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Abstract

Battery management systems based on electrochemical models could achieve more accurate state esti-
mations and efficient battery controls with access to cell unmeasurable physical variables. As battery
electrochemical models are governed by first-principle partial differential equation sets, model com-
plexity and multiple parameter determination are bottlenecks for their wider applications. This paper
gives a systematical review of recent advancements in electrochemical model development and pa-
rameterization. Specifically, classic pseudo-two-dimensional model and related model order reduction
methodologies are first summarized and analyzed. Given that the homogenization hypothesis of the
pseudo-two-dimensional model could lead to significant model mismatch under some operational con-
ditions, enhanced models considering cell internal inhomogeneity with multi-particles, multi-scales,
ageing and thermal dynamics are examined. To facilitate model portability, parameter identification
techniques of these models are classified, and solutions for optimizing the parameterization procedure
are explored. Finally, current research gaps in the literature and remaining challenges are discussed
and highlighted with some suggestions. This review will therefore inform the engineers of battery man-
agement and control engineering, whilst boosting the research, design and operation of control-oriented
electrochemical models for smarter battery management at different readiness levels.

Keywords: Lithium-ion battery, Control-oriented management, Energy storage, Electrochemical
model, Model reduction, Parameter identification

Abbreviations

EV Electric vehicle

P2D Pseudo-two-dimensional

BMS Battery management system

PDE Partial differential equation

SPM Single particle model
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SPMe Single particle model with electrolyte dynamics

CCCV Constant-current constant-voltage

DAE Differential algebraic equation

MPM Many particle model

DFN Doyle-Fuller-Newman

FVM Finite volume method

LFP LiFePO4

SOC State of charge

ECM Equivalent circuit model

IMA Integral method approximation

DRA Discrete-time realization algorithm

PSD Particle size distribution

ROM Reduced order model

SEI Solid electrolyte interphase

EIS Electrochemical impedance spectroscopy

GITT Galvanostatic intermittent titration technique

1. Introduction

Clean, renewable energy sources are needed to help create a sustainable society. Due to the
superiorities in terms of energy density, efficiency, low discharge rate, and environmental friendliness
[1, 2], lithium-ion (Li-ion) batteries have become one of mainstream energy storage components in
numerous sustainable applications such as electric vehicles (EVs) [3, 4], renewable energy storage, and
smart grid [5].

Battery management systems (BMSs) generally implement model-based algorithms to protect bat-
tery from abuse, prolong battery service life, and maintain battery operated in an efficient status [6, 7].
As a key functional part for achieving control-oriented battery management, Li-ion battery modeling
techniques with a specific form can be mainly divided into two categories: equivalent circuit models
(ECMs) and electrochemical models.

For the ECMs [8, 9], one or more parallel resistor-capacitor sub-circuits are applied to perform
phenomenological emulations of cell external responses, where battery current, voltage and ageing
behavior could be also well matched [10, 11]. Due to the simple structure and low computational
burden, ECMs have been widely adopted in BMSs for control-oriented management [12, 13, 14]. In
contrast, electrochemical models allow the enhanced monitoring and prediction of battery individ-
ual mechanisms [15]. Given the capability of capturing cell-intrinsic physical states, electrochemical
model-based BMSs enable health-aware control of Li-ion batteries to improve their operational safety,
reliability, and efficiency [16, 17, 18]. However, the electrochemical models generally consist of a series
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of partial differential equations (PDEs), which would inevitably increase the computational complex-
ity in battery practical applications [19]. As the most widely-adopted electrochemical model, battery
pseudo-two-dimensional (P2D) model is derived from the porous electrode theory, concentrated solu-
tion theory, and kinetics equations [20]. The P2D model is established using the volume averaging
technique and treats the electrode as a homogeneous medium [21], where the full order P2D model is
computationally expensive and difficult to be implemented on the hardware. Therefore, it is necessary
to simplify the P2D model before the control-oriented applications can be realized.

To reduce computational complexity of electrochemical models, various simplified versions of the
P2D model have been investigated. To be specific, by simplifying each electrode as a single solid
spherical particle, single particle model (SPM) becomes the most popular simplified P2D model [22].
However, due to electrolyte concentration and potential are considered to be constant for the cell,
the performance of SPM can only match as well as the rigorous P2D model in the cases where the
current rate is less than 1C. To overcome this limitation, both electrolyte are temperature dynamics
are integrated with SPM [23], where the acceptable accuracy and low-cost computational effort enable
these SPMs become competent for developing battery state estimation strategies [24] and optimal
control approaches [25]. Another promising approach is to linearize the coupled PDEs of rigorous
P2D porous electrode and develop analytic Laplace-domain transfer functions from the linearized
model [26]. For example, the transfer functions of reation flux, solid-electrolyte potential difference,
overpotential, and solid particle surface concentration versus input current were derived [27]. Then a
low-order model was generated through a residue-grouping approach. A novel discrete-time realization
algorithm (DRA) was used to produce a reduced-order discrete-time state-space model [28]. Some
researchers also use Padé approximation to match the frequency responses of PDEs [29]. Furthermore,
the polynomial profiles (PP) are fast approximations of electrolyte concentration and potential along
the x direction [30], while the solid-phase diffusion along the r direction [31]. The PP model poses
simple structure and converts PDEs into the Differential Algebraic Equations (DAEs). The spatial
discretization methods including the finite difference [32] and finite volume method [33], are effective
tools for numerical solutions of PDEs [34]. The discretization methods could achieve high accuracy
because they divide the feasible region into multiple cells [35]. Some researchers combine the ECM
and electrochemical models to make best of the two approaches, e.g. high computational speed with
physical meaning [36]. A recent trend of research is to use the asymptotic techniques for achieving
the order reduction of the electrochemical model [37]. The asymptotic reduction approach is based
on exploiting the vastly different time scales of various physical processes, leading to a more organic
simplification [38].

On the other hand, P2D model is formulated under the homogeneity assumptions. For example,
the P2D model assumes that the active material particles are spherical and distribute uniformly with
identical radius [39]. However, practical electrodes have non-spherical particle shapes that exhibit
large dispersity [40]. This indicates that the P2D model would be limited in the cases where cells have
dispersed particle shapes. Therefore, the accuracy of P2D model would be degraded in predicting cell
voltage under extreme circumstances, such as low SOC range, resting period [41], and high tempera-
tures [42]. In addition, volume average approach does not consider the actual topology and electrode
morphology [43]. Porosity and active volume fraction are not constant throughout battery lifespan
due to the volume changes, cracks, lithium plating and stress effects occurring in the electrodes during
cell charge and discharge [44]. The lithiation/delithiation mechanisms describing the intra-particle
phase transformation of P2D model fail to analyze the coexistence of Li-poor phase and Li-rich phase
within LFP crystals [45]. The coexistence of two phases is the major cause of the flat open-circuit-
potential within LFP electrodes [46]. Therefore, it can be inferred that the limitations of the P2D
model arise from the model simplification process. Many researchers have extended P2D model to
consider the inhomogeneity of particle and electrode [47]. A simplified electrochemical multi-particle
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Table 1: An overview of the published literature related to battery electrochemical models.

Topic Reference Content

P2D model simplification
[60] Simplified P2D models.

[61] P2D model order reduction techniques.

Enhanced electrochemical
model

[62]
Multiscale Lithium-ion battery modeling

from materials to cells.

[63] Multiscale modeling of rechargeable batteries.

Parameter identification
method

[58] Post-mortem analysis of lithium-ion batteries.

[64] Computational parameter estimation methods.

[65] Battery testing and experimental datasets.

[66]
Summarization of methods to measure

or infer parameters.

model for LFP cathodes in Li-ion batteries was developed [48]. Therein, the active material particles
of non-uniform properties (e.g., size, contact resistance, material chemistry etc.) were incorporated.
The multi-particle model could accurately simulate the cell charge/discharge current rates up to 5C.
The realistic 3D anode structures using a stochastic microstructure model was generated, which is
parameterized using tomography data. The results show that the deviations between uniform and
realistic electrodes are pronounced at high current rates [49]. Multiple cases of heterogeneities, such
as non-uniform ionic resistance and active material loading, are studied at different charge and dis-
charge current rates [50]. The results indicate that higher current rates increase the non-uniformities
of temperature, current density, positive and negative electrode SOC, especially in the case of charging
[39].

Accurate model parameterization is also crucial for efficient and reliable electrochemical model-
based prediction, state estimation, and control [51]. Generally, there are two main solutions for identi-
fying parameters of electrochemical models: direct measurements and invasive parameter estimations.
For the direct measurement, after dismantling battery cell, its internal structures, compositions, and
properties would be analyzed with specific instruments [52]. This type of solution is robust as the
physical parameters of battery can be directly measured. A detailed review for the post-mortem tech-
niques and subsequent electrochemical analysis of cell performance and physical-chemical properties
can be found in [53] and [54], respectively. The invasive parameter estimation refers to the methods
that estimate model parameters by fitting electrochemical model output to the measured cell quantities
(e.g., terminal voltage, temperature) [55]. Due to most of the parameters are weakly correlated with
the battery terminal voltage, complete set of parameters is difficult to be identified simultaneously
[56]. Therefore, a stepwise solution is generally adopted to identify these parameters [57]. Both these
two parameterization methods have their own merits and drawbacks. Cell postmortem analysis could
provide visualized insights into material properties. However, this method is time-consuming and the
related equipment used in the analysis is often expensive [58]. Parameter estimation method could
save identification time but the robustness as well as validity of the estimated parameters need to be
further verified [59].

