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a b s t r a c t 

Action-stopping in humans involves bursts of beta oscillations in prefrontal-basal ganglia regions. To determine 
the functional role of these beta bursts we took advantage of the Race Model framework describing action- 
stopping. We incorporated beta bursts in three race model variants, each implementing a different functional 
contribution of beta to action-stopping. In these variants, we hypothesized that a transient increase in beta could 
(1) modulate decision thresholds, (2) change stop accumulation rates, or (3) promote the interaction between 
the Stop and the Go process. We then tested the model predictions using EEG recordings in humans performing a 
Stop-signal task. We found that the model variant in which beta increased decision thresholds for a brief period 
of time best explained the empirical data. The model parameters fitted to the empirical data indicated that beta 
bursts involve a stronger decision threshold modulation for the Go process than for the Stop process. This suggests 
that prefrontal beta influences stopping by temporarily holding the response from execution. Our study further 
suggests that human action-stopping could be multi-staged with the beta acting as a pause, increasing the response 
threshold for the Stop process to modulate behavior successfully. Overall, our approach of introducing transient 
oscillations into the race model and testing against human electrophysiological data provides a novel account of 
the puzzle of prefrontal beta in executive control. 

1. Introduction 

Prefrontal beta oscillations occur during action-stopping in both hu- 
man and non-human primates ( Errington et al., 2020 ; Hannah et al., 
2020 ; Jana et al., 2020 ; Swann et al., 2009 ; Wagner et al., 2018 ). The 
Stop-signal task is widely used to assess action-stopping behavior in hu- 
mans. The task mostly involves Go trials, in which subjects quickly re- 
spond to a Go cue. However, occasionally, on Stop trials, a Stop-signal 
is presented after the Go cue, instructing the subject to withhold re- 
sponding. There are increases in prefrontal beta in these Stop trials, 
and these increases happen before the action is stopped, i.e. before the 
stop-signal reaction time (SSRT). It has been hypothesized that these 
beta oscillations (which occur as bursts at the single-trial level) could 
be a marker of a fast hyper-direct prefrontal STN pathway that gets re- 
cruited to stop motor-processes ( Aron, 2011 ; Chen et al., 2020 ). Fur- 
thermore, the timing of beta bursts correlates with the time the action 
is cancelled ( Hannah et al., 2020 ; Jana et al., 2020 ). Currently, the neu- 
ral mechanisms by which prefrontal beta influences action-stopping are 
not clear. One possibility is that a beta burst reflects an active commu- 
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nication channel between prefrontal regions and the basal ganglia (c.f. 
( Fries, 2005 )), e.g. as a form of top-down control biasing the current be- 
havioral strategy towards stopping via STN to inhibit motor processes 
( Schmidt et al., 2019 ). However, as there are other possibilities as well, 
it still remains unclear how beta relates to action-stopping. 

In the well-developed race model framework, a Go and a Stop pro- 
cess race against each other and whichever process reaches the deci- 
sion threshold first determines the behavioral outcome (Go or Stop) 
( Logan and Cowan, 1984 ; Logan et al., 2014 ; Verbruggen and Lo- 
gan, 2009 ). Here we developed and studied three different race model 
variants of how beta could modulate the Go and Stop processes by affect- 
ing decision thresholds, accumulation rates, and the interaction between 
Go and Stop processes, respectively. For each model variant, we derived 
predictions for the relationship between beta and behavioral data, and 
then tested these predictions in two data sets of EEG recordings in hu- 
mans performing a stop-signal task. We found that the human data is 
best described by a race model in which beta bursts transiently affect 
the decision threshold, providing a new functional role of prefrontal 
beta in human action-stopping. 
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2. Methods 

2.1. Dataset/participants 

We analyzed data from existing datasets. One was a reanalysis, 
(Dataset-1, N = 13, Jana et al., 2020 ; Mean Age = 20 ± 0.5 years, eight 
females, all right-handed), and the other was unpublished (Dataset-2: 
N = 26, Mean Age = 21 ± 0.5 years, 16 females, all right-handed except 
one participant who was left-handed). All participants provided written 
informed consent according to a UCSD Institutional Review Board pro- 
tocol and were compensated at $20 /h. One participant was removed 
from analysis in Dataset-1 due to misalignment of EEG markers and be- 
havior. Three participants were removed in Dataset-2, two participants 
had noisy EEG data and one had estimated Stop-signal reaction time of 
< 100 ms. Thus, the final sample size was N = 12 in Dataset-1 and N = 23 
in Dataset-2. 

2.2. Stop-signal task 

Both datasets were acquired with the behavioral task run using MAT- 
LAB 2014b (Mathworks, USA) and Psychtoolbox ( Brainard, 1997 ). The 
task was a visual stop-signal task where a trial began with a white square 
at the center of the screen for 500 ± 50 ms. Following this a right or left 
white arrow appeared at the center. Participants pressed a button on a 
keypad with either their right index finger, when a left arrow appeared, 
or their right pinky (Dataset-1) or middle (Dataset-2) finger when a right 
arrow appeared. They were instructed to do this as fast and as accurately 
as possible (Go trials). The stimuli were present on the screen for 1 s. A 
warning ‘Too Slow’ was presented if the participants did not make a re- 
sponse within this time and the trial was aborted. On a minority of trials 
(25%), the arrow turned red after a Stop Signal Delay (SSD), and par- 
ticipants tried to stop the response (Stop trials). The SSD was adjusted 
using two independent staircases (for right and left directions), where 
the SSD increased and decreased by 50 ms following a Successful Stop 
and Failed Stop, respectively. Each trial was followed by an inter trial 
interval and the entire duration of each trial including the inter trial 
interval was 2.5 s. There were in total 1920 trials (1440 Go trials and 
480 Stop trials) and 400 trials (300 Go trials and 100 Stop trials) per 
participant in Dataset-1 and Dataset-2 respectively. 

