
This is a repository copy of The method of fundamental solutions for pointwise source 
reconstruction.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/185478/

Version: Accepted Version

Article:

Rocha de Faria, J, Lesnic, D orcid.org/0000-0003-3025-2770, da Silva Lima, R et al. (1 
more author) (2022) The method of fundamental solutions for pointwise source 
reconstruction. Computers and Mathematics with Applications, 114. pp. 171-179. ISSN 
0898-1221 

https://doi.org/10.1016/j.camwa.2022.03.041

© 2022 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



The method of fundamental solutions for pointwise

source reconstruction

Jairo Rocha de Fariaa, Daniel Lesnicb, Rômulo da Silva Limaa, and Thiago
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Abstract

This work deals with the reconstruction of point sources in the modified
Helmholtz equation in two and three dimensions. This problem has crit-
ical applications in engineering and medicine, such as the identification of
dipoles and monopoles in electroencephalography and magnetoencephalog-
raphy and locating sources of environmental pollution. From the numerical
point of view, we apply the method of fundamental solutions to solve the di-
rect problems arising from the sensitivity analysis. In addition to the recog-
nized advantages of this meshless spectral method over the traditional mesh-
based numerical methods, this approach represents the pointwise sources
adequately. Our numerical examples show that the algorithm is capable of
accurate reconstruction even when noisy data are inverted.

Keywords: Inverse Problems, Pointwise Source, Sensitivity Analysis,
Method of Fundamental Solutions, Modified Helmholtz Equation

1. Introduction1

The aim of this work is to propose a stable, reliable and efficient re-2

construction algorithm for the solution of an inverse source problem for the3

modified Helmholtz equation governing steady-state diffusion-reaction phe-4

nomena. This inverse problem presents relevant applications, among which5

we can point out: identification of pollution sources in a river based on6

chemical and biological oxygen demand [15]; reconstruction of source term7

of accidental release of atmospheric pollutant [32]; susceptibility map recon-8

struction of brain images [12]; computed tomography and ultrasound [10];9
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reconstruction tomography for optical molecular imaging, aiding in cancer10

diagnosis and nondestructive tests on components [25].11

In related work, Machado et al. [28] conducted a study of the pointwise12

source reconstruction from a single set of boundary Cauchy data in the two-13

dimensional Laplace’s/Poisson’s equation using the finite elements method14

(FEM) [33]. In the present work, we extend the analysis of [29] to the mod-15

ified Helmholtz equation (as a lower-order perturbation of the Laplacian).16

Furthermore, instead of discretization domain FEM, taking into account the17

suitable representation of pointwise sources, we apply the method of funda-18

mental solutions (MFS) in order to solve the associated direct problems. The19

advantages of this meshless numerical technique over methods of discretiza-20

tion are the ease and simplicity of implementation, rapid convergence and21

high accuracy [20, 21]. We also minimize a least-squares boundary integral22

instead of the Kohn-Vogelius domain integral as in [28, 6].23

We perform numerical tests to analyze the proposed methodology in two24

and three dimensions inverting noisy data for reconstruction of up to three-25

point sources.26

The paper is structured as follows. In Section 2, we present the mathe-27

matical formulation of the inverse problem and the associated optimization28

problem. In Section 3, we perform a sensitivity analysis of the shape func-29

tional that is minimized. Section 4 discusses the adaptation of the MFS made30

in this work to represent the pointwise sources considering singularities within31

the solution domain. In Section 5, the results of numerical experiments are32

presented and discussed. Finally, in Section 6 we provide some conclusions33

and discuss some proposals for future work.34

2. Mathematical Formulation35

2.1. The inverse problem36

Let Ω ⊂ R
d, d = 2, 3, be an open and bounded domain with Lipschitz37

boundary. Consider the following overdetermined boundary value problem38





(λI −∆)z = b∗ in Ω,
z

−∂nz
=
=

u∗

q∗

}
on ∂Ω,

(1)

where λ is a given positive constant and n is the unit normal to the bound-39

ary ∂Ω. The elliptic linear partial differential equation in (1) is called the40

modified Helmholtz equation and it governs steady-state reaction-diffusion41
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processes. In this work, the constant λ is considered strictly positive and it42

is called the intensity of reaction. We highlight that when λ = 0 we have43

the Laplace equation and when λ < 0 we obtain the Helmholtz equation.44

Convective/advective terms of the form vf ·∇z, where vf is the fluid velocity45

of the flow propagating through the medium Ω, can also be added to the46

governing equation [17].47

The underlying inverse problem consists of finding the unknown source48

b∗ in Ω from the Cauchy data u∗ and q∗ on ∂Ω. In general, this problem has49

no unique solution. However, if we consider the set of admissible pointwise50

sources:51

Cδ(Ω) =





b ∈ L1(Ω), for which there exists n ∈ N\{0}, α1, . . . , αn ∈ R

and y
1
, . . . , y

n
∈ Ω such that b(x) =

n∑

i=1

αiδ(x− y
i
)