To date, a few review articles regarding the battery P2D model simplification, enhanced electro-
chemical model, and parameter identification method are presented, as summarized in Table 1. It
should be known that all these reviews mainly focus on one aspect alone. As battery electrochemical
model towards control-oriented management generally requires to conduct all of the following steps,
namely model simplification, improvement, and parameter identification, where these aspects are heav-
ily correlated. In this context, a review article covering all these aspects is urgently required especially
for promoting battery electrochemical model-based control applications. Here, a systematical review
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of electrochemical modeling and parameterization methods towards control-oriented management of
Li-ion batteries is given, while their challenges and prospects are also discussed. The review is targeted
to inform control-oriented technology choices and academic research agendas alike, thus advancing bat-
tery electrochemical model development at different technology readiness levels. The following topics
are covered as:

• In Section 2, typical battery P2D model with different simplification solutions are comprehen-
sively reviewed. Their merits and drawbacks are also thoroughly compared and discussed.

• For the enhanced electrochemical modeling technology, battery multi-particle model, electro-
chemical model with multiple scales, electrochemical model with ageing and thermal effects are
reviewed in Section 3, and their advantages and disadvantages are discussed.

• For the parameterization of battery electrochemical model, technologies including physical pa-
rameter measurements and noninvasive parameter estimation are comprehensively surveyed in
Section 4.

• Current research challenges are discussed in Section 5. Feasible solutions to address these chal-
lenges are suggested as future research direction towards the improvement of battery control-
oriented electrochemical modeling technologies.

2. P2D model and simplifications

The pseudo-2-dimension (P2D) model pioneered by Doyle et al. is one of the most popular elec-
trochemical models for Li-ion batteries [67, 68]. This type of model consists of numerous PDEs and is
computationally complex for control-oriented applications [69], where various model reduction tech-
niques are required to simplify P2D model. In this section, the development of rigorous P2D model
is first introduced, followed by the summary and comparison of various P2D model order reduction
methods and their control-oriented applications.

2.1. Definitions and derivations of the basic P2D model

P2D model is a classical electrochemical model and has been widely investigated. For the macro-
scopic model of Li-ion batteries, concentrated solution theory is generally utilized to describe the
transport properties in the solution phase, while porous electrode theory is adopted to analyze the
composite electrodes [70]. Here the concentrated solution theory assumes that electrolyte consists
of a binary salt system ( Li+ and X− ) in a single solvent. For the porous electrode theory, a
solution phase, a solid active-material phase, and any conductive filler or binding additives are con-
sidered as superimposed continua, hence all points of the electrode are perfectly connected. The
active material is supposed to be comprised of multiple spherical particles with a diameter Rs,k

(k ∈ n = negativeelectrode, p = positiveelectrode). Based upon above assumptions, the P2D model
could be established, as shown in Fig. 1. To be specific, the spherical electrode particles are defined
in the domain 0 ≤ r ≤ Rs,k. The electrolyte traverses across the two porous electrodes and separator
(0 ≤ x ≤ L), where the anode, separator and cathode are defined in 0 ≤ x ≤ Ln, Ln ≤ x ≤ Ln + Lm,
and Ln + Lm ≤ x ≤ Ln + Lm + Lp, respectively. Here the subscripts n,m, and p denote the variables
in negative electrode, separator, and positive electrode, respectively. The Li+ diffusion in the solid
particles with boundary conditions follows Fick’s second law as [71]:

∂cs
∂t

=
Ds

r2
∂

∂r
(r2

∂cs
∂r

) (1)
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Figure 1: Schematic diagram of Li-ion battery P2D model.

∂cs
∂r

∣

∣

∣

∣

r=0

= 0, Ds
∂cs
∂r

∣

∣

∣

∣

r=Rs

= −
j

asF
(2)

where cs is the solid concentration, j denotes the lithium flux across the boundary of solid phase, Ds

is the solid diffusion coefficient, as is the specific interfacial area, Rs is the particle radius, and F is
the Faraday constant. The lithium concentration at particle surface is denoted as cs,e.

The solid electrode potential φs is described by the Ohm’s law as [72]:

σeff ∂
2φs

∂x2
− asj = 0 (3)

where σeff is the effective electrode conductivity, as is the electrode specific surface area. The concen-
tration of electrolyte is determined by [72]:

εe
∂ce
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where ce denotes the electrolyte concentration, Deff
e is the effective electrolyte diffusion coefficient as

Deff
e = Deε

brug
e . εe represents the volume fraction of electrolyte, and t0+ is the transference number

of Li+. Bruggeman coefficient is denoted as brug. The charge conservation in the electrolyte can be
described by [73]:

κeff ∂
2φe

∂x2
+ κeff

D

∂2 ln ce
∂x2

+ asFj = 0 (6)

where φe is the electrolyte phase potential, κeff is the effective ionic conductivity as κeff = κεeffe ,
and κeff

D is a short term for κeff
D = 2RTκ(t+0 − 1)/F . Here the boundary conditions at two current

collectors are:
∂φe

∂x

∣

∣

∣

∣

x=0

= 0,
∂φe

∂x

∣

∣

∣

∣

x=L

= 0 (7)

The lithium insertion process in the porous electrode is described by Butler-Volmer equation as:

j = i0

(

exp

(

αaF

RT
η

)

− exp

(

−
αcF

RT
η

))

(8)

where i0 is the exchange current density, i0 = Fk(ce)
αa(cs,max − cs,e)

αa(cs,e)
αc , k is a kinetic rate

constant. η is overpotential, which is an extra force required to overcome the surface reaction as :

ηk = φs,k − φe,k − Uocp,k, k ∈ {n, p} (9)

where Uocp is the electrode open circuit potential and can be described by lithium surface concentration
cs,e. Cell voltage could be described by the potential difference between the positive and negative
current-collectors, and voltage drop due to film resistance as [74]:

V (t) = φs(L, t)− φs(0, t)−RfI (10)

where Rf is the film resistance.
It should be known that the coupled PDEs (1)-(7) can be utilized to investigate battery electro-

chemical mechanisms and optimize battery designs without numerous experimental data. These PDE
models are infinite–orders since there are infinite number of x− and r− dimensional variables to be
calculated at each point in time t. A complete analytical solution of the governing PDEs is generally
difficult to obtain. As the P2D models are too complicated to be implemented in real-time applications
particular for battery control-oriented management, a great deal of efforts have been done to reduce
the finite order of PDE models into small order while retaining fidelity, further resulting in the PDEs
can be transformed into ordinary differential equations (ODEs) with relatively lower computational
complexity.

The aim of developing simplified P2D models is to approximate the rigorous P2D models at a
high accuracy but with a relatively low computational burden [75]. Battery management systems
with the simplified P2D models have significant advantages over ECMs as this type of control-oriented
models could provide richer electrochemical information, further benefitting cell optimal control, online
estimation, optimization, and fault diagnostics [76].

2.1.1. Single particle model based

Single particle model (SPM) is a classical simplified version of the P2D model based on three
critical hypotheses: First, the negative and positive electrodes are represented with only two spherical
particles. Second, the electrolyte concentration and potentials are neglected. Third, the lithium flux
is proportional to the input current. The SPM is computational efficient and could be adopted in
control-oriented applications [77], as shown in Fig. 2. However, SPM would fail under the high current

8



rates (> 1C) [78]. To further handle this limitation, some efforts have been made to improve SPM
by considering the electrolyte [79] and thermal dynamics [80]. As a result, these enhanced SPMs are
able to provide sufficiently accurate results under high current rates and achieve a substantially lower
computational burden than P2D model [81].

Figure 2: Schematic diagram of single-particle model.

2.1.2. Transfer-functions type

Besides, establishing transfer functions of all electrochemical variables and converting these transfer
functions into low-order high-fidelity state-space approximate models is also becoming a promising
solution to simplify the P2D model. This transfer-function-based solution can solve any subset of the
internal electrochemical variables desired at any selection of internal cell locations. Even though it is
mathematically complex to derive transfer functions, the final computational complexity could become
as significantly low as the battery ECM [82].

The transfer functions for solid surface concentration, lithium flux and phase potential difference
were first derived [83].With these transfer functions, model reduction techniques, including the trun-
cated Taylor-series expansion, residue grouping, and nonlinear optimization were applied to generate
a low-order electrochemical model. Here the terminal voltage from a 12th order state variable model
could reach less than 1% error for pulse and constant current profiles at the current rates up to 50C.
The state equation was constructed with constant negative real eigenvalues distributed in the frequency
range from 0 to 10 Hz (15). This type of method was further extended to derive transfer functions for
electrolyte concentration, solid and electrolyte potentials [84]. The reaction flux transfer function was
given by:

J(z, s)

I(s)
= ±υk(s)

σeff
k cosh(υk(s)z) + κeff

k cosh(υk(s)(z − 1))

aksFLkA(κ
eff
k + σeff

k ) sinh(υk(s)) (11)

where k ∈ n(negative electrode), p(positive electrode), z = x/Lk, ν is the unitless impedance ratio.
Afterwards, the discrete-time realization algorithm (DRA) was used to convert these transfer functions
into an optimal low-order discrete-time state-space approximate model.