2.3. Data analysis & computational modeling 

All analyses and simulations were performed using MATLAB 
R2016b. 

2.3.1. Electroencephalography (EEG) 
EEG data were recorded using 64 channel scalp EEG in the stan- 

dard 10/20 configuration using an Easycap system (Easycap and Brain- 
Vision actiCHamp amplifier, Brain Products Gmbh, Gilching, Germany) 
for Dataset-1 and the ActiveTwo system (Biosemi Instrumentation, The 
Netherlands) for Dataset-2. The EEG signals were digitized at 1024 Hz 
and pre-processed using EEGLAB13 ( Delorme and Makeig, 2004 ) and 
custom-made MATLAB scripts. The data were downsampled to 512 Hz 
and band-pass filtered between 2 and 100 Hz. A 60, 120 and 180 Hz FIR 
notch filter were applied to remove line noise and its harmonics. EEG 
data were then re-referenced to the average. The continuous data were 
visually inspected to remove bad channels and noisy stretches. 

To look at prefrontal (or right frontal) beta, we used the ICA method 
and Time-Frequency analysis to obtain a putative right frontal spatial 
filter (done exactly as in Jana et al., 2020 ). After rejecting non-brain 
related independent components (ICs), identified from the frequency 
spectrum (increased power at high frequencies), scalp maps (activity 
outside the brain) and the residual variance of the dipole (greater than 
15%), we selected a putative right frontal IC from the scalp maps (if not 
present then we used frontal topography). The channel data were then 
projected onto the corresponding right frontal IC. The right frontal IC 

was validated by evaluating the time-frequency plots for successful stop 
trials and confirming a beta power increase (13–30 Hz) between Stop- 
signal and Stop-signal reaction time (SSRT) in Successful Stop trials. To 
do so, we first epoched the data from -1500 to 1500 ms for all trials type: 
Successful, Failed Stops and Correct Go trials (in relation to Stop-signal 
in Stop trials; and in relation to Go-cue in Correct Go trials). We then 
used Morlet wavelets for computing the time-frequency plots (4–30 Hz) 
in Successful Stop trials, with 3 cycles at low frequencies and linearly 
increasing by 0.5 for higher frequencies (the number of cycles at the 
highest frequency was 11.25). The beta frequency having the maximal 
power within Stop-signal and SSRT in these trials was also estimated for 
each participant as their peak beta frequency. 

2.3.2. Beta burst extraction 
The beta burst extraction was also done as in Jana et al. (2020) , 

which was adapted from Little et al. (2019) . The epoched data were fil- 
tered at the peak beta frequency for each participant using a Gaussian 
window with full-width half maximum of 5 Hz. From the resulting com- 
plex analytic time-series, we obtained the power estimate by computing 
the absolute of the Hilbert transform of this time-series. In each partic- 
ipant, to define the burst threshold, the beta amplitude within a period 
of -1000 to -500 ms (i.e. prior to Stop-signal in the Stop trials, and prior 
to mean SSD in the Correct Go trials) was pooled across all trials. The 
threshold was set as the median + 1.5 SD of the beta amplitude distribu- 
tion. Once the burst was detected, the burst width threshold was set as 
the median + 1 SD. Burst % was computed by binary-coding the time- 
points where the beta amplitude crossed the burst width-threshold. For 
each detected burst, the time of the peak beta amplitude was marked 
as the burst time. We also computed the times at which a beta burst 
ended, i.e. the beta amplitude fell beyond the burst width threshold and 
marked it as the burst offset time. 

2.3.3. Analyzing behavior in relation to beta bursts in Stop trials 
To analyze behavior in the Stop-signal task we obtained Go and 

Failed Stop reaction times. SSRTs were estimated using the integration 
method ( Verbruggen et al., 2019 ). Using the extracted timing of the 
beta bursts (see above), we estimated the probability of responding to 
the Stop cue, P(Respond), as a function of the time relative to the burst. 
To obtain reliable estimates this was done across participants, as a fixed- 
effects analysis, considering the behavior of the population as one. We 
pooled all Stop trials which had at least one burst between -100 ms and 
the corresponding participant’s SSRT (in relation to the Stop cue). From 

the pooled data, we then included Stop trials from those SSDs for which 
we had at least 50 trials. We did so as this was a good tradeoff between 
having enough trials to estimate P(Respond) reliably and to eliminate 
the really short and long SSDs where firstly there were not many trials 
and secondly where the effect of beta burst time as predicted by the 
modeling analyses was the least (see Figs. 1 d–f). Very few trials had 
more than one burst occurring in the selected time-window (Dataset-1: 
4.1 ± 0.6% and Dataset-2: 4.2 ± 0.7%). These trials were split into sev- 
eral trials equivalent to the number of bursts that occurred in them. For 
instance, if a trial had two beta bursts occurring in our selected time- 
window, with burst peak times at t1 and t2, we would split it into two 
trials having the same SSRT but one trial with burst time t1 and the other 
with t2. P(Respond) was then estimated at different time points relative 
to the time of the Stop-signal with a moving 50 ms-wide window cen- 
tered ranging from -50 to 250 ms in steps of 1 ms. P(Respond) was then 
simply taken as the fraction of failed stop trials in that 50 ms window. 
To determine whether a given P(Respond) significantly differed from 

