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Abstract

The discontinuous slip-line form of upper bound plasticity analysis is con-

sidered using an equilibrium of forces approach. It is demonstrated that the

underlying basis of the approach can be written in terms of stress functions

that provide a continuum stress state interpretation of the upper bound so-

lution. An alternative proof of the upper bound theorem, applicable to both

associative and non-associative materials, using stress functions is presented.

The broader nature of the equilibrium form and the strict conditions un-

der which it is valid are discussed, including examination of the apparent

omission of moment equilibrium and associativity in many equilibrium form

solutions. Finally, the relationship of the stress function formulation to the

output of the computational limit analysis method discontinuity layout op-

timisation (DLO) and the potential to use the stress function formulation

to derive a form of lower bound solution from an upper bound analysis are

demonstrated.
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1. Introduction

1.1. Background

The upper bound theorem of plasticity provides a long established and

highly effective means of bounding the ultimate load carrying capacity of a

mechanical system formed of ideal plastic materials and has a wide range5

of engineering applications, e.g. metal forming and cutting, geotechnical

collapse, concrete and steel frame strength analysis.

The upper bound theorem of plasticity was first presented by Gvozdev

(1938) and then separately by Hill (1951), and further extended by Drucker

et al. (1952) and Collins (1969). The method traditionally involves postulat-10

ing a compatible collapse mechanism consistent with the boundary conditions

and using the equivalence of rate of external and internal energy dissipation

to compute the ultimate load, or ‘load factor’. Using the principle of virtual

work this load can be proven to be an upper bound to the exact collapse load

factor for an ideal plastic material, where such a material possesses a convex15

yield surface and an associative flow rule (where the strain increment is nor-

mal to the yield surface). Such a mechanism can utilise continuum velocity

fields and/or discontinuous slip-lines/surfaces separating rigid zones.

While the energy or kinematic formulation of the upper bound theorem

is most often covered in textbooks (e.g. Johnson and Mellor 1962, Calladine20

1985, Chakrabarty 2006) and has sometimes been regarded as the ‘pure’

upper bound form, the equilibrium (equilibrium of forces) form of the upper

bound theorem (sometimes referred to as a ‘limit equilibrium’ or LE form)

has often been considered the ‘lesser’ form. Michalowski (1989) asserts that
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the ‘limit equilibrium’ form is not equivalent to the energy balance limit25

analysis form of the upper bound theorem, and that the latter requires an

associative flow rule, while the former does not. In this paper it will be

shown that with the adoption of maximization, the two methods are in fact

equivalent.

To the authors’ knowledge no in depth study of the classical equilibrium30

approach has been presented. This paper re-examines the upper bound the-

orem in both kinematic and equilibrium form with specific focus on plane

strain discrete slip-line fields, providing an alternative and novel mathemati-

cal proof based on the use of stress functions and applicable to both associa-

tive and non-associative materials. This provides a convenient framework to35

clarify the correct application of the equilibrium method and to provide new

perspectives on the issue of apparent lack of moment equilibrium in many

analyses in the equilibrium form, to examine issues related to non-associative

problems, and to demonstrate how lower bound solutions may be derived us-

ing the same methodology as used to derive an upper bound. For simplicity40

the work will be restricted to the use of the Tresca or Mohr-Coulomb yield

criteria and plane strain problems. However the principles discussed herein

should apply to any convex yield function and may be extended to three

dimensions.

In part this work builds on the principle of the mathematical duality of45

the kinematic and equilibrium forms in optimization. The principle of duality

in optimization has long been established (e.g. Charnes et al. 1959. in the

context of the limit analysis of trusses) and has been discussed e.g. by Ciria

et al. (2008) in the context of continuum limit analysis and by Smith and
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Gilbert (2007) in the context of discrete limit analysis via discontinuity layout50

optimization (DLO). This paper develops equations similar to those derived

by Smith and Gilbert (2007). However in that work the wider significance of

these equations was not discussed. The present work adopts a very different

starting point and analytical framework that elucidates the underlying stress

function basis of the approach from first principles.55

1.2. Lower and upper bound theorems for associative materials

While the focus of this paper is the upper bound, it is convenient to restate

both the conventional lower bound and upper bound theorems of plasticity

as follows (after Chen 1975) for a problem involving an ideal plastic material

possessing a convex yield surface and following an associative flow rule:60

Theorem 1. (lower bound - associative material) - If an equilibrium

distribution of stress covering the whole body can be found which balances the

applied loads on the stress boundary and is everywhere below yield then the

body at the applied loads will not collapse.

Theorem 2. (upper bound - associative material) - If a compatible65

mechanism of plastic deformation is assumed, then the applied loads deter-

mined by equating the rate at which external forces do work to the rate of

internal energy dissipation will either be higher or equal to the actual limit

load.

1.3. Theoretical issues arising from the equilibrium analysis approach70

This paper will make extensive use of a simple punch indentation problem

(common to e.g. soil and metal plasticity problems) involving a weightless
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Figure 1: Simple analysis of the vertical indenter force V required to cause failure in a

cohesive material

Tresca material of shear strength k to illustrate a number of theoretical issues.

The simple postulated mechanism in Figure 1 can be used to illustrate use

of the energy and equilibrium approaches to solve the indentation problem.75

Details of the kinematic energy calculation are presented in Appendix A,

which gives the collapse load to be V = 6kL.

For the classical equilibrium method, the solution proceeds as follows.

Free body diagrams are drawn with the direction of shear stress selected by

inspection or by reference to the kinematic solution hodograph, as shown in80

Figure 2. Since shear failure is assumed to be occurring across interfaces OA,

OB and AB, the following equations may be written:

SA = SB =
√
2kL (1)

S = kL (2)

Resolving forces for block B vertically and horizontally:
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Figure 2: Free body diagrams for mechanism depicted in Figure 1

S +
SB√
2
=
NB√
2

(3)

N =
SB√
2
+
NB√
2

(4)

Hence

N = S +
√
2SB = 3kL (5)

Resolving forces for block A vertically and horizontally:85

V = S +
SA√
2
+
NA√
2

(6)

N +
SA√
2
=
NA√
2

(7)

Hence

V =
√
2SA + S +N =

√
2SA + 2S +

√
2SB = 6kL (8)
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which, as expected, is the same result as from the kinematic analysis.

However five aspects of this analysis should be highlighted for further con-

sideration:

1. The direction of shear stress acting on each boundary was determined90

intuitively or from the hodograph. (Appendix B provides an illustra-

tive example of how an intuitive choice may not match the requirement

for an upper bound).

2. Yield was assumed on each boundary.

3. At no stage was moment equilibrium considered.95

4. There is no immediately apparent need that the arrangement of sliding

blocks is able to form a kinematically compatible mechanism.

