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Abstract
An objective of model validation within organisations is to provide guidance on model
selection decisions that balance the operational effectiveness and structural complexity of
competing models. We consider a practice-relevant model validation scenario where a finan-
cial quantitative analysis team seeks to decide between incumbent and alternative models
on the basis of parameter risk. We devise a model risk management methodology that gives
a meaningful distributional assessment of parameter risk in a setting where market calibra-
tion and historical estimation procedures must be jointly applied. Such a scenario is typically
driven by data constraints that precludemarket calibration only.We demonstrate our proposed
methodology in a natural gas storage modelling context, where model usage is necessary to
support profit and loss reporting, and to inform trading and hedging strategy. We leverage
our distributional parameter risk approach to devise an accessible technique to support model
selection decisions.
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1 Introduction

The topic of model risk, and model uncertainty more broadly, has commanded considerable
attention across a diverse range of operations research and quantitative finance contexts.
For example, healthcare network design (Denoyel et al. 2017); logistics and transportation
(Koks et al. 2015); hazardous waste processors (Spear et al. 1994; Cooke 2009; Piegorsch
2014); environmental risk assessors, health and safety, and engineering (Alexander and Sara-
bia 2012); climate change modelling (Reis and Shortridge 2020); and financial services and
insurance firms (Huang et al. 2010; Barrieu and Scandolo 2015; Coqueret and Tavin 2016;
Alexander and Chen 2019). In the financial services industry, model use is widespread for
trading, investment and hedging purposes (Aloui et al. 2014; Atil et al. 2014; Choukroun et al.
2015). Therefore, there is a need to understand, quantify and manage the associated model
risks. Indeed, an external impetus for model risk management practice among financial insti-
tutions comes from regulatory and supervisory oversight. Regulatory authorities in the US
and the EU have set out guidelines to create a common framework that outlines how financial
institutions should manage model risk, with reference to organisational culture and gover-
nance, and best practice approaches to the activity of model validation. Recent operations
research model risk studies with a similar finance application focus to ours include Huang
et al. (2010), Barrieu and Scandolo (2015) and Coqueret and Tavin (2016). Firstly, Huang
et al. (2010) demonstrate how their framework supports the selection of a robust portfolio
of financial investments that addresses parameter estimation uncertainty by incorporating
rarely observed worst-case scenarios. Secondly, Barrieu and Scandolo (2015) illustrate how
applications of model risk can support compliance with regulatory requirements, including
the Basel framework for assessing financial capital adequacy. Finally, Coqueret and Tavin
(2016) consider the problem of model risk for variance swaps and forward-start options.

In this study, we consider a practice-relevant model validation scenario where an incum-
bent model exists, and is being appraised from a model risk perspective against one or more
alternative, competingmodels. 1 More specifically, we assume amodel validation teamwork-
ing in an energy company that seeks to appraise a newmodel that is being proposed to replace
an incumbent model. The model is assumed to be applied for deriving model-based valuation
and mark-to-model measurement for a complex non-traded natural gas storage contract.The
importance of modelling storage in energymarkets is highlighted by Abid et al. (2019), Gaïgi
et al. (2019), Weibelzahl and Märtz (2020) and Goutte et al. (2021), with Halvorsen-Weare
and Fagerholt (2013) andAmeur et al. (2020) highlighting some of the considerations specific
to natural gas storage.2 Storage has become a prominent feature of the natural gas markets.
This is primarily due to large variation in winter and summer natural gas requirements driven

1 While Cont (2006) argues that the distinction between model risk and parameter risk is somewhat irrelevant,
we adopt both terms in our discussion to aid clarity.
2 Trading in natural gas has increased significantly due to the development of liquid centralized trading hubs.
The hubs act as single trading points for the transfer of gas entering and exiting their respective markets. We
focus on the UK’s National Balancing Point hub, which was the first and most liquid of these centralized
trading hubs. A derivatives market for forwards and futures contracts developed on the back of the centralized
trading hubs, with the Intercontinental Exchange’s NBP futures contracts accounting for one third of total
NBP trading volume (Heather 2012).
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by heating demand fluctuations. A gas storage contract allows a holder to buy gas to inject
into storage during summer months when it is relatively cheap and to withdraw and sell the
gas the following winter when prices are higher, with a key driver in determining the value
of such natural gas storage contracts being the correlation matrix associated with the term
structure of natural gas forward prices. Using these storage forward contracts allows market
participants to smooth out seasonal demand fluctuations and to increase market liquidity
(Le Fevre 2013), as well as providing a high degree of return certainty to an organisation
considering investing in storage facilities.

Model risk considerations are important in the context of valuing storage contracts given
the highmateriality associated with such contracts. However, the current model risk literature
offers very few studies that consider energymarket applications. Bannor et al. (2013)were the
first to focus on this issue where they investigate the parameter risk associated with a power
plant valuation model. In the case of gas storage valuation, Hénaff et al. (2018) estimate the
parameter risk associated with two proposed price models using only historical information
for estimation. The spot gas processes of Hénaff et al. (2018) exhibit both mean reversion
and price spikes, both stylised features of the energy markets. In accounting for price spikes
within the models used by Hénaff et al. (2018), the processes could be used to calibrate the
model to the options market. However, this was not an approach followed by the authors nor
was there any discussion of option pricing under the proposedmodels. Ourwork can therefore
be viewed as an extension of the work of Hénaff et al. (2018) by analysing storage model
parameter risk with reference to a flexible multifactor Mean Reverting Variance Gamma
(MRVG) model specification that is both forward curve consistent and calibrated to market
traded options.

The choice of price models at our disposal is limited due to the fact the there is little
in the literature that approaches the storage valuation problem with a view to maintaining
consistency with the volatility smile displayed by vanilla natural gas futures-options. There-
fore, although price models developed for storage valuation have the ability to capture the
forward curve time-spread dynamics well, for example Parsons (2013) and Boogert and
De Jong (2011), they are generally driven by diffusion processes and thus fail to replicate the
volatility smile observable in gas option markets. Conversely, traditional price models that
are capable of replicating the smile, such as the stochastic volatility model (Heston, 1993) or
the SABR model (Hagan et al., 2002), yield perfectly correlated forward curve returns and
therefore capture little or no extrinsic value to the storage. Many of the extant gas storage
models are inadequately specified to effectively capture the excess kurtosis evident in natural
gas market returns, with model performance typically compromised in the pursuit of simpler
solutions to the optimisation problem that underlies gas storage valuation. The multifactor
MRVGmodel, in contrast, offers notable benefits in capturing excess kurtosis and time spread
volatility, whilst maintaining consistency with the vanilla options market, and offering com-
putationally efficient pricing solutions, such as Fourier transform based methods (Cummins
et al. 2018). The question that arises is whether this improvement in model specification
exacerbates parameter risk exposure.

Tunaru (2015) provides a comprehensive review of approaches to model risk analysis.
Gupta and Reisinger (2011) provide a detailed introduction to the topic of calibration risk,
including the key risk drivers and potential remedies. For example, the authors demonstrate
how Bayesian averaging over potential parameter values can be used to both infer the level
of calibration risk and also “smooth” the inverse problem associated with market calibration.
Deryabin (2012) further extends this distributional view of calibration risk by introducing
upper and lower bounds on the risk, which rely only upon the specification of the underlying
model and its calibration to market data. This work was further extended by Bannör and
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Scherer (2013), who show how a meaningful distributional assessment of the parameter
risk inherent in a given derivatives pricing model can be conducted using empirical densities,
referred to as push forwarddensities, derived from the associated calibration errors and sample
parameter variance. This approach marks a step-change in the quantification of calibration
risk by providing a complete probabilistic framework for parameter risk assessment.

