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Abstract 
The Stochastic User Equilibrium (SUE) traffic assignment model is a well-known approach for investigating the 

behaviours of travellers on congested road networks. SUE compensates for driver/modelling uncertainty of the route 

travel costs by supposing the costs include stochastic terms. Two key challenges for SUE modelling, however, are 

capturing route correlations and dealing with unrealistic routes. Numerous correlation-based SUE models have been 

proposed, but issues remain over both internal consistency and choice set robustness. This paper develops internally 

consistent versions of correlation-based logit SUE models, and assesses their choice set robustness and computational 

feasibility for obtaining internally consistent solutions. We formulate internally consistent SUE formulations for GEV 

structure and correction term logit route choice models, where the functional forms in the correlation components are 

based upon generalised, flow-dependent congested costs, rather than e.g. length / free-flow travel time as done typically. 

The paper proves solutions exist for the SUE models developed. Numerical experiments are then conducted on the Sioux 

Falls and Winnipeg networks, where computational performance, choice set robustness, and internal consistency are 

compared. SUE solution uniqueness is explored numerically where results suggest that uniqueness conditions exist. 

 

Key Words: internal consistency, choice set robustness, stochastic user equilibrium, correlation, fixed-point 

 

1 Introduction 
The Stochastic User Equilibrium (SUE) traffic assignment model proposed by Daganzo & Sheffi (1977) is a well-known 

approach for investigating the behaviours of travellers on congested road networks. SUE relaxes the perfect information 

assumption of the Deterministic User Equilibrium model by supposing that route choice is based on costs that include 

stochastic terms. This accounts for the differing perceptions travellers have of the attractiveness of routes. A specific 

challenge when developing a route choice model for SUE is capturing correlations between overlapping routes. There is 

a trade-off: accurately capturing route correlation in a behaviourally realistic way requires a more complex route choice 

model, but this results in computational challenges for solving for SUE (e.g. long computation times). Theoretically 

undesirable trade-offs are thus often made to improve computational performance, but issues with internal consistency 

and choice set robustness arise. This paper explores and addresses both internal consistency and choice set robustness for 

correlation-based SUE models. 

Different stochastic route cost terms proposed in the literature give rise to different types of correlation-based route 

choice models that have been applied to SUE. The current study focuses on two of such types: GEV structure models 

(e.g. Cross-Nested Logit (CNL), Generalised Nested Logit (GNL), Paired Combinatorial Logit (PCL)) and correction 

term models (e.g. C-Logit (CL), Path Size Logit (PSL), Path Size Weibit (PSW), Path Size Hybrid (PSH)). For detailed 

reviews of correlation-based route choice models see Prashker & Bekhor (2004) and Duncan et al (2020,2021). SUE and 

equivalent Mathematical Programming (MP) formulations as well as solution algorithms for GEV structure and 

correction term models can be found in the following. Equivalent MP formulations for CNL, GNL, and PCL are given by 

Bekhor & Prashker (1999,2001). Bekhor & Prashker (2001), Chen et al (2003) and Bekhor et al (2008a) provide path-

based partial linearization algorithms for solving GNL SUE, PCL SUE, and CNL SUE, respectively. Zhou et al (2012) 

give equivalent MP and variational inequality formulations for Length-based CL SUE (LCL SUE) and Congestion-based 

CL SUE (CCL SUE), where length and congestion based refers to whether the correction term is computed using length 
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or congestion-dependent travel cost. Chen et al (2012a), Kitthamkesorn & Chen (2013), and Xu et al (2015) give 

equivalent MP formulations for PSL SUE, PSW SUE, and PSH SUE, respectively. Chen et al (2012a) present a path-

based partial linearization algorithm for solving LCL SUE and PSL SUE. Zhou et al (2012) present a path-based 

Gradient Projection algorithm for solving LCL SUE and CCL SUE, and Xu et al (2012) and Chen et al (2013) assess the 

computational trade-off for different step-size strategies. Kitthamkesorn & Chen (2013) develop a path-based partial 

linearization algorithm for solving PSW SUE, and Kitthamkesorn & Chen (2014) propose a link-based algorithm. 

Although GEV structure models have closed-form probability expressions, due to their multi-level tree structure the 

choice probabilities and in particular MP formulations are complex to compute, where the computational burden 

escalates significantly as the scale of network / choice set sizes increase. Correction term models on-the-other-hand have 

simple closed-form expressions, meaning the route choice probabilities and MP formulations are generally easy and 

quick to compute; more complex models can capture correlations more accurately, though. Theoretically undesirable 

trade-offs are often made for GEV structure and correction term models, however, to improve computational 

performance of applicable algorithms. There are two common types of such trade-offs. 

The first trade-off is between desirable behavioural features for the SUE model and the ability to solve it more 

efficiently. An SUE model is internally consistent if the same definition of generalised cost is used in all components of 

the specification. This is often overlooked in the SUE formulations of GEV structure and correction term models so that 

solution methods are simpler/quicker to implement. In SUE application where the travel costs within the deterministic 

utilities are flow-dependent (congested), for consistency, the route similarity features (PCL, CL) or link-route 

prominence features (CNL, GNL, PSL, PSW, PSH) in the correlation components should also be based upon the 

congested cost. Most studies use topological length or uncongested cost (free-flow travel time) for these features, 

however this may be inaccurate behaviourally since a short route can have a large congested travel cost, and vice versa.  

The second trade-off is between the sizes of the choice sets generated (pre or column generated) and the ability to 

solve efficiently. Typical road networks have many very costly routes that should be considered unrealistic and excluded 

from route choice. In large-scale case studies, choice sets are typically generated to be large enough that one can be fairly 

certain the realistic alternatives are present, regardless of how many unrealistic routes are generated. However, for many 

GEV structure and correction term SUE models, the computational burden of solution algorithms increases dramatically 

as the number of routes increases, which limits how large the choice sets can be generated. Furthermore, many of the 

models have poor choice set robustness, and results are thus negatively influenced by the presence of unrealistic routes as 

well as highly sensitive to the choice set generation method adopted (Bovy et al, 2008; Bliemer & Bovy, 2008; 

Ramming, 2002; Ben-Akiva & Bierlaire, 1999; Duncan et al, 2020,2021). The choice set robustness of a model is a 

measure of how sensitive the route choice probability / route flow results are to the set of routes generated, i.e. a model 

that has poor choice set robustness may be affected significantly by small changes to the choice set, such as the 

unintentional inclusion of unrealistic routes. 

Motivated by the above challenges, we set out to develop a correlation-based SUE model that addresses both 

internal consistency and choice set robustness, and is computationally feasible in large-scale network applications. Zhou 

et al (2012), Xu et al (2012), and Chen et al (2013) explore an internally consistent SUE formulation for the CL model 

(CCL SUE), where the CCL commonality factors capture the similarity between routes according to their shared flow-

dependent congested cost. However, internally consistent SUE formulations are yet to be explored for other GEV 

structure and correction term models. A novel contribution of this paper is thus addressing this by formulating, proving 

solution exist of, and solving internally consistent SUE formulations for the CNL, GNL, PCL, and PSL models, where 

the route similarity or link-route prominence features are based upon generalised, flow-dependent congested cost. We 

assess the choice set robustness for these models (including CCL SUE), and evaluate their computational performances, 

including for different sizes of choice sets and scale of network. 

None of these models, however, have explicit mechanisms for dealing with unrealistic routes within the adopted 

choice sets, and thus there are questions over how well these models perform in terms of choice set robustness. For the 

PSL model, a mechanism has been proposed for dealing with unrealistic routes: to weight the contributions of routes to 

path size terms, with path size contribution factors. Generalised Path Size Logit (GPSL) (Ramming, 2002) proposes a 

path size contribution factor based upon travel cost ratios, while Adaptive Path Size Logit (APSL) (Duncan et al, 2020) 

proposes a factor based upon choice probability ratios – ensuring internal consistency within the specification of the 

choice model. GPSL and APSL are yet to be applied to SUE, however, and we therefore also formulate, prove solutions 

exist to, and solve SUE formulations of GPSL and APSL (that are internally consistent), and compare choice set 

robustness / computational performance. Note that since the APSL choice probabilities are themselves a solution to a 

fixed-point problem, then embedding APSL within a SUE framework (an outer-loop fixed-point problem) and solving 

APSL SUE requires special attention. In the paper we formulate an alternative APSL SUE model and develop solution 

techniques to improve computational performance.  

The structure of the paper is as follows. In Section 2 we introduce congested network notation. In Section 3 we 

detail the internally consistent SUE formulations for the correlation-based route choice models, and prove solution 

existence. In Section 4 we conduct numerical experiments to assess computational performance and choice set 

robustness, examine internal consistency, and investigate solution uniqueness. In Section 5 we conclude the paper.  

Table 1 lists the abbreviations used throughout the remainder of the paper. 
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Abbreviation Definition 

MNL Multinomial Logit 

PSL Path Size Logit 

GPSL Generalised Path Size Logit 

APSL Adaptive Path Size Logit 

APSL′ Adaptive Path Size Logit alternative formulation 

CL C-Logit 

CNL Cross-Nested Logit 

GNL Generalised Nested Logit 

PCL Paired Combinatorial Logit 

SUE Stochastic User Equilibrium 

FAA Flow-Averaging Algorithm 

FPIM Fixed-Point Iteration Method 

RMSE Root Mean Squared Error 

NRMSE Normalised Root Mean Squared Error 

MP Mathematical Programming 

MSWA Method of Successive Weighted Averages 

Table 1. Abbreviations. 