chance level we used a permutation test (with 1000 permutations), in 
which the labels of Successful and Failed Stop trials were shuffled to 
yield surrogate P(Respond) distributions. Time points in which the em- 
pirical P(Respond) was smaller than (1–0.05/n) ∗ 100% of the surrogate 
values were considered significant at a p-value threshold of 0.05 with a 
Bonferroni correction for n = 5 multiple comparisons (given that there 
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Fig. 1. Race model dynamics with transient bursts. Schematic of the model setup and the accumulation dynamics of the Go and Stop processes for the three 
race model variants: (a) Interaction Model, (b) Speed-Stop Model and (c) Threshold model. Here 𝜇 and 𝜎 represent the average accumulation rate and the standard 
deviation of the noise associated with that process respectively. 𝛽 corresponds to the influence of the beta burst in that model variant. The solid green and red lines 
represent the Go-process and Stop-process accumulation dynamics, respectively. The dotted green and red lines represent the dynamics of the Go and Stop-process 
without the presence of a beta burst for comparison. The dotted black line shows the threshold, which in case of the Threshold model increases whenever the burst 
is present. A beta burst (solid blue line) is parametrized by the time it occurs (Burst Time), its duration ( 𝛽dur ) and its amplitude (A). d–f) Corresponding predictions 
of each of the three model variants on how a beta burst after the stop cue affects the probability of the Go process to win the race (i.e. P(Respond)). For each model 
variant (arranged as in panel a, b and c), we show the probability to respond (P(Respond)) for varying time intervals between Stop cue and the center of the beta 
burst (x-axis). Longer beta burst durations ( 𝛽dur = 100, 150 and 200 ms) prolonged and strengthened the effect on P(Respond). We chose model parameters here to 
yield RTs and SSRTs in a range that is typical for this task (see Methods), and illustrate in the plots below the effect of different SSDs (for 𝛽dur = 100). The dotted 
black and cyan lines represent the time of the Stop cue and model SSRT respectively. 

are 5 non-overlapping windows in our time period of interest, i.e. 0 and 
250 ms). 

2.3.4. Analyzing behavior in relation to beta bursts in Go trials 
The relationship between beta bursts and Go RTs was examined by 

estimating the probability distribution of burst offset times for differ- 
ent Go RTs. As above, the estimation of P(Respond) required a large 
number of trials, so data was again pooled across participants. Here all 
correct Go trials with at least one beta burst occurring in the time win- 

dow between -100 ms relative to the Go cue and that trial’s Go RT were 
included. This time-window is different from that in the Stop trials as 
we wanted to look at the effect of beta on the RTs. As before, the Go 
trials with more than one burst in this time window were split into mul- 
tiple trials as well. Each split trial was assigned the same Go RT and one 
of the burst times. We decided to look at RTs which fell in the range 
of 300–500 ms (for Dataset-1) and 300–700 ms (for Dataset-2) as they 
constituted the majority of the RT distribution across individuals. For 
each 50 ms-wide Go RT bin we looked at the probability (or fraction) 
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of the burst offset times occurring at each time-point between -50 and 
500 ms in relation to the Go cue (-50 to 700 ms in case of Dataset-2). 
This produced a probability distribution map of Go RTs and burst offset 
times. We also quantified this data in a different way by looking at the 
distribution of the difference between all Go RTs (not just the range se- 
lected for the probability map) and the burst offsets. We compared this 
to a null distribution, in which we assumed that the burst offset times 
were equiprobable at all times between -100 ms and Go RT + 100 ms. 

2.3.5. The three race model variants 
We considered three race model variants describing the influence of 

beta on behavior. Each variant followed the standard race model differ- 
ential equations governing the accumulation dynamics for both the Go 
and Stop decision-variables ( Boucher et al., 2007 ): 

𝑑𝑋 𝐺 = 
dt 
𝜏

[

𝜇𝐺 − 𝑘 ⋅𝑋 𝐺 − 𝛽Inte ract ( 𝑡 ) ⋅𝑋 𝑆 

]

+ 

√ 

dt 
𝜏
𝜉𝐺 

𝑑𝑋 𝑆 = 
dt 
𝜏

[(

𝜇𝑆 + 𝛽Speed ( 𝑡 ) 
)

− 𝑘 ⋅𝑋 𝑆 

]

+ 

√ 

dt 
𝜏
𝜉𝑆 

𝑇 ℎ𝑟𝑒𝑠 ℎ 𝐺∕ 𝑆 = 

{ 
𝑇 ℎ𝑟𝑒𝑠 ℎ 𝐵𝑎𝑠𝑒 + 𝛽𝑇ℎ𝑟𝑒𝑠ℎ 

𝐺 ( 𝑡 ) 

𝑇 ℎ𝑟𝑒𝑠 ℎ 𝐵𝑎𝑠𝑒 + 𝛽𝑇ℎ𝑟𝑒𝑠ℎ 
𝑆 ( 𝑡 ) 

In our simulations dt/ 𝜏 was set as 0.001. The leakage term k for 
both processes was set to 0. 𝜇G and 𝜇S parameters are the average ac- 
cumulation rate for the Go and Stop-process respectively, 𝜉G and 𝜉S are 
random variables representing the stochastic accumulation dynamics for 
the Go and Stop-process respectively, drawn from a normal distribution 
N(0, 𝜎G/S ). Here 𝜎G and 𝜎S represent the standard deviation of the nor- 
mally distributed noise term for the Go and Stop-process respectively. 
The baseline decision thresholds for both the Go and Stop processes were 
set to 1 (Thresh Base ). For the three different versions of the model (Inter- 
action, Speed-Stop and Threshold models), we added a time-varying 𝛽
term ( 𝛽Interact , 𝛽Speed , 𝛽Thresh ) to introduce the influence of a beta burst 
in the corresponding model scenario. The beta burst was modeled as a 
step function with pulse duration as the width of the burst ( 𝛽dur ), where 
the center of the pulse corresponded to the simulated burst time (also 
see Fig. 1 ). 