Our proposed method leverages Bannör and Scherer (2013) by imposing a distributional
form on the feasible model parameter space and propagating this to the model derived val-
uations of the natural gas contract structure. We seek, however, a method that lends itself
to joint calibration-estimation, which is a common scenario faced in practice where there is
insufficient options market data to estimate all model parameters using a single calibration
procedure. In our natural gas market setting, for instance, price models cannot be calibrated
to options prices alone as there is insufficient liquidity in the calendar spread options market
to capture implied forward price correlations, instead forcing the estimation of correlations
directly from historical forward prices. Therefore, we extend the Bannör and Scherer (2013)
methodology to a joint parameter calibration-estimation setting, where the combined use of
underlying futures curve data (for the estimation procedure) and associated options market
data (for the calibration procedure) is required.

We deliver some important messages for practitioners working in the model validation
space within financial institutions. Firstly, we argue that the proposed distributional-based
approach to model risk measurement provides a more complete probabilistic assessment
of model risk exposure. The parsimonious distributional analysis of calibration-estimation
parameter risk is more informative than previously proposed methods, such as, for instance,
conventional sensitivity analysis (see, for example, Nalholm and Poulsen (2006)) or worst-
case analysis (see, for example, Cont (2006) and Huang et al. (2010)). Our approach is
also more appropriate than model averaging (see, for example, Bunnin et al. (2002)), given
that the incumbent model has to be consistently used for a variety of purposes within the
organisation. Furthermore, Cont (2006) observes that the purpose of risk management is not
to predict prices but to quantify risk and so model averaging is less appropriate.

Secondly, we present guidance on how the distributional-based approach to model risk
measurement allows a model validator to identify parameter combinations where extreme
values are derived, particularly on the downside, and to quantify an associated likelihood
of observing such parameter combinations. This supports model validators in setting model
usage restrictions, identifying the market conditions where a model may need to be used
more cautiously or suspended temporarily, or an alternative model specification may need
to be deployed. As a form of sensitivity analysis, it allows model validators to identify and
understand these parameter spaces (equivalently, market conditions) of interest from a model
risk perspective. Residual benefits include assistance for traders in hedging more effectively
against future market movements and insights for trade control functions to more effectively
manage market risk exposure within the mark-to-model process.

Thirdly, we demonstrate how the distributional assessment approach to model risk mea-
surement may be used bymodel validators to chose between alternative model specifications,
reconciling the trade-off betweenmodel performance andmodel complexity. Specifically, we
propose a simple model selection rule that works on a pairwise model basis. The approach we
outline is informal in the sense that it focuses on the relative levels of parameter risk between
competing models. It provides practitioners, however, with an accessible model selection
technique that exploits the information provided by the distributional analysis of parameter
risk.
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The remainder of the paper is organised as follows. In Sect. 2, we introduce the parameter
riskmeasurementmethodology of Bannör and Scherer (2013) and derive our extension of this
to a joint calibration-estimation setting. Section 3 presents our candidate models, providing
the technical descriptions for themultifactorMRVGmodel in particular. In Sect. 4, we present
the findings of our empirical storage model risk analysis, and we derive our model selection
technique based on parameter risk. Section 5 concludes the paper.

2 Model risk analysis

2.1 Calibration risk measurement

In a calibration setting, Bannör and Scherer (2013) show how a meaningful distributional
assessment of the parameter risk associated with a given derivatives pricing model can be
determined when that derivatives pricing model is applied for the valuation of some exotic
derivative contract. We consider a typical setting whereby before applying a parametric
pricing model to value an exotic options contract, the model is first calibrated against a
sample of liquid options contracts, returning point estimates for the model parameters. This
ensures that the exotic options contract is valued in away that is consistentwith the observable
options market. The calibration setting, however, presents a particular problem because the
distribution of the parameter space is unavailable. Bannör and Scherer (2013) therefore devise
a distribution construction that is consistentwith the calibration procedure. The approach they
advocate is to first calculate the calibration errors for a set of model parameter combinations
θ ∈ Θ , contained within some bounded parameter region Bθ . The calibration errors might
be defined, for example, as the root mean squared errors between the theoretical model
derived option prices and the observed market option prices. The next step is to construct
a probability distribution R of the model parameter space using a defined mapping of the
calibration errors. The distribution on the model parameter space constructed in this way then
allows for, what are termed, push forward densities to be constructed for the exotic option
price. To this end, Bannör and Scherer (2013) define a transformation function h, whichmaps
the calibration error, ε (θ), to the real line and possesses the following important properties:
(i) h is decreasing, ensuring that parameter combinations which yield a higher total error are
given less likelihood; and (ii)

∫
h (ε (θ)) dθ = 1, ensuring the function meets the definition of

a probability measure. One such transformation function put forward by Bannör and Scherer
(2013) is the normal transformation function:

h (ε (θ)) ≡ c exp

(

−
(

ε (θ) − ε∗ (θ)

λ

)2
)

ε (θ) ≥ ε∗ (θ) (1)

with scaling parameters λ > 0 and c > 0 chosen so that the function returns a probabil-
ity distribution centered on the minimum obtained calibration error ε∗ (θ), as achieved by
the optimisation routine. This transformation then allows for easy construction of the push
forward density of exotic option prices given that each parameter combination θ induces a
mapping from a given calibration error, ε (θ), to an associated exotic option price, V (X (θ)).

Two practical advantages of the Bannör and Scherer (2013) approach are worth high-
lighting. Firstly, the approach provides a complete probabilistic framework to assess model
risk exposure, whereby distributional characteristics can be readily evaluated. This provides
greater insights for model validators into the trade-off between model performance and
model risk. Secondly, the mapping of calibration errors to exotic option valuations through
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the push forward procedure means that a model validator can readily appraise those param-
eter combinations that result in extreme valuations, particularly on the downside. Indeed,
the probabilistic framework allows a model validator to assign a likelihood to such extreme
valuations and, hence, the likelihood of the associated parameter combinations. Relating
such parameter combinations to meaningful economic market conditions means that a model
validator can now set constraints and limitations on the use of a given model within the
organisation.

2.2 Joint calibration-estimation risk measurement

The model risk measurement approach of Bannör and Scherer (2013) is suitable in a pure
calibration setting. However, such a setting is not always feasible. In this section we propose
an extension of the Bannör and Scherer (2013) approach, which allows us to jointly assess
combined market calibration and historical estimation parameter risk. 3

We begin by denoting a general model of the forward curve that is dependent upon market
calibrated parameters θm and historically estimated parameters θh , such that θ = {θm, θh}
defines the full set of model parameters. We generalise the transformation function, given in
Eq. (1), such that it is capable of incorporating the additional historical information:

h (ε (θ)) = hm (ε (θ) |θh) p(θh). (2)

The function h (ε (θ)) has the same properties as set out in Sect. 2.1 but is now decomposed
into the product of hm (ε (θ) |θh), the conditional market calibration error density condi-
tioned on the historically estimated parameters θh , and the historical sampling error density
p(θh), associated with the historical estimation.

For the conditional market calibration error density, we utilise the normal transformation
functional form, as described previously, i.e.

hm (ε (θ) |θh) = c exp

(

−
(

ε (θ) − ε∗ (θ)

λ

)2
)

ε (θ) ≥ ε∗ (θ) ,

centered on the minimum obtained calibration error ε∗ (θ), with scaling parameters λ > 0
and c > 0. The calculation of this conditional density proceeds by means of defining the
calibration errors over a discretisation of the market calibrated parameters θm , holding the
historically estimated parameters θh fixed.

For the historical sampling error density p(θh), we know from Bannör and Scherer (2013)
that the maximum likelihood estimators of the parameters θh calculated from a sample of
n observations are asymptotically normally distributed. This gives us a suitable functional
form for p(θh) - namely, the Gaussian density, which once scaled such that it integrates to
unity can be used to give relative weight to the calibration induced probabilities.