It should be noted that the following critical assumptions are made for both Smith and Plett’s
work when solving the transfer functions from nonlinear PDEs: First, the nonlinear equations could
be linearized by using Taylor series. This assumption is reasonable as the transfer functions only
exist for linear systems. Second, the electrolyte potential φe is predominantly a function of lithium
flux j, further indicating that the effect of electrolyte concentration on the electrolyte potential was
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ignored. However, the second assumption could fail when the battery cell is operated under constant-
current conditions, where a large concentration gradient occurs in the electrolyte. Through eliminating
the requirement of using second assumption, a more complicated transfer functions for PDEs [85]
was observed. Similarly, DRA method was employed to obtain the final reduced-order model whose
computational complexity is similar to battery ECM.

The Padé approximation method is an effective tool for converting transcendental transfer func-
tions (the exact solutions of diffusion equations) into polynomial transfer functions that can be easily
deployed in control-oriented applications [86]. The Nth-order Padé approximation of a transcendental
transfer function G(s) is a ratio of two polynomials in s where the denominator is of order N . The
numerator is of order N or less. Normally, the computational speed is determined by the denominator
order as:

G(s) =

M
∑

m=0

bms
m

1 +
N
∑

n=1

ansn
(M ≤ N) =

num(s)

den(s)
(12)

where M is the order of numerator and N is the order of denominator. bm and an are coefficients for
the numerator and the denominator, respectively.

The Padé approximation of the transcendental transfer functions for the solid-state diffusion were
applied [87], where the first-order, second-order, and third-order Padé approximations were presented
and compared in the frequency domain. It turned out that the Padé approximates could also well
capture the low-frequency dynamics, where the model would become more accurate at high-frequency
as the Padé order increases.

C̃ss(s)

J(s)
=

Rs

FDs

(
tanh(Rs

√

s/Ds
)

tanh(Rs

√

s/Ds
−Rs

√

s/Ds

) (13)

where Rs is the particle radius, F is the Faraday constant, Ds is the solid-phase diffusion coefficient.
A model-order reduction procedure based on the Padé approximation was presented [88]. The

frequency distribution of current profiles concerning two regulatory driving cycles including the US06
highway cycle and Federal Urban Dynamometer Schedule (FUDS) was investigated. As 90% of these
cycles are within the frequency domain less than 2.5 Hz, a first-order Padé approximation is there-
fore chosen to model the liquid diffusion dynamics, and a third-order truncation is selected for the
solid-diffusion dynamics. Based upon the Lee’s derivation of transcendental transfer functions on
lithium flux j, solid surface concentration cs,e, electrolyte concentration ce, and electrolyte potential,
a reduced-order model was presented where Padé approximates were used to handle the complicated
transcendental transfer functions. The obtained reduced-order model is amenable with rapid compu-
tation for control-oriented applications [89].

Integral method approximation (IMA) is another effective solution to solve the transfer functions,
where a distribution of the electrochemical variables across battery cell is assumed and the governing
equations are integrated. The IMA was used to solve Li+ conservation across the anode, cathode,
and separator of cell [90]. A parabolic distribution of the electrolyte concentration was assumed
and substituted into Li+ conservation equations, where the boundary conditions are integrated and
simplified to obtain the third order transfer functions for electrolyte concentrations.

2.1.3. Polynomial expression

The polynomial profiles are simple approximations for solid-state concentration function [91] and
electrolyte concentration distributions [92]. The efficient microscale diffusion inside porous electrodes
was developed, assuming that the solid-state concentration inside spherical particle could be expressed
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as a polynomial in the spatial direction. The two-parameter and three-parameter parabolic models
presented the following forms as:

C(z, τ) = a(τ) + b(τ)z2;

C(z, τ) = a(τ) + b(τ)z2 + c(τ)z4;
(14)

The approximate models were tested for arbitrary functions of pore wall flux and could save com-
putational effort by over 80% without compromising the accuracy [31]. The parabolic models was
extended for higher charge-discharge rates [93]. Specifically, Li-ion concentration and potential pro-
files in the electrolyte phase were approximated by a polynomial function. A cubic polynomial was
used for electrolyte concentration and potential inside electrodes, while separator liquid phase poten-
tial and electrolyte concentration were calculated by parabolas. Diffusion inside solid particles was
simplified using an approximate solution based on the analytical solution for solid concentration. This
type of reduced model could accurately predict the battery cell voltage with less than 1% error for
discharging/charging current rates up to 5C, while the average computation time was reduced by a
factor of 5.

2.1.4. Discretization-based method

For nonlinear PDE models, analytical solutions would become difficult to be derived. In this con-
text, numerical methods could be employed to discretize the governing equations of PDE [94]. Finite-
Element Method (FEM) is a numerical technique for discovering approximate solutions to PDEs. The
FEM discretized the domain x ∈ (0, L) into N − 1 subdomains. The Nth-order FEM approximation
has N nodes. A FEM was used to develop three-dimensional thermal abuse model on lithium-ion
batteries. A thermal model for a cylindrical battery was developed based on the FEM [34]. A particle-
resolved 3D finite element model was implemented to study the effect of cathode microstructure on
the electrochemical and mechanical responses of Li-ion batteries [95].

Finite Difference method (FDM) is the simplest and widely-utilized approach to handle the PDEs
of battery electrochemical models. In the FDM, spatial domain is discretized into N nodes at x =
0, h, · · · , (N − 1)h, where h = L/(N − 1) is assumed constant for simplicity. Spatial derivatives
are approximated by forward-difference, backward-difference, or central-difference. The mixed FDM
was selected to discretize the spatial r, where the node points are unevenly spaced [30]. The mixed
FDM can yield higher resolution with fewer node points in contrast to equally-spaced node points.
The FDM was used to mesh the active particles along radial direction [32]. Then the complex PDE
were discretized into ODEs and the state space expressiocn of system was obtained. The governing
equations were discretized with central difference scheme for the first and second derivatives [96].

2.1.5. Physics-based equivalent circuit models

Due to the involvement of electric circuit elements to describe cell responses, ECMs can be iden-
tified rapidly. Here simplicity and practicability are two obvious merits for the application of ECMs
[97]. However, ECMs also present the limited capability in terms of electrochemical mechanisms. Re-
cently, P2D models have been simplified into the form of ECMs, which could significantly reduce the
computational burden and enrich the physical meanings of ECMs. Finite volume method (FVM) was
applied to a P2D model of Li-ion batteries [98]. The standard passive components were used to con-
struct ECMs, indicating the energy storage nature of Li-ion battery. The parametric values of circuit
elements were expressed as the functions of Li-ion concentrations and temperature. Results illustrated
that the developed ECM could achieve close agreement with P2D model under a wide range of applied
current rates, but occupies a much reduced computational resource. A novel implementation for P2D
model was presented [99]. This model had a circuit-based structure without any simplification of the
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physical origins. A classic transmission line structure was used to replace the governing equations of
current distribution within electrode. The concentration distributions were solved with the FDM. A
new empirically parameterized physics-informed ECM was derived, as depicted in Fig.3 [100]. The
P2D physics is discretized and represented as circuit elements in a network, requiring only 3 low-
cost in-situ experiments: slow discharge, pulse discharge, and electrochemical impedance spectroscopy
(EIS) under load. The model showed an accuracy of 19.6 mV compared to the multiple C-rate pulse
loading experiments.

Figure 3: Cell level model schematic diagram for a single particle model [100].

2.1.6. Asymptotic reduction methods

Asymptotic techniques provide an effective means for model reduction and solution construction
with clear ranges of validity. For example, the asymptotic reduction of P2D model was performed by
Moyle et al. based on the fact that reaction kinetics dominate electrical effects [101]. They showed that
the electric potentials are spatially homogeneous after asymptotic reduction and cell voltage behavior
can be understood through a sequence of asymptotic regimes, which elucidates simple underlying
physical processes.The asymptotic methods were used to reduce a thermo-electrochemical model and
obtain solutions for common battery operation modes [102]. Asymptotic techniques were used to
derive a thermal-electrochemical model systematically. The physical parameters and variables were
nondimensionalized as:

λ =
Φ0F

RT
, δ = λ−1 (15)

where R is the gas constant, T is the temperature, F is Faraday constant. All the variables could be
expanded in powers of δ, using the notation as:

Φk = Φk0 + δΦk1 + o(δ2)

ik = ik0 + δik1 + o(δ2)
(16)

The leading order expansion was taken for model approximation. The reduced model was validated
against a thermal P2D model and demonstrated very high accuracy with a computational cost reduced
by over forty times [103].

2.2. Comparison and discussion

Table 2 summarizes various types of reduction methods for P2D model in terms of their reference,
advantages and drawbacks. It should be known that the SPM based methods are the most widely
utilized solution to simplify the P2D model. This method requires minimum computation resources
and is able to provide sufficient model accuracy at low current rates. As an improved version of
SPM, the SPM with electrolyte dynamics (SPMe) could predict the cell voltage at a high C-rate with
lower computation burden than P2D model. However, due to the electrode width is much larger than
particle radius, while only one particle for one electrode is insufficient, this SPMe would be limited for
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Table 2: Different P2D model reduction techniques and their control-oriented applications.

Category Simplification
technique

Refs Strengths Weaknesses

SPM

based

SPM

[80]

[104]

[105]

[106]

Simple; Low computa-
tion burden;

Limited capability at
high C-rates.