,

(2)
where δ is the Dirac-delta generalized function, then the inverse problem (1)52

has at most one solution b∗ ∈ Cδ(Ω), see [15, 16, 17]. The pointwise source53

b∗, solution of the inverse problem (1), belongs to Cδ(Ω) and, therefore, has54

the representation55

b∗(x) =
m∗∑

i=1

α∗
i δ(x− y∗

i
), (3)

where m∗ ∈ N\{0}, α∗ = (α∗
1, . . . , α

∗
m∗) ∈ R

m∗

and y∗ = (y∗
1
, . . . , y∗

m∗
) ∈ Ωm∗

56

denote, respectively, the number, intensities and locations of the pointwise57

source b∗. The objective is to reconstruct parameters m∗, α∗ and y∗. Sim-58

ilar inverse pointwise source identification problems can be considered for59

the advection-diffusion-reaction equation [17], the Stokes equations of slow60

viscous flow [2], the heat equation [26, 14] and the wave equation [13].61

Let M(Ω) be the set of real and regular Borel measures equipped with62

the following norm [9]:63

∥µ∥M(Ω) = sup

{∫

Ω

ϕdµ;ϕ ∈ C0(Ω) and ∥ϕ∥∞ = 1

}
, (4)

where ∥ · ∥∞ denotes the supremum norm defined on the set C0(Ω) of contin-64

uous functions with compact support, namely, ∥ϕ∥∞ = sup
x∈Ω

|ϕ(x)|. According65
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to Riesz representation theorem, M(Ω) is the dual space of C0(Ω). It is66

possible to demonstrate that Cδ(Ω) ⊂ M(Ω).67

2.2. The optimization problem68

Next, we consider an optimization problem equivalent to the inverse prob-69

lem (1). Let us consider Cauchy data pair (u∗, q∗). First, we use q∗ to define70

a Neumann condition for a direct auxiliary problem whose source term is an71

element of the set of admissible pointwise sources Cδ(Ω) defined in (2). In72

other words, we have the following boundary value problem:73

{
(λI −∆)u = b0 in Ω,

−∂nu = q∗ on ∂Ω.
(5)

The source term b0 is taken arbitrarily in Cδ(Ω). In addition, the Dirichlet74

data u∗ is used to define the least-squares functional75

J (u) =
1

2

∫

∂Ω

(u− u∗)2 ds, (6)

Note that the functional (6) implicitly depends on the source term b0 through76

the problem (5). In this way, the optimization problem that we want to77

solve consists of minimizing this functional within the admissible set Cδ(Ω)78

of pointwise sources. In other words, we are looking for a source term bopt ∈79

Cδ(Ω) such that80

bopt = arg min
b0∈Cδ(Ω)

J (u). (7)

In order to show the equivalence between the inverse problem (1) and81

the optimization problem (7) it is necessary to ensure that the functional82

(6) has an unique minimum in the set Cδ(Ω) and, furthermore, to obtain83

that bopt = b∗. The result enunciated and demonstrated in Proposition 184

guarantees that the functional (6) reaches a minimum value when evaluated85

at the solution of the inverse problem.86

Proposition 1. Let u be solution of the problem (5) and let b∗ be the un-87

known pointwise source of the inverse problem (1). If b0 = b∗, then J (u) = 0.88

Proof. Define Ψ = u− z, where z is the solution to problem (1). Then, Ψ is89

the solution of the following boundary value problem:90

{
(λI −∆)Ψ = 0 in Ω,

−∂nΨ = 0 on ∂Ω,
(8)
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After multiplying the differential equation by Ψ and using integration by91

parts, we have92 ∫

Ω

(
λΨ2 + |∇Ψ|2

)
dx = 0. (9)

We have that Ψ ≡ 0 on Ω provided that λ > 0. Therefore, u = z, which93

concludes the proof.94

Although the above result is trivial and has a standard demonstration,95

we keep it in the text for the sake of completeness. In fact, the result pre-96

sented in Proposition 2 is much more relevant, as it provides the regularity97

of the solution to the direct problem (5) and an estimate of this solution as98

a function of the source term.99

Proposition 2. Let b0 ∈ M(Ω) and u ∈ L2(Ω) be such that100

∫

Ω

u(−∆ϕ+ λϕ) dx =

∫

Ω

b0ϕdx, ∀ϕ ∈ H2(Ω) ∩H1
0 (Ω). (10)

Then, u ∈ W 1,p
0 (Ω) for all p ∈

[
1,

d

d− 1

)
and there exists Dp > 0 such that101

∥u∥W 1,p
0

(Ω) ≤ Dp∥b0∥M(Ω). (11)