To derive a functional form for p(θh), we appeal to the, so called, ’delta method’ of Bannör
and Scherer (2013). The key steps taken are as follows:

3 While we make a distinction between “estimation” and “calibration” here, it is important to note that liquid
derivatives market contract prices, namely, futures contracts and plain vanilla options contracts, are used for
the respective parameter search procedures. Both sources of data therefore inform us about the risk-neutral
measure, Q. Our estimation context is therefore different to the situation where a parametric pricing model is
fitted to underlying spot price data defined under the physical measure, P.
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1. derive the sample covariance matrix, C , of the relative maturity forward curve returns;
2. using the sample Fischer Information matrix associated with C , derive the parameter

covariance matrix, �;
3. derive the gradient of the model parameter estimation function, ∇g−1, where the estima-

tion function takes the matrix C as input and returns a vector of model parameters;

4. derive the sample model parameter covariance matrix given by,
(∇g−1

)′ · � · ∇g−1; and
5. using the storage value parameter sensitivities ∇Eθ0 , derive the parameter risk variance.

If we take the payoff on a gas storage contract to be given by X , then collecting these
steps gives

p(θh) ∼ N
(
0,

(∇Eθ0 [X ]
)′ · (∇g−1)′ · � · ∇g−1 · ∇Eθ0 [X ]

)
. (3)

This last result gives the storage value distribution induced by the uncertainty, represented
by �, of the forward curve covariance matrix. The relationship between the two can be
understood as firstly, weighting the matrix � by the sensitivity of the model parameters to
the forward curve covariance matrix, represented by∇g−1, and then secondly, weighting the
result by the sensitivity of the storage value to the model parameters, represented by ∇Eθ0 .

This approach retains the practical advantage for model validators as outlined in the
previous section; namely, a complete probabilistic framework through which to assess model
risk exposure, and the ability to identify parameter spaceswhere extreme downside valuations
are likely, which assists the process of setting constraints and limitations on model usage.

3 Gas storage valuation problem

From a commercial point of view, storage assets allow a trader to buy gas to inject into
storage during summer months when it is relatively cheap and withdraw and sell the gas
the following winter when prices are higher, thereby collecting the price difference as profit.
Given a liquid forward market, traders have the ability to lock in a base value of the storage
asset by locking in prices for future traded volumes. As such, organizations considering
investment in a storage facility are aware, to a high degree of certainty, what return they
will receive. This valuation and trading approach is referred to as intrinsic valuation and,
as is the case for standard financial products, gives a lower bound on the storage value.
Although such a method for valuing and operating the storage facility has the obvious benefit
of eliminating market risk, it does so at a cost, that is, reducing completely the flexibility
of the trader to adjust their planned injection/withdrawal schedule to respond to favourable
market conditions. The prices at which storage capacity is offered in the market will typically
exceed the intrinsic value and thus traders require a method to determine what extrinsic value
can be extracted from the asset through dynamically trading in the underlying forward and
options market. For this reason, it is much more common for practitioners to augment the
intrinsic valuation approach with more advanced techniques.

We set up the gas storagevaluationproblemasperCummins et al. (2018).Asweare dealing
with a physical storage infrastructure, we need to factor in standard physical constraints and
operating characteristics. Let the current gas inventory level be given by I∈ [Imin, Imax ].
The amount of gas that can be injected or withdrawn from the storage asset in a given
period is typically constrained and may be dependent upon both the time period and current
inventory level. Let the injection and withdrawal rates be i (t, I ) and w (t, I ), respectively.
Given a valuation period of length T , we note the following constraints on the operation of
the storage:
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1. The allowed injection/withdrawal nomination times over the valuation period belong to
a discrete set {t j }.

2. For a given time step t j and inventory level I , the range of attainable storage levels is
given as

[ max
(
I − w

(
t j , I

)
, Imin

)
,min

(
I + i

(
t j , I

)
, Imax

)
]

We assume that when operating a storage asset the objective is to maximize the expected
discounted cashflows arising from one’s injection/withdrawal policy. If we denote the cash-
flow derived from moving from storage level I to I ∗, i.e. injecting or withdrawing, at a
gas price gt as a (I ∗; I , gt ), then, beginning at the end of the contract, the algorithm moves
backwards in time to derive a solution for the initial storage value at time t0 given by:

V
(
gt0 , I

) = sup
I ∗

a
(
I ∗; I , gt0

) + E
[
V

(
gt0+	t , I

) |gt0
]
.

The first term is the optimal cash flow at time t0 from the injection/withdrawal decision and
the second term is the expected value of the storage value over the time step �t , given the
prevailing gas price gt0 .

We assume a basic “20in/20out” storage contract, whereby it takes 20 days to inject to
full capacity from empty (in) and 20 days to empty once full (out). The deal commences
immediately on the options quote date and lasts for a period of one year. We consider the
UK’s NBP natural gas market, sourcing the benchmark options (in effect swaptions) for
calibration from Bloomberg with a quote date of 19th December 2012. We use the six-
month (June 2013) and one-year (December 2013) maturity options at moneyness levels of
95%, 97.5%, 100%, 102.5% and 105%. This sample is selected as it represents a data period
that optimally showcases our approach given the lower levels of liquidity observed in gas
swaption markets at this time.4 The data set used to estimate the historical covariance matrix
is also sourced from Bloomberg and contains end of day prices for each business day in the
period 18th December 2009 to 19th December 2012. The quoted prices used for estimation
include day-ahead, month-ahead and quarterly contracts covering periods ending no later
than one year from the observation date.

3.1 Price model specifications

Before presenting themultifactorMRVGmodel specification,we first present two benchmark
single factormodels. The first of thesemodels is the one-factorMRVGmodel (whichwe label
MRVG-1F) as described by Cummins et al. (2017). The log-spot price model is specified by
the following dynamics:

dx(t) =
(

∂ f (0, t)

∂t
− κ j

(
e−αt ) + α f (0, t)

−α

∫ t

0
κ j

(
e−α(t−s)

)
ds − αx(t)

)

dt + dX (t) (4)

where f (0, t) is the initial log forward price at time t , α is the mean reversion rate, and dX(t)
is a driftless Variance-Gamma process parameterised by σ , the process volatility, and ν, the

4 More recently, Aslam et al. (2020), Aloui et al. (2020), Goodell and Goutte (2020) and Mensi et al. (2020)
highlight the impact of COVID-19 on crude oil and natural gas markets. This pandemic again highlights the
importance of constructing model risk techniques that can cope with periods of reduced energy swaption
liquidity.
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variance of the jump sizes. κ j is the cumulative of the Variance-Gamma process given by

κ j (u) = − 1
v
ln

(
1 − σ 2v

2 u2
)
. Eq. (4) implies a log-forward curve model of the form

d f (t, T ) = −κ j

(
e−α(T−t)

)
dt + e−α(T−t)dX (t) .

This model can be calibrated directly to market option prices and thus the parameter set
distribution R can be obtained using the approach of Bannör and Scherer (2013), as set out in
Sect. 2.1. The model is specified such that the instantaneous variance of different maturities
along the forward curve shows exponential decay as time tomaturity increases. This property,
known commonly as the Samuelson Effect Serletis (1992), is a stylised feature of many
commodity markets and particularly natural gas. For two log-forward prices, f (t, T1) and
f (t, T2), the instantaneous covariance of returns is given by

E [(d f (t, T1) − E [d f (t, T1)]) (d f (t, T2) − E [d f (t, T2)])]

= exp (−α (T1 + T2 − 2t)) σ 2dt,

which we can integrate to derive a terminal covariance over a given time horizon (0, t) ,

cov(0, t) = σ 2

2α
(exp (−α (T1 + T2 − 2t)) − exp (−α (T1 + T2))) .