𝛽( 𝑡 ) = 

{ 
𝐴, 𝐵𝑢𝑟𝑠𝑡𝑇 𝑖𝑚𝑒 ± 𝛽𝑑𝑢𝑟 ∕2 

0 , 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

Here A is the amplitude/strength of beta burst. In each model vari- 
ant, the respective beta term was varied whilst the other two beta pa- 
rameters were set to zero. Usually, the outcome of the race was given by 
process reaching the threshold first. However, in the Threshold model, 
there were trials, in which the reset of threshold to the baseline value 
(i.e. when the beta burst ended) lead to both the Go and Stop processes 
being above the threshold. In such cases the process which had the larger 
activation was considered as the winner of the race. The model Go re- 
action times (Go RTs) and Stop-signal reaction times (or model SSRT) 
were estimated as the time the Go and Stop-process took to reach the 
threshold, respectively. 

2.3.6. Model parameters 
For the initial examination of the three race model variants, we used 

parameter settings that produced typical behavior data seen in Stop- 
signal tasks. By choosing the Go and Stop-process parameters to be 
𝜇G = 2.5, 𝜎G = 0.006 and 𝜇S = 5, 𝜎S = 0.006 respectively, we obtained 
simulated Go RTs of ∼400 ms and SSRTs of ∼200 ms. In each trial of 
the model, the SSD was randomly selected from a range of 100–300 ms 
with 50 ms resolution. We then determined P(Respond) as a function of 
when a beta burst occurred similar to the method described above for 
the empirical data. However, in the models we could systematically vary 
the time of the beta bursts and examined a range from -100 to 250 ms 
relative to the Stop-signal in 1 ms steps. We then computed P(Respond) 

for a particular burst time as the number of failed stop trials divided by 
the total number of stop trials for that particular SSD. We also varied 
the duration of the beta burst by setting the 𝛽dur parameter to 100, 150 
and 200 ms in different simulations. 

After the general initial examination of the three model variants 
( Fig. 1 ), the Threshold model was also fitted to individual participant 
data ( Fig. 2 ). For each iteration of the fitting procedure 30,000 tri- 
als (15,000 Go trials and 15,000 Stop trials) were simulated. Since 
the incidence of beta bursts is generally low during stopping, ∼20% 

( Errington et al., 2020 ; Hannah et al., 2020 ; Jana et al., 2020 ; 
Wessel, 2020 ), we simulated a beta burst in only 20% of all trials (total 
6000 trials, 3000 Go and 3000 Stop trials). In each trial with a burst, 
the time of the beta burst was drawn as a random time point in between 
the Go cue and the slowest RT of the corresponding participant with a 
resolution of 100 possible time points. The fitting then proceeded in two 
stages, starting with the parameters of the Go process ( 𝜇G , 𝜎G and A G ). 
The squared difference between experimental and simulated correct Go 
RT CDFs was used as the optimization function. In the second stage, we 
then fixed the parameters of the Go process to the best fit, and then fit- 
ted the stop parameters ( 𝜇S , 𝜎S and A S ), using the squared difference 
between experimental and simulated inhibition functions as the opti- 
mization function. For the experimental inhibition functions, we first 
fitted a cumulative Weibull function, which best captures the shape of 
inhibition function ( Hanes et al., 1998 ), and then used that as the cost 
function for our parameter optimization. In each of the two stages of 
the fitting procedure initially a coarse grid search was performed, in 
which we provided a range of parameters for 𝜇 (1.2 to 6), 𝜎 (0.001 to 
0.05) and A (0 to 1) and determined the top 20 best fits. Note that we 
also tested a model scenario in which beta can decrease decision thresh- 
olds, i.e. A < 0, but this did not yield good fits to the experimental data 
and was thus not further considered. The top 20 fits were then used 
as initial conditions for the Nelder-Mead Simplex algorithm ( fminsearch 
function in MATLAB) with maximum function evaluation of 600 itera- 
tions. We compared the findings to a null model scenario where there 
was no threshold modulation, i.e. simulating trials by setting the am- 
plitude of the threshold parameter for both the go and stop-process as 
zero (A G/S = 0). For comparison of model data with the experimental 
data, we similarly pooled all model data across participants, essentially 
performing a fixed-effect analysis on the model data. This approach was 
taken since it was not possible to fit the model on an average partici- 
pant, i.e. by pooling behavior across all participants, mainly because of 
the differences in both response times and the inhibition functions given 
the wide differences in SSDs across participants. Thus, as a compromise, 
our approach was to fit the model for individual participants, but then 
pool the model data for comparison with the pooled experimental data. 
For the model data all trials with a beta burst (i.e. 20% of the total trials) 
were included. We then computed both the P(Response) as a function 
of the burst time and the joint probability distributions to compare with 
the experimental data. 

3. Results 

3.1. Three models of beta in stopping 

We considered three different models for how a beta burst at a spe- 
cific time (burst time) could modulate the race between the Go and the 
Stop process. Firstly, in the Interaction model ( Boucher et al., 2007 ) 
the Stop-process inhibited the Go-process during a beta burst for a du- 
ration 𝛽Dur ( Fig. 1 a). This would slow the rate of accumulation in the 
Go-process, making it more likely for the Stop-process to win the race. 
Secondly, in the Speed-Stop model the occurrence of a beta burst in- 
creased the rate of accumulation in the Stop-process ( Fig. 1 b), making it 
more likely for it to reach decision threshold first. Finally, in the Thresh- 
old model a beta burst would increase the decision threshold of both the 
Go and Stop processes ( Fig. 1 c). Since the rate of accumulation is gen- 
erally quicker in the Stop-process than in the Go-process, the threshold 
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Fig. 2. Beta bursts modulate decision thresholds. ( a) Probability of response as a function of time between Stop cue and beta burst in experimental data for 
Dataset-1 (see Methods). Horizontal lines indicate time points with significant differences between the observed and shuffled data (black line shows p < 0.05; blue 
line with Bonferroni correction). (b) The joint probability distribution between the timing of beta burst offsets (in relation to the Go cue) and Go RTs. The diagonal 
dotted magenta line indicates when the Go RT is equal to the burst offset time. (c) The normalized distribution of the difference between Go RTs and burst offset 
times, compared to a null-distribution (solid blue line). (d–f) Same as (a–c) but for the Threshold model. In (d) the solid blue line represents the outcome of the 
model without any threshold modulation for comparison. The grey triangle and error bar represents the mean and standard deviation of the SSRT from experimental 
data; the model SSRT lies within the standard deviation of the experimental data. (g–i) Fitted mean accumulation rate 𝜇 (g), standard deviation of the noise term 𝜎

(h), and threshold modulation A (i) parameters for go and stop-process. 

increase would buy more time for the Stop-process to reach the thresh- 
old first and win the race. 