5. At no point was the associative flow rule explicitly considered.

These issues will be revisited later in the paper. The upper bound will

now be examined from an alternative standpoint.100

2. Methodology

2.1. Alternative upper bound theorem for associative and non-associative ma-

terials

An alternative proof of the upper bound theorem is given here which

applies to a material with any flow rule, including non-associative flow rules:105

Theorem 3. (upper bound - associative or non-associative mate-

rial) - If an equilibrium stress field is found, also in equilibrium with ex-

ternal forces such that the maximum possible load sustainable by the system
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is achieved without yield being violated in any part of the domain, then the

applied load will be an upper bound to any collapse load.110

This must hold since any increment of load would lead to stresses that

would have to exceed yield in the domain to preserve equilibrium and thus

an impossible state. While at first sight this theorem resembles the lower

bound theorem (Theorem 1), the key differences here that renders it an

upper bound, are: (i) the stipulation that a maximum load must be found115

(involving an exhaustive search of all possible equilibrium stress fields), and

(ii) the absence of any conditions on the flow rule. Of course if an associative

flow rule is adopted this then is also simultaneously a lower bound and the

stipulation that the maximum possible load must be found, renders it a true

plastic solution. However, it is rendered an upper bound in general since120

non-associative collapse mechanisms must occur at the same or lower loads

(Chen, 1975).

The relative status of upper and lower bound solutions for both associa-

tive and non-associative materials can be usefully illustrated by the diagram

in Figure 3. . It can be seen that for an associative material the optimal (low-125

est) upper bound equals the optimal (highest) lower bound and this gives a

single unique true solution (in terms of collapse load - there may be multiple

solutions that all give the same collapse load), whereas, for non-associative

materials there is a range of true solutions. Here a true solution (for both

associative and non-associative materials) is defined as one in which yield130

is not violated at any point and where application of the flow rule to the

stress field results in a kinematically admissible velocity field that satisfies

the velocity boundary conditions.
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Non-associative true solutions are always less than or equal to the associa-

tive true solutions. It follows that the associative upper bounds are also upper135

bounds to non-associative materials. Lower bounds for non-associative Mohr-

Coulomb materials may be determined by substituting the angle of dilation

for the angle of shearing resistance in Theorem 1 (Chen, 1975). However

these non-associative lower and upper bounds are not necessarily true solu-

tions when optimised. . Only a very few examples of rigorous closed form140

true non-associative solutions exist for continuum materials, e.g. Smith

(2012). whereas for discontinuous problems such as fractured rock and ma-

sonry, where potential failure lines are clearly pre-defined, non-associative

results are readily available e.g. Gilbert et al. (2006). Non-associative true

solutions may also be generated using incremental elasto-plastic finite ele-145

ment methods.

Associative:
0 Lower Bound (T1) Upper Bound (T2)

(T3)
True

∞

Non-associative:
Lower
bound

True Upper Bound (T2)
Max.

possible
true
(T3)

∞

Figure 3: Relationship between associative and non-associative limit loads. T1, T2 and

T3 refer to Theorems 1, 2 and 3 in the text.

An extension to Theorem 3 where only part of the domain is constrained

can also be stated:

Theorem 4. (upper bound - associative or non-associative mate-

rial) - If an equilibrium stress field is found, also in equilibrium with ex-150
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ternal forces such that the maximum possible load sustainable by the system

is achieved without yield being violated in only part of the domain, then the

applied load will be an upper bound to any collapse load.

This follows directly from Theorem 3. Checking more of the domain will,

in general, improve the upper bound estimate. It is possible to undertake155

the checks either at points, along lines, or within elements. However it is

necessary, but not necessarily sufficient, that the points, lines, and/or ele-

ments must form at least a continuous ‘barrier’ between the load and any

support if the solution is not to be infinite (it will always be possible to find

a stress state that bypasses unconnected points, lines or elements to result in160

an infinite load capacity when the load is maximised). Hence in Figure 1 the

slip-lines separate the load from the (implicit) support at infinity in order to

provide a potentially useful solution for e.g. a Tresca material. However it is

known for example that the set of lines depicted in Figure 1 generate an in-

finite solution for any Mohr-Coulomb material with friction angle ϕ > 22.5o.165

Additionally, any ‘free’ ended line or element (i.e. one that does not form

part of a continuous ‘barrier’) is redundant. Stresses in the parts of the do-

main between lines or elements that are not checked may exceed yield, thus

giving rise to an upper bound solution. Since a continuous ‘chain’ of points

leads to a line or element, only lines or elements need to be considered. In170

this paper consideration will be restricted to lines, consistent with classical

rigid-block analysis. It is necessary therefore to consider the state of stress

and yield along lines in an arbitrary stress field. This can be formulated in

plane strain by considering an Airy stress function (Airy, 1863) and mech-

anisms involving a series of connected lines, furnishing a range of useful175
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outcomes.

2.2. Airy stress function

The use of stress functions has been a feature of many classical analysis

approaches in continuum elasticity and in some areas of plasticity analysis,

such as for torsion problems, e.g. Chakrabarty (2006), and in the lower180

bound analysis of concrete disks (Nielsen and Hoang, 2011). However the

significance of such stress function solutions does not seem to have been

considered for upper bound plasticity approaches.

Consider that a stress function field is sought, in equilibrium with external

forces, that provides an upper bound solution to a problem defined by a series185

of lines (such as depicted in Figure 1). Moment and translational equilibrium

is implicit, satisfying Theorem 4. Ensuring yield is not violated along each of

the lines or rigid block boundaries while maximising the load then completes

the application of the theorem. The theory enabling this process may be

developed as follows.190

The equations of equilibrium in two dimensions with body forces Fx and

Fy acting in the +ve axes direction are given by:

∂σx
∂x

+
∂τyx
∂y

+ Fx = 0 (9)

and

∂σy
∂y

+
∂τxy
∂x

+ Fy = 0 (10)

τxy = τyx (11)
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Adopting the sign convention in Figure 4, where tension, anti-clockwise

(τxy) shear stresses, and clockwise (τyx) shear stresses are all taken as positive,

an arbitrary function Φ is defined such that:

σx = Ω+
∂2Φ

∂y2
(12)

σy = Ω+
∂2Φ

∂x2
(13)

τxy = τyx = −
∂2Φ

∂x∂y
(14)

where the body forces are determined by the potential function Ω as:

Fx = −
∂Ω

∂x
(15)

Fy = −
∂Ω

∂y
(16)

It is found that the equations of equilibrium are identically satisfied for

all values of Φ and Ω.