Proof. The proof can be found in [8].102

3. Sensitivity Analysis103

3.1. Perturbed problems104

In this section, we perform an arbitrary perturbation on the source b0 in105

order to evaluate the sensitivity of the functional (6) with respect to the set106

of admissible sources Cδ(Ω). Namely, we introduce m arbitrary pointwise107

sources with locations y
i
and intensities αi, which provides the following108

perturbed source:109

bδ(x) = b0(x) +
m∑

i=1

αiδ(x− y
i
), (12)

Note that bδ ∈ Cδ(Ω). The perturbation on the source of problem (5) provides110

the following perturbed boundary value problem:111

{
(λI −∆)uδ = bδ in Ω,

−∂nuδ = q∗ on ∂Ω.
(13)
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Therefore, the perturbed counterpart of the functional (6) is given by112

J (uδ) =
1

2

∫

∂Ω

(uδ − u∗)2ds. (14)

The objective is to evaluate the variation of the functional (6) with respect113

to the parameters m, y = (y
1
, . . . , y

m
) and α = (α1, . . . , αm), which define114

the perturbation on the functional. For this purpose, let us initially consider115

the following relation between solutions to problems (5) and (13):116

uδ(x) = u(x) + v(x). (15)

Then, we have that117

(λI −∆)v(x) =
m∑

i=1

αiδ(x− y
i
). (16)

Equation (16) implies that, besides spatial variable x, the function v also118

depends on the variables m, y and α. Let us consider the following decom-119

position of v:120

v(x) =
m∑

i=1

αivi(x). (17)

Consequently, we have that the function vi depends only on the spatial vari-121

able x and on the locations y
i
, for i = 1, · · · ,m. It follows that each vi is the122

solution to the following boundary value problem:123

{
(λI −∆)vi = δ(· − y

i
) in Ω,

−∂nvi = 0 on ∂Ω.
(18)

Proposition 3. The set {v1, . . . , vm} consists of linearly independent func-124

tions.125

Proof. Consider c1, . . . , cm ∈ R such that126

c1v1(x) + . . .+ cmvm(x) = 0, ∀x ∈ Ω. (19)

By applying the differential operator (λI − ∆) on both sides of the above
equation, it follows that

0 = (λI −∆)(c1v1(x) + . . .+ cmvm(x))
= c1δ(x− y

1
) + . . .+ cmδ(x− y

m
),

for all x ∈ Ω. In particular, by taking x = y
i
it is possible conclude that127

ci = 0 for each i = 1, . . . ,m, which concludes the proof.128
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3.2. Variation of the functional129

We can now calculate the variation of functional (6). Considering the130

expression (15) and using it in (14), we obtain:131

J (uδ) = J (u) +

∫

∂Ω

(
m∑

i=1

αivi

)
(u− u∗) ds+

1

2

∫

∂Ω

(
m∑

i=1

αivi

)2

ds. (20)

Note that the expression on the right hand side of (20) depends explicitly132

on parameters m and αi, for i = 1, . . . ,m. On the other hand, it depends133

implicitly on y
i
through functions vi, for i = 1, . . . ,m. Then, we can rewrite134

it as follows:135

J (uδ)− J (u) = J(m,α, y). (21)

In order to simplify the notation, let us define the vector d ∈ Rm and the136

matrix H ∈ Rm×m whose entries are defined by:137

di =

∫

∂Ω

vi(u− u∗) ds, (22)

and138

Hij =

∫

∂Ω

vi vj ds. (23)

Then, we can rewrite (21) in the following matrix representation [29]:139

J(m,α, y) = d · αT +
1

2
α ·HαT . (24)

Proposition 4. The matrix H is symmetric and positive definite.140

Proof. The symmetry of H follows straight from definition (23). Let ξ =141

(ξ1, . . . , ξm) ∈ Rm be an arbitrary vector. Note that:142

ξ ·HξT =

∫

∂Ω

(
m∑

i=1

ξivi

)2

ds ≥ 0. (25)

Suppose that ξ0 · H(ξ0)T = 0 for some ξ0 ∈ Rm. Clearly, we can conclude143

that:144

m∑

i=1

ξ0i vi = 0. (26)

It follows from Proposition 3 that ξ0 ≡ 0.145
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Since H is a symmetric and positive definite matrix, then J(m,α, y) is146

strictly convex with respect to the parameter α. In other words, for fixed147

values of m and y, there is a global minimum α̂, which is obtained by solving148

the following system:149

〈
DαJ(m, α̂, y), β

〉
= 0, ∀β ∈ R

m, (27)

where DαJ is the Jacobian of J with respect to α. Solving (27) and consid-150

ering the symmetry of H, we have151

Hα̂T = −dT . (28)

Since H and d depend on the functions vi, which in turn depend on the152

locations vector y, then it is possible to conclude that α̂ = α̂(y) = −H−1(dT ).153

