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Abstract

Battery energy storage systems (BESSs) are commonly used in smart grids. Voltage

deviation or imbalance among cells generally exists in multi-cell battery packs. This

work presents a study of the voltage deviation-related phenomena observed during

the operation of a grid-tied BESS, Willenhall Energy Storage System (WESS), includ-

ing the voltage deviation changes during full range cycle and the cut-off mechanism

activated by it. Electroimpedance spectroscopy measurements and equivalent circuit

modelling were conducted on the same type of cell as that used in WESS to obtain

cell-equivalent circuit parameter distributions (the standard deviation and mean). Cell

voltage deviation in a WESS-sized battery pack (> 21k cells) was studied using Monte

Carlo simulation through a proposed cell level battery simulator. Both experiments

and simulations reveal that high cell voltage deviation emerges at the low and high

state-of-charge zones where the cell internal resistance has a large value and large extent of

deviation.

1 INTRODUCTION

As renewable energy penetrates electricity grids, traditional

grids are evolving into smart grids where energy storage is used

to provide rapid grid services. In the UK, renewable energy

represents a significant part of generated electricity. Taking

the first quarter of 2021 as an example, renewable energy

contributed 41.6% of the electricity in the UK [1]. Renewable

energy such as solar PV and wind power can be easily influ-

enced by weather conditions which reduce the reliability of the

grid. As a key component in smart grids, battery energy storage

systems (BESS) can compensate for this side effect of renew-

able energy [2] and help maintain a stable utility frequency.

Normally, lithium-ion batteries are preferred in a smart grid

because they have high power and energy capacities and low

self-discharge [3].

The battery pack in a smart grid normally consists of a large

number of cells where all cells are constrained to operate inside

a certain voltage range by the battery management system

(BMS) to prevent cell damage from undesired physical and

chemical changes such as collector dissolution and lithium

dendrites [4]. There is variation in manufacturing tolerance,
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impurities etc, which eventually leads to differences between

cells, which can be observed in the terminal voltage. In the

battery packs without active balancing, the overall pack perfor-

mance is limited by the ‘worst’ cell [5], which reduces the energy

utility of other cells. Inside a grid-tied BESS, without active

balancing this energy loss becomes considerable due to its

scale.

Cell-to-cell variation (CtCV) is generally classified by whether

it is brought about by intrinsic or extrinsic sources [6, 7].

The intrinsic variations are caused by the difference in cell

chemistry and electrical properties: for example, the impedance

and capacity. On the other hand, factors like the unevenness

of ambient temperature, cooling system and external circuits

are considered extrinsic sources. These variation sources also

influence each other in difficult-to-predict ways [8].

Experiments and statistical analysis on CtCV have been

widely conducted on cells with different sample sizes, from

dozens [9] to hundreds [10] and even thousands [11, 12].

Studied sources of CtCV normally include operating tem-

perature, capacity, weight, DC resistance, AC impedances,

self-discharge and calendar ageing. Measurements with larger

sample sizes (such as [11, 12]) are generally more reliable.

IET Power Electron. 2022;1–15. wileyonlinelibrary.com/iet-pel 1
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The experimental results provide statistical data for variation

research based on a simple electrical model [13]. In more

sophisticated electrochemical models [14, 15], the variation

sources are considered from other quantities such as the elec-

trode thickness, electrode density and weight fraction of active

material.

Because of CtCV sources like internal resistance, the current

and heat generation (hence temperature) among cells can be

slightly different in an operating battery. Cell ageing is a slow

process dependent on current and temperature [16] so that,

after a long time, cells in a pack will age unevenly and even-

tually significantly influence the battery pack performance. In

the study of these ageing-related long-term effects, the relatively

small battery time constants are normally ignored in both mea-

surement and simulation and the cell variation is considered to

be state-of-charge (SoC)-independent. However, the low fidelity

of empirical ageing models makes it less credible to distinguish

the ageing difference among cells caused by the small CtCV and

omitting the impact of SoC on CtCV could lead to inaccurate

battery modelling.

With the development of new battery manufacturing and

material technologies, the lifetime of some cells such as lithium

titanate oxide (LTO) has exceeded several thousand cycles [17]

which indicates a slow ageing process. Meanwhile, good short-

term dynamic battery performance becomes more important

in certain applications such as grid-support services [18] and

the buffering of regenerated energy in railways [19, 20]. The

improvement in battery lifetime and the aforementioned special

demand in emerging applications make the study of the effects

of CtCV on battery performance in short-term (time-limited)

events meaningful.

Under the control of the BMS, a battery pack is normally

operated under certain restrictions including the limitations

of temperature, continuous and peak current value for charg-

ing and discharging, and operating voltage. These limitations

define a cell’s operating area known as ‘safety operating zone’

[21]. A BMS has some flexibility in restricting a battery inside

the allowed voltage range by managing battery SoC and cur-

rent. The energy management system also must avoid operat-

ing the battery at nearly charged or discharged states so that the

battery’s open-circuit voltage (VOC), and hence terminal volt-

age, are away from (and between) the maximum and minimum

allowed voltage. Additionally, the energy management system

would adjust the battery current to keep the battery terminal

voltage within the safety zone.