While all three models implemented the hypothesis that beta de- 
creases the probability of responding, we examined whether the pre- 
dicted time course and extent of the modulation differed across models. 
Here, and in the analysis of the experimental data below, we looked 
at the probability of responding P(Respond) as a function of the time 
interval between the beta burst and the Stop-signal. For example, a 
P(Respond) of 0.6 at 0.3 s would mean that 60% of the trials with a beta 
burst centered at 0.3 s after stop cue were failed stop trials. We simu- 
lated each model by choosing parameters for the Go-process ( 𝜇G = 2.5, 
𝜎G = 0.006) and the Stop-process ( 𝜇S = 5, 𝜎S = 0.006) that yielded mean 
go RTs of ∼400 ms and SSRTs of ∼200 ms, which are in the range of 

typical values for this task. We found that the pattern of modulation had 
a U-shaped profile in each of the three models, with larger amplitudes 
for longer burst durations ( Figs. 1 d–f). Furthermore, the modulation was 
strongest for intermediate SSDs (200 ms) compared to longer or shorter 
ones. However, the fine time course and the relation to the SSRT, dif- 
fered across the three models. For the Interaction model and the Speed- 
Stop model the trough of the U-profile was seen well before the model 
SSRT. In contrast, in the Threshold model the modulation pattern was 
very different, with a sharper modulation in a narrower time window 

just before the model SSRT. Next, we then compared these model pre- 
dictions with experimental data to see whether beta affects behavior in 
a similar way, and whether beta modulation can be best described by 
one of these model variants. 

5 
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Table 1 
Summary of Burst properties in the Stop and Go trials for both datasets. 

Burst Properties Dataset-1 ( N = 12) Dataset-2 ( N = 23) 

Go Trials 
(w.r.t. Go cue) 

Successful Stop Trials 
(w.r.t. Stop cue) 

Failed Stop Trials 
(w.r.t. Stop cue) 

Go trials 
(w.r.t. Go cue) 

Successful Stop Trials 
(w.r.t. Stop cue) 

Failed Stop Trials 
(w.r.t. Stop cue) 

Burst Peak Time (ms) 166 ± 4 83 ± 6 n.s. 76 ± 9 200 ± 11 87 ± 8 ∗ 67 ± 8 
Burst Offset Time (ms) 269 ± 6 196 ± 11 n.s. 183 ± 13 309 ± 10 207 ± 9 ∗ 180 ± 12 
Burst Width (ms) 205 ± 7 220 ± 12 n.s. 207 ± 8 219 ± 9 236 ± 8 n.s. 215 ± 8 
Burst Amplitude 0.59 ± 0.05 # 0.61 ± 0.05 n.s. 0.61 ± 0.05 0.50 ± 0.06 0.51 ± 0.06 n.s. 0.50 ± 0.05 

Note: These are average values for bursts seen within the temporal window considered for analysis, i.e. 100 ms prior to Go cue to the trial’s RT in Go trials and 
100ms prior to Stop cue to SSRT in Stop trials. 

∗ represents significant ( p < 0.05) difference from t-tests between the Successful Stop and Failed Stop burst properties. We could only compare burst width and 
amplitude when comparing Stop trials and Go trials and not the burst times, given the different temporal windows from which beta bursts were extracted. Only burst 
amplitude in Dataset-1 had a small but significant difference (marked by #) between Successful Stop and Go trials. There were no significant differences between 
burst width and amplitude for Failed Stop and Go trials. 

3.2. Beta bursts affect going and stopping by modulating decision thresholds 

To test the model predictions, we employed two data sets of hu- 
mans performing stop-signal tasks with simultaneously recorded EEG 
(see Methods). The behavioral data showed a pattern that is typical 
for stop-signal tasks with Go RTs being longer than Failed Stop RTs 
(Dataset-1 ( N = 12): 406 ± 6 ms vs 373 ± 6 ms, t 1, 11 = 14.7, p < 0.001; 
Dataset-2 ( N = 23): 468 ± 16 ms vs 411 ± 14 ms, t 1, 22 = 15.8, p < 0.001). 
The P(Respond) was also nearly 50% (Dataset-1: 49.6 ± 0.2%; Dataset- 
2: 51.7 ± 0.7%) suggesting that the staircase procedure worked well. 
The SSRT computed via the integration method was 219 ± 7 ms and 
222 ± 6 ms for Dataset-1 and Dataset-2 respectively. We extracted beta 
bursts in both the Go and Stop trials (see Methods for more details) 
with average burst properties (timing, width and amplitude) shown in 
Table 1 . 