It is convenient for later derivations to define functions u, and v as follows:

u =
∂Φ

∂y
(17)

v = −
∂Φ

∂x
(18)

where the negative sign in equation (18) is adopted for consistency with195

the DLO formulation described in (Smith and Gilbert, 2007).
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x

y

σy +
∂σy

∂y
dy

τyx +
∂τyx
∂y
dy

σy

τyx

σx +
∂σx

∂x
dx

τxy +
∂τxy
∂x
dx

σx

τxy

Figure 4: Conventional sign convention (tension positive)

2.3. Derivation of forces along a line

2.3.1. Basic equations

Consider a straight line joining two nodes a and b as shown in Figure 5,

Given values of u, v, and Φ at these nodes and generalising the analysis of200

a specific case given by Airy (1863), the shear force S (clockwise positive),

normal force N (tensile positive) and moment M (positive bending towards

a) along any line can be computed.

N

S

M

N

S Ma

b

θ

Figure 5: Forces along a discontinuity.
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It is convenient to derive the stress function on a rotated coordinate

system. Let α and β be direction cosines of the line where α = cos θ and205

β = sin θ and where θ is the anti-clockwise angle of the line to the horizontal

x-axis. It can be shown (see Appendix A) that shear and normal stresses

along the line can be expressed as follows:

τ = −α
du

dl
− β

dv

dl
(19)

σn = β
du

dl
− α

dv

dl
(20)

Hence the shear and normal forces along the line can be computed by

integration as follows.210

2.3.2. Shear and normal forces

S =

∫ b

a

τ.dl =

∫ b

a

(

−α
du

dl
− β

dv

dl

)

.dl (21)

S = [−αu− βv]ba = −α(ub − ua)− β(vb − va) (22)

N =

∫ b

a

σn.dl =

∫ b

a

(

β
du

dl
− α

dv

dl

)

.dl +

∫ b

a

Ω.dl (23)

N = [βu− αv]ba = β(ub − ua)− α(vb − va) +

∫ b

a

Ω.dl (24)

where ua, ub, va, vb are the values of u and v at nodes a and b. Hence the

normal and shear forces can be determined by the values of u and v at the

end points only and an integral of the body force function Ω.

14



2.3.3. Moment215

The moment M about the midpoint of the line (m) can be similarly

calculated as follows:

M =

∫ b

a

σn(l − lm).dl =

∫ b

a

(

β
du

dl
− α

dv

dl

)

(l − lm).dl +MΩ (25)

where MΩ =
∫ b

a
Ω(l − lm).dl, hence,

M =

∫ b

a

(β.du− α.dv) (l − lm) +MΩ (26)

Integrating by parts gives:

= β

(

[(l − lm)u]
b

a −
∫ b

a

u.dl

)

− α

(

[(l − lm)v]
b

a −
∫ b

a

v.dl

)

+MΩ (27)

= β
(

[(l − lm)u]
b

a

)

− α
(

[(l − lm)v]
b

a

)

−
∫ b

a

(βu− αv).dl +MΩ (28)

Noting (see Appendix C)220

Φ =

∫

(−v.α + u.β).dl (29)

gives:

= β ([(lb − lm)ub]− [(la − lm)ua])−α ([(lb − lm)vb]− [(la − lm)va])−(Φb−Φa))+MΩ

(30)

M = −0.5αl(va + vb) + 0.5βl(ua + ub) + Φa − Φb +MΩ (31)

15



where Φa, Φb are the values of Φ at nodes a and b. Moments may thus

be derived from a knowledge of Φ and u and v at the end points and an

integral of the body force function Ω. To some extent equations 22 and 24

share similarities to the nodal force theory employed in yield line analysis225

(Johansen, 1962), (Nielsen and Hoang, 2011); however these were derived

for an out-of-plane analysis without reference to stress functions and do not

address the additional moment calculations required in an in-plane analysis.

2.4. Checking yield violation on a line

To generate an upper bound solution that satisfies Theorem 4, it is nec-230

essary to demonstrate that yield is not violated on at least part of each line.

This may be achieved through the computation of S, N and M on each

line, in combination with the yield function

f(S,N,M) = 0 (32)

where f represents the yield function in an average sense.

In the following discussion, for clarity, the straight line joining the two235

end points a and b on which S, N and M are computed will now be termed

the ‘chord’ between these points. In order to test for yield in an upper bound

sense, it necessary to consider a specific family of ‘slip-line’ curves that also

join these two points, forming a body between the curve and the chord. This

curve must have a geometry that allows unknowns in the problem to be240

eliminated, in order that a generally applicable equation can be written.

Thus to generate a robust criterion using the Mohr-Coulomb yield crite-

rion for example, it is necessary to utilise a suitable curve (a log spiral) such

16



that the resultant of the frictional shear, τφ and normal, σn, yield stresses

(excluding those due to cohesion, τk) acts through a common centre as de-245

picted in Figure 6 for a material with constant friction angle ϕ, where the

total shear stress τ = τk + τφ. Taking moments about O it is thus necessary

to balance only the moments due to M , N and S with the integral of the

cohesive stresses acting along the curve, and the momentMS due to the body

forces acting on the segment between the chord and the curve. This must250

be demonstrated for all possible curve sets. The direction in which the shear

stress acts is determined by the direction of relative rotation (ω) across the

curve. The yield condition along the curve therefore becomes, for positive ω:

Stl +Nul +M ≤
∫ b

a

kr2.dψ +MS (33)

and for negative ω, where ul also becomes negative

−Stl −Nul −M ≤
∫ b

a

kr2.dψ +MS (34)

where it is necessary to consider rotation in either direction. For a con-

stant angle of friction ϕ, in effect it is being shown that, on average:

τ = τk + τφ ≤ k + σn tanϕ (35)

where the choice of curve enforces τφ = σn tanϕ and hence it remains255

to enforce τk ≤ k along the line in an average sense (where τk may be less

than zero). Thus it is not necessary to know the normal and shear stresses

at every point along the line. This is a partial enforcement of yield, and

hence satisfies Theorem 4, which is satisfied if τk ≤ k everywhere but can be

satisfied if τk ≤ k on part of the line and τk > k on other parts. In either case260

17
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Figure 6: Geometry of log spiral (ϕ = 30o), with ω +ve (clockwise).

the requirement that without yield being violated in only part of the domain

has been satisfied, neither has it been enforced to be at a magnitude lower

than yield at some point on the line.

To generalise this point, it is necessary that f is convex in order to satisfy

Theorem 4. Enforcement of yield in an average sense on a line for a non-265

convex yield surface will always require enforcement of a stress state less than

yield somewhere on the line, unless all stresses on the line are equal to the

average value, thus over-constraining the problem.

It should also be noted that an associative flow rule has not been invoked

in this argument.270

The nature of an upper bound equilibrium solution can now be clarified:

Theorem 5. An upper bound solution based on slip-lines connecting pairs of

18



nodes in a domain may be established by defining stress function parameters

Φ, u, v at these nodes, in equilibrium with external forces and maximising

the live load while demonstrating that yield, defined by a convex surface, and275

determined using the slip-line end point nodal stress function values, is not

violated in an average sense for each slip-line.