Scaling by the square root of the returns variance for each maturity therefore yields the
following measure of the terminal correlation:

ρ(0, t) = (exp (−α (T1 + T2 − 2t)) − exp (−α (T1 + T2)))√
(exp (−2α (T1 − t)) − exp (−2αT1)) (exp (−2α (T2 − t)) − exp (−2αT2))

.

Therefore, the mean reversion rate of the process, α, which captures the exponential decay of
forward price volatility with respect to maturity, fully controls the structure of the correlation
among different points on the curve. This results in non-parallel shifts in the forward curve
due to changes in the underlying stochastic driver. It is this dynamic forward curvemovement
that is crucial for storage valuation as it motivates the operator to exercise their optionality
to switch planned injection and withdrawals thus creating extrinsic value. The variance of
the jump magnitudes, ν, controls the implied volatility smile attenuation and ensures that the
model is consistent with the initial volatility surface.5

The secondbenchmarkmodel considered is the one-factorMeanReverting JumpDiffusion
model (whichwe labelMRJD) first specified byDeng (2000) and later used for swing contract
valuation by Kjaer (2008):

dx(t) =
(

∂ f (0, t)

∂t
− 1

2
σ 2 + 1

4
σ 2 (1 − exp (−2αt)) − κ j (exp (−αt))

+α f (0, t) − α

∫ t

0
κ j (exp (−α (t − s))) ds − αx (t)

)

dt

+σdW (t) + d J (t) . (5)

This model specification is similar to Eq. (4) with the only difference being the choice
of stochastic drivers; dW (t), a standard Brownian Motion, and d J (t), a compound Poisson

5 Cummins et al. (2017) provide a technical discussion of the MRVG-1F model, including the derivation of
the associated characteristic function and the application of Fourier transform methods for the pricing of gas
storage capacity.
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jump process driven by a symmetric double exponential distribution, that is, J (t) = ∑N (t)
i=1 yi

where N (t) is a Poisson process with arrival rate λ and y is a random variable with the

probability density function f (y) = 1
2μ

(
exp

(
− y

μ

)
1{y≥0} + exp

(
y
μ

)
1{y<0}

)
. Thus, as in

the MRVG-1F model, the presence of the mean reversion parameter α is the primary driver
of the storage value in controlling the forward curve covariance structure. The parameters
relating to the jump-diffusion are σ , the diffusion volatility, λ, the jump arrival rate, and μ

which controls the size of both positive and negative jumps. The jump diffusion specification
is what allows us to replicate the volatility smile using this model, in a similar manner to the
MRVG-1F model.6

This leads us to the specification of the flexible two-factor Mean Reverting Variance
Gamma model (which we label MRVG-2F), as described by Cummins et al. (2018), which
is a convenient extension of the MRVG-1F model. The inclusion of the second factor allows
more flexibility in modelling the covariance structure of the forward curve and therefore
should produce storage valuesmore representative of the underlying dynamics. The dynamics
of the log forward price under the MRVG-2F model are given by

d f (t, T ) = ∂ f (0, T )

∂t
+ dy(1)(t, T ) + dy(2)(t, T ),

where

dy(1)(t, T ) =
(
−κ j (1)be

−α(T−t)σ
)
dt

+be−α(T−t)σdX(t),

dy(2)(t, T ) = −1

2

(
e−ε(T−t)cσ

)2
dt

+e−ε(T−t)cσdW (t), (6)

and dW (t) is a standard BrownianMotion and dX(t) is a Variance-Gamma process with unit
volatility and jump size variance ν. The first factor, which accounts for the majority of the
forward curve variability, is aMean Reverting Variance Gamma process. As with theMRVG-
1F model, the main parameters for this factor can be calibrated to the options market. The
parameters b and c represent the proportion of total variance attributed to the first and second
factors respectively and would need to be estimated from the historical data. Letting t → T
in Eq. (6), we can see that the volatility of the log spot gas price is in fact given by σ

√
b2 + c2.

The second factor is specified such that it approximates the typical shape of the sensitivity,
which we refer to as the volatility function, of the forward curve to the second principal
component of the forward curve returns covariance matrix. The parameters relating to the
second factor can be estimated directly from the eigenvector values. The parameter ε controls
the decay of the volatility function as maturity increases. The slope of the volatility function
will have a direct impact on the covariance of different maturities along the forward curve.
A sharply decaying curve will decrease the covariance between prompt forward prices and
the back of the curve, which will lead to greater time-spread variance and thus higher storage
value. As with the MRVG-1F model we can derive the instantaneous returns covariance for
two log forward prices f (t, T1) and f (t, T2),

6 See Cummins et al. (2017) for more technical details of the MRJD model.
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E [(d f (t, T1) − E [d f (t, T1)]) (d f (t, T2) − E [d f (t, T2)])]

= exp (−α (T1 + T2 − 2t)) b2σ 2dt + + exp (−ε (T1 + T2 − 2t)) c2σ 2dt,

with terminal covariance given by

cov(0, t) = (σb)2

2α
(exp (−α (T1 + T2 − 2t)) − exp (−α (T1 + T2))) ,

+ (σc)2

2ε
(exp (−ε (T1 + T2 − 2t)) − exp (−ε (T1 + T2))) .

With ε � α, the MRVG-2F model, as it encompasses the MRVG-1F model, will attribute
more value to a storage asset through this additional decorrelation of the forward curve
returns.

In the abovewe assume independence between the sources of randomness. This restriction
to independent processes does not prohibit us from capturing the inter-maturity pairwise
dependency of forward curve returns to a high level of accuracy. Further, it allows us to specify
the effect of each state variable on the forward curve dynamics independently, which is in
agreement with traditional principal component based analysis of forward curve movements.
Utilizing PCA inmultifactormodel specifications is common in energymarkets; for example,
see Clewlow and Strickland (1999).

The crucial model risk question we address with our joint calibration-estimation method-
ology is: towhat extent should this additional value be discounted on the basis of the historical
estimation risk inherent in the model estimation?

3.2 Calibration and estimation procedures

The calibration procedure for estimating the parameters of both the MRVG-1F and MRJD
models involves minimising the usual root mean squared error (RMSE) between model
derived and market observed prices, formally,

min
θm

√√
√
√1

n

n∑

i=1

(
Cmodel
i (θm) − Cmarket

i

)2
,

where for the MRVG-1F model θ ≡ θm = {α, σ, ν}, and for the MRJD model θ ≡
θm = {α, σ, λ, μ}, and n is the sample size. In order to calculate the model option prices,
Cmodel
i (θm), we use the Fourier transform based swaption pricing algorithm developed by

Cummins et al. (2018).
For the MRVG-2F model, we take a different approach due to the requirement to jointly

calibrate and estimate the model parameters using market and historical data. From the
full parameter set θ ≡ {α, σ, ν, b, c, ε}, we define the market calibrated parameter set as
θm ≡ {α, σ, ν}, determining the shape of the volatility term structure of the first factor
of the model, and we define the historically estimated parameters set as θh ≡ {b, c, ε},
determining the shape of the volatility term structure of the second factor of the model. We
utilise the market implied moment matching technique of Cummins et al. (2018), which
involves firstly, inferring the moments of the underlying forward contracts from the prices of
quoted options and secondly, calibrating the known model forward price moments to these
values. In our exercise here, we focus onmatching the first fourmoments of the forward prices
underlying our option quotes. The historically estimated parameters of the MRVG-2F model
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are calculated by matching the entries of the eigenvectors given by spectral decomposition
of the forward curve returns covariance matrix.