 

2 Congested Network Notation 
A road network consists of link set 𝐴 and 𝑚 = 1,… ,𝑀 OD movements. 𝑅𝑚 is the choice set of all simple routes (no 

cycles) for OD movement 𝑚 of size 𝑁𝑚 = |𝑅𝑚|, where 𝑁 = ∑ 𝑁𝑚𝑀𝑚=1  is the total number of routes. 𝐴𝑚,𝑖 ⊆ 𝐴 is the set 

of links belonging to route 𝑖 ∈ 𝑅𝑚, and 𝛿𝑎,𝑚,𝑖 = {1     𝑖𝑓 𝑎 ∈ 𝐴𝑚,𝑖0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .  
The travel demand for OD movement 𝑚 is 𝑞𝑚 ≥ 0, and 𝑸𝑚 is the 𝑁𝑚 × 𝑁𝑚 diagonal matrix of the travel demand 

for OD movement 𝑚 (i.e. with 𝑞𝑚 on each diagonal element). The flow on route 𝑖 ∈ 𝑅𝑚 is 𝑓𝑚,𝑖, and 𝒇𝑚 is the 𝑁𝑚-length 

vector of route flows for OD movement 𝑚. 𝒇 is the 𝑁-length vector of all OD movement route flow vectors such that 𝒇 = (𝒇1, … , 𝒇𝑀), where 𝑓𝑚,𝑖 refers to element number 𝑖 + ∑ 𝑁𝑘𝑚−1𝑘=1  in 𝒇. 𝐹 denotes the set of all demand-feasible non-

negative universal route flow vector solutions: 

𝐹 = {𝒇 ∈ ℝ+𝑁: ∑ 𝑓𝑚,𝑖𝑖∈𝑅𝑚 = 𝑞𝑚, 𝑚 = 1,… ,𝑀}. 
Furthermore, 𝑥𝑎 denotes the flow on link 𝑎 ∈ 𝐴, and 𝒙 = (𝑥1, 𝑥2, … , 𝑥|𝐴|) is the vector of all link flows. 𝑋 denotes the set 

of all demand-feasible non-negative link flow vectors: 

𝑋 = {𝒙 ∈ ℝ+|𝐴|: ∑ ∑ 𝛿𝑎,𝑚,𝑖𝑓𝑚,𝑖𝑖∈𝑅𝑚
𝑀

𝑚=1 = 𝑥𝑎 , ∀𝑎 ∈ 𝐴, 𝒇 ∈ 𝐹}. 
For link 𝑎 ∈ 𝐴 experiencing a flow of 𝑥𝑎, denote the generalised travel cost for that link as 𝑡𝑎(𝑥𝑎), where 𝒕(𝒙) is the 

vector of all generalised link travel cost functions. In vector/matrix notation, let 𝒙 and 𝒇 be column vectors, and define 𝜟 

as the |𝐴| × 𝑁-dimensional link-route incidence matrix. Then the relationship between link and route flows may be 

written as 𝒙 = 𝜟𝒇. Supposing that the travel cost for a route can be attained through summing up the total cost of its 

links, then the generalised travel cost for route 𝑖 ∈ 𝑅𝑚, 𝑐𝑚,𝑖, can be computed as follows: 𝑐𝑚,𝑖(𝒕(𝜟𝒇)) = ∑ 𝑡𝑎(𝜟𝒇)𝑎∈𝐴𝑚,𝑖 , 

where 𝒄𝑚(𝒕(𝜟𝒇)) is the vector of generalised travel cost functions for OD movement 𝑚. 

Let the route choice probability for route 𝑖 ∈ 𝑅𝑚 be 𝑃𝑚,𝑖, where 𝑷𝑚 = (𝑃𝑚,1, 𝑃𝑚,2, … , 𝑃𝑚,𝑁𝑚) is the vector of route 

choice probabilities for OD movement 𝑚, and 𝐷𝑚 is the domain of possible route choice probability vectors for OD 

movement 𝑚, 𝑚 = 1,… ,𝑀. 

 

3 Internally Consistent SUE Formulations for Correlation-Based Logit Route Choice 

Models 
In this section, we detail the congestion-based C-Logit SUE model proposed by Zhou et al (2012), and develop the new 

internally consistent SUE formulations for the other correction term and GEV structure correlation-based logit route 

choice models. We then prove the existence of solutions. 
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3.1 Correction Term Models 

Correction term models capture correlations between overlapping routes by including heuristic correction terms within 

the deterministic utilities. The deterministic utility of route 𝑖 ∈ 𝑅𝑚 is thus 𝑉𝑚,𝑖 = −𝜃𝑐𝑚,𝑖(𝒕) + 𝜅𝑚,𝑖, where 𝜃 > 0 is the 

Logit scaling parameter and 𝜅𝑚,𝑖 ≤ 0 is the correction term for route 𝑖 ∈ 𝑅𝑚. The choice probability for route 𝑖 ∈ 𝑅𝑚 is 

then: 𝑃𝑚,𝑖(𝒄𝑚(𝒕), 𝜿𝑚) = 𝑒−𝜃𝑐𝑚,𝑖(𝒕)+𝜅𝑚,𝑖∑ 𝑒−𝜃𝑐𝑚,𝑗(𝒕)+𝜅𝑚,𝑗𝑗∈𝑅𝑚 . 
 

3.1.1 Regular Path Size Logit SUE Models 

Regular Path Size Logit models propose that the correction terms adopt the form 𝜅𝑚,𝑖 = 𝛽 ln(𝛾𝑚,𝑖), where 𝛽 ≥ 0 is the 

path size scaling parameter, and 𝛾𝑚,𝑖 ∈ (0,1] is the path size term for route 𝑖 ∈ 𝑅𝑚. A distinct route with no shared links 

has a path size term equal to 1, resulting in no penalisation. Less distinct routes have smaller path size terms and incur 

greater penalisation. The path size terms are often based upon link lengths and thus 𝛾𝑚,𝑖 (in those cases) is not dependent 

upon the link/route generalised travel costs. However, this leads to internal inconsistency (as we discuss in more detail 

below) and in this study we base the path size terms upon on generalised link travel costs (i.e. 𝛾𝑚,𝑖 = 𝛾𝑚,𝑖(𝒕)), which in 

SUE application are congested, flow-dependent costs. The choice probability for route 𝑖 ∈ 𝑅𝑚 is thus: 

 𝑃𝑚,𝑖(𝒄𝑚(𝒕), 𝜸𝑚(𝒕)) = 𝑒−𝜃𝑐𝑚,𝑖(𝒕)+𝛽 ln(𝛾𝑚,𝑖(𝒕))∑ 𝑒−𝜃𝑐𝑚,𝑗(𝒕)+𝛽 ln(𝛾𝑚,𝑗(𝒕))𝑗∈𝑅𝑚 = (𝛾𝑚,𝑖(𝒕))𝛽 𝑒−𝜃𝑐𝑚,𝑖(𝒕)∑ (𝛾𝑚,𝑗(𝒕))𝛽 𝑒−𝜃𝑐𝑚,𝑗(𝒕)𝑗∈𝑅𝑚 . (1) 

The general form for the path size term of route 𝑖 ∈ 𝑅𝑚 is as follows: 

 
𝛾𝑚,𝑖(𝒕) =∑ 𝑡𝑎𝑐𝑚,𝑖(𝒕) 1∑ (𝑊𝑚,𝑘(𝒕)𝑊𝑚,𝑖(𝒕)) 𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚𝑎∈𝐴𝑚,𝑖 , 

(2) 

where 𝑊𝑚,𝑘(𝒕) > 0 is the path size contribution weighting of route 𝑖 ∈ 𝑅𝑚 to path size terms (different for each model), 

so that the contribution of route 𝑘 ∈ 𝑅𝑚 to the path size term of route 𝑖 ∈ 𝑅𝑚 (the path size contribution factor) is 
𝑊𝑚,𝑘(𝒕)𝑊𝑚,𝑖(𝒕) . 

To dissect the path size term: each link 𝑎 in route 𝑖 ∈ 𝑅𝑚 is penalised (in terms of decreasing the path size term and 

hence the utility of the route) according to the number of routes in the choice set that also use that link (∑ 𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚 ), 
where each contribution is weighted (i.e. ∑ (𝑊𝑚,𝑘(𝒕)𝑊𝑚,𝑖(𝒕)) 𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚 ), and the significance of the penalisation is also 

weighted according to how prominent link 𝑎 is in route 𝑖 ∈ 𝑅𝑚, i.e. the cost of route 𝑎 in relation to the total cost of route 𝑖 ∈ 𝑅𝑚 ( 𝑡𝑎𝑐𝑚,𝑖(𝒕)). 

The Path Size Logit (PSL) model (Ben-Akiva & Bierlaire, 1998) proposes that 𝑊𝑚,𝑘(𝒕) = 1 so that all routes 

contribute equally to path size terms. This is problematic with the mis-generation of realistic route choice sets, however, 

as the correction terms and thus the choice probabilities of realistic routes are affected by link sharing with unrealistic 

routes. To combat this, Ramming (2002) proposed the Generalised Path Size Logit (GPSL) model where 𝑊𝑚,𝑘(𝒕) =(𝑐𝑚,𝑘(𝒕))−𝜆, 𝜆 ≥ 0, and routes contribute according to travel cost ratios, so that routes with large travel costs have a 

diminished impact upon the correction terms of routes with small travel costs, and consequently the choice probabilities 

of those routes.  

Most studies of PSL SUE, or of SUE models with PSL path size terms, suppose that the link-route prominence 

feature is represented as the ratio of link-route length, i.e. 
𝑡𝑎𝑐𝑚,𝑖(𝒕) = 𝑙𝑎𝐿𝑚,𝑖, where 𝑙𝑎 and 𝐿𝑚,𝑖 are the lengths of link 𝑎 ∈ 𝐴 

and route 𝑖 ∈ 𝑅𝑚, respectively. However, this may be inaccurate in how travellers perceive the prominence of links in a 

route: a short link may be highly congested and have a greater travel time than a long link that is uncongested, and hence 

the timely, short link may be perceived as more prominent in the route than the long, quick link. A similar argument can 

be made for using other uncongested costs, e.g. free-flow travel time. Thus, for internal consistency, the path size term 

defined in (2) above considers generalised travel cost for the link-route prominence feature. 

In the context of SUE, the generalised travel costs include congested cost and are thus flow-dependent. Adopting 

generalised, flow-dependent congested costs for the link-route prominence features, SUE for a Path Size Logit model can 

be formulated as follows:  
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Path Size Logit model SUE: A universal route flow vector 𝒇∗ ∈ 𝐹 is an SUE solution for a Path Size Logit model iff the 

route flow vector for OD movement 𝑚, 𝒇𝑚∗ , is a solution to the fixed-point problem 

 𝒇𝑚 = 𝑸𝑚𝑷𝑚 (𝒄𝑚(𝒕(𝜟𝒇)), 𝜸𝑚 (𝒕(𝜟𝒇),𝑾𝑚(𝒕(𝜟𝒇)))) , 𝑚 = 1,… ,𝑀, (3) 

where 𝑃𝑚,𝑖 and 𝛾𝑚,𝑖 are as in (1) and (2) for route 𝑖 ∈ 𝑅𝑚, respectively, given the universal route flow vector 𝒇. 𝑸𝑚 is 

travel demand diagonal matrix for OD movement 𝑚 so that 𝒇𝑚 = 𝑸𝑚𝑷𝑚 results in 𝑓𝑚,𝑖 = 𝑞𝑚𝑃𝑚,𝑖, ∀𝑖 ∈ 𝑅𝑚. 

 

3.1.2 Adaptive Path Size Logit SUE 

As shown in Duncan et al (2020), the APSL model provides an internally consistent approach to reducing the negative 

effects unrealistic routes have on the correction terms (and thus choice probabilities) of realistic routes. To do this, path 

size contributions are weighted according to ratios of choice probability, and APSL is consequently naturally expressed 

as a fixed-point problem. APSL is thus not a ‘regular’ Path Size Logit model in that it does not assume the form in (1) 

and (2). 