SPMe (Im-
proved with
electrolytedy-
namics)

[107]
[108]
[79]
[23]
[109]
[110]

Low computation
burden; Enhanced
performances at
high C-rates, cell
ageing, and thermal
behavor; Easy for
control-oriented im-
plementations

Limited capability for
cells with thick elec-
trodes.

Transfer-

function

type

Residue

grouping
[27]
[111]

Low-order; Accurate
in partial frequency
range; Computation
efficient;

Requiring
pole/residue op-
timization; Prior-
known parameters.

Discrete-Time

Realization

Algorithm (DRA)

[28]
[112]

Low-order; Accurate
in overall frequency
range; Computation
efficient; Easy for
control-oriented im-
plementations

Prior-known parame-
ters; Hard-to parame-
terize.

Padé

approximation
[89]
[26]
[29]
[86]

Low-order; Accurate
in partial frequency
range; Computation
efficient; Easy for
control-oriented im-
plementations.

Trade-off be-
tween order selec-
tion(accuracy) and
computation burden.

Integral method

approximation

(IMA)

[113]
[31]

Low-order; Easy-to-
derive; Computation
efficient

Assumed Li-ion con-
centration profiles.
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Polynomial
expression

Parabolic func-
tions

[93]
[92]
[114]
[115]

Low-order; Easy-to-
derive; Computation
efficient;

Lacking physical
meanings of polyno-
mial coefficients.

Spatial

Discretiza-

tion

Finite-Element
method (FEM)

[21]
[35]
[116]
[34]

High accuracy Heavy computation
burden. Convergence
requirement. Difficult
for control-oriented
implementations.

Finite Difference
method (FDM)

[96]
[32]
[117]

High accuracy Sensitive to spaces
and number of
discretized nodes.
Convergence require-
ment.

Physics-
based
ECMs

Physical analo-
gies and inter-
pretation

[98]
[99]
[33]
[100]

Low-order; Easy-to-
parameterize. Com-
putation efficient;

Lumped parameters.
Sensitive to the num-
ber of elementary sec-
tions;

Asymptotic
reduction
Leading-
order
approxi-
mation

Leading-order
approximation

[103]
[102]
[101]

High accuracy; Com-
putation efficient;

Nondimensionalized
parameters; Labor-
intensive model
derivation; Hard for
control-oriented im-
plementations
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Table 3: Different P2D model reduction techniques and their control-oriented applications.

Category Cell state estimation Optimal charge control Fault diagnosis

SPM based [24] [79] [118] [119] [120] [121] [122] [123] [124] [125] [126]

Transfer-function type [127] [128] [129][130] [131] [132] [133]

Polynomial expression [134] [135] [136] [137] [76] [138] [139]

Spatial Discretization [140] [141]

Physics-based ECMs [98] [142] [143]

Asymptotic reduction None None None

cells with thick electrodes. For the transfer-function based solutions, although they are much more
complicated than SPM based methods especially for transcendental transfer functions, this type of
solutions could provide high accuracy in both frequency range and time domain. Specifically, residue
grouping methods reduce the model order by optimizing the eigenvalues and residue vectors, while the
residues would be grouped with similar eigenvalues. However, the electrochemical parameters must
be given before residue grouping. DRA could also simplify P2D model to a low-order approximation
and accurately match the frequency range. However, the battery electrochemical parameters must
be known a priori, further making it difficult to parameterize DRA in an iteration process. The
Padé approximation is an effective tool to convert transcendental transfer functions into polynomial
expressions. The accuracy of the reduced model relies on the order selection of Padé approximant.
A high-order approximation could provide sufficient accuracy at high frequency but at the cost of
increased computational efficiency. Under the assumption of Li-ion concentration distributions, the
integral approximation method is a much simplified approach to derive the transfer functions of reduced
models.

For the polynomial expression-based solution, the polynomial expressions of battery electrochemical
variables are capable of providing accurate prediction with significantly reduced computational effort.
However, in general, the coefficients of parabolic functions are empirically fitted, hence lacking physical
meanings.

Spatial discretization-based solutions belong to the commonly utilized numerical approaches for
simplifying P2D models. Here the FEM discretizes the domain into multiple subdomains. Due to
the way of approximating solutions with numerous basic elements, FEM becomes the most accurate
one with a heavy computational burden. For the FDM, it can also simplify P2D model with high
accuracy. However, the spaces and number of discretized nodes for all numerical methods must be
carefully determined to ensure reasonable convergence.

The physics-based ECMs are essentially physical interpretation of electrochemical mechanisms.
Similar to ECMs, this type of solutions can be implemented easily but also reflects the electrochemical
process to some degree. For the physics-based ECM, its model parameters are reduced by lumping the
parameters, while its performance highly relies on the selection of the number of elementary sections.

The asymptotic reduction simplifies the P2D model by using a leading-order approximation. Here
the electrochemical reactions at different time scales are considered. All the known electrochemical
parameters are nondimensionalized. The derivation of the asymptotic reduction is relatively compli-
cated.

The electrochemical model could enhance the battery control performances on cell state estimation,
fault diagnosis, and health-aware optimal charging. The physical model parameters reflect the inherent
characteristics of the cell. For example, the volume fraction of active materials and maximum lithium-
ion concentration determine the cell capacity. Thus, the cell degradation mechanisms including the
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loss of recyclable lithium ions and active materials can be identified by observing these parameters.
Similarly, the cell fault can be diagnosed through the estimation of the variation of the physical
parameters. In addition, the electrochemical model could provide cell internal states such as the
lithium-ion concentrations in the electrolyte and solid phase, side reaction overpotential, and reaction
flux across the electrodes. These electrochemical states are related to the cell ageing process. Hence,
cell health-aware control could be realized by optimizing these electrochemical states. To sum up, the
electrochemical model represents the cell interior dynamics. This could be helpful to achieve accurate
cell state estimation, fault diagnosis, and efficient charging control.

To be specific, the SPMmodel has better controllability and observability than the P2D model [139].
An adaptive unscented Kalman filter based on SPM was proposed to estimate the SOC, lithium-ion
concentrations, and potentials [24]. The estimated internal information is valuable to avoid lithium
plating. All estimated states were verified to demonstrate fast convergence, robustness, and high
accuracy even with a 20% initial SOC error. By assuming that the total amount of lithium in the
cell is known, the dynamical properties of the SPMe observer, including the marginal stability, local
invertibility, and conservation of lithium can be exploited [79].

Besides, the convergent estimates of solid and electrolyte phase concentrations on high C-rate cycles
and transient electric vehicle charge/discharge cycles were also illustrated. For phase-transition mate-
rials during the battery’s normal charge and discharge operation such as LiFePO4, a novel boundary
observer to estimate the concentration of lithium ions together with a moving boundary radius from
the SPM via the backstepping method for PDEs was derived [118]. During the lithium ions intercala-
tion and deintercalation, the stress generation contributes to the electrode particle fracture. A coupled
SPM-mechanical stress model was used to design an adaptive observer for cell SOC, electrode particle
stress, and solid-phase diffusivity. The internal stress and SOH-related parameters are predicted from
real-time electric current and terminal voltage measurements [119]. A model from the pre-compute
set of physics-based reduced-order components that span the expected dynamics of the cell over its
lifetime was presented. Two significant ageing mechanisms were considered: solid-electrolyte inter-
phase layer formation in the negative electrode and material dissolution in the positive electrode. An
interacting multiple-model Kalman filter was used to select the pre-computed model for accurate es-
timations of cell internal electrochemical variables and output terminal voltage [127]. A composite
LiMn2O4 − LiNi1/3Mn1/3Co1/3O2 electrode battery model was used in dual-nonlinear observers to
estimate the cell SOC and loss of cyclable lithium over time [129]. The surface and bulk lithium
concentration of each material as well as the current split between each material were predicted. The
reduced-order model was incorporated in a sigma-point Kalman filter to enable measurement feedback
to improve voltage and internal-variable estimates. The system was implemented in a microcontroller
and proved to be valid for BMSs [130]. An electrochemical model-based solution provided a basis for
an output-injection observer to estimate the SOC over a wide range of operations, especially at high
discharge rates [135].

Battery fast charging is one of the most effective techniques that affect the acceptance of EVs. In-
creasing the charging current could accelerate the side reaction rate and contribute to lithium plating.
In order to minimize degradation rate and reduce charging time simultaneously, a charging method
considering different limiting factors, including surface ion concentrations and side reaction rate, are
crucial for cell health-aware charging protocol. Based on SPMe, the dynamic programming (DP)
technique was employed to find the trade-off between charging duration, solid electrolyte interphase
(SEI) growth, and lithium plating. The experimental results showed that the optimized fast charging
strategy could reduce the capacity fade significantly compared with the widely used constant-current
constant-voltage (CCCV) charging method without sacrificing battery health [123]. An optimal charg-
ing current at different SOCs was found using nonlinear model predictive control, which reduces side
reaction rate and lithium plating rate. Pulse discharging current was added to promote the lithium
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stripping. With a comparable capacity fade, the proposed charging method was tested to reduce 39%
of charging time compared with 1C CCCV charging method [125].