Such a solution will implicitly satisfy all equilibrium requirements through-

out the domain. This follows from the stress-function formulation. A stress

function may always be fitted to (legitimate) boundary conditions, implicitly280

satisfying equilibrium, and since the functions are defined only at points,

no a-priori assumption about the nature of the stress field has been made.

Hence maximization of the live load through free choice of stress function

values at these points will always satisfy the requirement that an exhaustive

search has been carried out of all possible equilibrium stress fields. Without285

any yield checks, a maximised stress function will be a true upper bound, but

will result in an infinite collapse load. For a useful upper bound it remains to

enforce yield in part or all of the domain. This may be illustrated through

a series of examples in Section 3, beginning with translational mechanisms

and then considering rotational mechanisms. For sake of simplicity these290

examples will assume no body forces are acting, although inclusion of body

forces is straightforward.

2.5. Implications

As discussed in Section 2.2, the stress function interpretation of the equi-

librium form of the upper bound theorem demonstrates that for any analy-295

sis, equilibrium is implicitly guaranteed regardless of how many equilibrium

19



equations are employed. Equilibrium equations in the classical rigid-block

analysis method are simply used to determine values of forces/moments that

can be used to check that yield is not violated in an average sense along

specific rigid block boundaries or to ensure equilibrium with external forces.300

For example, the simple translational analysis presented in Figure 2, does

not explicitly consider moment equilibrium. Similarly, for some problems,

not all translational equilibrium checks are directly considered. Consider

for example the sliding of a rigid block on a rigid horizontal surface with a

cohesive interface. It is only necessary to utilise horizontal equilibrium to305

establish the failure load. This does not indicate that vertical equilibrium is

not satisfied. It is simply that the forces associated with vertical equilibrium

are not considered in the stability check. The following corollary to Theorem

5 may thus be stated:

Corollary 1. (to Theorem 5) - An upper bound solution based on a rigid-310

block equilibrium analysis and in equilibrium with external forces will im-

plicitly satisfy all equilibrium requirements throughout the domain. It is not

necessary to check equilibrium is satisfied, but equilibrium equations may be

used to determine forces and moments acting in the system in order to apply

yield constraints in part of the domain.315

It may also be observed that the apparent assumption of yield on a ‘slip-

line’ in equilibrium upper bound calculations follows on from the maximiza-

tion requirement, rather than being an inherent assumption of the analysis.

Hence, while the use of the term ‘slip-line’ presupposes slip and yield, such

lines are perhaps better termed ‘rigid block interface lines’.320

It is also important to note that maximization is a necessary requirement

20



of an equilibrium upper bound computation, which renders it less straightfor-

ward to use than the kinematic case, especially for complex problems. In the

kinematic case, minimization will generate a better upper bound solution,

but non-minimized solutions will still be upper bounds.325

3. Application examples

3.1. Translational mechanism analysis

3.1.1. Yield function

For a straight line, the centre of rotation is at infinity, ψ → 0; hence, re-

ferring to Figure 6, u/t→ tanϕ,M andMS become negligible and equations

33 and 34 reduce to the familiar form of:

S ≤ K −N tanϕ (36)

and when the shear stresses are reversed:

S ≥ −K +N tanϕ (37)

where:330

K =

∫ b

a

k.dl (38)

Thus translational mechanisms formed of straight slip-lines are sufficient

to give an upper bound solution, though not necessarily an optimal one.

Only variables u and v need to be set at the end points of slip-lines in order

to provide suitable values of S and N , that satisfy equations equation (36)

and equation (37) and the boundary conditions. However Φ can take on any335
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value at the slip-line end points. It is only its gradient that is defined by

u and v. Thus while moment equilibrium is implicitly satisfied, yield may

occur along curved slip-lines since these are not checked.

3.1.2. Free body diagram solution (force based)

Before deriving a stress function based solution, it is useful to first derive340

a classical force based solution, where the slip-lines are pre-defined.

In a set of free body diagrams, yield is usually assumed on each line and

generally the direction of action of the shear force is chosen by inspection (as

it is typically obvious).

However, to generate a valid upper bound, it is necessary to set all the345

shear directions such that they maximise the load. Sometimes this is not

intuitive as has been shown in Appendix B.

Returning to the simple indentation problem in Figure 1 and revisiting

the analysis given in equation (8), this should therefore be rewritten as:

maxV =
√
2SA + S +N =

√
2SA + 2S +

√
2SB (39)

where:350

−
√
2kL ≤ SA ≤

√
2kL (40)

−kL ≤ S ≤ kL (41)

−
√
2kL ≤ SB ≤

√
2kL (42)

Equations 40 to 42 can be conveniently rewritten as follows:
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SA = κA
√
2kL (43)

S = κkL (44)

SB = κB
√
2kL (45)

where −1 ≤ κ ≤ 1.

max
V

kL
= 2κA + 2κ+ 2κB (46)

The result, by inspection, is clearly the same as given in equation (8), i.e.

V = 6kL, where κA = κ = κB = 1..

In this problem there are 3 unknowns and 3 equations (43 to 45). If355

the value of κ on each line is chosen by inspection then the problem is thus

statically determinate and thus there is only one value computed in equation

(39) and the maximization process is redundant. This is true in general for

any translational problem. Thus the implicit maximization is not seen in

typical equilibrium calculations.360

In general, mechanisms composed of triangles and/or quadrilaterals are

statically determinate. Each additional quadrilateral will normally share

two known boundaries. There are thus four additional unknowns (S and N

twice), but two additional equilibrium equations and two additional yield

equations relating S and N .365
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3.1.3. Stress function for two wedge indenter problem

The above calculation was carried out using values of the forces on dis-

continuities rather than the stress function variables at nodes. This is more

intuitive for hand calculation purposes. However having done this, it can be

examined directly with reference to stress function variables, given a stati-370

cally determinate problem. The general procedure is as follows:

1. Set an arbitrary reference (Φ, u, v) triple (all calculations are relative).

2. Determine values of (Φ, u, v) at other nodes on loaded/free boundaries

using the boundary conditions.

3. Determine values of (Φ, u, v) at internal nodes so that yield is not vio-375

lated on any designated line. In simple cases maximum values can be

taken on each line with shear direction determined intuitively.

4. Extract collapse load from values of (Φ, u, v) at ends of relevant bound-

aries.

V

a b c

d

(Φa, 0,−V ) (0, 0, 0) (Φc, 0, 0)

(Φd, 3kL,−kL)

Figure 7: Two wedge solution for indenter problem showing u and v values

To solve the problem in Figure 1 it is necessary only to set the value of380
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u and v since only straight lines (translational) cases are being considered.