Equivalent circuit models (ECMs) are commonly used in bat-

tery simulation which uses electrical components such as resis-

tors, capacitors and voltage sources to represent battery’s ohmic

resistance, diffusion process and VOC respectively [22]. In some

cases, the values of these lumped parameters change dynami-

cally with VOC, SoC and state of health. Different cells can be

represented by the same ECM with different electrical compo-

nent values. For the cells from the same factory and batch, their

ECM electrical component values usually follow a statistical dis-

tribution which can be identified by sampling experiments. With

knowledge of the ECM electrical component value distribu-

tions, cell parameters for modelling can be randomly generated.

An ECM for a multi-cell battery pack considering CtCV

can then be constructed by connecting these individual cell

ECMs.

The study of CtCV is not only important for the BMS design

but also for improving battery performance and architecture.

Inside a battery pack, cell terminal-voltage deviation is a conse-

quence of CtCV. After long operation, the battery pack perfor-

mance can be damaged by CtCV. Reference [23] indicates that

an initial CtCV accelerates the battery ageing, while [24] shows

that battery-pack ageing can be reduced by active voltage bal-

ancing. Apart from improving battery pack ageing performance,

the study of CtCV also benefits the battery module architec-

ture design [25]. Insufficient management of CtCV could lead

to catastrophic failure of a BESS. For example, on 19 April

2019, an explosion occurred due to a single-cell failure in a

2 MW/2 MWh BESS near Phoenix, USA, when the battery was

charged to 90% SoC [26, 27]. With the increasing awareness of

the importance of CtCV, modern battery pack techniques (e.g.

cell balancing [28], manufacturing and management [29]) have

been developed to improve battery performance and safety.

In this paper, large cell voltage deviation in a large-scale grid-

tied LTO system at low (∼5%) and high (∼90%) SoC zones and

the immediate cut-off mechanism triggered by it are reported.

An ECM-based model of a grid-tied battery system is gener-

ated and compared with the practical system. The simulation in

this study focuses on the impact of the intrinsic CtCV sources

found in an LTO battery pack in a limited-time event (a charg-

ing and discharging cycle) and the intrinsic CtCV is represented

by the difference in ECM component values. Parameter values

differ for each cell modelled and are generated at random with

a distribution which matches that obtained from multi-cell elec-

trochemical impedance spectroscopy (EIS) sampling. The large-

scale battery pack ECM solver that is used in this study for simu-

lation will be presented in detail. The dependency between SoC

and the extent of parameters distribution is considered in the

model.

2 CELL VOLTAGE DEVIATION
PHENOMENA OBSERVED DURING THE
OPERATION OF THE WILLENHALL
ENERGY STORAGE SYSTEM

This study uses the Willenhall Energy Storage System (WESS)

as an exemplar. WESS is a grid-tied battery research facility with

a 2 MW/1 MWh battery pack which consists of 21,120 Toshiba

supercharge ion battery (SCiB) LTO cells [30]. The LTO cells

inside WESS have an operating voltage window from 1.5 to

2.7 V [31]. A single SCiB LTO cell’s diagram and electrical sym-

bol are shown in Figure 1a. Every 24 cells are connected and

packed into a 2P12S module which consists of 12 series links

of two parallel cells as Figure 1b shows. In WESS the battery

pack has 40 parallel racks and each rack is made of 22 series

connected 2P12S modules. As a result, the electrical connection

in cell level presents a highly symmetrical hierarchical struc-

ture as Figure 1c illustrates, where different hierarchical levels

are shown in different background colours (pack: red, rack:
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FIGURE 1 Battery connection in WESS: (a) cell diagram and electrical symbol, (b) 2P12S module diagram, (c) pack electrical connection. WESS, Willenhall

Energy Storage System

green, module: blue, sub-module: orange, cell: yellow). The sub-

module refers to the two parallel cells structure inside the 2P12S

module.

Although the structure of the symmetrical electrical connec-

tion varies across different applications [32], the overall aim is

to guarantee similar currents are applied to all cells to achieve

a uniform ageing, SoC and temperature inside the battery. To

reduce the manufacturing complicity, a pack is usually con-

structed using identical modules. However, to achieve same spe-

cial design purposes, different sizes of modules can be used in

a pack. This approach is seen in the Nissan Leaf 2019s battery

[33].

2.1 Maximum allowed cell voltage deviation

During the operation of WESS, some occasional and unex-

pected cut-off events happen during which the battery is

instantly disconnected from the load regardless of the demand.

This battery disconnection causes a discontinuity in delivering

or absorbing energy and could lead to a penalty in the service

it provides (e.g. frequency service). The history data shows that

some of these events are caused by voltage deviation in the bat-

tery. The BMS in the WESS maintains the voltage deviation at

a low level (∼10 mV) through relaxation and passive balancing.

In extreme operations, the voltage deviation could exceed the

manufacturer’s maximum tolerance 150 mV. In this case, the

cell imbalance is so severe that the BMS disconnects the bat-

tery in order to protect it. Under these circumstances, it may

be necessary to balance the cells manually. Figure 2 shows con-

stant charging even where the charging process is repeatedly

interrupted by the BMS due to the maximum voltage deviation

restriction. The manufacturer-specified maximum allowed cell

voltage deviation is 12.5% of the difference between the LTO

cell’s higher and lower cut-off voltages.