4 Gas storagemodel risk analysis

Theprocedure for estimating calibration risk outlined byBannör andScherer (2013) begins by
discretising the parameter space and then evaluating the pricing error to benchmark instru-
ments for each parameter combination. Thus they reduce the multidimensional parameter
space to a vector of error terms. Given that a large majority of these errors would fall outside
of what would be deemed a reasonable calibration, the authors propose discarding param-
eter combinations that return an error greater than some cut-off point. In their numerical
examples, Bannör and Scherer (2013) use a cut-off for the error term, given by the RMSE,
of 2% above the minimum calibration error achieved. Obviously the choice of cut-off will
depend upon the average bid-offer percentage spread observed in the options market. For our
analysis, we have chosen a cut-off of 3% in order to reflect the relatively lower liquidity of
natural gas options.

One could in theory, search over a dense and wide discretisation of the parameter space
in order to identify multiple regions of local minima. However, there is a computational
demand when proceeding in this manner, which necessitates the need for a coarser and
narrower discretisation. This is particularly true when calibrating to non-standard option
contracts, as is the case here for the NBP swaptions contracts. We therefore suggest, first
searching for local minima by selecting the initial parameter values in ones search function
from a wide and relatively sparse discretisation of the parameter space. Once each of these
local minima have been identified one can construct a region encompassing each in order
to identify local calibration risk. For each of the models specified above, the calibration to
our options data, using the simplex method of Lagarias et al. (1998), did produce multiple
local minima dependent upon the choice of initial parameters. However, in each case the
local minimum either yielded an RMSE far in excess of our acceptable cut-off or returned
parameter values similar to our optimal values. Therefore we will focus only on a reduced
parameter space encompassing our initial parameter estimates.

We focus first on the benchmark MRVG-1F and MRJD models, which require estimation
from market data only. Following the example of Bannör and Scherer (2013), we choose
h (·) to be the normal transformation given by Eq. (1). For the scaling parameter, λ, we use
the sample variance of the calibrated errors centered on the minimum value and chose c such
that the density values sum to unity. For both the MRVG-1F and MRJD models, the mean
reversion rate, α, and the instantaneous volatility, σ , determine the term structure of volatility
at different maturities along the forward curve. As outlined in Sect. 3, this exponentially
decreasing term structure acts to decorrelate the forward curve returns at different maturities
and is the primary driver of the extrinsic storage value. The variance of the jump sizes in the
forward curve returns are controlled by the parameter ν in the MRVG-1F model and by λ

and μ in the MRJD model. The main purpose of these parameters is to aid in matching the
implied volatility smile present in the natural gas options market. The calibrated parameters
are given in Table 1. The associated RMSE is 1.07% for the MRVG-1F model, while the
RMSE is slightly higher for the MRJD model at 1.10%.

MRVG-1F denotes the one-factor Mean Reverting Variance Gamma (MRVG-1F) model
of Cummins et al. (2017), as described in Eq. (4). The parameters are as follows: α is the
mean reversion rate; σ is the volatility of the Variance Gamma process; and ν is the variance
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Table 1 MRVG-1F/MRJD
models: calibrated model
parameters

MRVG-1F α σ ν RMSE

0.2162 0.201 0.2560 1.07%

MRJD α σ λ μ RMSE

0.2099 0.0334 8.7966 0.047 1.10%

of the jump sizes of the Variance Gamma process. MRJD denotes the Mean Reverting Jump
Diffusion (MRJD) model of Deng (2000), as described in Eq. (5). The parameters are as
follows: α is the mean reversion rate; σ is the volatility of the diffusion process; λ is the
arrival rate of the jump process; and μ controls the size of both positive and negative jumps
under the jump process.

To investigate the local risk of our initial calibration of the MRVG-1F model, we select
mean reversionα values ranging from70% to 130%, in steps of 5%, of the calibrated estimate.
For the volatility σ and the variance of jump magnitudes ν, we use a tighter range of values
from 90% to 110%, in steps of 1.5%, of the calibrated estimates, which reflects the greater
sensitivity of the RMSE to changes in these two parameters. In total, this yielded 2, 548
distinct parameter combinations. We next iterate over this parameter space and discard any
parameter combinations that produce RMSE measures greater than our 3% limit. The result-
ing parameter space reduced to 807 parameter combinations. Using the error terms associated
with these parameters, we derive an error density as per Eq.(1) and then evaluate the storage
value at each point in this reduced parameter space. The resulting calibration risk induced
storage value push forward density is displayed graphically in Fig. 1 and the distributional
characteristics are given in Table 2. As is evident from the graph, the density appears almost
uniform over the acceptable calibration range. The apparent presence of columns of points
in Fig. 1 correspond to storage values at each α point in the parameter space. This behaviour
can be rationalised by observing that changes in α have little effect on the calibration error
relative to changes in σ and ν due to the sensitivity of the implied volatility smile to changes
in model volatility and kurtosis. This means that a much wider range of α values fall within
the acceptable parameter space. Further, due to the sensitivity of storage values to the model
covariance structure, the choice of α will impact the value much more than both σ and ν.

For the MRJD model, we again select the mean reversion α range to be 70% to 130%,
in steps of 5%, of the calibrated estimate. The values for the volatility σ , jump arrival rate
λ and jump size μ were selected to range from 90% to 110%, in steps of 4%, of the initial
calibration estimates. This tighter range is reflective of the greater sensitivity of the RMSE
to changes in these parameters. In total this gave 2, 808 distinct parameter combinations, of
which 795 were within the cut-off threshold of 3. The resulting push forward storage density
is displayed in Fig. 2 and the distributional characteristics are again given in Table 2. As
we can observe visually, and also from the summary statistics, there is not much difference
between the push forward densities from both models. The MRVG model returns a slightly
higher expected value than theMRJDmodel but also has a slightly higher level of variability.
It would appear on the basis of this analysis that both models carry almost equivalent levels of
calibration risk. A difference lies however in the skewness of the storage value push forward
densities determined by theMRVG-1F andMRJDmodels, the former indicating a negatively
skewed distribution and the latter a positively skewed distribution.

The plot presents the storage value push forward density for the MRVG-1F model of Eq.
(4), derived using the calibration risk measurement procedure of Bannör and Scherer (2013)
as set out in Sect. 2.1. The procedure applies the following normal transformation function
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Fig. 1 MRVG-1F storage value
push forward density

Table 2 MRVG-1F/MRJD
storage value distribution
characteristics

MRVG-1F MRJD

Modus 11.2087 11.2127

Expected value 11.2116 11.2039

Coefficient of variation 0.38% 0.36%

Skewness −0.034 0.021

MRVG-1F denotes the one-factor Mean Reverting Variance Gamma
(MRVG-1F) model of Cummins et al. (2017), as described in Eq. (4).
MRJD denotes the Mean Reverting Jump Diffusion (MRJD) model of
Deng (2000), as described in Eq. (5)

to the calibration errors ε (θ) , defined under the discretisation of the model parameter space
θ ≡ θm = {α, σ, ν}:

h (ε) := hNλ (ε) = c exp

(

−
(

ε − ε∗

λ

)2
)

ε ≥ ε∗,

with scaling parameters λ > 0 and c > 0 chosen so that the function returns a probabil-
ity distribution centered on the minimum obtained calibration error ε∗, as achieved by the
optimisation routine employed. For the implementation, we chose λ = 7.9358e − 05 and
c = 266.92.

For the discretisation of themodel parameter space,we chose values for themean reversion
rate α ranging from 70% to 130%, in steps of 5%, of the calibrated estimate, and values for
the volatility σ and variance of jump sizes ν ranging from 90% to 110%, in steps of 1.5%,
of the respective calibrated estimates.