We first examined in the experimental data whether stopping 
changes as a function of the time interval between the beta burst and the 
Stop-signal. To do so, we selected the subset of Stop trials in which there 
was at least one beta burst in the time between 100 ms before the stop 
cue and the SSRT (see Methods). Thereby, each trial provided a time 
point (given by the interval between the stop cue and the time of peak 
of the beta burst) and the outcome (respond or not). Pooling these trials 
over participants allowed us then to estimate the probability of respond- 
ing, P(Respond), at each time point, as we did in our model investiga- 
tions ( Figs. 1 d–f). In the experimental data, we found that P(Respond) 
was unchanged for beta bursts briefly after the stop cue, but then de- 
creased closer towards the SSRT ( Fig. 2 a). To determine whether this 
modulation in P(Respond) is a significant deviation from chance, we 
compared it to a null-distribution estimated from shuffling the labels of 
successful and failed stop trials. We found a rather narrow time window 

with a significant modulation ∼40–60 ms before the SSRT ( Fig. 2 a) in 
Dataset-1. While the narrow time window of the modulation seemed 
to match the Threshold model, the timing of the peak modulation was 
also in the range suggested by the Interaction model ( Fig. 1 d). Further- 
more, fitting the Threshold model parameters to the behavioral data 
in Dataset-1 (using 𝛽dur of 100 ms) also generated a wider modulation 
window ( Fig. 2 d), similar to the other models ( Figs. 1 a–c). Therefore, 
we concluded that examining the beta modulation of P(Respond) is by 
itself not sufficient to distinguish between the three models (also see 
Supplementary Fig. S2a for the P(Respond) for other burst durations). 

As an alternative way to test the different models, we made use of the 
fact that a unique aspect of the Threshold model is that it also predicts 
an effect of beta in Go trials. The other two models (Interaction and 
Speed-Stop) predict that there would be no influence of beta in Go trials 
because the Stop-process is not activated (or only very weak). Therefore, 
to distinguish the models further, we then examined a possible beta 
modulation of Go trials. 

We first established the relationship between beta and Go RTs in the 
Threshold model. As the beta duration varied, we focused here on the 

offset of beta, rather than using the center of a beta burst as above. The 
decision to use burst offset times was highly motivated from the thresh- 
old model. We considered that the time of the burst offset represents the 
time at which the threshold modulation would reset back to baseline 
levels. Since in the model, presence of a beta burst leads to a threshold 
increase, the interpretation is that this time then represents the removal 
of this modulation. Thus, we wanted to investigate how the response 
times are modulated in and around the burst offset because that repre- 
sents the time at which the threshold increasing effect of beta ends. We 
found that in the Threshold model the beta-RT relation was governed 
by an intricate pattern ( Fig. 2 e). For short reaction times ( ∼300 ms) 
there was a rather uniform distribution of beta in the relevant time win- 
dow from 0 to 300 ms relative to the Go cue. In contrast, for longer 
RTs, the distribution of the beta time points became more skewed, with 
more beta offset time points occurring around the RT. This was vis- 
ible as a diagonal stripe with high beta offset probabilities ( Fig. 2 e) 
(Note: The pattern of results remained the same on selecting burst peak 
time or changing analysis parameters, see Supplementary Information, 
Fig. S5). 

This modulation pattern matched the intuition behind the Threshold 
model. For short RTs, the Go process is steep, and therefore a threshold 
modulation would not have a large effect at any time (thus the uniform 

distribution in Fig. 2 e). However, for longer RTs, the Go process is less 
steep, and it would thus be more likely that the threshold modulation 
prolongs the RT. Furthermore, beta would not affect the RT if it occurred 
briefly after the Go cue because then the threshold modulation would 
have already ended by the time the Go process is close to the thresh- 
old. Instead, the beta offset would affect the RT if it occurred briefly 
before the RT, as a sudden drop in the threshold would then lead to 
a threshold crossing. We concluded that this intricate pattern of beta 
modulation in the Threshold model provided more specific predictions 
than the straightforward modulation of P(Respond). 

Next, we tested the predictions of the Threshold model by looking 
at the correct Go trials pooled across all participants. As above we in- 
cluded only those trials in which there was at least one beta burst in 
the time between the go cue and the response, and for each trial we 
estimated the time of the offset of the beta burst (see Methods). This 
allowed us to visualize the relation between Go RT and beta burst offset 
for the experimental data in the same way as we did for the Threshold 
model ( Figs. 2 b,e). Interestingly, for different Go RTs, there was a differ- 
ent distribution of the probability of beta burst offsets. For shorter RTs, 
beta burst offsets were approximately uniformly distributed over time. 
For longer RTs, the distribution became more skewed, with more beta 
offsets towards the corresponding RTs, yielding a diagonal stripe in the 
probability distribution ( Fig. 2 b). Even though this stripe was somewhat 
broader than in the Threshold model (see Discussion and also Supple- 
mentary Information Fig. S4), overall there was a striking resemblance 
to the quite specific predictions of how beta should affect Go RTs in the 
Threshold model. 
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Fig. 3. Threshold modulation is most effective when it is close to the SSRT . The distribution of the difference between the single-trial SSRT and the beta burst 
in the experimental data (a) and the Threshold model (b). ∗ shows significant difference ( p < 0.05) between the observed and null data at 50 ms using a Permutation 
test. 

One interpretation of this pattern of beta modulation is that re- 
sponses are harder to execute as long as a beta burst is present, and once 
it ends, or is close to ending, the response emerges. To have a closer look 
at this relation, we represented the same data as the distribution of the 
time interval between the Go RT and beta offset in each trial. In line with 
our interpretation above, we found that the distribution peaked at small 
positive values, meaning that in most trials, responses occurred briefly 
after the offset of the beta burst. We compared this distribution to a null 
distribution, which was based on the assumption that beta burst offsets 
were uniformly distributed (i.e. beta does not affect RTs). We found that 
our data was significantly different from the null distribution, with more 
burst-offset-times close to the RTs ( Fig. 2 c, Kolmogorov-Smirnov test, 
KSstat = 0.15; p < 0.001). Furthermore, we confirmed that the Thresh- 
old model exhibited a similar distribution ( Fig. 2 f), with a sharper peak 
reflecting the narrow diagonal stripe described above. To confirm the 
validity of our findings on the P(Respond) and on Go trials, we ran the 
same analyses on an independent dataset (Study 2, N = 23) and observed 
the same effects (Supplementary Information, Fig. S1). Overall, the anal- 
yses relating the offset of beta bursts with Go RTs provide evidence that 
beta bursts modulate decision thresholds. 