In this paper, as (1), (2) and (4) define, cell voltage deviation

Vt,dev refers to the difference (at any given time, t ) between

Vt,max and Vt,min which are the maximum and minimum cell

terminal voltage in a pack. Vt,i is the terminal voltage for cell

with identity number i (for WESS i is an integer between 1

and 21,120). [NR, NM, NS, NC] is used to represent the loca-

tion of a cell where NR ∈ [1, 40], NM ∈ [1, 22], NS ∈ [1, 12]

and NC ∈ [1, 2] are the identity of the racks, modules, sub-

modules and cells, respectively as Figure 1c shows. The cell

identity can be calculated as i = 528(NR − 1) + 24(NM − 1) +
2(NS − 1) + NC. Average cell terminal voltage Vt,avg is defined

in (3). Similar terms such as cell SoC deviation SoCdev and cell

current deviation Idev are defined in the same way.

Vt,max (t ) = max
(
Vt,1 (t ) ,Vt,2 (t ) , … ,Vt, 21120 (t )

)
(1)

Vt,min (t ) = min
(
Vt,1 (t ) ,Vt,2 (t ) , … ,Vt, 21120 (t )

)
(2)

Vt,avg (t ) = mean
(
Vt,1 (t ) ,Vt,2 (t ) , … ,Vt, 21120 (t )

)
(3)
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FIGURE 2 Measurements showing BMS cutting of the battery due to the battery exceeding the maximum allowed cell voltage deviation, 150 mV (SoC: from

72.7% to 93.8%): (a) pack voltage, (b) cell voltage deviation, (c) pack power from BMS, (d) pack current and (e) BMS SoC. BMS, battery management system

Vt,dev (t ) = Vt,max (t ) −Vt,min (t ) (4)

Figure 2 shows the BMS-recorded performance of WESS

during a constant power charge with part (a) showing the pack

voltage, (b) the cell voltage deviation, (c) the power provided by

the BMS, (d) the pack current and (e) SoC estimated by BMS.

It is important to note that the SoC range for a cell in a bat-

tery pack is slightly narrower than for that cell alone because the

BMS must not over- or under-charge any cell. This means that

0% SoC, reported by the BMS, occurs at a different cell condi-

tion to 0% SoC from a single-cell study.

The worst Vt,dev scenario in the WESS is in the high SoC

zone. When Vt,dev reaches the maximum allowed value of

150 mV, as shown Figure 2b, the battery cuts off from the load.

After a brief rest, the Vt,dev value drops below 150 mV and

then the battery is brought back online by the BMS. With the

reapplication of the charging current (∼1000 A), the Vt,dev is

quickly restored to 150 mV in 10–40 s and triggers another cut-

off. This process has repeatedly occurred at the end of charge

and has caused discontinuities in energy delivery. The first cut-

off in Figure 2 happens at around 90% SoC, and the remain-

ing 10% battery capacity cannot be used effectively. Under this

circumstance, in frequency service applications, the battery will

be unable to absorb extra energy from the grid network even

though the battery is not fully charged.

2.2 Cell voltage deviation in repeated
experiments

To explore the changing trend of Vt,dev in WESS at the ‘full’

SoC range, constant load experiments were conducted on the

WESS. Figure 3 presents two repeated constant power experi-

ments (855 kW) on WESS. In both experiments, the battery was

discharged from 95% SoC to ∼5%; After 1-h resting, the bat-

tery was charged to 90% as Figure 3b shows. The battery pack

is in a controlled (heated, ventilated and air conditioned) envi-

ronment which minimises the influence of the ambient envi-

ronment on the experiments. At the end of discharge, there

is a slight SoC difference between two experiments (Exp. 1:

5%, Exp. 2: 7%), as Figure 3b shows. Also, the internal cell-

balancing circuit incorporated within the Toshiba battery pack
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FIGURE 3 Two repeated experiments (blue: experiment 1, red: experiment 2): (a) pack voltage, (b) pack SoC from BMS, (c) pack power from BMS, (d) pack

current (charging: positive), (e) cell voltage deviation vs. time, (f) cell voltage deviation vs. BMS SoC. Note: the key for each subfigure is identical

works under the instruction of a propriety BMS which operates

outside the user’s control.

As Figure 3e and f shows, the two-cell voltage deviation

results share similarities in shape and value. At the beginning

of both experiments, the battery had the same and stable Vt,dev

of about 10 mV. The Vt,dev had a slight step increase at the

beginning of discharge (∼1800 s) and then experienced a long

period of fluctuation during further discharge. At the end of

discharge (∼5500 s), the deviation value had a rapid increase

but ended with different values (exp. 1: 87 mV, exp. 2: 49 mV).

Accurately estimating the state of charge is difficult because of

non-linearities in the electrochemistry, variability with temper-

ature and recent charge history, and the high level of precision

needed for measurement. Inaccurate SoC measurement

(leading to imprecise start and stop times) is likely to account

for the observed differences.

During the resting processes, Vt,dev quickly decays and is

restored to 10 mV within a few minutes. At the beginning of

charge (∼9000 s), there is a smaller peak of Vt,dev. After a

period of relative stability, Vt,dev increases to a large value (exp.