Introducing this into (24), the optimal locations yopt can be obtained by a154

combinatorial search over the domain Ω. These locations are solutions to the155

following minimization problem:156

yopt = argmin
y∈X

{
J(m, α̂(y), y) =

1

2
α̂(y) · dT

}
, (29)

where X ⊂ Ω is a set of admissible source locations of size #X ≥ m. In157

practice, X is a set grid points in the problem domain Ω. Finally, the vector158

of optimal intensities is given by αopt = α̂(yopt). Since the functional J is159

strictly convex with respect to the variable α, then the optimization process160

defined by Eqs. (28) and (29) provide a global minimum, regardless of the161

initial guess.162

It is important to emphasize that, for a fixed m, it is possible to obtain a163

pair of optimal solutions (yopt, αopt) using the algorithm described in [29, 6].164

The problem on how to find the optimal number of pointwise sources mopt
165

will be discussed in Section 5.166

4. The Method of Fundamental Solutions167

The Method of Fundamental Solutions (MFS) is a meshless collocation168

method for the numerical solution of boundary value problems (BVP) with an169

available fundamental solution, see e.g., [7, 18, 22] and the references therein.170

In this case, the solution is sought as a linear combination of fundamental171

solutions with ‘singularities’ placed outside the domain. In this work, the172
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MFS is reformulated by taking singularities located outside and inside the173

domain. This approach allows an adequate representation of the pointwise174

sources, as well applies the MFS directly to the associated non-homogeneous175

BVP [1].176

Definition 1. Let Ω ⊂ R
d, with d = 2, 3, be a open and bounded domain.177

Consider the following problem178

L[u(x)] = 0, x ∈ R
d, (30)

subject to a boundary condition given by179

C[u(x)] = 0, x ∈ ∂Ω, (31)

where L is a linear differential operator and C denotes a Dirichlet, Neumann180

or Robin boundary condition [19]. The approximate solution uM(x) using the181

MFS for problem (30)-(31) is given by the following finite linear combination182

uM(x) =
M∑

i=1

ciΦ(x, P i), x ∈ Ω, (32)

where P i are the ‘singularities’ of the fundamental solution Φ of (30), which183

are located outside Ω. The coefficients ci in Eq.(32), with i = 1, . . . ,M , can184

be determined by Eq.(31), that is, using collocation on ∂Ω and solving the185

associated linear system of equations.186

The set of points P i, for i = 1, . . . ,M , belonging to the boundary ∂̂Ω of a187

set Ω̂ ⊃ Ω, is also called an external source points set. The set of points xk, for188

k = 1, . . . , L, on ∂Ω is called a boundary collocation points set. The boundary189

∂̂Ω is called the fictitious boundary and the boundary ∂Ω from Ω is called the190

physical boundary. Figure 1 shows both physical and fictitious boundaries,191

with their respective external source points and boundary collocation points.192

The number and locations of collocation and source points are pre-assigned,193

adding some additional arbitrariness in the MFS.194

The MFS can be used to properly represent a source b with m pointwise195

internal sources by inserting m source points inside the domain Ω. Consider196

the following Dirichlet direct problem for the modified Helmholtz equation:197

{
−∆u+ λu = b in Ω,

u = u∗ on ∂Ω,
(33)

9



Ω

Ω^

Collocation points
on the physical boundary

Source points
on the fictitious boundary

Figure 1: A MFS scheme applied to a boundary value problem.

where λ > 0 and the source b is given by198

b(x) =
m∑

j=1

αjδ(x− y
j
), (34)

with m, αj and y
j
∈ Ω for j = 1, . . . ,m being the number, intensities and199

locations of the pointwise sources that compound the source b. For the200

solution of (33) with b given by (34), using the MFS, we propose201

uMFS(x) =
M∑

i=1

ciφ(||x− P i||) +
m∑

j=1

αjφ(||x− y
j
||), (35)

where φ(||x||) is the fundamental solution of the modified Helmholtz equation202

given by203

φ(||x||) = 1

2π
K0(

√
λ||x||), (36)

in R
2, and204

φ(||x||) = e
√
λ||x||

4π||x|| , (37)

in R
3, with K0(||x||) being the modified Bessel function of the second kind205

of zero order. For the Dirichlet boundary condition of the problem (33), we206

have207

10



M∑

i=1

ciφ(||xk − P i||) = u∗(xk)−
m∑

i=1

αiφ(||xk − y
i
||), (38)

where xk are boundary collocation points on the physical boundary ∂Ω for208

k = 1, ..., L. Thus, we can find the approximate solution of (33) by solving209

the linear L algebraic equations (38), with M unknowns represented by the210

vector of coefficients c = (c1, . . . , cM). The flux q∗ can be easily obtained by211

calculating the normal derivative of equation (35) to give212

∂nuMFS(x) =
M∑

i=1

ci∂nφ(||x− P i||) +
m∑

j=1

αj∂nφ(||x− y
j
||). (39)