Similarly, the fast charging protocol considering side reaction rate and ion concentration was proved
to reduce more than 40% in charging time compared with normal charging method but with less
capacity and power fade [124]. To prevent the internal short circuit caused by lithium plating at
the negative electrode, a fast charging control algorithm with two closed loops were presented. One
loop was an anode over-potential observer, whereas the second loop includes a feedback structure
that adjusted the current based on estimated status of lithium plating. The results showed that the
cell can be fully charged within 52 min without lithium deposition [138]. The electrochemical model
parameters have rich physical meanings and were considered as the referenced values for a healthy
battery. However, the battery fault conditions such as ageing, overcharge/discharge cause significant
variations of parameters from nominal values. An output error injection-based partial differential-
algebraic equation observer was applied to produce voltage error signals. These imposed error values
could be used to detect the ongoing fault conditions of the battery [126]. The fuzzy logic system
was used to detect any variation in battery cell parameters and diagnose battery faults accurately in
real-time [139].

Table 3 summarizes different P2D model-order reduction techniques and their control-oriented
applications to cell state estimation, optimal control, and fault diagnostics. It can be noted that
SPM based models are suitable for developing cell state estimation, optimal control strategy, and fault
diagnosis algorithms. The spatial discretization method is the most accurate technique. Commercial
software such as COMSOL uses the FEM to solve the PDEs and is often used as the benchmark
for evaluating the simplified models [35]. However, FEM is difficult to be implemented for control-
oriented applications. The polynomial profiles and physics-based ECMs could significantly reduce the
computational complexity. The transfer-function type and asymptotic reduction models could achieve
high accuracy as well. However, the computational complexity of the asymptotic reduction approach
is relatively high, further limiting its applications in real battery control-oriented management.

3. Extension of P2D model

As discussed in Section 2, battery P2D model is mainly based on the porous electrode theory. The
P2D model would simplify the modelling of complex electrode microstructure with the volume-average
method at a macroscopic scale where the ion transport dynamics in the electrolyte and electronic
conduction process in the solid phase are all captured, and a microscopic scale on which the ionic
diffusion inside the electroactive particles is also considered. Due to the computational burden and
accuracy, the P2D model is mainly adopted for battery electrode structure design. However, the P2D
model has several issues when it is used for the development of battery simulation technologies: First,
the particle size is assumed to be uniform in a P2D model, which does not accurately represent the
electrode topology such as the actual size distribution of particles, the agglomerate structure of particle
in the cathode. Second, the positive electrode is regarded as a single component without considering the
blended cathode active materials. Third, the Bruggeman equation is used to model the effects of porous
structure on the ionic transport and taken as constant, ignoring the microstructure variability. The
Fick’s diffusion law oversimplifies the intra-particle ionic transport. To address these aforementioned
limitations, some attempts including the development of multi-particle model, multiple-scale model,
coupled ageing and thermal model have been made and summarized in this section.

3.1. Multi-particle model

Many intercalation materials exhibit phase changes during battery charging/discharging process.
Phase transitions strongly affect the lithium distribution inside particles and change the particle po-

17



tentials. LFP is a typical cathode chemistry with phase change [30]. The coexistence of Li-poor and
Li-rich phases should be accounted for and the boundaries between these two phases should be tracked,
while the P2D model fails to analyze this phenomenon [144].A many-particle model was introduced
where particles within a porous electrode are allowed to randomly exchange Li+ ions and electrons
through the electrolyte and conductive matrix, respectively [145]. A general explanation of the oc-
currence of non-monotonic chemical-potential behavior in LFP electrodes was presented through two
possible scenarios of new phase formation in a many-particle system, as shown in Fig. 4. At location
A, all particles behave as a single phase. At location B, two alternative scenarios are available to the
particle ensemble. The bottom path is that a single particle will hose a two-phase region, the top
alternative is that the other particles will contribute lithium to the filling particle so that the relaxed
result will be either fully lithiated or delithiated particles. At location C, particles can internally host
phase boundaries, or the particles can either be lithiated or delithiated to the stable locations (B and
D).

Figure 4: Chemical potential of LFP cathode evolution with two possible scenarios.

To develop an adequate modeling representation of the topology of the anode and cathode particles,
Farkhondeh et al used a multi-particle model with variable solid-state diffusivity [146]. The memory
effect of LFP electrodes was also analyzed. Simulation/experiment comparison for cells with the cur-
rent rates up to 1C demonstrated the robust particle-size distribution estimation for galvanostatic
charges/discharges. A 0D model of a phase separating active cathode particle based on multi-particle
theory was derived. The dimensionality reduction is based on the volume averaging of dynamic equa-
tions [147]. The obtained 0D model has an explicit advantage of short computation time and high level
of accuracy. A simplified physics-based model was derived combing the porous-electrode theory and
multi-particles to predict a LFP-based electrode performance [48]. As shown in Fig. 5, four-particle
bins were considered to represent the apparent particle size distribution (PSD) of the cathode. A poly-
nomial approximation method was incorporated to model the effects of electrolyte. A fundamental
analysis of the effect of particle size distribution on graphite electrodes and their performances was
presented. The effects of particle heterogeneity on surface overpotentials were investigated [148]. It
was concluded that for a graphite electrode, the surface-area- and volume-based approximations are
sufficiently accurate for large- and small-scale PSDs.

The commercially available positive materials such as lithium ferrous phosphate (LFP), lithium
cobalt oxides (LCO), lithium nickel manganese cobalt oxides (NMCs), lithium manganese spinel
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Figure 5: Schematic diagram of the LFP cathode that is assumed to contain four particle sizes

(LMO), and lithium nickel cobalt aluminium oxide (NCA), have their own characteristics in terms of
power and energy costs. To obtain an acceptable trade-off between these characteristics, battery manu-
facturers would mix two or more positive materials to form a blend electrode. However, the P2D model
assumes the single composition of the active material.A Li-ion mathematical model was developed to
treat two positive-electrode materials (LiyNi0.80Co0.15Al0.05O2andLiyMn2O4) [149]. To match the be-
havior of high rate discharge and impedance data, multiple types of electronic connections between par-
ticles and particle-conductive matrix were required. An extension of P2D model, accounting for the ag-
glomerate of active material particles, LiNi1/3Mn1/3Co1/3O2 (NCM) and LiNi1/3Co1/3Al1/3O2(NCA),
was derived by Leuth et al. [150]. The morphology of agglomerates can be seen in Fig. 6a. Micro-sized
spherical secondary particles are the agglomerate of nanometer-sized primary particles which would
be held together by binder [151] as shown in Fig. 6b. The model assumes that the liquid-transport
is faster than the solid phase transport, while the electronic conductivity within agglomerate is suffi-
ciently high. Therefore, the concentration polarization is significantly smaller than compact particles,
which alleviates the rate-limiting effect of the solid diffusion on compact particles.

A LiNi1/3Mn1/3Co1/3O2 − LiMn2O4 (NMC-LMO) blended cathode obtained from a commercial
Li-ion battery was considered [152]. As NMC forms agglomerates, it was divided into two classes of par-
ticles, i.e., primary particles and secondary particles. The secondary particles are assumed to be large
non-porous NMC agglomerates. Three distributions from LMO particles, NMC primary particles, and
NMC secondary particles were accounted for the multiple particle sizes of the active materials. The
model could accurately capture the galvanostatic discharge at various current rates. The P2D model
was modified to accommodate a composite electrode of LiMn2O4 (LMO) and Li1/3Ni1/3Mn1/3Co1/3O2

(NMC), as shown in Fig 6c [129]. A composite electrode is viewed as two parallel particles, one rep-
resenting each active material. The negative electrode is a single material graphite electrode. The
presented model structure was applied to battery SOC/SOH co-estimation. A high-power cell with
lithium manganese spinel and lithium cobalt oxide at the positive while lithium titanate at the negative
with 2 particle populations was studied with an SPMe model [153]. A simplified electrochemical model
was developed to describe and maximize the specific capacity of battery cells through the variation
of active (LFP)/inactive (carbon conductor and binder) ratios. The computation time was signifi-
cantly reduced with these simplified models. Therefore, these reduced-order multi-particle models are

19



Figure 6: Multi-particle agglomerate coupling with P2D model(a), agglomerate model(b), and simplified multi-particle
model(c).
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promising for control-oriented applications [154].

3.2. Electrochemical model with multiple scales

The P2D model was derived by using volume averaging method (VAM), where the local microstruc-
ture features such as pore shape and localized current density distribution are neglected. This causes
the P2D model become insufficient for applications involving active material utilization. The cell multi-
scale is depicted in Fig. 7. The macroscopic models from microscopic processes with one smaller length
scale to account for geometric microstructure features such as pore shape was derived by mathematical
homogenization theory derives.

The multi-scaled homogenized model is developed using asymptotic analysis of the microscopic
model. The homogenization assumes that the porous electrode is composed of periodic micro-units.
Each micro unit is composed of solid active materials S , electrolyte L, and solid-electrolyte interface T ,
as shown in Fig. 8. The ratio of micro unit length l to macro length L is denoted as spatial multiscale
factor δ. δ = l/L. Microdomain coordinate y and macrodomain coordinate x is converted by y = x/δ.
The basic idea of the homogenization method is to expand the system variables at multiple scales,
and then substitute these expansions into microscopic equations to obtain PDEs with different scale
components. Then, the expanded PDE is analyzed by δ at different orders [155]. The central ansatz
for the expansions of the variables is:

c = c0(x, t) + δc1(x, y, t) + δ2c2(x, y, t) + ...,

j = j0(x, t) + δj1(x, y, t) + δ2j2(x, y, t) + ...,
(17)

So both the concentration and current density are dominated by the variations of battery length
scale with relatively smaller variations on the electrode-particle length scale. The current density j
flows around the electrode particles and hence displays significant variations on the particle scale.