1: 63 mV, exp. 2: 66 mV) at a high charging rate. The similar

phenomenon was found in another experiment in WESS and

reported in [34]. From the view of the SoC domain, Figure 3f,

at the same SoC the Vt,dev in the two experiments are close to

each other. The peak value of Vt,dev appeared at low (∼5%) and

high (∼90%) SoC zone.
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In contrast to Figure 2, Vt,dev does not exceed 150 mV in

Figure 3. The main reason is that, during charging, the 150 mV

Vt,dev happens in high SoC zone (SoC > 90%, as shown in

Figure 3). However, to avoid damage caused by a high Vt,dev, the

battery in the experiments shown in Figure 3 was only charged

to 90% SoC. The true cell-level SoC is likely lower than 90%

because the battery pack voltage is 572 V (compared with 685 V

shown in Figure 2a for 90% SoC). The likely cause of the dis-

crepancy is integration error for Couluomb counting by the

BMS.

3 A CELL LEVEL BATTERY PACK
EQUIVALENT CIRCUIT MODEL SOLVER

A simulation tool for battery packs is required to study the

impact of the cell-voltage deviation phenomenon. ECM is used

in this paper where each cell is represented by an equivalent cir-

cuit from which the entire battery pack is constructed accord-

ing to its internal hierarchy. Every cell’s ECM parameter infor-

mation is essential for the battery pack simulator. In the case

of the WESS, it is impractical to disassemble the WESS facility

and identify the ECM parameter value for each of the 21,120

cells. Instead, all the cells’ ECM parameters are assumed as fol-

lowing normal distributions and randomly generated from their

mean values and standard deviation which are obtained from

preliminary experiments (EIS tests) on four representative cells.

The details and partial results of EIS test will be shown in

Section 3.3.

In this section, the single-cell ECM and the battery-pack cir-

cuit solver (i.e. the simulation tool) will be introduced first.

Then the processes related to ECM parameter generation will

be explained which mainly consists of three parts: parameter

value and distribution identification, generating parameter value

and constructing ECM models for individual cells.

3.1 Single-cell equivalent circuit model

Compared with electrochemical models, ECMs have the advan-

tage of having a lower computational complexity. ECMs also

have acceptable performance in emulating cell behaviour (see

[22] for an overview of lithium-ion battery modelling meth-

ods relevant to SoC estimation). Figure 4a shows a single-cell

ECM which consists of an ohmic resistor R0, parallel-RC branch

(R1∕∕C1) with a time constant related to the cell diffusion pro-

cess and a voltage source representing the cell equilibrium VOC.

The difference between VOC and battery terminal voltage, Vt,

is known as the overpotential [35] and noted as Vover in this

paper. The discretised mathematical model of the cell ECM

is given in (5)–(8) where Q is maximum available cell capac-

ity in ampere-seconds and Δt is time step length (1 s). Con-

sidering the LTO lifetime and the relationship between capac-

ity retention and coulombic efficiency 𝜂 [36], 𝜂 is set as unity

for LTO cells in this paper and omitted in the equations. Cell

parameters including R0, R1, C1 and VOC are estimated by

their relationship with SoC which are obtained from preliminary

experiments.

Vt [k] = I [k] × R0 [k] +VC1 [k] + Voc [k] (5)

𝜏1 [k] = R1 [k] ×C1 [k] (6)

VC1 [k + 1] = VC1 [k] × exp

(
−Δt

𝜏1 [k]

)

+R1 [k] × I [k] ⋅

(
1 − exp

(
−Δt

𝜏1 [k]

))
(7)

SoC [k + 1] = SoC [k] +
I [k] × Δt

Q
(8)

3.2 Battery pack equivalent circuit solver

The whole battery pack equivalent circuit can be generated by

connecting single cell’s equivalent circuits in the electrical struc-

ture shown in Figure 1c. If cell current and initial condition are

fully known, every cell in a pack can be simulated with (5)–(8).

The pack solver was built with the following assumptions: (i)

each cell’s ECM (such as parameter values and VOC-SoC rela-

tionship) and present internal states (such as capacitor voltage,

SoC and VOC) are fully known; (ii) during each time step in the

solver, the change in ECM parameters value is small and can be

considered constant.

Figure 4c illustrates the main processes that occur within the

battery pack simulator. The first step in the ‘battery pack solver’

is to simplify each cell to an equivalent resistor and voltage

source as shown in Figure 4b. Then series and parallel connec-

tions of cells are combined using Thévenin and Norton the-

orems. The cell combination process is worked up according

to the pack hierarchy from single cell, to sub-module and so

on until the pack is finally represented by a single equivalent

resistor and voltage source. Subsequently, the internal currents

and voltages inside the pack are determined in the sequence of

racks, sub-modules and cells through Kirchhoff ’s current law

and Kirchhoff ’s voltage law. The calculated cell current value

is used to update cell SoC and VC1 which will be used in next

time step. In this way, complicated differential equations for the

overall battery-pack equivalent circuit are avoided and the sim-

ulation can be conducted efficiently. Elementwise and dimen-

sional matrix operation and graphics processing unit calculation

were adopted to boost the simulator’s speed.