This facility in calculating derivatives is, in fact, another advantage of the213

MFS. It is worth noting that the numerical solution of the direct problem214

associated with functions vi, for i = 1, . . . ,m, presented in Subsection 3.1 is215

a particular case of the problem (33), where u∗ is zero and b is a single point216

source of unit intensity.217

Some works deal with the relationship between the MFS convergence and218

the fictitious values of the limit radius and the number of source points.219

In [3, 23, 24] it is possible to find error estimates for interior and exterior220

domain problems, which evidence the exponential convergence dependence221

with the number of source and collocation points. On the other hand, these222

parameters also make the condition number of the coefficient matrix resulting223

from the MFS grow exponentially. Besides the fictitious boundary radius224

value and number of source points, such estimates also depend on the domain225

dimension and its area or volume. For general considerations, the reader226

may also consult [11]. Finally, we stress that the combinatorial nature of the227

problem makes an exhaustive search quickly unfeasible when the number of228

point sources increases [28].229

5. Numerical Results230

5.1. 2D Case231

In this subsection, we present four 2D examples. In all examples the set232

of admissible point source locations X is generated using a distribution of233

sunflower seeds [31]. The flux data q∗ was generated numerically by solving234

11



the direct problem using the MFS, as explained in Section 4, where u|∂Ω is235

given by236

u|∂Ω = u∗(x, y) = cos(x) for all (x, y) = x ∈ ∂Ω. (40)

The calculation of matrix H and vector d, defined in (22) and (23), were per-237

formed using Simpson’s 1/3 numerical integration technique with 25 points238

on the physical boundary ∂Ω. Each pointwise source is represented by a cir-239

cle, where its center corresponds to the location and its radius is proportional240

to its intensity.241

The first example consists in performing the adjustment of the radius242

R > 1 of the fictitious boundary ∂Ω̂ for two different values of λ. The243

second example illustrates the procedure for identifying the correct number244

of pointwise sources. The third example analyzes the influence of the size of245

the set X of admissible sources. For the sake of simplicity, in the first three246

examples, the domain Ω is the unit circle centered at the origin Ω = B1(0).247

However, the fourth example reconstructs the pointwise sources considering248

noise in measured data q∗ for a non-symmetric bean-shaped domain Ω.249

Example 1250

The objective of this example is to investigate the effect of the radius251

R of the MFS fictitious boundary ∂Ω̂ for two different values of λ, namely252

λ1 = 9.5 (large reaction) and λ2 = 1.0 (moderate reaction). In both cases,253

we consider that the set of admissible point-source locations X has m = 100254

points.255

For λ = λ1 = 9.5, the target to be reconstructed consists of a single point-256

wise source with intensity α∗ = 10 and located at y∗
1
= (−0.11+∆x,−0.22−257

∆y), where ∆x = ∆y = 0 or ∆x = ∆y = 0.05. It is important to note258

that y∗
1
∈ X iff ∆x = ∆y = 0. We fix the numbers of boundary collocation259

and ‘singularity’ points as L = L1 = 15 and M = M1 = 12, respectively. In260

order to evaluate the accuracy of reconstruction, the relative error E between261

target intensity α∗ and optimal intensity αopt is calculated, namely,262

E =
|αopt − α∗|

|α∗| × 100. (41)

Figure 2(a) shows the variation of such relative error E as radius R of the263

fictitious boundary is increased and corresponds to the case where ∆x =264

∆y = 0, i.e. y∗
1
∈ X. Observing the relative error, it is possible to conclude265

that a reconstruction of the intensity is almost exact. In addition, obtained266
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optimal location yopt matches the exact location y∗
1
, i.e., ∥yopt− y∗

1
∥ = 0. For267

the case where y∗
1
/∈ X, we can observe in Figure 2(b) that the relative error is268

stable for R ≥ 1.2, attaining values close to 5%. Moreover, by calculating the269

Euclidean norm of the localization error, we have obtained ∥yopt−y∗
1
∥ < 0.07270

for R ≥ 1.2.271

For λ = λ2 = 1.0, the target considered also contains only one pointwise272

source located at y∗
1
= (−0.39+∆x, 0.43−∆y) with intensity α∗ = 20. In this273

case, we take L = L2 = 15 boundary collocation points and M = M2 = 16274

‘singularity’ points. The analysis of quality of reconstruction is analogous275

to what was previously obtained in Figures 2(a) and 2(b) for λ = λ1 = 9.5.276

As we can see in Figures 2(c) and 2(d), the same behaviors can be observed277

with respect to the reconstruction of the intensity, except for the region where278