A comparative analysis of the full homogenized model and P2D model was conducted [156]. The
results illustrate that the predictability of P2D model deteriorates when predicting battery voltage
response at low SOC for high operational temperature under 1C discharging case. The P2D model
failed to capture the polarization of electrolyte under these scenarios, as shown in Fig. 9. Therefore,
the homogenized macroscopic model presents a wider range of applications. A homogenized model
was developed, which considers lithium diffusion within particles, lithium transfer from particles to the
electrolyte and transport within the electrolyte. It was found that for low discharging currents, battery
acts almost uniformly [157]. When the current is increased to a critical value, Li-ions in some regions
of the battery are depleted, leading to the spatially nonuniform use of electrode. The conversion of
homogenized equations to P2D model was carried out by Ciucci et al. [155]. The results indicated
that the classical Doyle-Fuller-Newman (DFN) model is only the 0th order terms of the expansion.
More specifically, the DFN-based approach is only valid under the assumption that δ ≪ 1. Ciucci’s
analysis was extended by computing the asymptotic order of interface exchange current densities,
which is an important factor in the homogenization study [158]. As the commonly used Bruggeman’s
formula may in fact violate the physical bounds in some regimes, the exact values of the different
effective transport coefficients were investigated [159]. An extended homogenized porous electrode
model was presented considering the electrochemical coupling between particles of a real particle size
distribution obtained from tomography data. The vanishing plateaus in the graphite potential curve
with increasing charge or discharge rates was explained [160]. The P2D model is difficult to predict
the heterogeneous reactions within the porous media with complex microstructures. An accurate
standard homogenization of the battery was presented to analyze how the fluctuations occur and
estimate them theoretically [161]. However, it should be noted that the control-oriented applications
of the homogenized model are rarely-researched.
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Figure 7: Li-ion battery structures at multiple length scales.
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Figure 8: Representation of the porous electrode of a lithium-ion battery in the form of spatially periodical unit. Every
unit cell y is composed of active particles S and electrolyte solution L, that are separately by an interface T.

Figure 9: Performance of the P2D model and full homogenized model (FHM) against measured voltage from 1C-rate
discharge test conducted at 52◦C [156].
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3.3. Electrochemical model with ageing and thermal effects

Figure 10: The coupled 1D electrochemical model and thermal model

Besides, apart from electrochemical behaviors, battery thermal and ageing (degradation) dynamics
also plays a vital role in determining battery performance. In this context, battery electrochemical
model is worth being expanded to consider these two aspects. To achieve this, one classical solution is
to extend P2D or simplified 1D electrochemical models to 2D or 3D thermal models. In this way, two
sub-models including an electrochemical model and a thermal model would be operated simultaneously.
As illustrated in Fig. 10, a 1D electrochemical model would predict the heat generation rate (Qh) and
voltage (V ) of battery cell through various loading cycles. The voltage at a point from 1D model
which corresponds to the tab of battery cell is then mapped to the tab of 2D thermal-electric model,
and this battery 2D model allows the consideration of both temperature and current distributions
across the surface of battery cell [162].A 1D electrochemical model was adopted to calculate the heat
generation rate, as depicted in Fig. 10 [163]. Then the heat source is coupled into a 3D thermal model
for calculating the temperature distribution inside a battery. The obtained average temperature would
affect multiple parameters within the electrochemical model. As a result, the heat generation rate of
1D model would vary based on different temperature-dependent parameters. In the thermal model,
the energy conversion equation based on the basic principle of heat transfer can be given as:

ρCp
∂T

∂t
= λx

∂2T

∂x2
+ λy

∂2T

∂y2
+ λz

∂2T

∂z2
+ q̇ (18)

where λx, λy, and λz are thermal conductivities in the x, y, and z directions of the battery,
respectively. The value of q̇ refers to heat generation in the cell, which includes reversible heat and
irreversible heat. The reversible heat is mainly related to the entropy change of the electrode active
material. The irreversible heat consists of the active polarization heat arising from the electrochemical
reaction and ohmic heat.

Due to the increased complexity of coupled multiscale model, the underlying physical models need
to be simplified for battery control-oriented applications. [164] reported a reduced-order electrochemi-
cal thermal model of a pouch cell. The ion concentration within an electrode is approximated using the
polynomial approach, while the ion concentration within electrolyte is simplified using the state space
method. Both potentials and electrochemical kinetics are linearized. Cell temperature is calculated
based on the energy conversion formula to further determine the temperature-dependent diffusion co-
efficients. Then the model performance is evaluated by analyzing appropriate experimental data at
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multiple cycles under different operational conditions. Illustrative results confirm that the computa-
tional effort of the reduced-order model (ROM) would be reduced to the fifteenth, while its accuracy
can be still maintained. It should be known that various simplified versions of coupled models have
been proposed. For example,the accurate electrochemical and thermal response of Li-ion cells were
explored [165]. Here the local heat generation and spatial temperature variation are volume averaged
to derive the reduced-order coupled PDEs of battery electrochemical-thermal model. This ROM struc-
ture could be easily utilized for parameter identification of controlling processes at high current rates.
A control-oriented thermal-electrochemical model was developed and well validated for the commer-
cial prismatic battery [166].Here the multilayer thermal model and polynomial approximation method
are applied to describe battery thermal behavior and electrochemical process, respectively. This 3D
battery model is divided into dozens of thermal nodes connecting by the thermal resistances. The
multiplayer thermal model is constructed by using thermal balance equations for all thermal nodes.

In addition, the coupled electrochemical-thermal model also allows the investigation of ageing
effects concurrently. It should be known that battery ageing significantly depends on temperature and
could lead to significant heat release. Ageing would generally occur at the active material particle
scale, while heat transport occurs at the cell scale. Kupper et al investigated the battery multiscale
heat, mass transport and complex electrochemical reaction mechanisms based on a coupled model
[167]. Here this coupled model is derived by considering the homogenization of three 1D models:
one for intra-particle lithium diffusion, one for electrode-pair mass and charge transport, and one for
cell-level heat transport. The main and side reactions are described with the flexible multi-phase
electrochemistry. Besides, the thermal model is able to provide a feedback between temperature and
battery electric dynamics as well as ageing. One of the challenges for anode side is that dendritic
and mossy lithium surface can form solid electrolyte interphase (SEI) easily during cycling, as shown
in Fig. 11 [168]. For fresh anode surface, the particles are covered with an SEI layer. When the
anode is lithiated during charge process, a large volume expansion occurs as shown in Fig. 11B.The
SEI layer could be damaged, leading to the exposure of the particles to electrolyte.Hence, a thicker
SEI layer would form consuming the lithium inventory as depicted in Fig. 11C. After many cycles,
a much thickened SEI evolves as shown in Fig. 11D. For the cathode side, higher mechanical stress
would accelerate the cracks and de-cohesion of particles. Furthermore, the cathode-induced oxidation
of solvents will cause gas generation [95].

Figure 11: Scheme of negative electrode degradation mechanisms [168].

A simplified electrochemical and thermal ageing model [169] was presented. Here the mechanism
of porosity modification caused by the growth of solid electrolyte interphase (SEI) film at the negative
electrode is incorporated into the electrochemical and thermal models. Illustrative results indicate that
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the cracking and fracture of SEI layer would be significantly affected by cycling operating conditions
and play an important role in accelerating the electrochemical mechanisms.A growth rate of around
0.64 nm/hr at 1C for the SEI film on the negative electrode was observed. In addition, for a convective
heat transfer coefficient (h) larger than 1W/(m2K), there is limited effects of battery ageing model on
surface cell temperature [170].

Figure 12: Main coupling phenomena.

In theory, mechanical strain would also play a pivotal role in affecting battery durability. In
this context, the coupling between battery electrochemical and mechanical dynamics can also provide
significant insights into cell degradation. The thermo-mechanical behavior within a multilayer section
of lithium 18650 cell during discharge [171] was evaluated.

The equation of heat transfer in each part of the cell is expressed by:

d

dt
(ρCpT ) = −div(−λgrad(T )) + q̇ (19)

where T denotes temperature, ρ density, Cp specific heat capacity, λ thermal conductivity and q̇ heat
sources.

The heat generation q̇ per unit volume of the cell is given as:

q̇ =
1

Vbat

[i(V − EOCV ) + i(T
dEOCV

dT
)] (20)

where i is cell current,V is battery potential, EOCV is open-circuit voltage and Vbatt is battery volume.
The partition of strains leads to write the total strain as the sum of all possible strains:

εtotal = εe + εT + εL (21)

where εe is the elastic strain tensor, εT is the thermal strain tensor and εL is the lithiation/delithiation
expansion of electrodes. The stress-strain relationship is:

εe =
E

1 + υ
σ −

υ

E
tr(σ)I (22)
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E is the Young’s Modulus, υ is the Poisson ratio and I is the identity tensor. The thermal strain is
expressed by:

εT = α(T − T0) (23)

where α is the coefficient of thermal expansion, T0 is the initial temperature and T is the actual
temperature.