3.3 ECM parameter value identification and
the extent of ECM parameter variation

ECM parameters used in the battery pack simulator are ran-

domly generated according to the parameter’s value and distri-

bution from preliminary experiments on sample cells. To obtain

ECM parameters value at different SoC points, EIS tests were
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FIGURE 4 Cell ECM and battery pack simulator: (a) one time constant ECM, (b) corresponding Thévenin circuit, (c) battery pack simulation processes. ECM,

equivalent circuit models

conducted on four SCiB LTO cells with the same cycle count

(400 cycles). The four cells have a slight difference in cycling

current: two were cycled with 1 C and two at 2 C rate. How-

ever, the cycle counts for different cells are the same. The cycle

count is small for LTO cells and not enough to cause significant

cell degradation. These cells were labelled from Cell02 to Cell05

and tested at 25◦C from 100% to 0 SoC in 10% intervals. In the

EIS measurement, the frequency range was set from 5 kHz to

5 mHz.

Only four cells were available for individual measurement.

Thus there is reduced confidence in the mean and standard

deviations for each cell parameter in WESS. Nevertheless, the

existence of the variation, rather than its precise level, is critical

for understanding the real-world operation of a BESS.

Figure 5 illustrates the EIS impedance results of the four cells

at 50% SoC where Zre and Zim are the real and imaginary parts

of the impedance. When Zim is positive, the test results are dis-

torted (Figure 5a). Fortunately, the model in Figure 4a can never

have an impedance with a positive imaginary part. Hence, only

the EIS result with negative imaginary parts (Figure 5b) was

used to identify the parameter’s value. An example of ECM fit-

ting results is shown in Figure 5c–f) [37].

The overall fitting results of ECM parameters are presented

in Figure 6 (on the left vertical axis). In general, as Figure 6a

shows R0 has a stable value (0.7 mΩ) which slightly decreases

as SoC increases. R1 takes most part of the total resistance Rtotal

and dominates the change of it. Rtotal is the total resistance

which is equal to sum of R0 and R1. Both R1 and Rtotal have

the highest value at 100% SoC and second-highest value at 0%

SoC. Time constant 𝜏1 in Figure 6b has the highest value at

100% SoC and a peak value at 60% SoC. The results shown

in Figure 6 provide ECM parameters of four cells and, more

importantly, ECM parameter distribution can be obtained

from it.

The previous experiments on WESS in Figure 3 show that

Vt,dev changes during charging and discharging which indicates

that the extent of cell variation in WESS might be different

at different SoCs. The coefficient of variation (CoV) is used

in this paper to describe the extent of parameter variability

through which the relationship between the extent of cell vari-

ation and SoC will be explored. For a data set with N elements

A1, A2, … , AN, the CoV is defined by the ratio of the standard

deviation 𝜎 to the mean 𝜇 as (9)–(11) show.

𝜎 =

√√√√ 1

N − 1

N∑
i=1

|Ai − 𝜇|2 (9)

𝜇 =
1

N

N∑
i = 1

Ai (10)

CoV =
𝜎

𝜇
(11)

The CoV of different parameters at different SoC is also

shown in Figure 6 (in the right vertical axis). Among all the
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FIGURE 5 EIS and ECM fitting result of 4 LTO cells at 50% SoC: (a) overall result, (b) result when Zim < 0, (c)–(f) ECM fitting result from Cell02 to Cell05.

EIS, electrochemical impedance spectroscopy

parameters, VOC in Figure 6f has the least CoV around 0.06%

(±0.04%) and the largest value of it appears at 100% SoC at

0.1%. As Figure 6a shows, R0 has a small CoV concentrated

at 0.8% (±0.4%). The CoVs of R1 and C1 do not have rapid

change between 20% and 90% SoC and both have large val-

ues at 10% and 100% SoC. R1 and C1 are parameters related

to the diffusion process. The large CoV indicates more dis-

tinct differences in electrical or chemical properties among

tested cells, such as the reaction rate. In terms of 𝜏1, the large

CoV only shows up at 100% SoC. The cells capacities were

estimated by the Coulomb counting method (𝜇 = 20.73 Ah,

𝜎 = 0.03 Ah).

The cell SoC used in the cell experiments represents a wider

operating range than the WESS BMS SoC. As can be observed

in the cell SoC experimental data, at the extremes of the SoC

curve, Vt,dev becomes greater. BESS manufacturers recognise

this issue and therefore restrict the operating range of their sys-

tems to avoid issues associated with Vt,dev at extreme SoC. The

parameters’ large value of CoV at these SoC regions is believed

as an important reason for the high Vt,dev observed in Figures 2

and 3.

3.4 Generating equivalent circuit model
parameters value

With the ECM parameters result of EIS tests, ECM parameters

used in the battery pack circuit solver can be generated to fit

a measured statistical distribution. Before random numbers are

generated, the type of distribution must be chosen. Experiment

results in the literature reflect that cell parameters reasonably

fit normal distributions. In [11], a large number of lithium-ion

cells were tested and the results show that cell parameters such

as resistance and capacity follow normal distributions to a large

extent. The same results are seen in [38, 39]. In the Monte Carlo

simulation that follows, all the parameters are assumed to follow

normal distributions. The standard deviation 𝜎 to the mean 𝜇
of each parameter at different SoC was estimated from the EIS

results in Figure 6.