The plot presents the storage value push forward density for the MRJD model of Eq. (5),
derived using the calibration risk measurement procedure of Bannör and Scherer (2013) as
set out in Sect. 2.1. The procedure applies the following normal transformation function to
the calibration errors ε (θ) , defined under the discretisation of the model parameter space
θ ≡ θm = {α, σ, λ, μ}:
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Fig. 2 MRJD storage value push
forward density

h (ε) := hNλ (ε) = c exp

(

−
(

ε − ε∗

λ

)2
)

ε ≥ ε∗,

with scaling parameters λ > 0 and c > 0 chosen so that the function returns a probabil-
ity distribution centered on the minimum obtained calibration error ε∗, as achieved by the
optimisation routine employed. For the implementation we chose λ = 8.2115e − 05 and
c = 274.70.

For the discretisation of themodel parameter space,we chose values for themean reversion
rate α ranging from 70% to 130%, in steps of 5%, of the calibrated estimate, and values for
the volatility σ , the jump arrival rate λ, and the jump size μ, ranging from 90% to 110%, in
steps of 4%, of the respective calibrated estimates.

4.1 Joint calibration-estimation risk

The MRVG-2F model, as set out in Eq. (6), requires calibration to options market data and
also parameter estimation from historical futures market data. The initial market calibrated
and historically estimated model parameters are given in Table 3. As in the MRVG-1F case,
the market calibrated parameters contain the mean reversion rate α and volatility σ which
determine the term structure of volatility of the first factor, along with the jump size variance
ν, which will determine the attenuation of the model implied volatility smile. The historically
estimated parameters b and c act to weight each factor by their contribution to overall forward
curve variation, thus the variance of the log spot gas price will be simply σ 2

(
b2 + c2

)
. The

mean reversion rate ε of the second factor determines the slope of that factor’s term structure
of volatility. This has the effect of introducing returns of a much higher absolute magnitude
for short term maturities and therefore acts to decorrelate the overall forward curve returns.

Recall from Eq. (2) that the parameter risk induced storage value density, h (ε (θ)) , for
the MRVG-2F model is decomposed into the conditional market calibration error density
hm (ε (θ) |θh) and the historical sampling error density p(θh). We shall proceed by first
determining the former density hm (ε (θ) |θh). We have chosen the same parameter space
discretisation for θm as in theMRVG-1F case, that is, α values ranging from 70% to 130%, in
steps of 5%, of the calibrated estimate, and σ and ν values ranging from 90% to 110% of their
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Table 3 Calibrated-estimated
model parameters: MRVG-2F
model

θm θh

α σ ν b c ε RMSE

0.1148 0.2518 0.1675 0.7511 0.6254 12.734 1.86%

MRVG-2F denotes the two-factor Mean Reverting Variance Gamma
model of Cummins et al. (2018), as described in Eq. (6). The first factor
is specified by a Mean Reverting Variance Gamma process, whereby
α is the mean reversion rate, σ is the volatility andν is the jump size
variance of the process. θm ≡ {α, σ, ν} is the market calibrated parame-
ter set, determining the shape of the volatility term structure of the first
factor. The parameters b and c represent the proportion of total variance
attributed to the first and second factors respectively. The second factor
is specified such that it approximates the typical shape of the sensitivity,
i.e. the volatility function, of the forward curve to the second principal
component of the forward curve returns covariance matrix. The param-
eter ε controls the decay of the volatility function as maturity increases.
θh ≡ {b, c, ε} is the historically estimated parameters set, determining
the shape of the volatility term structure of the second factor

Table 4 MRVG-2F storage value
distribution characteristics

hm (ε (θ) |θh) hm (ε (θ)) p(θh)

Modus 15.4117 15.4117

Expected value 15.2558 15.2528

Coefficient of variation 0.69% 2.17%

Skewness 0.0033 0.0001

Following the joint calibration-estimation risk measurement procedure
set out in Sect. 2.2, hm (ε (θ) |θh) is the conditional market calibra-
tion error density and hm (ε (θ)) p(θh) is the specific form of the joint
calibration-estimation risk density hm (ε (θ) |θh) p(θh), where indepen-
dence is assumed between the calibration error and the values of the
parameters estimated from historical data

initial calibrated values, in steps of 1.5%. This returned 2, 548 parameter combinations, of
which 838 were within the threshold of 3% of the minimum calibration error. The conditional
market calibration error density for storage value, hm (ε (θ) |θh), is displayed graphically in
Fig. 3, with the distributional characteristics given in Table 4.

The plot presents the conditional market calibration error density hm (ε (θ) |θh) for the
MRVG-2F model of Eq. (6), derived using the joint calibration-estimation risk measure-
ment procedure set out in Sect. 2.2. The procedure applies the following generalised normal
transformation function to the calibration errors ε (θ), defined under the discretisation of the
model parameter space θ ≡ {θm, θh}:

h (ε (θ)) = hm (ε (θ) |θh) p(θh).
The conditional market calibration error density is defined as follows: hm (ε (θ) |θh) =

c exp

(

−
(

ε−ε∗
λ

)2)

ε ≥ ε∗, centered on the minimum obtained calibration error ε∗. For
the implementation we chose λ = 7.7304e − 05 and c = 290.70.

For the discretisation of the market parameter space, we chose values for the mean rever-
sion rate α ranging from 70% to 130%, in steps of 5%, of the calibrated estimate, and values
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Fig. 3 MRVG-2F conditional
market calibration error density

for the volatility σ and variance of jump sizes ν ranging from 90% to 110%, in steps of 1.5%,
of the respective calibrated estimates.

Comparing the conditional market calibration error density to the MRVG-1F and MRJD
cases, we see that the value ismuch higher but also the coefficient of variation is almost double
that of the single factor models and thus the confidence onewould have in the calibrated value
is lower. From the plot of the push forward density we observe a clustering of storage values
at distinct levels. These points relate to different σ values in the discretised parameter space.
Recall that in theMRVG-1F andMRJDmodels, there was an apparent clustering at distinct α
values due to the sensitivity of the storage value to changes in this parameter. For theMRVG-
2Fmodel however, the value will be primarily driven by the relatively high estimated ε value,
which will act to decorrelate the near-dated and far-dated maturities on the forward curve
due to the steep decline in the volatility term structure of the second factor. From the model
specification given in Eq. (6), we can see that the level of this volatility term structure will
be proportional to σ , which thus gives a rationale for the relatively large value sensitivity to
this parameter and the storage value density behaviour observable in Fig. 3.

We now proceed to derive the historical sample error density for the storage value, associ-
ated with the historically estimated parameters θh . In order to derive the parameter estimation
risk induced storage value density, we must first estimate the Jacobian of our storage value
with respect to our model parameters θh . We do so by first difference based numerical differ-

entiation. Specifically, for each parameter ϑh ∈ θh , we calculate ∂V
∂ϑh

≈ V
(
ϑh+ 1

2 η
)
−V

(
θ− 1

2 η
)

η
,

where V represents the initial storage value and η is a small induced parameter perturbation.
In our numerical implementation we choose η = 0.0001. The results of this are displayed in
Table 5. The c parameter, which controls the percentage of spot variance accounted for by
the second factor, has the greatest impact on the storage value, followed by the ε parameter,
which is ultimately responsible for the extrinsic value attributable to the second factor. Intu-
itively, this can be understood as the ε parameter reducing the autocorrelation of the second
factor and c being responsible for passing this decorrelation through into the forward curve
returns. The b parameter has little impact on the storage value which is due to the low levels
of extrinsic value attributable to the first factor. The historical sample error density for the
storage value is shown in Fig. 4.
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Table 5 MRVG-2F model:
historical parameter deltas

Parameter Delta

b 0.0039

c 8.8059

ε 0.1402

Parameter sensitivity calculated using finite differences. Formally, for

each parameter ϑh ∈ θh , we calculate
∂V
∂ϑh

≈ V
(
ϑh+ 1

2 η
)
−V

(
θ− 1

2 η
)