some oscillations occur in the case where y∗
1
∈ X. Regarding the locations,279

the results obtained are similar.280

In the subsequent examples 2-4, we consider λ = 9.5, L = L1 = 15 and281

M = M1 = 16. In order to avoid committing an inverse crime, we consider282

R = 2 to obtain the flux from the direct problem and R = 3 in the inverse283

reconstruction algorithm.284

Example 2285

In this example, the objective is to reconstruct a target source with three286

pointwise sources (m∗ = 3), whose locations are given by y∗
1
= (−0.39, 0.43),287

y∗
2
= (−0.45,−0.34) and y∗

3
= (0.57, 0.40), with same intensities: α∗

1 = α∗
2 =288

α∗
3 = 6. Figure 3 shows the target to be reconstructed. The optimization289

problem has a different solution for each value of m. In this example, we290

propose a method to determine the correct number of pointwise sources mopt.291

Initially, the reconstruction method looks for a solution with one point source292

(m = 1) and proceeds to increase value of m until the vector of optimal293

intensities αopt contains one entry with negligible value. Figure 4 illustrates294

the results obtained for each value of m. As expected, the reconstruction is295

exact when m = m∗ = 3, i.e., yopt
i

= y∗
i
and αopt

i = α∗
i for all i ∈ {1, 2, 3}. In296

addition, for m = 4, the vector of optimal intensities has four entries, where297

three of them coincide with the entries obtained when m = 3 and the fourth298

entry has negligible value in relation to the others. This situation can also299

be seen in Figure 5 which illustrates the value of the functional J , given by300

Eq.(6), for each value of m. Note that for m = 3 the functional vanishes,301

as expected by Proposition 1. Therefore, we can conclude that the correct302

number of pointwise sources is mopt = 3. Table 1 shows the entries of the303
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(a) λ = 9.5 and y∗
1
∈ X (b) λ = 9.5 and y∗

1
/∈ X

(c) λ = 1.0 and y∗
1
∈ X (d) λ = 1.0 and y∗

1
/∈ X

Figure 2: Example 1: Radius R of the fictitious boundary versus the relative error E.

vector of optimal intensities for different values of m.304

Table 1: Example 2: The vector αopt
m of optimal intensities for different values of m.

m αopt
m

1 38.618
2 (5.2421, 20.736)
3 (6.0000, 6.0000, 6.0000)
4 (6.0000, 6.0004, 5.9989, 0.0002)

14



Figure 3: Example 2: Target.

Example 3305

This example aims to analyze the sensitivity of the reconstruction method306

concerning the size of the set of admissible locations X. Let us consider the307

reconstruction of a source with a single pointwise source located at y∗
1
=308

(0.25,−0.32) with intensity α∗ = 10. Four different sizes are considered309

for the set X, namely #X ∈ {20, 100, 200, 500}. In addition to the optimal310

intensities and locations, Table 2 also shows the distance between the optimal311

and target locations, as well as the relative error (41). Note that results get312

more accurate as of the size of X increases.313

Table 2: Example 3: Results obtained for different sizes of the set of admissible locations.

#X yopt
∥∥yopt − x∗∥∥ αopt E

20 (0.40,−0.25) 0.1673 7.8314 21.6%
100 (0.29,−0.29) 0.0530 9.6264 3.7%
200 (0.21,−0.32) 0.0390 10.354 3.5%
500 (0.24,−0.33) 0.0180 9.7806 2.1%

Example 4314

In this example, the reconstruction behavior for noisy data is analyzed.315

Instead of using the pair (u∗, q∗) to perform the reconstruction, we corrupt316

the Neumann data by noise and invert the pair (u∗, q∗µ). The noisy measured317
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data is q∗µ = q∗(1 + µη), where η is a function that generates random values318

in the interval [−1, 1] and µ corresponds to the noise level. Dirichlet data u∗
319

can also be corrupted by noise. The considered noise is multiplicative but320

additive noise can also be simulated. In fact, one advantage of the gradient-321

based method of Section 2.2 has over statistical methods of optimization is322

that it does not require any assumption on the type of noise the data is323

contaminated with. The solution domain Ω, illustrated by Figure 6, is the324

bean-shaped domain, given by the radial parameterization325

r(θ) =
0.55 + 0.30 cos(θ) + 0.1 sin(2θ)

0.6 + 0.3 cos(θ)
, θ ∈ (0, 2π]. (42)

The target contains three pointwise sources located at y∗
1
= (0.72, 0.30),326

y∗
2
= (−0.38, 0.26) and y∗

3
= (0.46,−0.54), with intensities α∗

1 = 5, α∗
2 = 10327

and α∗
3 = 15. Table 3 shows the results obtained for the following noise levels:328

µ = 5%, µ = 10% and µ = 20%, where Ei represents the error, given by Eq.329

(41), of component i. From this table it can be seen that the reconstruction330

of αopt is close to the exact value (5, 10, 15) when up to 10% noisy data are331

inverted. For higher level of noise such as 20% the reconstruction starts to332

significantly deteriorate.333

Table 3: Example 4: Results obtained for different levels of noise.