ECM parameters among tested cells are not independent of

each other. To include the correlation among parameters, in

this paper R0, R1 and C1 at every 10% SoC are set as follow-

ing a joint normal distributed whose probability density func-

tion f (R0, R1,C1 ) is shown in (12). 𝜇R0, 𝜇R1 and 𝜇C1 are the



WANG ET AL. 9

FIGURE 6 Parameter value and the coefficient of variation of: (a) R0, (b) τ1, (c) R1, (d) C1, (e) Rtotal, (f) VOC. Note: the key for each subfigure is identical

mean of random variables R0, R1 and C1 respectively. 𝚺 is the

covariance matrix and shown in (13) where cov(., .) represents

the covariance. From 0% SoC at every 10% SoC, R0, R1 and C1

are generated according to their 𝜎, 𝜇 and 𝚺 obtained from cells

EIS tests results in Figure 6 and the probability density function

in (12).

f (R0,R1,C1 ) =
1

(2𝜋)
3

2 ⋅ |Σ|
1

2

exp

⎛⎜⎜⎜⎜⎝
−

1

2

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

R0

R1

C1

⎤
⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎣

𝜇R0

𝜇R1

𝜇C 1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

T

× Σ−1 ⋅

⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎣

R0

R1

C1

⎤⎥⎥⎥⎦
−

⎡⎢⎢⎢⎣

𝜇R0

𝜇R1

𝜇C 1

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠
(12)

𝚺 =

⎡
⎢⎢⎢⎣

cov (R0,R0 ) cov (R0,R1 ) cov (R0,C1 )

cov (R1,R0 ) cov (R1,R1 ) cov (R1,C1 )

cov (C1,R0 ) cov (C1,R1 ) cov (C1,C1 )

⎤
⎥⎥⎥⎦

(13)

In terms of capacity and VOC, due to the limited sample size

from the experiment, it is challenging to identify the most corre-

lated parameters and SoC point to cell capacity Q. As a compro-

mise, Q is set as an independent normal distributed variable in

this paper and can be straightforwardly generated for different

cells. On the other hand, VOC describes cell equilibrium termi-

nal voltage which is considered irrelevant to the parameters (R0,

R1 and C1) who are related to cell dynamic properties. There-

fore, VOC is set as an independent variable as well. Besides, as

mentioned in Section 3.1, the coulombic efficiency for all cells is

set as 100% so that the effect of coulombic efficiency variation

among cells is not included in this paper. To ensure the result-

ing cell templates are physically realisable the random number

generator used by the Monte Carlo analysis has a lower bound

of zero.

3.5 Constructing models for individual cells

Building the model of R0, R1 and C1 is the most complex part

of constructing ECMs for individual cells which are divided into

three steps. Step 1: the values of R0, R1 and C1 at different SoC
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FIGURE 7 A randomly generated WESS-sized battery, all cells’ ECM parameters and their CoVs (red inline: CoV of generated pack; circle points: CoV from

EIS experiment): (a) R0, (b) R1, (c) C1, (d) V OC vs. SoC

(0, 10%, …, 100%) for all 21,120 cells are randomly generated as

Section 3.4 describes. Step 2: the randomly generated parameter

in step 1 is regrouped according to their cell identity. Step 3: the

parameter and SoC relationship is modelled using polynomial

equations cell by cell. A diagram demonstrating this process is

provided in Figure A.1. The method of generating VOC-SoC

model for each cell is similar.

An example of a generated battery is illustrated in Figure 7

in which the cyan areas contain all 21,120 cells’ parameter-SoC

relationship. In another word, for a cell in the generated pack,

its parameter-SoC relationship is located inside the cyan regions.

The red line in Figure 7 represents the parameter CoV of all

21,120 cells in the generated pack and the red circles are param-

eter CoV from the previous cells EIS experiment shown in

Figure 6. In general, the parameters value and CoV in the gener-

ated pack are consistent with the experiment results in Figure 6.

So far, the essential preparation for battery pack simulation has

been done which includes building a battery pack simulator and

generating random battery packs.

4 MONTE CARLO SIMULATION:
CONSTANT POWER LOAD

Monte Carlo simulation is a commonly used method to study

the impact of ECM parameter variation on battery packs

and has been used, for example in [12] and [40]. In Monte

Carlo simulations, many ECM parameter sets are generated.

Each parameter value is chosen at random according to the

probability density function for that parameter. Thus a large

number of simulations, all with different but realistic param-

eters, are performed. These simulations show the sensitivity

of the model to random variation which a single simulation

cannot do.