Since at SUE the route flow proportions and route choice probabilities are equal, APSL SUE can be defined in two 

different ways. These two definitions are equal at equilibrium, but not equal for any other route flow vector. We define 

and discuss each definition in turn below. 

 

3.1.2.1 Definition 1: APSL SUE 

Formulation of the APSL model was complicated by the desire to establish existence and uniqueness of solutions. To 

circumvent issues with the standard APSL formulation, a modified version was proposed where solutions are guaranteed 

to exist and are unique under determinable conditions. Moreover, the standard formulation can be approximated to 

arbitrary precision. We thus provide here the definition of and establish SUE conditions for the final proposed definition 

of APSL, see Duncan et al (2020) for more details on its derivation. 

The APSL route choice probabilities for OD movement 𝑚, 𝑷𝑚∗ , (for a choice set of size 𝑁𝑚) are a solution to the 

fixed-point problem 𝑷𝑚 = 𝑮𝑚 (𝒈𝑚(𝒄𝑚(𝒕), 𝜸𝑚𝐴𝑃𝑆(𝒕, 𝑷𝑚))), where: 

 𝐺𝑚,𝑖 (𝑔𝑚,𝑖(𝒄𝑚(𝒕), 𝜸𝑚𝐴𝑃𝑆(𝒕, 𝑷𝑚))) = 𝜏𝑚 + (1 − 𝑁𝑚𝜏𝑚) ∙ 𝑔𝑚,𝑖(𝒄𝑚(𝒕), 𝜸𝑚𝐴𝑃𝑆(𝒕, 𝑷𝑚)), (4) 

 𝑔𝑚,𝑖(𝒄𝑚(𝒕), 𝜸𝑚𝐴𝑃𝑆(𝒕, 𝑷𝑚)) = (𝛾𝑚,𝑖𝐴𝑃𝑆(𝒕, 𝑷𝑚))𝛽 𝑒−𝜃𝑐𝑚,𝑖(𝒕)∑ (𝛾𝑚,𝑗𝐴𝑃𝑆(𝒕, 𝑷𝑚))𝛽 𝑒−𝜃𝑐𝑚,𝑗(𝒕)𝑗∈𝑅𝑚 , (5) 

 
𝛾𝑚,𝑖𝐴𝑃𝑆(𝒕, 𝑷𝑚) =∑ 𝑡𝑎𝑐𝑚,𝑖(𝒕) 𝑃𝑚,𝑖∑ 𝑃𝑚,𝑘𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚𝑎∈𝐴𝑚,𝑖 =∑ 𝑡𝑎𝑐𝑚,𝑖(𝒕) 1∑ (𝑃𝑚,𝑘𝑃𝑚,𝑖 ) 𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚𝑎∈𝐴𝑚,𝑖 , 

(6) 

∀𝑖 ∈ 𝑅𝑚, ∀𝑷𝑚 ∈ 𝐷𝑚 (𝜏𝑚), 𝐷𝑚(𝜏𝑚) = {𝑷𝑚 ∈ ℝ>0𝑁𝑚: 𝜏𝑚 ≤ 𝑃𝑚,𝑖 ≤ (1 − (𝑁𝑚 − 1)𝜏𝑚), ∀𝑖 ∈ 𝑅𝑚,∑ 𝑃𝑚,𝑗𝑁𝑚𝑗=1 = 1}. 𝜃 > 0 is the Logit scaling parameter, 𝛽 ≥ 0 is the path size scaling parameter, and 0 < 𝜏𝑚 ≤ 1𝑁𝑚, 𝑚 = 1,… ,𝑀, are the 

perturbation parameters. 𝛾𝑚,𝑖𝐴𝑃𝑆 is the APSL path size term function, 𝑔𝑚,𝑖  is the choice probability function, and 𝐺𝑚,𝑖 is the 

probability adjustment function.  

As shown in (6), for a choice probability solution 𝑷𝑚∗ , the contribution of route 𝑘 to the path size term of route 𝑖 is 

weighted according to the ratio of choice probabilities between the routes (𝑃𝑚,𝑘∗𝑃𝑚,𝑖∗ ), and hence unrealistic route alternatives 

with very low choice probabilities have a diminished contribution to the path size terms of realistic routes with relatively 

large choice probabilities. The APSL model is thus internally consistent as the probability relation and path size terms 

both define a route as unrealistic if it has a relatively unattractive combination of travel cost and distinctiveness. 

Moreover, unlike GPSL, an additional parameter to scale the path size contributions is not required as this is done 

implicitly and consistently through the scaling of the probabilities with 𝜃 and 𝛽. This has practical and behavioural 

estimation benefits compared to GPSL (Duncan et al, 2020). 

The APSL model is not closed-form since the choice probabilities for each OD movement are the solution to a 

fixed-point problem. The 𝜏𝑚 parameters are not model parameters that require estimating, they are simply a 

mathematical construct that ensure solutions to the APSL model exist and can be unique; specifically, they ensure that 

the probability domain 𝐷𝑚(𝜏𝑚) for the fixed-point function 𝑮𝑚 is closed and bounded, while avoiding issues occurring 

from zero choice probabilities. Duncan et al (2020) recommend that only very small values for 𝜏𝑚 are used so that the 
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fixed-point solution obtained is negligibly different to the fixed-point solution if 𝜏𝑚 = 0 (where one would exist). We 

thus set 𝜏𝑚 = 10−16, 𝑚 = 1,… ,𝑀, throughout this paper. 

APSL SUE – where for internal consistency the link-route prominence feature considers flow-dependent, congested 

cost – can be formulated as follows:  

APSL SUE: A universal route flow vector 𝒇∗ ∈ 𝐹(𝝉) is an APSL SUE solution iff the route flow vector for OD 

movement 𝑚, 𝒇𝑚∗ , is a solution to the fixed-point problem 

 𝒇𝑚 = 𝑸𝑚𝑷𝑚∗ (𝒕(𝜟𝒇)), 𝑚 = 1,… ,𝑀, (7) 

where 𝑷𝑚∗  is a route choice probability solution for OD movement 𝑚 in 𝒀𝑚 to the fixed-point problem 

 𝒀𝑚 = 𝑮𝑚 (𝒈𝑚 (𝒄𝑚(𝒕(𝜟𝒇)), 𝜸𝑚𝐴𝑃𝑆(𝒕(𝜟𝒇), 𝒀𝑚))), (8) 

given the universal route flow vector 𝒇, where 𝐺𝑚,𝑖, 𝑔𝑚,𝑖 , and 𝛾𝑚,𝑖𝐴𝑃𝑆 are as in (4), (5), and (6) for route 𝑖 ∈ 𝑅𝑚, 

respectively, and 

𝐹(𝝉) = {𝒇 ∈ ℝ>0𝑁 : 𝜏𝑚 ≤ 𝑓𝑚,𝑖𝑞𝑚 ≤ (1 − (𝑁𝑚 − 1)𝜏𝑚), ∀𝑖 ∈ 𝑅𝑚, ∑ 𝑓𝑚,𝑖𝑖∈𝑅𝑚 = 𝑞𝑚 , 𝑚 = 1,… ,𝑀}. 
APSL SUE is derived directly by utilising APSL as the underlying route choice model and applying flow-dependent link 

travel costs. For a given route flow vector and hence setting of the link costs, the APSL fixed-point system must be re-

solved, so that the path size contribution factors are consistent with the relative attractiveness of the routes. This ensures 

that the choice model is internally consistent for all route flow vectors. 

The APSL model restricts the domain for the route choice probabilities so that the probabilities for OD movement 𝑚 

must belong to the domain 𝐷𝑚(𝜏𝑚), where 𝑃𝑚,𝑖 ≥ 𝜏𝑚, ∀𝑖 ∈ 𝑅𝑚. Consequently, the set of all demand-feasible universal 

route flow vector solutions for the APSL SUE model, 𝐹(𝝉), is also restricted, where 𝑓𝑚,𝑖 ≥ 𝜏𝑚𝑞𝑚, ∀𝑖 ∈ 𝑅𝑚, 𝑚 =1,… ,𝑀. 

 

3.1.2.2 Definition 2: APSL′ SUE 

APSL SUE Definition 2 (APSL′ SUE) is derived indirectly by utilising a new underlying route choice model, that is 

equivalent to APSL at SUE, but only at SUE. By the definition of SUE, the route flow proportions and route choice 

probabilities equate at equilibrium. Therefore, APSL′ SUE supposes that the path size contribution factors consider route 

flow proportion ratios, instead of choice probability. The underlying route choice model, APSL′, proposes that the choice 

probability for route 𝑖 ∈ 𝑅𝑚 is: 

 𝑃𝑚,𝑖 (𝑔𝑚,𝑖 (𝒄𝑚(𝒕), 𝜸𝑚𝐴𝑃𝑆′(𝒕, 𝒇𝑚))) = 𝜏𝑚 + (1 − 𝑁𝑚𝜏𝑚) ∙ 𝑔𝑚,𝑖 (𝒄𝑚(𝒕), 𝜸𝑚𝐴𝑃𝑆′(𝒕, 𝒇𝑚)), (9) 

 𝑔𝑚,𝑖 (𝒄𝑚(𝒕), 𝜸𝑚𝐴𝑃𝑆′(𝒕, 𝒇𝑚)) = (𝛾𝑚,𝑖𝐴𝑃𝑆′(𝒕, 𝒇𝑚))𝛽 𝑒−𝜃𝑐𝑚,𝑖(𝒕)∑ (𝛾𝑚,𝑗𝐴𝑃𝑆′(𝒕, 𝒇𝑚))𝛽 𝑒−𝜃𝑐𝑚,𝑗(𝒕)𝑗∈𝑅𝑚 , (10) 

 𝛾𝑚,𝑖𝐴𝑃𝑆′(𝒕, 𝒇𝑚) =∑ 𝑡𝑎𝑐𝑚,𝑖(𝒕) 𝑓𝑚,𝑖/𝑞𝑚∑ (𝑓𝑚,𝑘/𝑞𝑚)𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚𝑎∈𝐴𝑚,𝑖 =∑ 𝑡𝑎𝑐𝑚,𝑖(𝒕) 𝑓𝑚,𝑖∑ 𝑓𝑚,𝑘𝛿𝑎,𝑚,𝑘𝑘∈𝑅𝑚𝑎∈𝐴𝑚,𝑖 , (11) 

∀𝒇𝑚 ∈ 𝐹𝑚>0, 𝐹𝑚>0 = {𝒇𝑚 ∈ ℝ>0𝑁𝑚 : ∑ 𝑓𝑚,𝑖𝑖∈𝑅𝑚 = 𝑞𝑚}. 
The model parameters are again 𝜃 > 0, 𝛽 ≥ 0, and 0 < 𝜏𝑚 ≤ 1𝑁𝑚, 𝑚 = 1,… ,𝑀. As shown in (11), the contribution of 

route 𝑘 ∈ 𝑅𝑚 to the path size term of route 𝑖 ∈ 𝑅𝑚 is weighted according to the ratio of flow between the routes (𝑓𝑚,𝑘𝑓𝑚,𝑖), 

and hence unrealistic route alternatives with very low use/flow have a diminished contribution to the path size terms of 

realistic routes with relatively high use/flow. 