Finally, we examined the parameters that were obtained for the 
Threshold model fitted to the experimental data ( Figs. 2 d–f; see Meth- 
ods). Both mean accumulation rates and standard deviation of the 
Stop process were significantly larger than those of the Go process 
( Figs. 2 g, h). Furthermore, the beta modulation of the threshold was 
on average higher for the Go process than for the Stop process ( Fig. 2 i), 
in line with the intuition that the increased threshold buys more time for 
the Stop process to overtake the Go process. However, inspection of the 
fitted values for the modulation of the Stop process (A S ) indicated dif- 
ferences across participants. For the majority of participants there was 
no modulation of the Stop threshold at all (in line with the intuition) or 
lower than the Go process, while for some participants the Stop thresh- 
old modulation was of similar magnitude as the Go process threshold 
modulation. However, given that the Stop process slopes were consis- 
tently steeper than the Go process slopes, even a similar modulation 
of Go and Stop thresholds would effectively increase the probability of 
the Stop process to win the race. While in our default simulations beta 
bursts were only present in 20% of the trials (similar to the experimental 
data), we further confirmed these findings in a model variant in which 
beta bursts were present in all trials (see Supplementary Information, 
Fig. S3). 

Given that beta occurred only on a subset of trials, we also exam- 
ined potential functions of beta by comparing trials with and without 
beta bursts. For Go trials, we compared the mean response time be- 
tween trials with and without beta bursts in the temporal window con- 
sidered for our analysis (i.e. 100 ms prior to Go cue till the trial’s re- 

sponse time). We found that in both datasets there was a significant 
difference between the Go response times, so that trials without beta 
bursts had shorter response times compared to the trials with beta bursts 
(Dataset - 1: withoutBursts = 390 ± 6 ms vs withBursts = 404 ± 6 ms, 
t 1, 11 = 9.01, p < 0.001; Dataset - 2: withoutBursts = 455 ± 15 ms vs with- 
Bursts = 487 ± 18ms, t 1, 22 = 7.24, p < 0.001). For Stop trials, we com- 
pared the response rate between Stop trials with and without beta bursts 
in our time window of interest (100 ms prior to Stop cue till the corre- 
sponding SSRT). While in Dataset-1 there was no significant difference 
(withoutBursts = 50.0 ± 0.4% vs withBursts = 49.8 ± 1.6%, t 1, 11 = 0.07, 
p = 0.943), in Dataset -2 there was a significant decrease in the response 
rate in the stop trials with bursts (withoutBursts = 48.9 ± 1.1% vs with- 
Bursts = 43.5 ± 1.6%, t 1, 22 = 2.44, p = 0.023). These observations fur- 
ther fit well to our overall interpretation that beta bursts increase re- 
sponse thresholds, as trials without beta bursts had faster response times 
and, to some degree, higher response rates in stop trials than trials with 
beta bursts. This does not mean that beta bursts are required for suc- 
cessful stopping, they just seem to make stopping easier. 

3.3. Threshold modulation explains relationship between burst-time and 
stopping time 

Building on the evidence that beta bursts modulate decision thresh- 
olds, we next tested whether the Threshold model also accounts for 
further, single-trial properties of stopping. In recent work, we demon- 
strated that beta bursts are linked to single-trial SSRTs measured via 
EMG ( Hannah et al., 2020 ). We examined this relation in successful 
stop trials, in which a beta burst occurred between the stop cue and 
the corresponding single-trial SSRT. Pooling data across participants, 
we determined the distribution of the time intervals between beta burst 
and single-trial SSRT, and found a peak in the histogram when the beta 
burst preceded correct stopping by 50 ms ( Fig. 3 a). This was in compar- 
ison to a null distribution, in which we assumed that a beta burst would 
occur randomly (uniformly distributed) anytime between the Stop cue 
and the trial’s SSRT. Applying the same analysis in the Threshold model, 
we saw that the distribution of time intervals between beta burst and 
single-trial SSRT was very similar. As in the experimental data there was 
a peak at 50 ms in the model. The peak was even sharper in the model, 
probably due to the simplified, noise-free composition of the model (also 
see Supplementary Information, Fig. S4). The relation between beta and 
stopping occurred in the model even though the threshold modulation 
primarily affected the Go process. However, in successful stop trials a 
beta burst occurred with an increased probability ∼50 ms before stop- 
ping because in this time window the increase of the Go threshold affects 
the outcome of the race most. We conclude that the Threshold model 
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accounts for several aspects of behavioral and electrophysiological data 
in both Go and Stop trials. 

4. Discussion 

To characterize how beta bursts might be involved in action- 
stopping, we studied three different race model variants; the Interac- 
tion model, the Speed-Stop model and the Threshold model. We derived 
predictions for each model variant on how beta affects behavior in the 
Stop-signal task. Then we tested these predictions using experimental 
data and found that the Threshold model best explained the effects of 
beta bursts in both stopping and going. 

While all three models made similar predictions for how the prob- 
ability of responding is modulated by beta bursts, only the Threshold 
model could account for the effects seen in Go trials. In Go trials the 
offset of beta bursts was more likely to occur close to the Go RTs, espe- 
cially for longer RTs. This similarity between the Threshold model and 
the experimental data is evidence for a functional role of beta in modu- 
lating decision thresholds. Furthermore, the parameters obtained from 

fitting the Threshold model to participant behavior showed that beta 
increased Go thresholds more than Stop thresholds, indicating that the 
effect of beta on stopping can also be indirect by affecting going. Finally, 
the model correctly predicted the relationship between burst time and 
action cancellation time, measured as single-trial SSRTs ( Hannah et al., 
2020 ), suggesting that for successful stopping the threshold modulation 
has to occur close and prior to it. 