In this section, 100 randomly generated WESS-sized battery

packs are simulated under a constant power load (855 kW). The

simulation results provide a general changing trend of variables

such as battery voltage, current and Vt,dev, under the specified

load and predetermined parameter uncertainty. In each simula-

tion, all the 21,120 cells are set as 95% SoC which is consistent

with the initial battery SoC value in the experiments shown in

Figure 3 . The cells are connected into a pack according to the

electrical connection in Figure 1c. Because of the variation in

cell VOC–SoC relationship, cells have slightly different terminal

voltages. This terminal voltage difference is decreased by a

10-min rest through self-balancing during which the terminal

voltage difference among cells causes an internal cell current

through the internal electrical connection in the pack. After

resting, the maximum cell self-balancing current decreases to a

small value (0.005 C-rate). A small (or zero) self-balancing cur-

rent indicates that the battery pack cannot be further effectively

balanced by itself. Then, the pack is discharged at constant

power until it meets cut-off requirements.

After another 10-min rest, the battery is charged until cut-off.

In this simulation, to avoid over-charging and over-discharging

the cells, the battery pack is cut off when any cell voltage reaches

cut-off voltages or any cell SoC is outside the range of 0% to

100% or the Vt ,dev exceeds 150 mV.

In this simulation, some parameters in the model are

bounded in certain ranges. The SoC is defined as the ratio of

available cell capacity to the maximum cell capacity which is a

value non-negative number and is smaller than 100%, there-

fore, is bounded by 0% ≤ SoC ≤ 100%. According to the

datasheet for Toshiba LTO cell, the cell voltage should be
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FIGURE 8 Overall Monte Carlo simulation result and the result from a single simulation. (a) Battery pack voltage, (b) pack current, (c, d) cell terminal voltage

and deviation, (e, f) cell terminal current and deviation, and (g, h) cell SoC and deviation in the single simulation. t1: 600 s (t2: 4465 s, t3: 5060 s, t4: 9130 s; ta: 832 s, tb:

1271 s, tc: 3744 s, td: 5832 s, te: 8369 s, tf: 8826 s). (i) Cell terminal voltage deviation of 100 times Monte Carlo simulation
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FIGURE 9 Terminal voltages at the end of discharge for 21,120 cells in the pack (result from a single simulation, from tc: 3744 s to t2: 4465 s)

controlled between 1.5 and 2.7 V. As a result, the cell termi-

nal voltage is bounded by 1.5 V ≤ Vt ≤ 2.7 V. The BMS

of WESS does not allow a cell voltage deviation Vt,dev exceed-

ing 150 mV. Besides, Vt,dev is defined as the instantaneous dif-

ference between the maximum cell voltage and the minimum

cell voltage of the whole pack. Consequently, the cell terminal

voltage is bounded by 0 ≤ Vt,dev ≤ 150 mV. According to

this load power profile, the battery-pack current (the input of

the ECM) is calculated by the battery-pack equivalent circuit

solver and used for simulation. Compared with the experiments

in Figure 3, the simulation explored a wider SoC range and con-

ducted a shorter rest period.

4.1 Results from a single simulation: at the
pack and cell level

The Monte Carlo simulation provides 100 similar simulation

results with slightly different timelines. For example, because

of CtCV, battery packs have different parameters (e.g. capac-

ity, internal resistance) so that batteries were cut off at different

times in different simulations. To clearly describe the simulation

process, one of the Monte Carlo simulations using the parame-

ter set in Figure 7 is chosen to be discussed first.

Figure 8a and b shows the pack level simulation result of the

chosen simulation. Time instants from t1 to t4 in the figure rep-

resent the start or end of the discharging or charging. It is inter-

esting to note that in a constant load simulation, the magnitude

of battery current, as shown in Figure 8b, is increasing during

the discharging process and decreasing during charging because

of the decreasing and increasing battery voltage, respectively.

This current change is also observed during the constant load

experiment in Figure 3.

The cell level simulation results of the single simulation are

shown in Figure 8c–h. Apart from t1 to t4, six more time

instants, ta to tf, are labelled in the figure at which cell average

SoC reaches some critical values (ta and tf: 90%, tb and te: 80%, tc
and td: 20%). The most important finding in the single constant

power simulation result is the relationship between the ECM

parameter variation and the cell deviations that a large parame-

ter variation causes a large deviation in the pack. Between SoC

zones of 0%–20% and 90%–100%, all cell ECM parameters

have a large CoV, as Figure 7 shows. Correspondingly, during

t1 to ta, tc to t2, t3 to td and tf to t4 when the battery pack is being

discharged or charged in these two SoC zones, the battery pack

is more unbalanced and shows a large value of Vt,dev, and Idev.

It is worth mentioning the result during ta to tb and te to tf
when the cells are in the 80%–90% SoC range. According to

Figure 7, in this SoC range, R1 which dominates the total inter-

nal resistance also has a large CoV. However, Vt,dev is small dur-

ing ta to tb and te to tf for two possible reasons. First, between

80% and 90% SoC, the other parameters such as VOC and C1

have a smaller CoV compared with 0%–20% and 90%–100%

SoC as Figure 7. Second, the value of R1 is small between 80%

and 90% SoC which is unable to induce a large Vover and volt-

age difference. Consequently, a small Vt,dev is witnessed in this

SoC zone.