The APSL′ choice model is closed-form and hence choice probability solutions for a given route flow vector are 

guaranteed to exist and be unique, assuming every route has a non-zero flow. Stipulating that the flows for OD 

movement 𝑚 𝒇𝑚 belong to the set 𝐹𝑚>0 ensures that: a) no routes have zero flow; b) the route flows are demand-feasible; 

and, c) the path size contribution factors consider ratios of route flow proportion. The APSL′ choice model need not only 



 

7 

 

be considered in an SUE application; regardless of whether the link costs are flow-dependent or fixed, if information is 

available on the route flow proportions then the path size contribution factors can utilise this for route choice prediction. 

Adopting generalised, flow-dependent congested costs for the link-route prominence features, APSL′ SUE is 

formulated as follows: 

APSL′ SUE: A universal route flow vector 𝒇∗ ∈ 𝐹(𝝉) is an APSL SUE solution iff the route flow vector for OD 

movement 𝑚, 𝒇𝑚∗ , is a solution to the fixed-point problem  

 𝒇𝑚 = 𝑸𝑚𝑷𝑚 (𝒈𝑚 (𝒄𝑚(𝒕(𝜟𝒇)), 𝜸𝑚𝐴𝑃𝑆′(𝒕(𝜟𝒇), 𝒇𝑚))) , 𝑚 = 1,… ,𝑀, (12) 

where 𝑃𝑚,𝑖, 𝑔𝑚,𝑖, and 𝛾𝑚,𝑖𝐴𝑃𝑆′  are as in (9), (10), and (11) for route 𝑖 ∈ 𝑅𝑚, respectively, given the universal route flow 

vector 𝒇, and  

𝐹(𝝉) = {𝒇 ∈ ℝ>0𝑁 : 𝜏𝑚 ≤ 𝑓𝑚,𝑖𝑞𝑚 ≤ (1 − (𝑁𝑚 − 1)𝜏𝑚), ∀𝑖 ∈ 𝑅𝑚, ∑ 𝑓𝑚,𝑖𝑖∈𝑅𝑚 = 𝑞𝑚 , 𝑚 = 1,… ,𝑀}. 
The APSL′ choice model is only internally consistent for route flow vectors at SUE, since for all other route flow 

vectors, the relative attractiveness of routes as defined in the path size contribution factors does not match the relative 

attractiveness in the probability relation. 

 

3.1.3 C-Logit SUE 

C-Logit (CL) proposes that the correction terms adopt the form 𝜅𝑚,𝑖 = ln(𝜎𝑚,𝑖), where 𝜐 ≤ 0 is the commonality scaling 

parameter, and 𝜎𝑚,𝑖 ∈ [1,∞) is the commonality factor for route 𝑖 ∈ 𝑅𝑚. The choice probability for route 𝑖 ∈ 𝑅𝑚 is thus: 

 𝑃𝑚,𝑖(𝒄𝑚(𝒕), 𝝈𝑚(𝒕)) = 𝑒−𝜃𝑐𝑚,𝑖(𝒕)+𝜐 ln(𝜎𝑚,𝑖(𝒕))∑ 𝑒−𝜃𝑐𝑚,𝑗(𝒕)+𝜐 ln(𝜎𝑚,𝑗(𝒕))𝑗∈𝑅𝑚 = (𝜎𝑚,𝑖(𝒕))𝜐 𝑒−𝜃𝑐𝑚,𝑖(𝒕)∑ (𝜎𝑚,𝑗(𝒕))𝜐 𝑒−𝜃𝑐𝑚,𝑗(𝒕)𝑗∈𝑅𝑚 . (13) 

Routes not similar in any way to any other route have commonality factors equal to 1 (similar only to itself) and no 

penalisation is incurred. Routes that are more similar to other routes (in terms of shared congested travel cost) have 

greater commonality factors and incur greater penalisation. Cascetta et al (1996) proposed several functional forms for 

the commonality factor, however the congestion-based functional form adopted by Zhou et al (2012), and thus adopted in 

this paper, is as follows for route 𝑖 ∈ 𝑅𝑚: 

 𝜎𝑚,𝑖(𝒕) = ∑ ∑ 𝑡𝑎𝛿𝑎,𝑚,𝑖𝛿𝑎,𝑚,𝑘𝑎∈𝐴𝑚,𝑖√𝑐𝑚,𝑖(𝒕) ∙ √𝑐𝑚,𝑘(𝒕)𝑘∈𝑅𝑚 , (14) 

where ∑ 𝑡𝑎𝛿𝑎,𝑚,𝑖𝛿𝑎,𝑚,𝑘𝑎∈𝐴𝑚,𝑖  is the shared congested travel cost between routes 𝑖 ∈ 𝑅𝑚 and 𝑘 ∈ 𝑅𝑚. 

CL SUE can thus be formulated as follows: 

 

CL SUE: A universal route flow vector 𝒇∗ ∈ 𝐹 is a CL SUE solution iff the route flow vector for OD movement 𝑚, 𝒇𝑚∗ , 

is a solution to the fixed-point problem  

 𝒇𝑚 = 𝑸𝑚𝑷𝑚 (𝒄𝑚(𝒕(𝜟𝒇)), 𝝈𝑚(𝒕(𝜟𝒇))) , 𝑚 = 1,… ,𝑀, (15) 

where 𝑃𝑚,𝑖 and 𝜎𝑚,𝑖 are as in (13) and (14) for route 𝑖 ∈ 𝑅𝑚, respectively, given the universal route flow vector 𝒇. 

 

3.2 GEV Structure Models 

GEV structure models are those that are based on the Generalized Extreme Value (GEV) theory (McFadden, 1978), 

which use a multi-level tree structure to capture the similarity among routes through the random error component of the 

utility function. 

 

3.2.1 Cross-Nested Logit SUE 

The Cross-Nested Logit (CNL) model was adapted to the context of route choice by Prashker & Bekhor (1998) and 

Bekhor & Prashker (1999). Their adaptation uses a two-level nesting structure in which the upper level (nests) includes 

all the links in the network. The lower level consists of all the routes in the choice set 𝑅𝑚 for OD movement 𝑚, and each 

of the routes is allocated to all the link nests that that route consists of. The nest inclusion parameters 𝛼𝑎,𝑚,𝑖 represent the 

proportion of link 𝑎 used by alternative 𝑖 ∈ 𝑅𝑚. For more than a handful of routes and links, however, the number of 
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independent nest inclusion parameters becomes very large, making estimation difficult. Seeking to address this, Prashker 

& Bekhor (1998) proposed a functional form for these parameters based on the network topology. These link-route 

prominence features are represented in terms of length or free-flow travel time however, which is not internally 

consistent. Addressing this so that the nest inclusion parameters 𝛼𝑎,𝑚,𝑖(𝒕) are based upon flow-dependent congested cost, 

the choice probability for route 𝑖 ∈ 𝑅𝑚 is: 

 𝑃𝑚,𝑖(𝒕) =∑ 𝑃𝑚,(𝑎)(𝒕) ∙ 𝑃𝑚,(𝑖|𝑎)(𝒕)𝑎∈𝐴𝑚,𝑖 , (16) 

where 

 𝑃𝑚,(𝑖|𝑎)(𝒕) = (𝛼𝑎,𝑚,𝑖(𝒕) exp (−𝜃𝑐𝑚,𝑖(𝒕)))1/𝜇∑ (𝛼𝑎,𝑚,𝑗(𝒕) exp (−𝜃𝑐𝑚,𝑗(𝒕)))1/𝜇𝑗∈𝑅𝑚 , (17) 

and 

 𝑃𝑚,(𝑎)(𝒕) = (∑ (𝛼𝑎,𝑚,𝑘(𝒕) exp (−𝜃𝑐𝑚,𝑘(𝒕)))1/𝜇𝑘∈𝑅𝑚 )𝜇∑ (∑ (𝛼𝑏,𝑚,𝑘(𝒕) exp (−𝜃𝑐𝑚,𝑘(𝒕)))1/𝜇𝑘∈𝑅𝑚 )𝜇𝑏∈𝐴 , (18) 

where 𝛼𝑎,𝑚,𝑖(𝒕) = 𝑡𝑎𝑐𝑚,𝑖(𝒕) ∙ 𝛿𝑎,𝑚,𝑖, and 𝜇 ∈ (0,1] indicates the degree of nesting such that when 𝜇 = 1 CNL collapses to 

MNL.  

CNL SUE can thus be formulated as follows: 

 

CNL SUE: A universal route flow vector 𝒇∗ ∈ 𝐹 is a CNL SUE solution iff the route flow vector for OD movement 𝑚, 𝒇𝑚∗ , is a solution to the fixed-point problem  

 𝒇𝑚 = 𝑸𝑚𝑷𝑚(𝒕(𝜟𝒇)), 𝑚 = 1,… ,𝑀, (19) 

where 𝑃𝑚,𝑖 is as in (16)-(18) for route 𝑖 ∈ 𝑅𝑚, respectively, given the universal route flow vector 𝒇. 

 

3.2.2 Generalised Nested Logit SUE 

Bekhor & Prashker (2001) generalise CNL by introducing a functional form for the nesting coefficient 𝜇, to be a 

parameterised average value of the nest inclusion coefficients. With congestion-based inclusion coefficients, the 

Generalised Nested Logit (GNL) model proposes that the choice probability for route 𝑖 ∈ 𝑅𝑚 is as in (16)-(18), where the 

nesting coefficient 𝜇 for link nest 𝑎 and OD movement 𝑚 is: 𝜇𝑎,𝑚(𝒕) = (1 − ∑ 𝛼𝑎,𝑚,𝑖(𝒕)𝑖∈𝑅𝑚∑ 𝛿𝑎,𝑚,𝑖𝑖∈𝑅𝑚 )𝜆, 𝜆 ≥ 0. GNL SUE is thus 

as in (19) but with flow-dependent nesting coefficients as above. Note that routes consisting of a single link between the 

origin and destination result in the nesting coefficient 𝜇𝑎,𝑚(𝒕) for that link being equal to 0, since ∑ 𝛼𝑎,𝑚,𝑖(𝒕)𝑖∈𝑅𝑚 =∑ 𝛿𝑎,𝑚,𝑖𝑖∈𝑅𝑚 = 1. This results in the GNL model being undefined.  

 

3.2.3 Paired Combinatorial Logit SUE 

The Paired Combinatorial Logit (PCL) model was adapted to the context of route choice by Prashker & Bekhor (1998). 