µ αopt
∑3

i=1 Ei

0% (5.0003,10.0014,14.9993) 0.02%
5% (4.9514,10.2605,15.1807) 4.78%
10% (5.1044,11.0354,14.0925) 18.49%
20% (5.6081,16.9403,3.8614) 155.82%

5.2. 3D Case334

We also show four examples for the three-dimensional case with the same335

purposes as the previous 2D case. The domain Ω is given by the unit336

sphere centered at the origin. On the boundary, we prescribe homogeneous337

Dirichlet data and the corresponding Neumann data q∗ is generated as ex-338

plained in Section 4. For the numerical solution of auxiliary problems, the339

pointwise sources are distributed over the boundary of a sphere centered at340

the origin whose radius and the number of ‘singularity’ points are adjusted341

for different values of λ. In addition, an adjustment is also made for the342
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number of collocation points on the boundary, where the implementations343

sphere cubed point num, sphere cubed points and sphere cubed points face344

[5] are used to generate points on the physical and fictional boundaries of345

the direct problems. Figure 7 illustrates a simulation of the distribution of346

source and collocation points using a radius R = 2 for the fictitious boundary,347

with 53 points on both boundaries. The set of admissible source locations348

is computed by the implementations grid ball and grid ball count [4].349

The Hessian matrix H and the vector d are calculated by evaluating the350

surface integrals using the implementation getLebedevSphere [30] based on351

the Lebedev quadrature [27].352

Example 5353

As in Example 1, in this example the radius R of the fictitious bound-354

ary is adjusted for a given λ in a three-dimensional domain. Thus, tak-355

ing initially λ1 = 9.5, we perform the reconstruction of a single point-356

wise source at location y∗
1
= (−0.66 + ∆x,−0.33 − ∆y,−0.33 + ∆z), with357

∆x,∆y,∆z ∈ {0.00, 0.05} and intensity α∗ = 2, in order to analyze the be-358

havior of the method according to the changes in the radius R, in cases where359

y∗
1
∈ X, when ∆x = ∆y = ∆z = 0, and y∗

1
/∈ X when ∆x = ∆y = ∆z = 0.05.360

The number of points in the set of admissible source locations is fixed at 117.361

Setting L = L1 = 26 collocation points and M = N1 = 56 source points,362

the reconstruction method provides very satisfactory results. Figures 8(a)363

and 8(b) show relative error of intensity reconstruction considering y∗
1
∈ X364

and y∗
1
/∈ X, respectively. Note that for R = 1.5 in Figure 8(b), the error365

stabilizes around 8%. However, the error in Figure 8(a) is around 10−7% for366

R ∈ [2.6, 4.3]. The location is reconstructed exactly when y∗
1
∈ X and with367

error ∥yopt − y∗
1
∥ = 0.0866 when y∗

1
/∈ X for all R ∈ [1.1, 5].368

For λ2 = 1.0, taking L = L2 = 26 and N = N2 = 56, we also reconstruct369

a single pointwise source, located at y∗
1
= (0.33+∆x,−0.33−∆y, 0.66+∆z),370

with intensity of α∗ = 4. Figures 8(c) and 8(d), respectively, show the relative371

error of α in cases where y∗
1
∈ X and y∗

1
/∈ X. Note that the curve in Figure372

8(d) begins to stabilize from R = 2, with error close to 12%. In Figure 8(c),373

the error was obtained around 10−16% for R ∈ [1.1, 3.4]∪ [4, 5]. With respect374

to the pointwise source location, the results are analogous to the case when375

λ = λ1 = 9.5.376
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Example 6377

In this example, considering λ = λ1 = 9.5, the source to be recon-378

structed contains three pointwise sources located at y∗
1
= (0.00, 0.34, 0.34),379

y∗
2
= (−0.34, 0.00,−0.34) and y∗

3
= (0.68, 0.34,−0.34), with intensities α∗

1 =380

α∗
2 = α∗

3 = 8. The procedure used to obtain the correct number of sources381

is analogous to that performed in Example 2. Figure 9 shows the results382

obtained for m ∈ {1, 2, 3, 4}. For m = 4, the method reconstructs a fourth383

source with negligible intensity (see Table 4). Thus, one can conclude that384

the correct number of pointwise sources is mopt = 3.385

Table 4: Example 6: Results obtained for different values of m, for λ = λ1 = 9.5.

m αopt
m

1 36.630
2 (7.3595,23.767)
3 (8.0000,8.0000,7.9999)
4 (8.0000,7.9999,8.0000,0.0000)