A main finding from our study was that the relationship between the 
offset of beta bursts and Go RTs showed that beta reflects a short-lived 
threshold increase, transiently holding the response from execution and 
thereby helping the Stop-process to win the race. However, as this re- 
lation was apparent during Go trials, and not just as a response to the 
stop cue, it suggests that frontal beta could also be recruited as a proac- 
tive mechanism. There is some support for this view from our previous 
study, in which we found that the beta burst probability increased even 
in Go trials around the time period when a Stop-signal might have oc- 
curred ( Jana et al., 2020 ). Furthermore, for sensorimotor beta there is 
evidence that it can be proactively recruited ( Muralidharan et al., 2019 ; 
Soh et al., 2021 ). Future studies could investigate whether beta increases 
decision thresholds more generally, or whether this function is adopted 
by the frontal beta machinery specifically as a preparation to stop if 
necessary. 

Our study also adds more evidence to models involving multiple 
stages of stopping, such as the pause-then-cancel model ( Schmidt and 
Berke, 2017 ; Tatz et al., 2021 ). In the Threshold model beta effectively 
pauses both decision processes, buying time for the stop process to catch 
up. This is similar to what we had previously suggested as a poten- 
tial role for fast stop responses in rat STN neurons ( Mallet et al., 2016 ; 
Schmidt et al., 2013 ), which indicates a possible functional connection 
between sensory responses in basal ganglia neurons and frontal beta. 
However, in both rodent ( Leventhal et al., 2012 ) and human studies 
( Jana et al., 2020 ) there seems to be a longer time gap between the stop 
cue and the beta burst (120 ms in humans) compared to the fast STN 

responses ( ∼15 ms in rats; Schmidt et al., 2013 ). Therefore, the puta- 
tive "pause" signal carried by the beta burst here, would instead be in 
close proximity to the single-trial SSRT measured in the EMG around 
160 ms. While this could just reflect species differences, it could also be 
an indication for multiple "pause" systems operating on different, fast 
and slow, timescales. Importantly, in the Threshold model, the beta- 
mediated pause signal was not triggered by the Stop signal, but instead 
just occurred randomly. Nevertheless, we observed that the beta-driven 
threshold increase occurred close to the SSRT. This was a result of the 
beta bursts being short-lived, so that the threshold increase only mat- 
ters if the stop-process is able to catch up with the Go process during the 
burst. This is exactly the case for beta bursts occurring close to the SSRT 
because at that time, changes in the threshold matter for the outcome of 
the race between Go and Stop. While this demonstrates that beta bursts 

at random time points can lead to temporally specific effects on stop- 
ping, it does not preclude that the probability of beta bursts could also 
be modulated e.g. by sensory events. If our interpretation is correct, a 
late pause process that occurs close to the SSRT would then overlap in 
time with any cancelation processes. Therefore, it might be difficult to 
dissociate them in a standard Stop-signal paradigm. 

Even though race models may be considered primarily as phe- 
nomenological models addressing behavior, several studies have shown 
that race models also connect mechanistically to neurophysiology 
( Hanes and Schall, 1996 ; Schmidt et al., 2013 ). In addition, neurophys- 
iological correlates of parameters in rise-to-threshold models have been 
proposed. For instance, Cavanagh et al. (2011) used drift diffusion mod- 
els to show that EEG theta oscillations are linked to decision thresholds 
in a conflict paradigm. Furthermore, the behavioral effects of pharmaco- 
logical manipulations of striatal dopamine levels could be accounted for 
by adjusting threshold and accumulation rates ( Leventhal et al., 2014 ). 
Similarly, in this work we investigated whether some of the functional 
roles of beta oscillations could be captured in the race model to explain 
action-stopping. This further supports the wide-applicability of the race 
model framework to not only account for behavioral data, but to also 
capture some aspects of the underlying neural processes. However, how 

beta in the end affects the activity of individual neurons remains a major 
open question. 

Our findings have implications for functions of frontal beta beyond 
action-stopping. For instance, prefrontal beta has been associated with 
the executive control of thoughts and memories ( Castiglione et al., 2019 ; 
Lundqvist et al., 2018 ; Lundqvist et al., 2016 ). During thought control, 
there is increased prefrontal beta in trials, in which participants are suc- 
cessfully preventing the thought from coming to mind ( Castiglione et al., 
2019 ). If cognitive inhibition of thought employs mechanisms overlap- 
ping with action-stopping, then beta bursts could also reflect a transient 
threshold increase that helps preventing the thought from reaching con- 
sciousness. Furthermore, prefrontal beta has also been shown to play a 
role in working memory, especially in protecting the current contents of 
working memory ( Lundqvist et al., 2018 ). A similar mechanism could be 
at play here where a threshold increase could stop other task-irrelevant 
stimuli from entering working memory, in line with the classic "status- 
quo" hypothesis ( Engel and Fries, 2010 ). 

5. Conclusions 

In summary, we proposed several models introducing the influence 
of beta (bursts) into the race framework. We demonstrated that exper- 
imental data fitted best to the predictions made by the model that had 
beta bursts increasing decision thresholds, aiding the stop-process to win 
the race. This increase in threshold was stronger for the Go-process com- 
pared to the Stop-process. Finally, for successful stopping the threshold 
increase had to occur close and prior to the time of response cancella- 
tion. Our results provide a clear function role of frontal beta in decision 
making and the underlying neural mechanisms. 
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