As shown in Fig. 12, lithium diffuses in the lattice of electrode structure at the electrode scale,
further leading to structural changes and mechanical stresses. At the same time, the macroscopic
electrochemical model calculates the heat generation caused by the ohmic losses, charge transfer over-
potentials at the interface, and mass transport limitations. These factors contribute to the mechanical
stresses.It is illustrated that the gradients of lithium concentration determine the stress level, and large
stresses are generated at the electrode-separator interface when high current rates are applied [172]. A
coupled electrochemical-thermal-mechanical model was used to investigate Li-ion battery degradation.
It was found that high temperature can accelerate battery SEI growth, while low temperature would
cause severe lithium-plating. Current with high rates would increase the diffusion-induced stress
significantly and result in severe cathode active material loss [173]. These reduced electrochemical-
thermal models could benefit the accurate cell state estimation and optimal charge control, especially
for all-climate electric vehicles.

3.4. Discussion

This section summarizes the extended variants of the P2D model, including the multi-particle mod-
els, multi-scale models, ageing, and thermal models. These models make up for the deficiency of the
P2D model. Specifically, the multi-particle models are suitable for cathode materials with significant
phase-transition such as LFP, where the particle interactions dominate the electrode performance.
The inhomogeneity of the particle distributions can be captured by the multi-particle models. Thus,
they are appropriate for composite electrodes, where two or three types of active materials are mixed,
and electrodes composed of agglomerated particles. The multi-scale models are of great interest when
the electrode microstructures are concerned. They are derived with asymptotic methods and could
outperform P2D model at low SOCs and high temperatures. The ageing and thermal effects are
critical aspects of long-time battery modeling [174]. In general, the ageing and thermal effects are
coupled with the electrochemistry phenomenon. The combined electrochemical-ageing-thermal mod-
els are powerful tools to depict the multi-physics cells. In summary, these extended electrochemical
models are promising for achieving effective performance under control-oriented applications where
the typical P2D model fails.

4. P2D model parameterization

Parameter identification of electrochemical model is also important for accurate model-based bat-
tery state estimation and optimal control design. As the PDEs within P2D model contain many
physical parameters, it is a key but challenging task to identify all these parameters. First, battery
manufacturers generally do not disclose this information in their manufactured battery specification
sheet. Second, the measurable signals including voltage, current, and temperature present the compli-
cated nonlinear relations with these parameters. The parameter identifiability would vary for different
operating conditions, further complicating the parameterization goal. Third, various characterization
and expensive instruments are required to measure these parameters. Furthermore, the parameters
are specific to each cell design (including geometry and chemistry), leading to the fact that not all
parameters could be transferable from one cell design to another. One common-utilized approach is
to fit the parameters of electrochemical model for matching the measured cell terminal voltage, which
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is sensitive to the initial set of these parameters [175]. In many related research, these parameter sets
are generally adopted from literatures, while their origins are seldom traced. Another typical solution
is to measure these parameters experimentally. In this section, two widely adopted methods, including
direct measurements and noninvasive parameter estimation, are summarized and discussed.

4.1. Physical parameter measurements

For the physical parameter measurements, parameters of battery electrochemical model would be
obtained directly through cell post-mortem analysis [176]. For example,a physio-chemical model was
fully parameterized for a high-energy pouch battery cell [177]. Specifically, battery cell was opened
under argon atmosphere for the measurements of geometrical data. The porosity, particle radius,
and tortuosity of the electrodes and the separator were determined with Hg-porosimetry. Electrolyte
conductivity and diffusion constants, as well as electronic conductivity were detected by using the
voltage response to a dc current. The electrode open circuit voltage curves, diffusion coefficient, and
charge transfer kinetics, were measured on the reconstructed coin cells. The parameterized physico-
electrochemical model was validated against the commercial cells with same chemistry [178]. Johannes
extracted the physical parameters from a high-power prismatic cell. The composition as well as the
porous structure were measured using optical emission spectroscopy and Hg-porosimetry. The elec-
trochemical properties of electrode materials were determined using coin cells with lithium as counter
electrode [179]. Relative validation showed that the behavior of full cell can be reproduced from
the parameterization of individual material parameters with small errors [180]. The experimental
methodologies for cell teardown and subsequent chemical, physical, electrochemical kinetics, and ther-
modynamic analysis was presented. The cell consists of a NMC positive electrode and graphite-SiOx
negative electrode. The electrode open-circuit-voltages (OCVs) and lithium stoichiometry were ob-
tained using galvanostatic intermittent titration technique(GITT) in half cells. The electrochemical
impedance spectroscopy (EIS) measurements were used to determine the activation energy and ex-
change current coefficient [181].

Table 4 summarizes several physical parameters of electrochemical model and their related measure-
ments. The geometric configuration of a cell, as well as the domain morphologies within the cell, are de-
termined by manufacturing processes. The electrode plating area, current collector/electrode/separator
thickness are straightforward to be understood and are relatively easy to be measured through using
calipers or a micrometer gauge. Scanning electron microscopy (SEM) is an effective tool for 2D image
acquisition. These obtained 2D images can be then processed to extract measurements for layer thick-
ness, particle radius, and particle size distributions [179]. SEM was combined with FIB to investigate
the 3D microstructure of electrode, while the porosity was calculated based on these images [181]. The
tortuosity can also be calculated from these images. Mercury porosimetry is a destructive technique to
measure porosity, pore volume, and pore size distribution. The mercury is forced into small void spaces
in the porous medium, and the volume of intruded mercury was recorded [177]. GITT is a method
that can measure the open circuit potential and solid-phase diffusion coefficients [193]. The activation
energy and exchange current density can be determined by using EIS [178]. In terms of the chemical
properties, elemental composition of the active materials can be analyzed by using energy-dispersive
X-ray spectroscopy (EDS) and inductively coupled plasma optical emission spectroscopy (ICP-OES).

4.2. Noninvasive parameter estimation

On the other hand, noninvasive parameter identification methods have been investigated widely
without the need of tearing down battery cells, where related parameters are estimated by fitting the
model responses to the experimentally measured voltage [194]. Parameter identifiability belongs to a
model basic property to describe whether the parameters of model can be identified from its output
for a specific input. In general, parameters with high sensitivity could be identified accurately with
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Table 4: Physical parameters and their characterization method.

Physical parameters Characterization method

Geometrical

Electrode plating area Disassembly and direct measurements [181, 177, 180]

Current collector

thickness

Disassembly and direct measurements [181]; ICP

spectrocopy [177];SEM images [179]

Electrode/separator

thickness

Disassembly and direct measurements [181, 177];

SEM images [180]

Particle radius SEM images [181];Hg-porosimetry [177, 180]

Porosity
SEM-FIB [181]; Mercury porosimetry [177, 180];

liquid absorption [182]; X-ray micro CT [183]

Tortuosity SEM-FIB [181]; Hg-porosimetry [177, 179]

Electrochemical

Solid-phase lithium

diffusivity

GITT [181] [179] [184] [99, 185];EIS [177]; CV[186];

PITT[187]

Solid-phase electronic

conductivity
Four-point probe [181]

electrolyte electronic

conductivity
EIS [188]

Open circuit potential
GITT [181, 144]; Slow charge and

discharge [180] [189][190]; Three-electrode method [181]

Activation energy EIS [181];GITT& EIS [177];GITT [179];

Reaction rate constant EIS [181, 177];CV [191, 192];

Chemical

Active material

composition
EDS [181];ICP-OES[179]

Electrolyte composition Gas chromatography [179]; Ion chromatography [42]
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designed experiments [195]. For instance, an effective way through combining parameter analysis and
identification to determine a battery electrochemical model [196] was presented. Here the Fisher-
information matrix approach in combination with a sensitivity analysis was derived to estimate the
identifiability of each parameter. Then the number of experiments would be reduced to a relatively
small one, while 33 electrochemical parameters could be fully parameterized based on this sensitivity
information.The full set of P2D model parameters were identified from cycling data based on a genetic
algorithm, where the accuracy and identfiability of the resulting full parameter set were assessed using
Fisher information [197]. The most identifiable condition for each parameter was proposed based on
the sensitivity analysis and clustering analysis. Then the highly sensitive parameters were identified
under such condition [57]. Some researchers determined the specific subsets of parameters rather than
identifying all the parameters, while other parameters were taken from the literature [88].

The adopted optimization algorithms, number of estimated parameters, optimization objectives,
and experiments for estimating parameters of battery electrochemical model are summarized in Ta-
ble 5. As shown in Table 5, the number of estimated parameters would vary significantly on different
publications. This difference is mainly caused by the model complexity, estimation procedure, and opti-
mization objective (e.g., whether temperatures and EIS-based frequency responses are modeled). Here
the most commonly used optimization algorithm is the gradient-based algorithm, such as the least-
square algorithm [196], Levenberg-Marquardt algorithm [199], and Genetic algorithm [88]. Recently,
the neural network based algorithms have been also used to estimate the parameters of electrochemical
model. For example, a deep Bayesian neural network was used to identify optimal parameters [202].
Results illustrated that the neural network based method require less calculation time than genetic al-
gorithm, particle swarm optimization, and Levenberg-Marquardt algorithm. Apart from time-domain
signals of battery such as terminal voltage and temperature, the frequency test via EIS was incorpo-
rated in the parameterization [203]. The identification process was divided into four tests and eight
steps, where the number of parameters to be identified in each step is significantly reduced [203].