Proceed as follows (with reference to the points a, b, c, and d in Figure 7):

1. Set an arbitrary reference of (ub, vb) = (0, 0) at the origin (b).

2. Noting boundary conditions on bc, N = T = 0, gives (uc, vc) = (0, 0).

On ab, N = −V = −(vb − va) and T = 0 = −(ub − ua), thus (ua, va) =385

(0,−V ).

3. Invoke yield on bd, dc and da. Yield on bd requires S = −(vb − vd) =

−kL, hence vd = −kL. yield on dc requires S =
√
2
2
(−(uc − ud) −

(vc − vd) = −
√
2kL, hence ud = 3kL. Yield on da requires S =

√
2
2
(−(ua − ud)− (va − vd) = −

√
2kL, hence va = −6kL.390

4. Extract collapse load V = −va = 6kL.

It is clear that equilibrium has not explicitly been checked at any point.

Stress function values were simply set in order to not violate yield or to

satisfy surface boundary conditions.

It is now instructive to consider the nature of an equilibrium stress field

that generates this upper bound solution. While it is possible to fit an infinite

number of fields to these nodal values, here a simple piecewise cubic equation

is chosen to represent the stress function that provides the nodal values in

Figure 7. Taking the origin at b and L = 1, gives the equations as follows:

Φ = (xy2 + px2 − 1.5y2 − qx− 0.5q)k (47)

u =
∂Φ

∂y
= (2xy − 3y)k (48)

v = −
∂Φ

∂x
= (−y2 − 2px+ q)k (49)
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where p = 0, q = −6 for x ≤ −1, p = −3, q = 0 for −1 ≤ x ≤ 0 and395

p = q = 0 for x ≥ 1. The terms in q are not strictly necessary, but maintain

a smooth stress function across the x = −1 and x = 0 lines. The stress

function itself is plotted in Figure 8, and the stresses themselves are given

by:

σx =
∂2Φ

∂y2
= (2x− 3)k (50)

σy =
∂2Φ

∂x2
= 2pk (51)

τxy = τyx = −
∂2Φ

∂x∂y
= −2yk (52)

The states of stress at key points a, b, c and d are plotted as Mohr’s400

circles in Figure 9. Since there is a stress discontinuity down the y-axis,

circles are plotted at b and d on the left hand (l) and right hand (r) sides of

the discontinuity.

It is clear by inspection that yield is violated at points b and d (and will

be at many other locations); however by considering the dashed lines passing405

through the poles of the circles, it is also clear how the upper bound solution

is achieved. The shear stress on slip-line ad at a is 0.5k, and at d it is 1.5k.

Given the chosen stress function there is a linear variation of shear stress

along the line ad and thus the average stress is k, satisfying the upper bound

yield constraint on this line. The same can be seen for line cd.410

For line bd, the shear stress varies from 0k at b to 2k at d. Again the

average stress is k as required.
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c

Figure 8: Two wedge stress function contours (dashed black lines) and slip-lines (solid

blue lines) for kL = 1. Collapse load = 6kL.

3.1.4. Stress function for incomplete mechanism

Here the scenario where the line bd is omitted from the upper bound

yield check is considered. In terms of shear forces on each line, equation415

(39), S is unbounded and so the maximum value of V is infinite. For the

derivation of an example stress function, this will be considered equivalent

to assuming the middle line has shear strength nk where n → ∞. The

results (presented in Appendix D) show that, while Mohr’s circles at key

points become infinite, resulting in an infinite load capacity, the averaged420

shear stress (shear stresses vary from negative to positive) along the checked

discontinuities remains finite and equal to the yield stress.

3.1.5. Stress function for Prandtl mechanism

The preceding stress function solutions considered above clearly violates

yield at many points within the stress field. It is of interest to examine the425

known true solution in the same context that was derived by Prandtl (1920).
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σn−2k−4k−6k

τ

2k

k

−k

−2k

a

bl

dl
dr

br

c

Figure 9: Two wedge stress function. Corresponding Mohr’s circles. Poles of circles are

marked by a large solid circle. Stress states on slip-line end points are marked by a small

solid circle. Collapse stress −6k indicated by hollow square.

For simplicity only half the problem will be considered (i.e. a semi-infinite

indenter on the negative x-axis is considered. The stress function for the

Prandtl problem is given as follows:

430

For tan−1(−y/x) < 45o:

Φ = −ky2 (53)

For 45o < tan−1(−y/x) < 135o:

Φ = k(x2 + y2)
(

tan−1(y/x)− 0.5 + 0.25π
)

(54)

For tan−1(−y/x) > 135o:

Φ = 0.5k(−πy2 − (2 + π)x2) (55)
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The stress function itself is plotted in Figure 10 together with the Prandtl

slip-line pattern. As before, the states of stress at key points a, b, c and d

are plotted as Mohr’s circles in Figure 11.435

While Mohr’s circles are plotted only at 6 locations, the lack of yield vio-

lation indicated extends across the whole domain. All circles have diameter

2k. The angular positions of b about O are now significant and these were

selected to be at ±45o to O. Hence they share the same stress state as either

a or c.440
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-3

-3.5

-4

-4.5

-5

-5.5

-6

-6.5

-7

-7.5

(0, -5.1)
a

(0, 0)

bl

(2.6, -1)
dl dr

br

(0, 0)
c

Figure 10: Prandtl solution stress function contours (dashed black lines) and slip-lines

(blue solid lines) for kL = 1. Collapse load = 5.14kL.

3.2. Rotational mechanism analysis

While the translational analysis is relatively straightforward and often

involves statically determinate problems, the same is not generally true when

rotational mechanisms are involved. For a Tresca material with zero friction,

the slip-lines will take the form of arcs of circles and the normal force will445

not affect the yield function.
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σn−2k−4k−6k

τ

2k

k

−k

−2k

a
bl dl dr br

c

Figure 11: Prandtl solution stress function and corresponding Mohr’s circles. Poles of

circles are marked by a solid circle. Stress states on slip-line end points are marked by a

small solid circle. Collapse stress −5.14k indicated by hollow square.

3.2.1. Yield condition for curved slip-line

In Figure 6, under conditions of zero friction, r = r0 = r1, u = 0, and

following equation (33), the yield condition can be written for an arc:

−ψr2k ≤ Sr cos(ψ/2) +M ≤ ψr2k (56)

where ψ is positive if O lies on the left hand side of ab and where M is450

positive bending towards a. This can be expressed as an equality as follows,

where −1 ≤ κ ≤ 1:

M = κψr2k − Sr cos(ψ/2) (57)
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3.2.2. Single arc rotational solution

A simple statically determinate solution will first be considered. For a

simple single arc rotational solution to the indentation problem (with refer-455

ence to the nodal positions shown in Figure 7), where the centre of rotation

lies on a vertical line through point b, and the arc starts at a and ends at c,

it can be shown that the (Φ, u, v) values along the surface at a, b and c must

be (−p/2, 0,−p), (0, 0, 0) and (0, 0, 0) respectively where p is the normalised

collapse load. p = 2πk for a semi-circular arc and p = 5.52k for the optimal460

rotational mechanism where ψ = 134o (Powrie, 2013).