Here, each pair of routes in a choice set form a nest and routes are chosen from each nest. Within each nest, 𝜎𝑚,𝑖,𝑗 is the 

similarity index between routes 𝑖 ∈ 𝑅𝑚 and 𝑗 ∈ 𝑅𝑚. Like CNL/GNL, individually estimating each of these parameters for 

each nest becomes infeasible for more than a handful of routes. Instead, Prashker & Bekhor (1998) propose a functional 

form for these similarity indexes, proposing that the similarity between routes is measured according to the C-Logit 

commonality factor. These commonality factors are formulated in terms of shared length / uncongested travel cost 

however, which is not internally consistent. Addressing this so that the similarity index parameters 𝜎𝑚,𝑖,𝑗(𝒕) are based 

upon flow-dependent congested cost, the choice probability for route 𝑖 ∈ 𝑅𝑚 is 

 𝑃𝑚,𝑖(𝒕) = ∑ 𝑃𝑚,(𝑖,𝑗)(𝒕) ∙ 𝑃𝑚,(𝑖|𝑖,𝑗)(𝒕)𝑗∈𝑅𝑚;𝑗≠𝑖 , (20) 

where 
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 𝑃𝑚,(𝑖|𝑖,𝑗)(𝒕) = exp ( −𝜃𝑐𝑚,𝑖(𝒕)1 − 𝜎𝑚,𝑖,𝑗(𝒕))exp ( −𝜃𝑐𝑚,𝑖(𝒕)1 − 𝜎𝑚,𝑖,𝑗(𝒕)) + exp ( −𝜃𝑐𝑚,𝑗(𝒕)1 − 𝜎𝑚,𝑖,𝑗(𝒕)), (21) 

and 

 𝑃𝑚,(𝑖,𝑗)(𝒕) = (1 − 𝜎𝑚,𝑖,𝑗(𝒕)) ∙ (exp ( −𝜃𝑐𝑚,𝑖(𝒕)1 − 𝜎𝑚,𝑖,𝑗(𝒕)) + exp ( −𝜃𝑐𝑚,𝑗(𝒕)1 − 𝜎𝑚,𝑖,𝑗(𝒕)))1−𝜎𝑚,𝑖,𝑗(𝒕)
∑ ∑ (1 − 𝜎𝑚,𝑘,𝑙(𝒕)) ∙ (exp ( −𝜃𝑐𝑚,𝑘(𝒕)1 − 𝜎𝑚,𝑘,𝑙(𝒕)) + exp ( −𝜃𝑐𝑚,𝑙(𝒕)1 − 𝜎𝑚,𝑘,𝑙(𝒕)))1−𝜎𝑚,𝑘,𝑙(𝒕)𝑁𝑚𝑙=𝑘+1𝑁𝑚−1𝑘=1

, (22) 

where 𝜎𝑚,𝑖,𝑗(𝒕) = (∑ 𝑡𝑎𝛿𝑎,𝑚,𝑖𝛿𝑎,𝑚,𝑗𝑎∈𝐴𝑚,𝑖√𝑐𝑚,𝑖(𝒕)∙√𝑐𝑚,𝑗(𝒕) )𝜆, 𝜆 ≥ 0, is the similarity index between routes 𝑖 ∈ 𝑅𝑚 and 𝑗 ∈ 𝑅𝑚. PCL 

collapses to MNL when similarity indexes are all equal to zero. 

PCL SUE can thus be formulated as follows: 

 

PCL SUE: A universal route flow vector 𝒇∗ ∈ 𝐹 is a PCL SUE solution iff the route flow vector for OD movement 𝑚, 𝒇𝑚∗ , is a solution to the fixed-point problem  

 𝒇𝑚 = 𝑸𝑚𝑷𝑚(𝒕(𝜟𝒇)), 𝑚 = 1,… ,𝑀, (23) 

where 𝑃𝑚,𝑖 is as in (20)-(22) for route 𝑖 ∈ 𝑅𝑚, respectively, given the universal route flow vector 𝒇. 

 

3.3 Existence of Solutions 

Zhou et al (2012) prove existence for the congestion-based CL SUE model formulated above, and in a similar vein, in 

this subsection we prove that solutions are guaranteed to exist to all of the other SUE models developed above. Proving 

existence for most of the models is straightforward, however existence for APSL/APSL′ SUE requires a little more 

thought. We will therefore first provide a generic proof which can be applied to the non-APSL/ APSL′ SUE models, and 

then independently prove the existence of APSL/APSL′ SUE solutions. 

We begin by defining an important function: the SUE fixed-point function. Let 𝐻𝑚,𝑖(𝒇) = 𝑞𝑚𝑃𝑚,𝑖(𝒇), where 𝑃𝑚,𝑖(𝒇) is the choice probability for route 𝑖 ∈ 𝑅𝑚 given by either (1), (16), or (20) for the appropriate model, dependent 

upon 𝒇. It is clear from (3), (19), and (23) that a route flow solution 𝒇∗ is an SUE solution iff 𝐻𝑚,𝑖(𝒇∗) = 𝑓𝑚,𝑖∗ , ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀. Let 𝑯(𝒇) be the vector of all SUE fixed-point functions 𝐻𝑚,𝑖, with the same ordering as 𝒇. 

Proposition 1: If the link cost function 𝒕(𝜟𝒇) is a continuous function for all 𝒇 ∈ 𝐹, then at least one SUE fixed-point 

route flow solution, 𝒇∗ ∈ 𝐹, is guaranteed to exist for the SUE fixed-point systems in (3), (19), and (23). 

Proof. From the assumption that 𝒕(𝜟𝒇) is a continuous function for all 𝒇 ∈ 𝐹, (and thus 𝑯 is continuous), and given that 𝐹 is a nonempty, convex, and compact set, and 𝑯 maps 𝐹 into itself, then by Brouwer’s Fixed-Point Theorem at least one 

solution 𝒇∗ exists such that 𝑯(𝒇∗) = 𝒇∗, and hence solutions are guaranteed to exist for the SUE fixed-point systems in 

(3), (19), and (23). ∎ 

For APSL/APSL′ SUE, we prove that solutions are guaranteed to exist to the APSL′ SUE fixed-point system as defined 

in (12), and thus the APSL SUE fixed-point system defined in (7)-(8), due to equivalence in equilibrium. 

Now, let 𝐻𝑚,𝑖(𝒇) = 𝑞𝑚𝑃𝑚,𝑖 (𝑔𝑚,𝑖 (𝒄𝑚(𝒕(𝜟𝒇)), 𝜸𝑚𝐴𝑃𝑆′(𝒕(𝜟𝒇), 𝒇𝑚))), where 𝑃𝑚,𝑖, 𝑔𝑚,𝑖, and 𝛾𝑚,𝑖𝐴𝑃𝑆′  are as in (9), (10), 

and (11), respectively, for route 𝑖 ∈ 𝑅𝑚. It is clear from (12) that a route flow solution 𝒇∗ is an APSL′ SUE solution iff 𝐻𝑚,𝑖(𝒇∗) = 𝑓𝑚,𝑖∗ , ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀. Let 𝑯(𝒇) be the vector of all APSL′ SUE fixed-point functions 𝐻𝑚,𝑖, with the 

same ordering as 𝒇. 

We first clarify an important property of 𝑯(𝒇) required for the proof of existence of APSL′ SUE solutions.  

Property 1: 𝑯(𝒇) maps 𝐹(𝝉) into itself. 
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Proof. Let 𝑍𝑚,𝑖(𝒇) = 𝑃𝑚,𝑖 (𝑔𝑚,𝑖 (𝒄𝑚(𝒕), 𝜸𝑚𝐴𝑃𝑆′(𝒕, 𝒇𝑚))) , ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀, where 𝒁(𝒇) is the 𝑁-length vector of all 𝑍𝑚,𝑖, with the same ordering as 𝒇. It is clear that 𝒁(𝒇) maps into  𝐷(𝝉) = {𝑷 ∈ ℝ>0𝑁𝑚: 𝜏𝑚 ≤ 𝑃𝑚,𝑖 ≤ (1 − (𝑁𝑚 − 1)𝜏𝑚), ∀𝑖 ∈ 𝑅𝑚,∑ 𝑃𝑚,𝑗𝑁𝑚𝑗=1 = 1,𝑚 = 1,… ,𝑀}. 
From inspection, it follows that 𝑯(𝒇) = 𝑸𝒁(𝒇) maps into 𝐹(𝝉), since 𝑓𝑚,𝑖 = 𝑞𝑚𝑃𝑚,𝑖, ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀. ∎ 

Given 𝑯(𝒇) and Property 1, we prove that APSL′ SUE solutions are guaranteed to exist. 

Proposition 2: If the link cost function 𝒕(𝜟𝒇) is a continuous function for all 𝒇 ∈ 𝐹(𝝉), then at least one APSL′ SUE 

fixed-point route flow solution, 𝒇∗ ∈ 𝐹(𝝉), is guaranteed to exist. 

Proof. From the assumption that 𝒕(𝜟𝒇) is a continuous function for all 𝒇 ∈ 𝐹(𝝉), (and thus 𝒄𝑚, 𝜸𝑚𝐴𝑃𝑆′ , 𝑔𝑚,𝑖, 𝑃𝑚,𝑖, and 𝑯 

are all continuous), and given that 𝐹(𝝉) is a nonempty, convex, and compact set, and by Property 1 𝑯 maps 𝐹(𝝉) into 

itself, then by Brouwer’s Fixed-Point Theorem at least one solution 𝒇∗ exists such that 𝑯(𝒇∗) = 𝒇∗, and hence APSL′ 
SUE solutions are guaranteed to exist. ∎ 

Next, we clarify the equivalence of APSL SUE and APSL′ SUE. 

 

Lemma 1: If 𝒇∗ ∈ 𝐹(𝝉) is an APSL′ SUE solution, 𝒇∗ ∈ 𝐹(𝝉) is also an APSL SUE solution. 

Proof. This follows by inspection from the equivalence of (4), (5), and (6) with (9), (10), and (11), respectively, when 𝑃𝑚,𝑖 = 𝑓𝑚,𝑖𝑞𝑚 , ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀, and hence for an APSL′ SUE solution 𝒇∗ ∈ 𝐹(𝝉) where 𝑃𝑚,𝑖 = 𝑓𝑚,𝑖∗𝑞𝑚 . ∎ 

What remains is to prove the existence of APSL SUE solutions. 

Proposition 3: If the link cost function 𝒕(𝜟𝒇) is a continuous function, then at least one APSL SUE fixed-point route 

flow solution, 𝒇∗ ∈ 𝐹(𝝉), is guaranteed to exist. 

Proof. It follows from Proposition 2 and Lemma 1 that since APSL′ SUE solutions are guaranteed to exist, and an APSL′ 
SUE solution is also always an APSL SUE solution, then at least one APSL SUE fixed-point route flow solution 𝒇∗ ∈𝐹(𝝉) is guaranteed to exist. ∎ 

 

4 Numerical Experiments 
In this section, some numerical experiments are conducted to assess computational performance and choice set 

robustness for the internally consistent correlation-based SUE models detailed in Section 3. We also examine the two 

types of internal consistency in the paper and investigate solution uniqueness. 