4.3. Discussion

This section summarizes two practical model parameterization methods: direct parameter mea-
surements and noninvasive parameter identification. Each method has its strengths and weaknesses.
The direct parameter measurements could provide the exact parameter values through post-mortem
analysis, which is robust and accurate. However, this process is costly and time-consuming, since
the cell teardown and subsequent chemical, physical, electrochemical kinetics and thermodynamic
analysis should be carefully conducted. The specific instruments for conducting these studies are
expensive. For noninvasive parameter estimation, this method is highly dependent on the identifiabil-
ity and sensitivity of these parameters. The quality of training data and preset parameter variation
range are critical to achieving ideal results. This method indeed could save much parameterization
efforts if these requirements are met. The parameter identification results determine the efficiency of
the electrochemical-model-based applications. Therefore, the researchers should pay attention to the
detailed parameter identification method and select the appropriate protocols.

5. Challenges and Perspectives

In this section, the challenges for tackling the limitations of classical battery P2D model, inca-
pability of model-order reduction techniques, and bottlenecks of model parameter identification are
discussed. Then some perspectives to further handle these issues towards battery electrochemical
model-based control-oriented management are given.
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Table 5: Parameter estimation algorithm, number of estimated parameters, used optimization objectives, and required
experiments for model identification.

References
Optimization

algorithm

Number of

estimated

parameters

Optimized

objectives
Experiment

[196] Least-square 33
Voltage

Temperature
C-rate and pulse tests

[197] Genetic algorithm 88 Voltage Drive cycles

[198] Tuned 41
Voltage

Temperature
C-rate tests

[199]
Levenberg-Marquardt

algorithm
21 Voltage C-rate and pulse tests

[200]
Particle swarm

optimization
4 Voltage C-rate and pulse tests

[201]
Evolutionary

algorithm
11 Voltage C-rate tests

[56] Least-square 7 Voltage Pulse tests

[69]
Hybrid optimization

algorithm
44 Voltage C-rate and pulse tests

[202]
Deep Bayesian neural

network
6 Voltage C-rate and pulse tests

[203]
Particle swarm

optimization
14

Voltage,

EIS data

C-rate and pulse tests,

EIS test.

[204]
Generalized reduced gradient

optimization
20 Voltage Linear-sweep voltammetry

[205]
Cuckoo search algorithm

network
26 Voltage C-rate and drive cycles

[206]
Particle swarm

optimization
28 Voltage Pulse test
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5.1. Challenges

Limitations of P2D model: Battery electrochemical model presents great promise for under-
standing the fundamental mechanisms of existing battery materials and components, while the dynam-
ics and performance of new battery materials and components could be also predicted. The P2D-based
battery modeling framework has become an ubiquitous tool to perform cell-scale simulations of Li-ion
batteries. This accelerates the wide deployments of electrochemical model-based control algorithms
for onboard battery state estimation, optimal charge/discharge control, and fault diagnostics. Despite
the widespread usage of battery electrochemical model, its challenges towards control-oriented battery
management still remain. P2D model ignores the details of electrode microstructure and describes
them as homogeneous media in which electrolyte and solid materials coexist at each point. This as-
sumption is invalid when it is necessary to capture local microscopic effects, especially the interaction
between microstructure, degradation, and heat. Thus, macroscopic P2D model cannot fully depict the
cell dynamics at extreme operating conditions, such as low SOCs and low temperatures. Furthermore,
P2D model employs Fick’s law to determine the lithium diffusion in active materials. For phase-change
materials, such as LFP, the P2D model fails to provide accurate predictions on intra-particle diffusions.
Fast charging remains the bottleneck technique to increase the willingness of consumers to purchase
EVs. The physical model-based optimal charge protocol is promising to accelerate charging speed
and alleviate cell degradation [125]. However, most of the published works on battery electrochemical
modeling were validated to achieve accurate predictions with constant discharge scenarios [93]. The
evaluation of model performance with charging condition, especially at high C-rates is rarely-seen and
worth exploring.

The incapability of model-order reduction techniques: The rigorous P2D model should be
properly simplified and tailored for control-oriented applications. SPM based algorithms are among
the most practical applications [207]. In general, ROMs are linearized around preset equilibrium
points. For example, the Bulter-Volmer equation was linearized around a set-point that includes
zero reaction flux (i.e.,j0 = 0) (16). However, as the input current and reaction flux increase, ROM
derived from j0 = 0 would become no longer accurate. In this context, model performance far from
equilibrium conditions need further investigation. Prior knowledge of battery characteristics, including
battery chemistry, rate capability, and parameter sets of electrochemical models, is necessary to develop
ROMs. Each model order reduction technique has its strengths and weaknesses. It is an ultimate
goal of control-oriented model simplification to reduce the computational burden while maintaining
the predictability of integrated model. Unfortunately, no such a simplified model could meet all
requirements to our best knowledge. Alleviating the computational burden while maintaining the
comprehensive model predictability is an ultimate goal for control-oriented model simplification, where
none such simplified model could solve all current issues.

Model parameter identification bottlenecks: The parameter identification of battery electro-
chemical model lays the foundation for the development of model-based control algorithms. However,
as some parameters are difficult to be obtained through battery disassembly analysis, it becomes chal-
lenging to obtain a suitable set of parameters for battery electrochemical model. Currently, many
parameters are still difficult to be fully identified from direct current and voltage measurements [208].
On the other hand, when using computational methods to estimate the model parameters, there are
always some redundant parameters that cannot be identified directly. In this context, the lumped
parameter reformulated models that minimize the set of parameters to be estimated by normalizing
the geometric coordinates and grouping parameters that always appear together on the PDEs are
recommended [209].
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Figure 13: Future trends of control-oriented modeling.

5.2. Perspectives

The existing research rarely brings significant improvements on the aforementioned aspects. To
further improve the performance of battery control-oriented electrochemical model so as to promote
the development of next-generation BMS, the following aspects are suggested to be considered in future
research, as illustrated in Fig. 13.

Model extension and improvements: For cases of great practical interest, such as LFP active
material in Li-ion batteries, due to the interactions of multiple particles, the charge-discharge mecha-
nism inside active particles has not been fully understood. Besides, typical P2D model cannot describe
the microstructure of battery electrode, while the relevant developed microscopic model solution is still
computationally more demanding than the P2D model. In this context, a reduced-order 3D micro-
scopic model is urgently required. The ageing effects such as lithium plating are distributed within
an inhomogeneous electrode structure. Lithium electroplating would cause the growth of lithium den-
drites, which presents the risk of causing thermal runaway. This demands the development of coupled
electrochemical models allowing the combination of local temperature, concentration fluctuations, and
ageing processes. Similarly, the coupling of stress development from both the particle and electrode
levels needs to be considered. For battery pack applications, the inevitable cell inconsistencies would
lead to electrical imbalances. In this context, deriving efficient pack-level electrochemical model con-
sidering cell inconsistency becomes necessary.

Model parameterization: Model parameterization is still a bottleneck for wider applications of
battery electrochemical model in control-oriented battery management. The consistency of assump-
tions for many parameters is still unclear. For example, numerous assumptions are typically made to
parameterize a model (e.g., whether insertion materials are treated as spherical or planar for solid-state
diffusivity inferred by EIS). Identifiability issue further complicates this parameterization challenge.
In this context, more robust and efficient parameter identification methods are required [210].
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6. Conclusions

With the rapid development of battery electrochemical models, the advanced electrochemical
model-based BMS could achieve safe, efficient, and reliable control strategies for onboard Li-ion bat-
teries. As a classical type of electrochemical models, the P2D model is difficult to be adopted directly
for control-oriented applications such as cell state estimation, charging control, and fault diagnostics.
Model simplification is thus crucial for converting P2D model governed by numerous PDEs to low-
order linear models for real control applications. In this review, different P2D model-order reduction
methods are first surveyed, where their advantages and shortcomings are discussed and compared.
The survey has shown that the SPM-based protocols are the most popular approach for P2D model
simplification. After analyzing the limitations of P2D model, enhanced solutions including the multi-
particle model, multi-scale model, model with thermal and ageing elements are reviewed. Then the
corresponding reduced versions of these enhanced electrochemical models are summarized as well to
further benefit battery control-oriented management. As accurate model parameterization is also the
key to the effective operation and control of Li-ion batteries, model parameterization methods including
the direct parameter measurements and invasive parameter estimation are also summarized and com-
pared. Based on these discussions, challenges, and perspectives on the development of control-oriented
electrochemical models are finally presented.

In a nutshell, reliable control-oriented management of battery electrochemical model requires to be
implemented for online application, but many corresponding technologies are immature. None of the
electrochemical modeling solution is a one-size-fits-all strategy; instead there should be an inherent
trade-off between the model complexity and performance. This review would provide useful reference
points to support the design and operation of battery electrochemical model and parameterization,
whilst also informing the agenda of the battery and control engineering communities.
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[203] Z. Chu, R. Jobman, A. Rodŕıguez, G. L. Plett, M. S. Trimboli, X. Feng, M. Ouyang, A control-
oriented electrochemical model for lithium-ion battery. part ii: Parameter identification based
on reference electrode, Journal of Energy Storage 27 (2020). doi:10.1016/j.est.2019.101101.

[204] D. R. Baker, M. W. Verbrugge, W. Gu, Multi-species, multi-reaction model for porous interca-
lation electrodes: Part ii. model-experiment comparisons for linear-sweep voltammetry of spinel
lithium manganese oxide electrodes, Journal of The Electrochemical Society 166 (2019) A521.
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