A simple stress function that fits this is as follows:

For x > 0,

Φ = −0.25py2k (58)

For x < 0:465

Φ = (−0.5px2 − 0.25py2)k (59)

Consider the Mohr’s circles as shown in Figure 12. It can be shown that

the integral of the shear stress along the arc gives the expected moment M :

M

kL2
=

ψ

4 sin2(ψ/2)
(60)

3.2.3. Two wedge solution involving yield on rotational slip-lines

Now the two wedge problem will be analysed, where the lines are now

treated as chords and where the potential for rotation about each chord470
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σn−2k−4k−6k
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br

c

Figure 12: Mohr’s cricles for single arc solution for indentation problem. Poles of circles

are marked by a large solid circle. Stress states on slip-line end points are marked by a

small solid circle. Collapse stress −6.28k indicated by hollow square.

is considered. Moments are now also considered, leading to the free body

diagrams depicted in Figure 13. (Note, S is drawn in Figure 13 in the opposite

direction to Figure 2, in order to be consistent with the sign convention in

Figure 6; similarly the normal force directions are reversed.) As before a

solution invoking forces on chords rather than stress functions at nodes will475

first be examined.

Taking moments about A gives:

MA + 0.5SL+M = 0 (61)

Taking moments about B gives:

MB + 0.5SL =M (62)

Consideration of yield, equation (57), gives the following relationship be-
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Figure 13: Free body diagrams for mechanism depicted in Figure 1

tween M and S:

M = κψr2k − xS (63)

where,

cos(ψ/2) = x/r (64)

and where ψ and x may be positive or negative. Also480

MA = κAψAr
2
Ak − xASA (65)

MB = κBψBr
2
Bk − xBSB (66)

Substituting

κAψAr
2
Ak − xASA + 0.5SL+ κψr2k − xS = 0 (67)
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(κAψAr
2
A + κψr2)k − xASA = −(0.5L− x)S (68)

SA =
(κAψAr

2
A + κψr2)k + (0.5L− x)S

xA
(69)

At B:

κψBr
2
Bk − xBSB + 0.5SL = κψr2k − xS (70)

(κBψBr
2
B − κψr2)k − xBSB = −(0.5L+ x)S (71)

SB =
(κBψBr

2
B − κψr2)k + (0.5 + x)S

xB
(72)

Based on equation (8), the overall force V is given by:

max V =
√
2SA − 2S +

√
2SB (73)

Hence

max V =
√
2
(κAψAr

2
A + κψr2)k + (0.5L+ x)S

xA
−2S+

√
2
(κBψBr

2
B − κψr2)k + (0.5L− x)S

xB
(74)

The above equation holds for any arbitrary choice of curved slip-lines. How-485

ever in general since S is unconstrained, most solutions will yield infinite

(locked) results. Finite solutions can only be obtained if the corresponding

kinematic problem is kinematically compatible, i.e. only very specific sets of

curves will give finite solutions.
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To generate a kinematically compatible set of curves for this problem,490

first centres of rotations for block A and block B are selected as appropriate

(this is a free choice). Example values are shown in Figure 14. Using the

fact that the centre of rotation of the interface of two blocks must lie on a

line joining the centres of rotation of the blocks (see e.g. Smith and Gilbert

2013), the centre of curvature of the slip-line bd is fixed at (−2.5L,−0.5L).495

The parameters to be used in equation (74) are shown in Case 1 of Table 1.

To maximise V , κA = 1 and κB = 1, while κ = −1 if xA > xB and κ = 1 if

xB > xA. It can be seen that the multiplier on S is zero and V is therefore

a constant value and so the maximization process has no effect.

Case 2 of Table 1 gives the case when the centre of curvature of slip-500

line bd is moved, in this case to (−2L,−0.5L) so that the mechanism is not

compatible. In this case V is a function of S and since S can take any

arbitrary value, the maximum value of V is infinity.

Case 3 models two slip-lines linking nodes b and d, where the centres

of curvature are set at (−2L,−0.5L) and (−3L,−0.5L). The use of two505

lines enables kinematic compatibility (Smith and Gilbert, 2015). Here the

combination does restrict the maximization process giving a finite result.

Having two slip-lines (1 and 2) connecting a single pair of nodes, leads to a

simultaneous equation with two versions of equation (63) giving:

S =
κ2ψ2r

2
2kL− κ1ψ1r

2
1kL

x2 − x1
(75)

V is still maximised if κ1 = κ2 = −1, and the result is now finite due510

to the constrained value of S. The two curved slip-lines linking node b to d

bracket the Case 1 slip-line, and this generates a result that is only marginally
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larger than Case 1. The reader is referred to Smith and Gilbert (2015) for

further details on theory relating to multiple curved slip-lines that link the

same points.515

L

V

A B

F

O

(1.5,1.5)

(-2.5,-0.5)

(-0.5,0.5)

Figure 14: Postulated failure mechanism. Slip-lines indicated using solid blue lines. Radii

from centre of rotation to arc centre indicated using dashed blue lines.
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Table 1: Equilibrium forces and stress function values in upper bound calculations for

two-wedge cases considered in Figure 14 (ψ is given in radians ). *= unconstrained.

Case 1 2 3

xA/L 2
√
2

rA/L 2.9154

ψA 0.4900 (28.1o)

κA 1

x/L 2.5 2 2 & 3

r/L 2.5495 2.0616 2.06 & 3.04

ψ 0.3947 (22.6o) 0.4900 (28.1o) 0.4900 & 0.3303

κ -1 -1 -1

xB/L
√
2

rB/L 1.5811

ψB 0.9273 (53.1o)

κA 1

SA 0.5652kL− 0.5
√
2S 0.7362kL− 0.375

√
2S 1.2522kL

S * * −0.9729kL

SB 3.4538kL+ 1.5
√
2S 3.1117kL+ 1.25

√
2S 1.3917kL

MA 2.5661kL2 + 2SL 2.0823kL2 + 1.5SL 0.6229kL

M −2.5661kL2 − 2.5SL −2.0823kL2 − 2SL −0.1365kL

MB −2.5661kL2 − 3SL −2.0823kL2 − 2.5SL 0.3500kL

V 5.6836kL+ 0S 5.4417kL− 0.25S 5.6849kL

Ψa −2.8418kL2 −2.7209kL2 + 0.125SL −2.8425kL2

ua 0 0 0

va −5.6836kL −5.4417kL+ 0.25SL −5.6849kL

Ψd −5.0083kL2 − 3.5SL −4.2826kL2 − 2.75SL −1.6070kL2

ud 4.8844kL+ 2S 4.4006kL+ 1.5S 2.9411kL

vd S S −0.9729kL
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Stress function values may be determined using the same process as out-

lined in Section 3.1.3. This gives values of Ψ, u, and v for each case as shown

in Table 1, where (Ψb, ub, vb) = (Ψc, uc, vc) = (0, 0, 0).

