the seeds µ and ν, making it difficult to estimate them individually.

8 Examples

8.1 Simulated data

To illustrate the behavior of the fitting algorithm, consider the following simulated data
set. The x values at some initial time are given y

xj = (1 + (j − 1)/7) exp(πi(j − 1)/7), j = 1, . . . 8,

so that the angular pars are equally-spaced on a semi-circle and the radial parts increase
in an arithmetic progression from 1 to 2. The y values at some final time follow the FEC
model with α = β = 0, a0 = 1.2, b = 0.2, with CN(0, σ2) noise, σ = 0.1.

The additive-in-y FEC model has been fitted, with the results plotted in Figure 2. In
the figure the two seeds have been shifted to lie at the origin and the configurations have
been rotated by the fitted angles α̂ and β̂. Growth is smallest in the vertically upwards
direction and largest in the vertically downwards direction. The black numbers closest to
the origin correspond to the x configuration. The gray lines show the direction of growth.
The red numbers on the gray lines show the fitted y landmarks under the growth model
and the green numbers show the actual y configuration.

The estimated regression and angular parameters (with standard errors) are given by
â0 = 1.230 (0.022), â1 = 0.163 (0.027), â2 = −0.012 (0.013), ψ̂ = −0.033 (0.031). Also,
b̂ = 0.163. These estimates are broadly compatible with the true values, though a1 and b
are somewhat under-estimated. The estimated value of a2 is is compatible with the true
value a2 = 0 (since α = 0). Similarly, the estimated value of ψ is compatible with the
true value ψ = 0.
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Additive−in−y FEC model for simulated data

Figure 2: Additive-in-y FEC model fitted to a simulated data set between an initial time
and a final time. The data have been shifted and rotated so that the initial and final seeds
are located at the origin and the polar direction is vertical. The black numbers nearest
the origin are the initial landmark locations. The red numbers at the end of the gray
lines radiating from the origin are the fitted final landmarks under the model. The green
numbers are the final landmarks. The black ellipse about the origin represents a 95%
confidence region for the initial seed. The larger red ellipse is the corresponding region
for the final seed.

Also plotted in Figure 2 are 95% confidence ellipses for µ (the inner black ellipse) and
ν (the outer red ellipse). The seeds are not very tightly determined by the data, even
though the noise standard deviation is small. Note the estimated seeds are pushed to the
left from their true values. In particular, if the true regression parameters were used in
the plot, then landmarks 1 and 8 for x would lie on a vertical line and the true seed for
x would lie midway between them. The reason that the seeds are not very accurately
determined seems to be due to the high canonical correlations between the estimates of
µ and ν (0.981 and 0.980). See, e.g. Mardia et al. (1979, Ch 10) for a description of
canonical correlation.
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To save space only the fit from the additive-in-y model has been plotted. However,
the figures for the multiplicative and the additive-in-x models are similar.
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Multiplicative FEC model for rat data

Figure 3: Multiplicative FEC model fitted to rat data between the initial time and the
final time. The data have been shifted and rotated so that the initial and final seeds
are located at the origin and the polar direction is vertical. The black numbers nearest
the origin are the initial landmark locations. The red numbers at the end of the gray
lines radiating from the origin are the fitted final landmarks under the model. The green
numbers are the final landmarks. The initial landmarks have been joined by a gray
polygon; similarly for the final landmarks. The black ellipse about the origin represents
a 95% confidence region for the initial seed. The larger red ellipse is the corresponding
region for the final seed.
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Additive in x FEC model for rat data

Figure 4: Additive-in-x FEC model fitted to rat data between the initial time and the
final time. See caption to Figure 3 for more explanation.

8.2 Rat calvarial data

The data set considered here consists of the position of J = 8 biological landmarks from
a two-dimensional midsagittal section of the calvarium, (the skull without the lower jaw)
from 18 different rats at 8 different ages from birth (7 days old) to adulthood (150 days
old). Many researchers have investigated craniofacial growth laws using this data set,
e.g. Bookstein (1991, 2018); Dryden and Mardia (2016); Kenobi et al. (2010); Kent and
Mardia (2002); Kent et al. (2001); Le and Kume (2000); Mardia et al. (2013); Moss et al.
(1985, 1984, 1983); Starke et al. (2003).

A detailed description of the data is given in Bookstein (1991, Table 3.4.1) and Book-
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Additive in y FEC model for rat data

Figure 5: Additive-in-y FEC model fitted to rat data between the initial time and the
final time. See caption to Figure 3 for more explanation.

stein (2018, p. 122). The data can be found in e.g. Dryden (2019). The landmarks,
labelled 1-8, have the following definitions:

1: Bas, Basion 2: Opi, Opisthion
3: IPP, Interparietal Suture 4: Lam, Lambda
5: Brg, Bregma 6: SES, Spheno-ethmoid Synchondrosis
7: ISS, Intersphenoidal Suture 8: SOS, Spheno-occipital Synchondrosis

Landmark 1 lies at the back of the head and landmark 4 lies at the top of the head. The
upper part of the jaw lies to the right of landmark 6. Note that landmarks 1,8,7,6 are
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Table 1: The fitted regression parameters (with standard errors and p-values) for the
multiplicative, additive-in-x, and additive-in-y FEC models. Also given is the maximized
log-likelihood for each model.