Inside a large-scale battery pack, the cell voltage is not only

influenced by the cell properties (such as the impedance and

capacity) but also the cell connection topology, cell current dis-

tribution, load current, initial cell SoC etc. During the simula-

tion, the particular cells which have the maximum and minimum

terminal voltages vary as different cells lose or gain voltage at

different rates. There is not a single dominant cell which is max-

imum or minimum for a long time. The terminal voltages of all

21,120 cells at the end of discharge (tc to t2) in the single sim-

ulation are plotted in Figure 9 where each line represents the

voltage change of an individual cell and thus the shaded area is

the total cell voltage range. The results show that there is no

single cell which is clearly an outlier.

4.2 Results from all Monte Carlo simulation

To obtain an overall view of the cell deviation inside WESS

sized pack with the given parameter distribution under constant

power load, 100 Monte Carlo simulations were conducted, and

the results are presented in Figure 8i. There are 100 lines in
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Figure 8i and each of them represents the Vt,dev result from one

of the 100 Monte Carlo simulations. As Figure 8i shows, all sim-

ulations have a similar changing trend in terminal voltage and

current deviations but with slightly different values. The find-

ing in the previous single-simulation example is still valid in the

Monte Carlo simulation result that a large Vt,dev shows up at the

beginning and end of charging and discharging where the cells

have a large ECM parameter CoV and large internal resistance.

The Vt,dev results in simulations share similarities with that in

WESS experiments (Figure 3). In terms of the changing trend,

both simulation and experiment witnessed a high Vt,dev at high

and low SoC zone and also relatively small Vt,dev in between.

However, in WESS experiments the Vt,dev in the beginning of

discharging is not as obvious as that in simulation for unknown

reasons. In terms of value, Vt,dev in simulation is smaller than

exp. 1 and exp. 2 in Figure 3. The cell balancing circuit in WESS

and the error in ECM parameters’ CoV are the possible reasons

for it.

5 CONCLUSION

This study raises the awareness of the maximum allowed Vt,dev

and the impact of SoC on cell variance which help the design of

a BESS and the cell balancing technique. As found in the paper,

the BMS may have an intense reaction when the Vt,dev exceeds

the threshold value. For example, the battery is cut off in WESS.

In most cases, the settings in a BMS cannot be changed by oper-

ators. The cut-off reaction benefits the safety of the battery but

may not be acceptable in a smart grid that requires consistent

energy delivery.

It is challenging to reproduce the Vt,dev in a real facility

through simulation due to the system nonlinearities and ambient

environment complexity. This study used an ECM to represent

every cell in a battery pack and the simulation shows the similar-

ity with the Vt,dev trends observed in experiments. However, the

150 mV Vt,dev, observed experimentally, was not observed dur-

ing simulations. Nevertheless, the demonstration of the cause of

the trends and their distributions is meaningful for studying and

understanding large-scale BESSs.

Some multi-cell batteries contain balancing circuits to keep

the cell voltage or SoC deviation under control. Normally, the

balancing circuit is triggered when the Vt,dev value reaches a

setting value regardless of the SoC value. However, the simu-

lations for WESS LTO battery packs in this paper show that it

is more likely that a high Vt,dev will occur at the extremes of SoC.

This is one reason why manufacturers de-rate the SoC operat-

ing envelope. Battery packs featuring internal balancing mecha-

nisms would alleviate some of these issues. Concepts such as

Brillpower’s intelligent battery management technology could

extend the operating envelope thereby reduce the levelised cost

of energy.

NOMENCLATURE

A1, A2, … AN elements of a data set

C1 the capacitor in R1∕∕C1 branch

Idev cell current deviation

R0 ohmic resistor

R1 the resistor in R1∕∕C1 branch

Rtotal the total resistance ( Rtotal = R0 + R1)

SoCdev cell SoC deviation

VC1 voltage crossing R1//C1 branch

VOC open-circuit voltage

Vover cell overpotential

Vt,avg average cell voltage in a pack

Vt,dev cell terminal voltage deviation

Vt,max maximum cell voltage in a pack

Vt,min minimum cell voltage in a pack

Vt cell terminal voltage

Zim the imaginary part of cell elec-

troimpedance

Zre the real part of cell electroimpedance

t1, … , t4, ta, … , tf time instants in a simulation

𝜇R0, 𝜇R1 and 𝜇C1 the mean value of R0, R1 and C1

𝜏1 time constant caused by R1∕∕C1 branch

cov(., .) covariance of two variables

I current

N elements number

NC the identity of the cells

NM the identity of the modules

NR the identity of the racks

NS the identity of the sub-modules

Q capacity

f (R0, R1,C1 ) joint probability density function of R0, R1

and C1

t time

Δt time step length

Σ covariance matrix

𝜂 coulombic efficiency

𝜇 mean value

𝜎 standard deviation
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APPENDIX A: THE PROCESS OF GENERATING R0 , R1 AND C1 MODEL IN ECM FOR EACH

CELL

The figure in this appendix demonstrates the process of constructing ECMs for 21,120 cells using R0, R1 and C1 as an example.

The process is divided into three steps including generating random numbers, reorganising the generated numbers, and constructing

parameter models.

FIGURE A1 The process of generating and modelling R0, R1 and C1 at full SoC range for 21,120 number of cells. Step 1: random value generating for

different cells at different SoC points. Step 2: reorganise the random value, gather parameter value for the same cell at different SoC into the same group. Step 3:

obtain parameter–SoC relationship for each cell by curve fitting
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