4. Generation of a lower bound solution from an upper bound so-

lution520

It can be seen that a stress function based upper bound solution satisfies

many of the requirements of an associative lower bound in that the stress

field is in equilibrium everywhere and also in equilibrium with external forces.

However yield may be violated in certain locations. The potential of the

upper bound stress function approach then becomes apparent; it is generally525

possible to scale any upper bound stress field in order to bring the largest

Mohr circle within the yield envelope. The quality of the results clearly

depends on the quality of the stress field chosen.

This may be illustrated through consideration of the single arc solution in

Section 3.2.2 that is a remarkably simple solution reminiscent of the simple530

two zone, one stress value discontinuity lower bound solution for an indenter

where the Mohr’s circle (see Figure 12) has radius k on both sides of the

y-axis. For this case, the loads can be scaled back to V = 4k, which brings

all the Mohr’s circles within the yield envelope.

This scaling is straightforward for single load problems such as the inden-535

tation problem. For more complex problems involving friction or material

self weight, the scaling of a single external load is generally not possible.

However an alternative lower bound can be proposed by simply increasing

the yield envelope until all Mohr’s circles are within that envelope. A solu-
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tion as in this case can be given as V = 5.52k and has a definite status for540

material strengths of k and 5.52k/4. The system will definitely fail with the

former strength and will definitely not fail with the latter strength.

5. Discussion

While this paper has focused on hand calculations and pre-determined

simple layouts of slip-lines, the principles can be applied to any number of545

nodes and any number of slip-lines linking these nodes (which may cross

over each other any number of times). This, however requires a numerical

approach and is the background to the Discontinuity Layout Optimization

(DLO) method, Smith and Gilbert (2007) and Smith and Gilbert (2013)

which is able to generate upper bound solutions of high accuracy. The im-550

plication is that constraining yield in an average sense along lines is efficient

and requires no finite element or meshless method basis function.

A DLO solution essentially defines the stress function field as point and

gradient values on a grid of nodes in such a way that the basis function is

not predefined and is thus able to deal with any problem type and stress field555

rather than requiring one that can potentially lead to a poor solution. Using

efficient numerical optimization, it finds a set of nodal stress function values

that maximises the applied load while ensuring yield is not violated on all

(or selected) lines connecting every pair of nodes. As the number of lines

and nodes approaches infinity, then the solution will implicitly approach560

the true associative solution as it will tend towards the form of a lower

bound solution, where yield is checked everywhere. Figure 15 illustrates the

increasing accuracy of the DLO solution to the Prandtl punch problem as
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the number (n) of nodes increases (results after Smith and Gilbert 2013).

The number of lines checked is given by n(n − 1)/2. The plotted lines are565

those on which yield is occurring in the solution.
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(a)

nd/B = 2, V/kB = 5.667, ϵ = 10.2%

(b) nd/B = 20, V/kB = 5.163, ϵ = 0.42%,

(c)

nd/B = 200, V/kB = 5.143, ϵ = 0.03%

(node dot size reduced for clarity).

Figure 15: DLO solutions showing influence on the collapse load V of the number of

nodal divisions nd used to discretize a Prandtl punch of width B, bearing on a material

of strength k. ϵ gives percentage difference relative to exact solution of (2+ π)kB. Distri-

bution of nodes indicated on right side of figure.
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Other workers, e.g. Canh et al. (2016), have also proposed stress function

based mesh free approaches for lower bound solutions which appear promis-

ing, and with sufficient discretisation, basis function based methods (mesh

and mesh free) can fit even the most complex stress function. A particular570

advantage of the line based approach is that it can capture single line solu-

tions such as that in Section 3.2.2 elegantly with only a few nodes, whereas a

finite element or meshless method based approach would require significant

refinement. It would appear that there is significant promise in establishing

a hybrid approach, where the advantages of each can be combined.575

.

As noted previously, translational problems are generally statically deter-

minate. From the stress function perspective, the addition of two faces to

construct a new quadrilateral adds two unknowns (u, v) which is balanced by

the addition of two yield equations . However for rotations three unknowns580

(Φ, u, v) are added but only two yield equations, thus introducing an extra

degree of freedom, which can lead to infinite (unbounded) solutions unless

the slip-lines are chosen to eliminate this. It turns out, in the kinematic

context, that this requires kinematic compatibility conditions to be met.

If the shear direction is not chosen to maximise the collapse load, then585

a type of non-associative solution will be found. However, this solution has

no strict status. The corresponding stress field is likely to violate yield in

locations other than the tested slip-lines, so while a maximised solution is a

guaranteed upper bound if an associative material is involved, this status is

lost if the maximization step is omitted. This thus clarifies the issue raised by590

Michalowski (1989) concerning the difference between the ‘limit equilibrium’
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form and the energy balance limit analysis form of the upper bound theorem.

It is noted further, that for a non-associative ‘limit equilibrium’ solution to

be valid, it has to demonstrate both that yield is not violated at any point

and that yield occurs on slip-lines that form a mechanism.595

For simplicity, this paper has focused on 2D plane strain problems, how-

ever the methodology may be readily extended to 3D, using appropriate 3D

stress functions e.g. Maxwell (1870), and slip-surfaces rather than slip-lines.

Such an approach leads to a 3D equilibrium form of DLO such as presented

by Hawksbee et al. (2013).600

6. Conclusions

Equilibrium form of the upper bound

1. The equilibrium form of the upper bound theorem is the mathematical

dual of the kinematic form. For a correct solution, maximization of the

load must be carried out for any given set of rigid block boundaries605

to be a valid upper bound. The maximization process typically relates

to an assumption of yield and choice of direction of shear force on any

rigid block boundary.

2. The advantage of the kinematic approach is that it is often more

straightforward than the equilibrium approach for hand calculations.610

The optimal solution is found from minimization. However if mini-

mization is omitted the solution is still a valid upper bound. For a

fixed geometry of mechanism the compatibility as determined from

a hodograph determines the solution and minimization is not neces-

sary/possible.615
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3. In contrast, for an equilibrium solution, maximization may not be omit-

ted. However, for translational mechanisms, the shear direction is often

obvious and the problem is typically statically determinate and so max-

imization may not explicitly be necessary.

4. Problems involving rotational mechanisms are typically not statically620

determinate and thus maximization must be explicitly carried out when

working with the equilibrium form.

5. There is no immediately apparent need for a given arrangement of

sliding blocks to form a kinematically compatible mechanism. However

if there are insufficient sliding interfaces (constraints), or if they are not625

kinematically compatible, the limit load will be infinite (unbounded),

corresponding to a kinematically locked sliding block configuration.