 

4.1 Experiment Setup 

The computer used has a 2.10GHz Intel Xeon CPU and 512GB RAM, and the code was implemented in Python. In our 

implementation, we assume that a working set of routes is available in advance to solve the SUE models. The advantage 

of using a working route set (i.e. generated from a choice set generation scheme) is that it provides a common basis for 

the comparison of various models. Behaviourally, it has the advantage of identifying routes that would likely to be used 

(Cascetta et al, 1997; Bekhor et al 2008b). However, a column generation procedure (e.g. Chen et al, 2001) could also be 

used. 

In our experiments, we consider two well-known networks: Sioux Falls and Winnipeg. The Sioux Falls network 

consists of 24 nodes, 76 links, and 528 OD movements (with positive demands), and the Winnipeg network consists of 

1052 nodes, 2836 links, and 4345 OD movements.  

In general, the generalised travel cost, 𝑡𝑎(𝑥𝑎), for link 𝑎 ∈ 𝐴 may consist of several flow-dependent and flow-

independent attributes, for example congested travel time, length, number of left turns, etc. However, for the numerical 

experiments in this section and for all networks, the travel cost of link 𝑎 ∈ 𝐴 is specified as the flow-dependent travel 
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time 𝑇𝑎(𝑥𝑎) only, where the volume-delay link cost functions for all networks are based on the Bureau of Public Road 

(BPR) formula with link-specific parameters: 𝑡𝑎(𝑥𝑎) = 𝑇𝑎(𝑥𝑎) = 𝑇0,𝑎 (1 + 𝐷 (𝑥𝑎𝐾𝑎)𝐵), 
where 𝑇0,𝑎 and 𝐾𝑎 are the free-flow travel time and capacity of link 𝑎 ∈ 𝐴, respectively, and 𝐷, 𝐵 ≥ 0. For the Sioux 

Falls and Winnipeg networks, the link-cost function values as well as the network and demand data are obtained from 

https://github.com/bstabler/TransportationNetworks.  

In Bekhor et al (2008b), working choice sets for both the Sioux Falls and Winnipeg networks are generated by using 

a combination of the link elimination method (Azevedo et al, 1993) and link penalty method (De La Barra et al, 1993). 

These same choice sets are used in numerous other studies, e.g. Chen et al (2012b,2013,2014), Xu et al (2012), Zhou et al 

(2012). For Sioux Falls, the maximum and average generated choice set sizes for an OD movement were 13 and 6.3, 

respectively. For Winnipeg, 174,491 routes were generated in total, and the maximum and average choice set sizes for an 

OD movement were 50 and 40.1, respectively. It would definitely be a possibility to use the same route generation 

method to generate the route choice sets for this study, which would then facilitate comparisons across the studies. 

However, with this generation method, we believe the aim was to generate a set of realistic alternatives without any 

possibility of generating unrealistic routes. As discussed further in e.g. Watling et al (2015,2018); Duncan et al (2021), 

with this approach, it is difficult to say with any certainty that no realistic alternative has been left out, since the route 

generation criteria is not consistent with the calculation of the choice probabilities among chosen routes, i.e. a route 

found by the generation criteria may be considered unrealistic by the choice probability criteria, and vice versa. 

Therefore, for the numerical experiments in this paper, we generated new working choice sets for the Sioux Falls 

and Winnipeg networks. From experimenting with different settings and generation methods, we ultimately generated as 

large choice sets as we deemed our computational resources would allow, in order to minimise the possibility that we had 

excluded what would later turn out to be a plausible route from the working choice set. For the Sioux Falls network, the 

working choice sets were obtained by generating all routes with a free-flow travel time less than 2.5 times greater than 

the free-flow travel time on the quickest route for each OD movement. This technique was not viable computationally for 

the Winnipeg network; instead, we utilised a simulation approach (Sheffi & Powell, 1982) where the link costs were 

drawn randomly from a truncated normal distribution with mean value being free-flow travel time and standard deviation 

being 0.6 times the mean. The link costs were simulated 150 times for each OD movement and for each simulation 

shortest path was conducted to generate a route, where a maximum of 100 unique routes were generated for each choice 

set. The average and maximum free-flow travel time relative deviations from the quickest route in each choice set were 

1.14 and 3.2, respectively. For Sioux Falls, 42,976 routes were generated in total, and the maximum, average, and 

median choice set sizes for an OD movement were 898, 116, and 6, respectively. For Winnipeg, 305,005 routes were 

generated in total, and the maximum, average, and median choice set sizes for an OD movement were 100, 70, and 88, 

respectively. As can be seen, these choice sets are considerably larger than those generated in Bekhor et al (2008b). In 

Supplementary Material A&B and Section 4.4 we investigate how varying the choice set sizes effects computational 

performance and choice set robustness, respectively. 

It is not expected that equivalent Mathematical Programming (MP) formulations can be derived for the internally 

consistent SUE formulations in this paper. This is due to the correlation components being flow-dependent, e.g. based 

upon the flow-dependent congested costs. For example, as Zhou et al (2012) explain for congestion-based CL SUE: since 

the CL commonality factors are nonlinear flow-dependent functions, CL SUE cannot be formulated as an equivalent MP 

formulation, and thus cannot be obtained through solving some convex optimisation problem. Instead, we use a standard 

Flow-Averaging Algorithm (FAA) to solve all SUE models, where a step-size scheme averages the route flows between 

the current flow vector and an auxiliary flow vector computed from the route choice probabilities of the underlying 

choice model. The FAA is as follows: 𝑓𝑚,𝑖(𝑛) = (1 − 𝜂𝑛) ∙ 𝑓𝑚,𝑖(𝑛−1) + 𝜂𝑛 ∙ 𝑞𝑚𝑃𝑚,𝑖(𝒇(𝑛−1)), 𝑛 = 1,2,3… 

such that lim𝑛→∞𝑓𝑚,𝑖(𝑛) = lim𝑛→∞(1 − 𝜂𝑛) ∙ 𝑓𝑚,𝑖(𝑛−1) + 𝜂𝑛 ∙ 𝑞𝑚𝑃𝑚,𝑖(𝒇(𝑛−1)) = 𝑓𝑚,𝑖∗ , ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀, 𝒇(0) ∈ 𝐹, 
where 𝑓𝑚,𝑖(𝑛) is the flow for route 𝑖 ∈ 𝑅𝑚 at iteration 𝑛, 𝜂𝑛 is the step-size at iteration 𝑛, and 𝑃𝑚,𝑖(𝒇(𝑛−1)) is the choice 

probability for route 𝑖 ∈ 𝑅𝑚 at iteration 𝑛 given the route flows from iteration 𝑛 − 1. For the APSL & APSL′ SUE 

models, the feasible set of route flows is 𝐹(𝝉) rather than 𝐹. 

The step-size scheme we adopt in this paper is the Method of Successive Weighted Averages (MSWA) (Liu et al, 

2009), which is based upon the well-known Method of Successive Averages (MSA). While being pre-defined, the 

MSWA allows giving higher weight to auxiliary flow patterns from later iterations, and the step-size 𝜂𝑛 at iteration 𝑛 is 

defined as:  

https://github.com/bstabler/TransportationNetworks
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𝜂𝑛 = 𝑛𝑑∑ 𝑘𝑑𝑛𝑘=1 , 
where 𝑑 ≥ 0 is the MSWA parameter. Increasing the value of 𝑑 moves more flow towards the auxiliary solution. The 

MSA is a special case of the MSWA, namely when 𝑑 = 0.  

Convergence of the FAA is measured by the Root Mean Squared Error (RMSE) between the final route flow vector 

and auxiliary route flow vector at iteration 𝑛: 

𝑅𝑀𝑆𝐸(𝑛) = √1𝑁 ∑∑ (𝑓𝑚,𝑖(𝑛) − 𝑓�̅�,𝑖(𝑛))2𝑖∈𝑅𝑚
𝑀

𝑚=1 , 
where 𝑓𝑚,𝑖(𝑛) and 𝑓�̅�,𝑖(𝑛) are the final route flow and auxiliary route flow for route 𝑖 ∈ 𝑅𝑚 at iteration 𝑛, and 𝑁 is the total 

number of routes. The route flows are thus said to have converged sufficiently to a route flow vector solution 𝒇∗ = 𝒇(𝑛) if 𝑅𝑀𝑆𝐸(𝑛) < 10−𝜁 , where 𝜁 is a predetermined flow convergence parameter.  

For PSL, GPSL, APSL′, CL, CNL, GNL, & PCL SUE, the auxiliary flows are computed exactly since the 

probability relations are closed-form. For APSL SUE, however, the accuracy of the auxiliary flows is dependent upon the 

accuracy of the APSL fixed-point probabilities. To ensure that APSL SUE is reached, when the RMSE convergence 

criteria are said to have converged, we check by computing the RMSE between the final route flow vector and an 

auxiliary route flow vector calculated from APSL′ probabilities, which at iteration 𝑛 is: 

𝑅𝑀𝑆𝐸(𝑛) = √1𝑁 ∑∑ (𝑓𝑚,𝑖(𝑛) − 𝑞𝑚𝑃𝑚,𝑖 (𝒄𝑚 (𝒕(𝜟𝒇(𝑛)), 𝜸𝑚𝐴𝑃𝑆′(𝒕(𝜟𝒇(𝑛)), 𝒇(𝑛)))))𝑖∈𝑅𝑚
𝑀

𝑚=1
2. 

We continue until this RMSE satisfies the convergence criterion, or it is clear that this convergence criterion will not be 

satisfied. 