Par Mult Add-x Add-y
â0 0.702 (0.043) 0.916 (0.072) 0.903 (0.067)
â1 0.441 (0.055) 0.607 (0.068) 0.602 (0.067)
â2 0.071 (0.044) −0.119 (0.060) −0.106 (0.058)

ψ̂ −0.041 (0.028) −0.031 (0.024) −0.037 (0.027)
log-lik -61.85 -57.77 -58.21

nearly collinear.

For the purposes of this paper we ignore any differences between the individual rats
and focus only on the changes in size and shape of the “average” configurations obtained
by means of Generalised Procrustes analysis of the 18 configurations considered at at
each of the 8 times. In addition, the data at just the initial and final times are used to
fit the FEC model. All three variants of the models (multiplicative, additive-in-x, and
additive-in-y) have been fitted. A number of features can be noted.

(a) In each of Figures 3–5, the standardized data have been plotted. In particular, the
two seeds lie at the origin and the configurations have been rotated by the fitted
parameters α̂ and β̂. Note that the top of the head points roughly upwards in each
figure, confirming this aspect of intuition about growth models. Growth is smallest
in the vertically upwards direction and largest in the vertically downwards direction.

(b) The black numbers closest to the origin correspond to the initial configuration. The
gray lines show the direction of growth. The red numbers on the gray lines show the
fitted landmarks at the final time under the growth model and the green numbers
show the final configuration.

(c) The estimated seeds for x and y lie just above landmark 8 for the multiplicative
model, and below the line segment connecting landmarks 1 and 8 for both additive
models. These locations (for rats) are broadly similar to one another, but they
go against the intuition for human heads, where it is expected the seeds would lie
nearer the top of the skull.

(d) At first sight the models appear to fit reasonably well. However, remember the
model contains 8 parameters and the data contain 2J = 16 degrees of freedom,
where J = 8 is the number of landmarks. Hence there is considerable scope for
overfitting.

(e) Although the three models are non-nested, it is still interesting to compare their
log-likelihoods. The multiplicative model has the smallest log-likelihood and the
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additive-in-x model the largest. In particular,

2(ladd-x − lmult) = 8.16, 2(ladd-x − ladd-y) = 0.88.

Hence the additive models are similar to one another, and both are considerably
better than the multiplicative model. (Taking χ2

1 as an approximate benchmark
distribution, note that 8.16 > 3.84, the upper 5% critical value of χ2

1.)

(f) By construction, the maximum growth rate in each figure is greatest in the vertically
downwards direction. For the multiplicative model there is only one landmark below
the seed (landmark 8). Since this landmark is very close to the seed for both x
and y, the data provide only limited confirmation of the model in the downwards
direction. The situation is even more extreme for the two additive models; there
are no landmarks below the seeds.

(g) The fitted regression parameters (with standard errors) are given in Table 1. All
three models have a similar interpretation. First â2 is compatible with a population
value of 0, so no rotation of the x-configuration is needed to fit the growth model.
Since â0 is significantly different from 0, there is no supporting evidence for an
exponential version of the CS model. It is also reasonably clear in each case that â0
is significantly different from both â1 and b̂. Hence there is no supporting evidence
for an exponential version of the RCS strain model. Finally, ψ̂ is compatible with a
population value of 0, so there is no need for a rotation of the y-configuration (more
specifically, there is no need to rotate the x- and y-configurations differently from
one another).

(h) Also plotted in Figures 3–5 are 95% confidence ellipses for µ (the inner black ellipse)
and ν (the outer red ellipse). Hence the seeds are not very tightly determined by
the data.

(i) Moss et al. (1983) fitted a similar growth model with an estimated seed between
landmarks 7 and 8.

(j) In summary, at first sight the FEC growth model(s) seem to provide a plausible fit
to the data. However, the argument for a biological interpretation of the seeds is not
very convincing as the seeds lie near the boundary (multiplicative model) or even
outside the convex hull of the landmarks (additive models). Further, it is important
not to read too much into the fitted model. For data with a limited number of
landmarks such as the rat data, there is a tendency to overfitting.

9 Conclusions

Mathematically, the FEC growth model proposed here is more elegant and tractable than
earlier approaches. This paper has simplified one key aspect of the fitting process. If
the seeds are known, then standard closed-form estimators can be used for the remaining
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parameters in the model. Thus, issues relating to the estimation of the seeds can be
separated from the estimation of the remaining variables.

If a single model is to be used, then the additive-in-y model has several appealing
features. It is closest in character to standard regression models since the errors are
defined on the same scale as the response variable. Also, it is simpler to describe than the
other models since the regularization step in Section 4.3 is not needed. That is, it makes
no difference to the log-likelihood whether or not the weights are regularized. Further,
for the examples considered here, the the fit is as good as or better than the other two
models.
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