6. The ‘limit equilibrium’ (LE) approach differs from the equilibrium form

of the upper bound in that it (a) does not enforce kinematic compati-

bility for the chosen mechanism and (b) does not enforce maximization630

of the load. If the shear force direction is chosen such that the load is

not maximised then a type of non-associative solution has been found.

Stress functions

1. It is possible to formulate the equilibrium form of an upper bound

rigid-block plane strain problem in terms of stress function parameters635

at the nodes connecting sliding interfaces. These parameters may be

used to calculate shear forces S, normal forces N , and moments M ,

acting on straight lines connecting any node pair, which in turn may

be used to check yield in an average sense.

2. Full rotational and translational equilibrium is implied in any upper640
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bound calculation. Equilibrium equations, as used in classical rigid

block analysis, are used only to ensure equilibrium with external forces

or to establish values of S, N , M on rigid block interfaces in order to

check yield.

3. In principle it is possible to establish a continuum equilibrium stress645

field across the domain passing through the stress function values es-

tablished at the nodes. However since yield is only checked on specific

lines and in an average sense this results in a upper bound rather than

lower bound solution.

4. An infinite number of stress function fields may be fitted to these nodal650

values. Suitable fields can be scaled to ensure yield is nowhere violated

and thus used to obtain a lower bound solution.

5. For simple problems the stress function formulation adds complexity

which is unnecessary for a solution unless a lower bound is also required.

The main benefit is the rigour that the theory adds to the interpreta-655

tion of an equilibrium analysis. For more complex problems involving

e.g. complex geometry, non-linear yield functions, 3D analysis etc.,

solutions are best addressed numerically using e.g. the stress func-

tion approach implicit in the discontinuity layout optimization (DLO)

method.660
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Appendix A. Kinematic energy based analysis of punch problem

Analysis of the problem depicted in Figure 1 proceeds as follow. A com-

patible velocity field is first established using a hodograph, as shown in Figure

A.16. The (rigid) indenter F is assumed to move with block A.

vx

vy

v

v

O

AF

B

Figure A.16: Hodograph for mechanism depicted in Figure 1

730

The work equation (equating external work to internal energy dissipated)

is as follows:

V v = k(
√
2v
√
2L+ 2vL+

√
2v
√
2L) = 6kvL (A.1)

V = 6kL (A.2)
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Appendix B. Example of non-intuitive choice of shear direction

in an equilibrium analysis

An example in the field of geotechnical engineering, where setting the735

shear direction to maximise the load in an equilibrium analysis is not nec-

essarily intuitive can be found in Smith and Cubrinovskii (2011), where the

Mononobe-Okabe pseudo-static analysis of active earth pressure on retaining

walls subject to earthquake accelerations is considered. At large accelerations

the ‘limit equilibrium’ solution of Mononobe-Okabe starts to deviate from the740

upper bound limit analysis solution, because the direction of shear (defined

by the orientation of δ′) on the wall/soil wedge interface reverses in the limit

analysis equilibrium solution, in order to achieve the minimum load (for an

active earth pressure problem, the smallest restraining force is sought). This

is shown in Figure B.17, where, perhaps counter intuitively, the force would745

not normally be expected to act downwards. The ‘limit equilibrium’ solution

may therefore be regarded as a potential non-associative solution, but has

no specific status other than being greater than the associative solution (for

the same mechanism).
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Figure B.17: Reversal of shear stress on soil/wall interface at high seismic accelerations.

Smallest value of active force P and its angle of inclination depends on whether reaction

force R is inclined (a) to the left, or (b) to the right of the vertical. The transition occurs

when ϕ = α.
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Appendix C. Stresses along a line750

Appendix C.1. Shear stresses

The shear stress along a line (with direction cosines α and β) may be

derived from the shear and normal stresses acting on the x and y planes as

follows:

τ = (−σx + σy)αβ + τyxα
2 − τxyβ

2 (C.1)

τ = −
∂u

∂y
αβ −

∂v

∂x
αβ −

∂u

∂x
α2 −

∂v

∂y
β2 (C.2)

Noting that:755

du =
∂u

∂x
.dx+

∂u

∂y
.dy =

∂u

∂x
α.dl +

∂u

∂y
β.dl (C.3)

dv =
∂v

∂x
.dx+

∂v

∂y
.dy =

∂v

∂x
α.dl +

∂v

∂y
β.dl (C.4)

Hence:

τ = −α
du

dl
− β

dv

dl
(C.5)

Appendix C.2. Normal stresses

The normal stress along a line (with direction cosines α and β) may be

derived from the shear and normal stresses acting on the x and y planes as

follows:760

σn = σxβ
2 + σyα

2 − τxyαβ − τyxαβ (C.6)
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σn =
∂u

∂y
β2 −

∂v

∂x
α2 −

∂v

∂y
αβ +

∂u

∂x
αβ + Ω(α2 + β2) (C.7)

Hence:

σn = β
du

dl
− α

dv

dl
+ Ω (C.8)

Appendix C.3. Stress function

The stress function may be defined in terms of the integrals of u and v

as follows:

∫

dΦ =

∫

∂Φ

∂x
.dx+

∫

∂Φ

∂y
.dy (C.9)

Φ =

∫

−v.dx+
∫

u.dy (C.10)

Appendix D. Unbounded stress function solution for indentation765

problem

With reference to Figure 7, the assumption that the middle line ad has

strength nk where n → ∞. results in a more general form of equation (47)

as follows:

Φ = ((n+ 1)xy2/2 + px2 − (n+ 2)y2/2− qx− 0.5q)k (B 1)

where p = 0, q = −2(n + 2) for x ≤ −1, p = −(n + 2), q = 0 for770

−1 ≤ x ≤ 0 and p = q = 0 for x ≥ 1.

The choice of n = ∞ results in Mohr’s circles of infinite size and to an

infinite load capacity. This is consistent with not having a kinematically
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compatible mechanism defined. To illustrate the nature of the stress field, it

is instructive to consider the case where n = 2 and extrapolate from there.775

The Mohr’s circle plot is given in Figure D.18. Relative to Figure 9, circles

b and d have increased in size, while circles a and c have reduced to points.

However the average stress along lines ad and cd can still be seen to be k,

while the average stress along bd is now 2k. As n increases, circles b and

d continue to increase in size while a and c also increase with the principal780

stress directions swapping over. This maintains the average stress along

lines ad and cd constant at k, while allowing the applied load to increase to

2(n+ 2)kL.

σn−2k−4k−6k

τ

2k

k

−k

−2k

a

bl

dl
dr

br

c

Figure D.18: Two wedge stress function with shear force 2kL on centre line. Note circles

a and c have shrunk to points with zero diameter. Poles of circles are marked by a large

solid circle. Stress states on slip-line end points are marked by a small solid circle.
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