Computing the APSL choice probabilities (at each iteration of the FAA) also requires a fixed-point algorithm. In 

general, there are many fixed-point algorithms available for solving the APSL fixed-point system. In this study, we use 

the Fixed-Point Iteration Method (FPIM) (Isaacson & Keller, 1966), which Duncan et al (2020) also use. Other 

algorithms were considered, however the performance and convergence of the FPIM in our tests were sufficiently 

promising that we did not consider this worthwhile. The FPIM for solving the APSL choice probabilities for OD 

movement 𝑚 at iteration 𝑛 of the FAA is as follows: 𝑃𝑚,𝑖[𝑠] = 𝐺𝑚,𝑖 (𝑔𝑚,𝑖 (𝒄𝑚 (𝒕(𝜟𝒇(𝑛))) , 𝜸𝑚𝐴𝑃𝑆(𝒕(𝜟𝒇(𝑛)), 𝑷𝑚[𝑠−1]))) , 𝑠 = 1,2,3, … 

such that lim𝑠→∞𝑃𝑚,𝑖[𝑠] = lim𝑠→∞𝐺𝑚,𝑖 (𝑔𝑚,𝑖 (𝒄𝑚 (𝒕(𝜟𝒇(𝑛))) , 𝜸𝑚𝐴𝑃𝑆(𝒕(𝜟𝒇(𝑛)), 𝑷𝑚[𝑠−1]))) = 𝑃𝑚,𝑖∗ , ∀𝑖 ∈ 𝑅𝑚, 𝑷𝑚(0) ∈ 𝐷𝑚(𝜏𝑚), 
where 𝐺𝑚,𝑖, 𝑔𝑚,𝑖 , and 𝛾𝑚,𝑖𝐴𝑃𝑆 are as in (4), (5), and (6), respectively, for route 𝑖 ∈ 𝑅𝑚, and 𝒇(𝑛) is the route flow vector at 

iteration 𝑛 of the FAA. The FPIM is said to have converged sufficiently to an OD movement 𝑚 APSL choice probability 

solution 𝑷𝑚∗ = 𝑷𝑚[𝑠] if: ∑ |𝑃𝑚,𝑖[𝑠−1] − 𝑃𝑚,𝑖[𝑠]|𝑖∈𝑅𝑚 < 10−𝜉, where 𝜉 is a predetermined APSL probability convergence 

parameter. 

In the numerical experiments in this paper, we explore adopting two different initial conditions for the FPIM: fixed 

initial conditions where 𝑃𝑚,𝑖[0] = 1𝑁𝑚, ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀, and follow-on initial conditions where 𝑃𝑚,𝑖[0] = 𝑓𝑚,𝑖(𝑛−1)𝑞𝑚 , ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀. The follow-on initial FPIM conditions utilise information from the previous FAA iteration route flows 𝒇(𝑛−1) to determine the FPIM initial conditions. The idea is to harness the useful relation between route flow proportions 

and route choice probabilities in SUE, where these equate at equilibrium. The hypothesis is that by utilising follow-on 

initial conditions, the numbers of fixed-point iterations required for APSL choice probability convergence (and thus 

computation time to perform each FAA iteration) should decrease as the algorithm progresses and the route flow 

proportions become closer to the APSL SUE route choice probabilities. This hypothesis is tested in Section 4.2.1. 

Unless stated otherwise, the specifications are as follows. The initial SUE conditions are set as the even split route 

flows, i.e. 𝑓𝑚,𝑖(0) = 𝑞𝑚𝑁𝑚, ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀, and the SUE route flow convergence parameter is set as 𝜁 = 3. The 

MSWA parameter is set as 𝑑 = 15. For computing APSL probabilities, the initial FPIM conditions are set as the fixed 

initial conditions, and the APSL probability convergence parameter is set as 𝜉 = 6. The utilised model parameters for the 
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Sioux Falls network are 𝜃 = 0.3, 𝛽 = 0.8, 𝜐 = −0.8, 𝜆𝐺𝑃𝑆𝐿 = 10, 𝜇 = 0.25. 𝜃 = 0.5, 𝛽 = 0.8, 𝜐 = −0.8, 𝜆𝐺𝑃𝑆𝐿 = 10, 𝜇 = 0.25, and 𝜆𝐺𝑁𝐿 = 1 for the Winnipeg network.  

Note that for the GNL SUE model as defined in Section 3.2.2, the model is undefined when there are routes 

consisting of a single link between the origin and destination. The Sioux Falls network contains numerous instances of 

such cases and thus we do not present results for GNL SUE on this network.  

 

4.2 Computational Feasibility for Obtaining Internally Consistent Solutions 

In this subsection, we assess computational feasibility for obtaining internally consistent solutions. If a SUE model has 

for example a very slow convergence rate such that it cannot be solved in feasible computation times, then in order to use 

the model one must settle for an insufficiently converged output. This is obviously problematic for numerous reasons, 

such as less reliable forecasts, discontinuous flow outputs etc. It may also mean that the output choice probabilities are 

not internally consistent. In the case of the APSL′ SUE model, for example, the route flows and thus the APSL′ path size 

contribution factors at the iteration the algorithm is stopped, may define a completely different set of routes as unrealistic 

to if the algorithm was continued an additional iteration. It is thus crucial that a SUE model can be solved in feasible 

computation times, in order to be able to provide internally consistent and thus more accurate / behaviourally realistic 

outputs.  

To illustrate this point further, imagine you have a choice between two SUE models, where one model is believed to 

be more behaviourally realistic than the other, e.g. PSL SUE with flow-dependent path size terms vs flow-independent. If 

you have well-converged outputs from both the SUE models, then you will choose the output with greater perceived 

realism, i.e. in this case the flow-dependent model. But, if solving say flow-dependent PSL SUE had an extremely slow 

convergence rate such that the solution algorithm had to be terminated after a certain number of iterations, then one 

would probably choose to utilise the output from the well-converged model instead. This aligns with the trade-offs 

discussed in the introduction: if a model is not computationally feasible to solve, then features such as internal 

consistency are often compromised for computational efficiency. 

Since (most of) the internally consistent correlation-based SUE models developed in this paper have not been solved 

before, the computational feasibility for doing so is currently unknown. We thus in this subsection conduct some 

numerical experiments to assess whether the models can be solved in feasible computation times, so that if one is to use 

the models, well-converged and thus internally consistent equilibrium solutions can be obtained in reasonable, practical 

times.  

 

4.2.1 Techniques for Solving APSL SUE 

We shall first pay particular attention to solving APSL SUE, which is more complicated than for the other SUE models. 

While the other SUE models all have closed-form choice probability functions, APSL SUE has a fixed-point probability 

function. Computing APSL probabilities thus requires solving a fixed-point problem, which has the potential to be 

computationally burdensome even when the travel costs are fixed. Therefore, before the following research was 

conducted, there was a question of whether it would be computationally feasible to implement APSL within an SUE 

framework, since it apparently needs to embed a fixed-point problem (for calculating choice probabilities) within another 

fixed-point problem (for equilibrating flows). As we shall now show, however, solution techniques exist that can 

improve computational performance for solving APSL SUE. As we explore, the useful relationship between choice 

probabilities and route flow proportions in SUE context allows for a considerable flexibility in solving APSL SUE, 

where one can trade-off the accuracy of APSL probabilities (and thus computation times of each iteration) with rate of 

SUE convergence. 

The key features of solving the APSL SUE and APSL′ SUE models with the FAA are as follows. As demonstrated 

later on this section, and in the experience of the authors, while convergence rates (i.e. number if FAA iterations required 

for SUE convergence) for APSL SUE tend to be similar to PSL & GPSL SUE, total computation times are longer due to 

the fixed-point APSL probabilities. On-the-other-hand, while computing APSL′ probabilities is no more burdensome 

than for PSL & GPSL, the convergence rate of APSL′ SUE is comparatively slow, and thus total computational times are 

also longer. There are unique aspects of the APSL model however that allow for some flexibility in solving APSL SUE 

and consequent potential to improve computation times, as we show below. 

The computational burden involved in computing APSL probabilities depends on numerous factors; some of which 

can be controlled by the modeller, for example the choice of fixed-point algorithm, and the fixed-point algorithm initial 

conditions and probability convergence parameter 𝜉. The current study focuses on the FPIM as the fixed-point algorithm 

(see Section 3.1.2.1). 

Fig. 1A-B display for the Sioux Falls and Winnipeg networks, respectively, the cumulative computation times of the 

iterations during a single run of the FAA, for fixed and follow-on FPIM initial conditions. Fig. 2A-B shows the average 

number of fixed-point iterations per OD movement required for APSL choice probability convergence at each iteration of 

the FAA. As shown, utilising follow-on initial conditions can significantly improve overall computation time due to the 

reduction in the number of FPIM iterations required for APSL probability convergence as the FAA progresses. Note that 

it is not guaranteed that follow-on initial conditions will improve solution times compared to fixed initial conditions. As 
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can be seen in early iterations in Fig. 2A for Sioux Falls, due to large fluctuations in route flow between iterations, 

follow-on conditions requires greater numbers of FPIM iterations for APSL probability convergence than fixed 

conditions. Nonetheless, later on in the algorithm when the auxiliary and current route flow proportions (choice 

probabilities) become closer, fewer FPIM iterations are required with follow-on conditions. 

  

Fig. 1. Cumulative computation times of the iterations during a single run of the FAA solving APSL SUE with different FPIM initial 

conditions. A: Sioux Falls. B: Winnipeg. 

  

Fig. 2. Average number of APSL probability fixed-point iterations per OD movement at each iteration of the FAA solving APSL SUE 

with different FPIM initial conditions. A: Sioux Falls. B: Winnipeg. 

 

Fig. 3A-B display for the Sioux Falls and Winnipeg networks, respectively, how the total computation time for solving 

APSL SUE varies as the FPIM probability convergence parameter 𝜉 is increased, with follow-on and fixed FPIM initial 

conditions. Fig. 4A-B display how the average number of APSL fixed-point iterations and total number of FAA 

iterations vary as 𝜉 is increased.  

With fixed FPIM initial conditions, APSL SUE could not be solved for 𝜉 < 6 due to the inaccuracies of the APSL 

probabilities. For 𝜉 ≥ 6, as shown, as 𝜉 increases, while the number of iterations required for SUE convergence remains 

constant, greater numbers of FPIM iterations are required for APSL probability convergence and thus total computation 

times increase.  

With follow-on FPIM initial conditions, APSL SUE could be solved for all 𝜉. This is because for 𝜉 = −1, only 

single FPIM iterations are required for APSL probability convergence, and with follow-on initial FPIM conditions, 

solving APSL SUE this way simulates solving APSL′ SUE. Increasing 𝜉 increases the number of FPIM iterations 

required for APSL probability convergence and the accuracy of the APSL probabilities, but the APSL SUE solution 

obtained is the same. As shown, convergence of APSL′ SUE (APSL SUE with small 𝜉 & follow-on conditions) is slow, 

resulting in longer computation times. On-the-other-hand, large values of 𝜉 result in comparatively quick APSL SUE 

convergence, but longer computation times at each iteration, also resulting in longer total computation times. There is 

thus an optimal, intermediate value of 𝜉 whereby suitable SUE convergence meets suitable iteration computation times. 

As shown in Fig. 3A-B, the optimal values in these cases are approximately 𝜉 = 1 and 𝜉 = 0 for Sioux Falls and 

Winnipeg, respectively, yielding computation times of 32.68 minutes and 53.94 minutes, respectively. 

A B 

A B 
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Fig. 3. Computation time for solving APSL SUE as the APSL probability convergence parameter 𝜉 is increased, with fixed and 

follow-on initial FPIM conditions. A: Sioux Falls. B: Winnipeg. 

  

Fig. 4. Average number of APSL fixed-point iterations and total number of FAA iterations for solving APSL SUE as 𝜉 is increased, 

with fixed and follow-on initial FPIM conditions. A: Sioux Falls. B: Winnipeg. 