η ,
where V represents the initial storage value and η is a small induced
parameter perturbation. In our numerical implementationwe choose η =
0.0001

Fig. 4 MRVG-2F historical
sampling error density

The plot presents the historical sampling error density p(θh) for the MRVG-2F model of
Eq. (6), derived using the joint calibration-estimation risk measurement procedure set out in
Sect. 2.2. The estimation risk induced storage value distribution, obtained by applying the
delta method of Bannör and Scherer (2013), set out in Sect. 2.1, is described as follows:

(
Eθh [X ] − Eθh,0 [X ]

) ∼ N
(
0,

(∇Eθ0 [X ]
)′ · (∇g−1)′ · � · ∇g−1 · ∇Eθ0 [X ]

)
,

where � represents the uncertainty of the forward curve covariance matrix, ∇g−1 represents
the sensitivity of the model parameters to the forward curve covariance matrix, and ∇Eθ0

represents the sensitivity of the storage value to the model parameters.
For the construction of the combined calibration and estimation risk induced storage value
density, wemake an assumption of independence between the calibration error and the values
of the parameters estimated from historical data. This is primarily due to the computational
effort involved in constructing the conditional calibration risk induced storage value density,
which would grow exponentially if the density was a function of a second equally dense
parameter space. This assumption reduces Eq. (2) to

h (ε (θ)) = hm (ε (θ)) p(θh).

Thedistribution characteristics of this combineddensity are given inTable 4.While the greater
flexibility of the MRVG-2F model captures more extrinsic value of the storage contract,
relative to the MRVG-1F and MRJD models, this is at the cost of greater uncertainty as to its
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true value, with the variability of the storage value increasing dramatically due to exposure to
historical estimation risk. Hence, there is higher risk of suffering P&L variations attributable
to the choice of model parameters.

4.2 Model comparison and selection

Now that we have evaluated the storage value push forward densities associated with the
candidate models, we are positioned to discuss the actions that can be carried out using
this information. We begin with the choice of appropriate risk-captured bid-offer prices to
compensate for parameter risk exposure. The main motivation for this is to allow traders and
trade control groups to reserve capital upfront to cover a potential loss due to the calibration
and estimation of pricing models. To inform this decision, we suggest first constructing the
cumulative distribution function (CDF) from the push forward density and then choosing
percentiles appropriate to one’s level of risk tolerance as bid-offer prices.7

Figures 5, 6 and 7 display the CDFs associated with theMRVG-1F, MRJD andMRVG-2F
models respectively. In the case of theMRVG-1F model, taking the 10th and 90th percentiles
as bid and offer levels gives us prices of 11.1507 and 11.2697 respectively, which equates to a
spread of 1.06%of themean value. TheMRJDCDFgives similar bid-offer prices of 11.1473-
11.2611, which is a spread of 1.02% of the mean value. The MRVG-1F bid-offer spread is
marginally wider than that of the MRJD model, which is consistent with the previously
reported results. In contrast, for the MRVG-2F model, the 10th and 90th percentiles of the
CDF give bid-offer prices of 14.8266-15.6772, representing a much wider spread of 5.58%
of the mean value, over 5 times that of the MRVG-1F and MRJD models. Coinciding with
our previous evidence, this of course reflects the much greater uncertainty around the true
value of the storage contact under theMRVG-2Fmodel, notwithstanding its ability to capture
greater extrinsic value. A key question that arises from this is of course: is it possible to bear
this greater parameter risk for the flexibility that the MRVG-2F model offers? This question
provides our motivation to next develop a practical model selection technique.

Authorising the use of onemodel over another would typically fall on themodel validation
team within the risk control function of an organisation. The approach we outline here is
informal in the sense that it focuses only on the relative levels of parameter risk and should
be viewed as a complement to a wider model specification analysis. To frame the example,
let us assume that the MRVG-1F model is the incumbent and the trading desk has requested
the use of the MRVG-2F model for valuation and P&L reporting. Once a rigorous theoretical
examination of the assumptions and inputs underpinning themodel has been carried out, as per
best practice model validation, there is then an obvious need for a quantitative methodology
capable of appropriately ranking the models with respect to parameter risk. Comparing the
valuations returned by both models in the context of the model risk they carry and for the
products most relevant to the company is the main goal of such an analysis. Here, we utilise
the Average-Value-at-Risk (AVaR), or equivalently, expected shortfall, based risk functional
given by Bannör and Scherer (2013). AVaR is a coherent risk measure, defined for a given
percentile α as

7 This approach can be seen as an informal, but consistent, alternative to the risk functional approach adopted
by Bannör and Scherer (2013).
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Fig. 5 MRVG-1F storage value
cumulative distribution function

Fig. 6 MRJD storage value
cumulative distribution function

AVaRα (X) ≡ 1

α

∫ α

0
VaRb (X) db,

where VaRb (X) is the b% Value-at-Risk for a position with payoff X . The AVaR at α =
100% therefore corresponds to the expected value of a position under a given probability
measure.8 Bannör and Scherer (2013) utilise AVaR as the underlying coherent risk measure
in the risk functional, R ∗ AVaRα (X), defined as

R ∗ AVaRα (X) ≡ AVaRα

(
Q → EQ[X ]) ,

where R is the distribution of the family of measuresQ. R ∗ AVaRα (X) captures the model
risk quantified by the distribution R, which is isolated from the model-intrinsic risk within a
specific model Q ∈ Q.

8 See Föllmer and Knispel (2011) for a comprehensive overview of the AVaR risk measure.
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Fig. 7 MRVG-2F storage value
cumulative distribution function

In the case where one candidate model is being proposed as a potential replacement for
an incumbent model and they rank equally in all other potential model comparison metrics,
a naive approach would be to chose the model which returns the highest expected value
on a given asset, ignoring the model risk implicit in the valuations. A conservative param-
eter risk based rule for switching would be to require the new candidate model to yield a
bid price,−R ∗ AVaRcandidateα (−X), at a chosen percentile to be greater than the offer

price, R ∗ AVaRincumbent
α (X), of the incumbent model. Not only does this guarantee that

the model risk adjusted price levels in the new model exceed those of the incumbent, it
also returns a minimum cash value associated with switching, i.e. the bid minus the offer.
Figure 8 displays the risk-captured offer prices for the MRVG-1F model, while Fig. 9 dis-
plays the risk-captured bid prices for the MRVG-2F model, at varying percentile levels in
the range (0, 1]. As the MRVG-2F risk-captured bid prices dominate the MRVG-1F offer
prices at all percentiles, the resulting decision would be that the MRVG-2F model is an
acceptable replacement for the MRVG-1F, as the increased parameter risk is sufficiently
compensated.

This decision outcome is important. It was argued earlier that the MRVG-2F model
allows more flexibility in modelling the covariance structure of the forward curve and
therefore should produce storage values more representative of the underlying dynam-
ics. The MRVG-2F model, however, increases the complexity of the model specification
over the MRVG-1F model as it (i) moves from a one-dimensional state space to a two-
dimensional state space and (ii) doubles the number of parameters to be estimated from
three to six. However, we have just shown that despite the increased exposure to parameter
risk that this brings, the ability to capture greater extrinsic value compensates sufficiently
this model risk. Our study is therefore an important complement to the work of Cummins
et al. (2018). While the latter study argues the merits of the MRVG-2F model in bet-
ter modelling gas storage value, the authors ignore the issue of model risk exposure. We
address this practitioner relevant problem directly in our study, providing a methodolog-
ical innovation coupled with practical guidance for the model validation function within
organisations.
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Fig. 8 MRVG-1F storage
risk-captured offer prices

Fig. 9 MRVG-2F storage
risk-captured bid prices

5 Conclusion

We consider a practice-relevant model validation scenario where a model validation team is
seeking to decide between an incumbent and an alternative, competing model, on the basis
of parameter risk. We contribute through an extension of the calibration risk measurement
methodology ofBannör and Scherer (2013)wherewe incorporate bothmarket calibration and
historical estimation within a meaningful distributional assessment of parameter risk. This is
a problem that is typical in practice, where due to data constraints, calibration to options con-
tracts only is not feasible. We demonstrate our proposed methodology with an application to
assess parameter risk in a natural gas storage modelling exercise, where complex price model
dynamics are required to optimally capture the extrinsic value inherent in such contracts. We
further contribute through leveraging our advocated distributional parameter risk analysis to
devise an accessible model selection technique.