Taking λ = λ2 = 1.0, we consider the same locations of the sources386

previously studied, with intensities α∗
1 = 3, α∗

2 = 8 and α∗
2 = 13. Table 5387

shows numerical results and Figure 10 illustrates geometrical results obtained388

for each value of m. Note that the method reconstructs three pointwise389

sources of close intensities for m = 3 and m = 4. In addition, a fourth source390

with negligible intensity is obtained for m = 4, setting the method’s stopping391

criterion. The locations of the sources for m = 3 are reconstructed exactly.392

Table 5: Example 6: Results obtained for different values of m, for λ = λ2 = 1.0.

m αopt

1 20.096
2 (14.314,9.7602)
3 (12.9999,8.0000,3.0000)
4 (12.8650,7.8493,2.6605,0.6130)

Example 7393

In order to analyze the reconstruction of source in the presence of noise,394

we consider three pointwise sources located at y∗
1
= (0.00, 0.27, 0.27), y∗

2
=395

−(0.00, 0.81, 0.27) and y∗
3
= −(0.54, 0.54, 0.27), with intensities α∗

1 = 5, α∗
2 =396
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10 and α∗
3 = 15. Let us take first λ = λ1 = 9.5. The Neumann data q∗397

is corrupted with noise in the same manner as Example 4, with noise levels398

µ = 0%, 5%, 10% and 20%. Table 6 contains the results for intensities on each399

noise level. It is observed that the reconstructed intensities do not present400

great differences in relation to their exact values considering up to 10% noise.401

Table 6: Example 7: Results obtained for different levels of noise, for λ = λ1 = 9.5.

µ αopt
∑3

i=1 Ei

0% (4.9999,10.0001,15.0021) 0.02%
5% (5.0543,9.8340,15.4140) 5.51%
10% (5.1831,9.4872,16.1300) 16.32%
20% (5.2454,14.1235,5.9912) 106.20%

Performing the same procedure for λ = λ2 = 1.0, we consider the same402

locations of the sources previously used, taking now an intensity of α∗ = 5403

for all of them. Table 7 shows the results obtained. Note that, again, the404

reconstructed intensities do not present discrepancies in relation to their405

exact values. Locations are reconstructed exactly for both λ = λ1 = 9.5 and406

λ = λ2 = 1.0.407

Table 7: Example 7: Results obtained for different levels of noise, for λ = λ2 = 1.0.

µ αopt
∑3

i=1 Ei

0% (5.0000,4.9999,4.9999) 0, 004%
5% (5.0396,5.0365,4.9747) 2, 03%
10% (5.1433,5.0874,4.9617) 5, 38%
20% (4.5836,5.6699,4.5572) 30, 58%

6. Conclusions408

The main purpose of this paper was to reconstruct the location and the409

intensity of a set of pointwise sources, given by a linear combination of Dirac-410

delta functions, from Cauchy data on the boundary of the solution domain for411

a model given by the modified Helmholtz equation. The strategy used to solve412

the inverse source problem consisted in defining an equivalent optimization413

problem and performing a sensitivity analysis of the associated least-squares414
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functional, which led us to a strictly convex problem with respect to the415

intensity vector.416

Next, we have proposed a reconstruction algorithm based on the MFS.417

Furthermore, by considering source points inside the domain, we have applied418

the MFS directly to the homogeneous and non-homogeneous associated direct419

problems.420

We have performed several numerical tests to evaluate the algorithm in421

relation to grid size, the number of ‘singularities’ and placement points, and422

the distance between the fictitious and physical boundaries. Several examples423

have been investigated for two and three-dimensional problems showing that424

the proposed algorithm is accurate (for exact data) and stable (for noisy425

data). Future work will concern extending the results obtained for models426

given by other linear PDEs.427
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(a) m = 1. (b) m = 2.

(c) m = 3. (d) m = 4.

Figure 4: Example 2: Reconstructed sources for different values of m.
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Figure 5: Example 2: Number of pointwise sources (m) versus the values of least-squares
functional (6).

Figure 6: Example 4: Target.
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Figure 7: Distribution of source and collocation points on the physical and fictitious
boundaries.
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(a) λ = 9.5 and y∗
1
∈ X (b) λ = 9.5 and y∗

1
/∈ X

(c) λ = 1.0 and y∗
1
∈ X (d) λ = 1.0 and y∗

1
/∈ X

Figure 8: Example 5: Radius R of the fictitious boundary versus the relative error (41).
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(a) m = 1; λ = 9.5. (b) m = 2; λ = 9.5.

(c) m = 3; λ = 9.5. (d) m = 4; λ = 9.5.

Figure 9: Example 6: Reconstructed sources for different values of m and large reaction
λ = 9.5.
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(a) m = 1; λ = 1.0. (b) m = 2; λ = 1.0.

(c) m = 3; λ = 1.0. (d) m = 4; λ = 1.0.

Figure 10: Example 6: Reconstructed sources for different values of m and moderate
reaction λ = 1.0.
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