While we provide an important methodological contribution to deal with scenarios where
joint calibration-estimation is required, we simultaneously deliver some important messages
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for model validators working in practice. Firstly, the distribution-based approach to model
risk measurement that we advocate provides a sound probabilistic framework upon which to
assess model risk exposure. Secondly, model validators can follow the model risk approach
we take to better understand the sensitivity of complex derivative valuations to particular
parameter combinations, aiding them to better set constraints and limitations to model usage
within their organisations. Thirdly, the distributional assessment approach to model risk
measurement may be readily leveraged by model validators as a decision support tool for
model choice recommendations.

A useful direction for future research would be to leverage the model risk management
analysis of this paper to produce a comprehensive study of the alternative storage valuation
methods proposed in the literature. A significant challenge is that there is no consensus with
regards to the approach used for gas storage modelling and valuation, instead we see a range
of approaches advocated - spanning spot-based, forward-based and practitioner heuristic
models. Careful consideration would additionally need to be given to the price model dimen-
sion and the optimization dimension of the gas storage valuation problem (see, for example,
Bjerksund et al. (2011)). We see this as an important next step in the development of this
topic.
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not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
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References

Abid, I., Goutte, S., Mkaouar, F., & Guesmi, K. (2019). Optimal strategy between extraction and storage of
crude oil. Annals of Operations Research, 281(1), 3–26.

Alexander, C., & Chen, X. (2019). Model risk in real option valuation. Annals of Operations Research, 1,
1–32.

Alexander, C., & Sarabia, J. M. (2012). Quantile uncertainty and value-at-risk model risk. Risk Analysis, 32(8),
1293–1308.

Aloui, D., Goutte, S., Guesmi, K., & Hchaichi, R. (2020). COVID 19’s impact on crude oil and natural gas
S&P GS Indexes.Working Paper.

Aloui, R., Aïssa, M. S. B., Hammoudeh, S., & Nguyen, D. K. (2014). Dependence and extreme dependence of
crude oil and natural gas prices with applications to risk management. Energy Economics, 42, 332–342.

Ameur, H. B., Ftiti, Z., Jawadi, F., & Louhichi, W. (2020). Measuring extreme risk dependence between the
oil and gas markets. Annals of Operations Research, pp. 1–18.

Aslam, F., Aziz, S., Nguyen, D. K., Mughal, K. S., & Khan, M. (2020). On the efficiency of foreign exchange
markets in times of the COVID-19 pandemic. Technological Forecasting and Social Change, 161, 120–
261.

Atil, A., Lahiani, A., & Nguyen, D. K. (2014). Asymmetric and nonlinear pass-through of crude oil prices to
gasoline and natural gas prices. Energy Policy, 65, 567–573.

Bannor, K., Kiesel, R., Nazarova, A., & Scherer, M. (2013). Model risk and power plant valuation. Working
Paper.

Bannör, K., & Scherer, M. (2013). Capturing parameter risk with convex risk measures. European Actuarial
Journal, 3(1), 97–132.

Barrieu, P., & Scandolo, G. (2015). Assessing financialmodel risk.European Journal of Operational Research,
242(2), 546–556.

123

http://creativecommons.org/licenses/by/4.0/


454 Annals of Operations Research (2023) 330:431–455

Bjerksund, P., Stensland, G., & Vagstad, F. (2011). Gas storage valuation: Price modelling v. optimization
methods. The Energy Journal, 32(1)

Boogert, A., & De Jong, C. (2011). Gas storage valuation using a multifactor price process. The Journal of
Energy Markets, 4(4), 29–52.

Bunnin, F. O., Guo, Y., & Ren, Y. (2002). Option pricing under model and parameter uncertainty using
predictive densities. Statistics and Computing, 12(1), 37–44.

Choukroun, S., Goutte, S., & Ngoupeyou, A. (2015). Mean-variance hedging under multiple defaults risk.
Stochastic Analysis and Applications, 33(5), 757–791.

Clewlow, L., & Strickland, C. (1999). A multi-factor model for energy derivatives. Technical report.
Cont, R. (2006). Model uncertainty and its impact on the pricing of derivative instruments. Mathematical

Finance, 16(3), 519–547.
Cooke, R. M. (2009). Uncertainty modeling in dose response: Bench testing environmental toxicity. New

Jersey: John Wiley and Sons.
Coqueret, G., & Tavin, B. (2016). An investigation of model risk in a market with jumps and stochastic

volatility. European Journal of Operational Research, 253(3), 648–658.
Cummins, M., Kiely, G., & Murphy, B. (2017). Gas storage valuation under levy processes using the fast

fourier transform. The Journal of Energy Markets, 10(4), 43–86.
Cummins,M., Kiely, G., &Murphy, B. (2018). Gas storage valuation undermultifactor lévy processes. Journal

of Banking and Finance, 95, 167–184.
Deng, S. (2000). Stochastic models of energy commodity prices and their applications: Mean-reversion with

jumps and spikes. CA: University of California Energy Institute Berkeley.
Denoyel, V., Alfandari, L., & Thiele, A. (2017). Optimizing healthcare network design under reference pricing

and parameter uncertainty. European Journal of Operational Research, 263(3), 996–1006.
Deryabin, M. (2012). On bounds for model calibration uncertainty. Journal of Risk Model Validation
Föllmer, H., & Knispel, T. (2011). Entropic risk measures: Coherence vs. convexity, model ambiguity and

robust large deviations. Stochastics and Dynamics, 11(02n03), 333–351.
Gaïgi, M., Goutte, S., Kharroubi, I., & Lim, T. (2019). Optimal risk management problem of natural resources:

application to oil drilling. Annals of Operations Research, 1, 1–20.
Goodell, J. W. and S. Goutte (2020). Diversifying with cryptocurrencies during COVID-19. Working Paper.
Goutte, S., Kharroubi, I., Lim, T., et al. (2021). Optimal risk management problem of natural resources:

Application to oil drilling. Annals of Operations Research, 297(1), 147–166.
Gupta, A., & Reisinger, C. (2011). Calibrating financial models using consistent bayesian estimators.
Hagan, P., Kumar, D., Lesniewski, A., & Woodward, D. (2002). Managing smile risk.Wilmott Magazine, 15,

84–108.
Halvorsen-Weare, E. E., & Fagerholt, K. (2013). Routing and scheduling in a liquefied natural gas shipping

problem with inventory and berth constraints. Annals of Operations Research, 203(1), 167–186.
Heather, P. (2012). Continental european gas hubs: are they fit for purpose? Oxford Institute for Energy

Studies.
Hénaff, P., Laachir, I., & Russo, F. (2018). Gas storage valuation and hedging: A quantification of model risk.

International Journal of Financial Studies, 6(1), 27.
Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and

currency options. Review of Financial Studies, 6(2), 327–343.
Huang,D., Zhu, S., Fabozzi, F. J.,&Fukushima,M. (2010). Portfolio selection under distributional uncertainty:

A relative robust cvar approach. European Journal of Operational Research, 203(1), 185–194.
Kjaer, M. (2008). Pricing of swing options in a mean reverting model with jumps. Applied Mathematical

Finance, 15(5–6), 479–502.
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