 

Alternatively, utilising follow-on conditions, one can stipulate a set number of FPIM iterations to perform at each FAA 

iteration. Supposing that ℎ FPIM iterations are conducted, Fig. 5A-B display the total computation times and number of 

FAA iterations solving APSL SUE, for the Sioux Falls and Winnipeg networks, respectively. As shown, conducting just 

two FPIM iterations (instead of one) can significantly reduce the number of FAA iterations required for convergence, and 

thus total computation times. The optimal values for ℎ appear to be 3 and 2 FPIM iterations, respectively, where suitable 

SUE convergence meets suitable iteration computation times. This yields computation times of 23.79 minutes for Sioux 

Falls and 47.17 minutes for Winnipeg.  

One can also utilise a combination of both techniques for reducing APSL SUE total computation times and stipulate 

a maximum number of FPIM iterations to perform and a maximum level of APSL probability convergence, i.e. the FPIM 

is stopped if either a maximum of ℎ iterations are conducted or the probabilities have converged sufficiently according to 

the set parameter 𝜉. This can potentially save computation times in latter FAA iterations where the stipulated amount of 

FPIM iterations unnecessarily overly-converges the APSL probabilities. Fig. 6A and Fig. 7A display for Sioux Falls how 

computation times and the number of FAA iterations / average number of FPIM iterations vary, respectively, for 

different settings of 𝜉, where a maximum of 3 FPIM iterations are conducted. Fig. 6B displays results for Winnipeg 

where a maximum of 2 FPIM iterations are conducted. As shown, optimal values of 𝜉 with this technique are 

approximately 𝜉 = 5 and 𝜉 = 4 for Sioux Falls and Winnipeg, respectively, where a suitable number of FAA iterations 

meets a suitable average number of FPIM iterations. This yields computation times of 20.24 minutes for Sioux Falls and 

42.25 minutes for Winnipeg.  

A B 

A B 
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Fig. 5. Total computation times and number of FAA iterations for solving APSL SUE utilising follow-on conditions, with ℎ FPIM 

iterations conducted. A: Sioux Falls. B: Winnipeg. 

  

Fig. 6. Total computation times for solving APSL SUE utilising follow-on conditions as 𝜉 is varied, with a max number of FPIM 

iterations conducted ℎ. A: Sioux Falls (ℎ = 3). B: Winnipeg (ℎ = 2). 

  

Fig. 7. Number of FAA iterations, and average number of FPIM iterations for solving APSL SUE utilising follow-on conditions as 𝜉 is 

varied, with a max number of FPIM iterations conducted ℎ. A: Sioux Falls (ℎ = 3). B: Winnipeg (ℎ = 2). 

 

Considering the above results, for the remainder of the paper, unless stated otherwise, we solve APSL SUE by stipulating 

a maximum number of FPIM iterations to perform at each FAA iteration and a maximum level of APSL probability 

convergence. For Sioux Falls, a maximum of 3 FPIM iterations are conducted with 𝜉 = 5. For Winnipeg, 2 FPIM 

iterations are used with 𝜉 = 4. We label for reference this method APSL SUE*. This ‘optimal’ method for solving APSL 

SUE is of course particular to the network, model, and algorithm specifications, e.g. model parameters, adopted step-size 

A B 

A B 

A B 
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scheme, choice set sizes. However, by fixing the optimised values for that particular specification, and then varying the 

specifications, we will show that the method is robust in its effectiveness compared to solving APSL SUE in a standard 

way (i.e. where the APSL fixed-point probabilities are accurately solved with non-follow-on initial conditions).  

Factors that affect the computational performance of APSL SUE, in terms of solving the APSL probability fixed-

point problems, include the value of 𝛽 and the choice set sizes. As shown in Duncan et al (2020), larger values of 𝛽 result 

in a greater number of FPIM iterations being required for APSL convergence (increasing computation times). Moreover, 

the greater the choice set sizes, the more routes there are to capture the correlation between (escalating the computational 

burden involved in computing path size terms). In supplementary material, we thus investigate how the computation 

times for APSL SUE*, as well as for solving APSL SUE with follow-on and fixed initial FPIM conditions, vary as the 𝛽 

parameter is increased / the choice set sizes are increased. The results demonstrate the effectiveness of the APSL SUE* 

solution technique. 

 

4.2.2 Computational Performance of All Models 

We analyse here the computational performance of the FAA for solving the different internally consistent SUE models. 

Table 2 displays for all SUE models the average computation time to perform a single FAA iteration on the Sioux Falls 

and Winnipeg networks. Results are displayed for solving APSL SUE in a standard way (i.e. without APSL SUE*). As 

expected, MNL probabilities are the quickest to compute. PSL/GPSL/APSL′ probabilities all take a similar amount of 

time to compute, but longer than MNL due to the computation of path size terms. APSL probabilities take significantly 

longer than the other PSL models due to the requirement of having to solve APSL probability fixed-point problems. CL 

probabilities take longer to compute than CNL probabilities on the Sioux Falls network, while CNL & GNL take longer 

than CL on the Winnipeg network. This is because the Winnipeg network has greater network depth and the routes are 

made up of a greater number of links. The greater the number of links, the greater the number of nests for CNL & GNL, 

and hence the greater the complexity of the probability expression and longer the computation times. GNL takes longer 

than CNL due to the computation of nesting coefficients. For CL, the commonality factors evaluate the similarity 

between each pair of routes, and thus despite the smaller network depth of the Sioux Falls network, there are still many 

routes to compare, increasing the computational burden. Due to relatively large choice set sizes and thus extremely large 

number of route pairs and hence nests for PCL, the probabilities for Sioux Falls and Winnipeg are very computationally 

burdensome and could not be computed in computationally feasible times. Due to this, we do not present 

computation/flow results for PCL SUE. 

 

 MNL PSL GPSL APSL APSL′ CL CNL GNL 

Sioux 

Falls 

0.006 0.038 0.038 0.920 0.038 0.562 0.196 - 

Winnipeg 0.089 0.208 0.208 4.199 0.208 1.611 6.806 12.921 

Table 2. Average computation time [mins] to perform a single FAA iteration on the Sioux Falls and Winnipeg networks. 

 

Fig. 8A-B display for the Sioux Falls and Winnipeg networks, respectively, the number of FAA iterations required to 

obtain levels of SUE convergence. Fig. 9A-B the display computation time required. As shown, MNL SUE is the 

quickest to solve due to not having to compute path size terms, while PSL SUE takes less time than GPSL SUE due to 

fewer iterations. For Sioux Falls, iteration times are quicker for CNL than for CL, and thus despite fewer number of 

iterations required for CL SUE, CNL SUE takes less time overall. For Winnipeg, iteration times are quicker for CL than 

for CNL & GNL, and thus CNL & GNL SUE take more time overall, where GNL SUE takes longer than CNL SUE. 

Note that numerous studies have also found that flow-dependent CL SUE takes considerably longer to solve than MNL 

SUE, with different solution algorithms (e.g. Chen et al, 2013; Zhou et al, 2012). 

As also shown, while APSL SUE requires a similar number of FAA iterations for convergence to PSL & GPSL 

SUE, total computation times are significantly longer due to the requirement of solving APSL probability fixed-point 

problems at each iteration, and hence longer iteration times. APSL′ SUE has the same iteration computation times as for 

PSL & GPSL SUE, but the slow convergence also results in longer total computation times. For APSL SUE*, the 

number of iterations required to obtain levels of convergence is now significantly less than for APSL′ SUE, though more 

than required for APSL SUE. Hence, since the iteration computation times of APSL SUE* are significantly less than for 

APSL SUE, total computation times are improved.  Moreover, APSL SUE* outperforms CL, CNL, & GNL SUE – 

significantly on the larger-scale Winnipeg network. 
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Fig. 8. Number of FAA iterations required to obtain levels of SUE convergence for the different SUE models, including the APSL 

SUE* solution method. A: Sioux Falls. B: Winnipeg. 

   

Fig. 9. Computation time [mins] required to obtain levels of SUE convergence for the different SUE models, including the APSL 

SUE* solution method. A: Sioux Falls. B: Winnipeg. 

 

The computational performances of the different SUE models depend of course on, among other things, the sizes of the 

choice sets, the level of travel demand, and the model parameters. In real-life applications, model parameters are either 

estimated statistically or calibrated using e.g. observed link flows. Thus, since we do not have estimated/calibrated model 

parameters for this study, in supplementary material we include results from numerical experiments investigating the 

effects of choice set size and demand level on computational performance (and, in the following subsection, choice set 

robustness) for fixed parameter settings, then explore how varying the parameters effects results (with fixed choice sets / 

demand). 

A summary for general networks is as follows. The computational performances of CNL & GNL SUE are affected 

most by network depth: the greater the number of links in a route, the greater the number of nests, and hence the greater 

the complexity of the probability expressions (at each SUE iteration). CL & PCL SUE, however, are affected most by 

choice set size. These models measure route correlation by evaluating the similarity between each pair of routes; thus, 

since the number of route pairings grows exponentially with choice set size, so do computation times for calculating the 

commonality factors (at each SUE iteration). For solving APSL SUE, choice set size affects the numbers of FPIM 

iterations required for computing the APSL probabilities (see Supplementary Material A) and thus computation times. 

For APSL SUE*, this means that more stringent FPIM convergence criteria (smaller 𝜉 values) / greater maximum FPIM 

iterations (greater ℎ values) are required to improve performance. 

 

4.3 Choice Set Robustness 

In this subsection we compare the choice set robustness of the different SUE models. To compare the flow results 𝒇∗𝑅1 

and 𝒇∗𝑅2 for Result 1 and Result 2, respectively, we measure the Normalised Root Mean Squared Error (NRMSE): 𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸�̅� , 
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where: 

𝑅𝑀𝑆𝐸 = √1𝑁∑ ∑ (𝑓𝑚,𝑖∗𝑅1 − 𝑓𝑚,𝑖∗𝑅2)𝑖∈𝑅𝑚
2𝑀𝑚=1 , 

and �̅� is the average value of 𝑓𝑚,𝑖∗𝑅1 and 𝑓𝑚,𝑖∗𝑅2, ∀𝑖 ∈ 𝑅𝑚, 𝑚 = 1,… ,𝑀. 𝑁 is the total number of routes. Note that for 

reference the RMSE between the previous and final route flows of the FAA converging to a SUE solution 𝒇∗ were 

approximately of the order 10−5. Moreover, the average route flow values on the Sioux Falls and Winnipeg networks 

were approximately 26-28 and 0.21, respectively. 

To help the reader comprehend the numerical experiments below, Table 3 provides a summary description of the 

model parameters. 

 

Parameter Model Name Description 𝜃 All models Logit scaling parameter Scales the travel cost component in 

all Logit models. A small 𝜃 value 

corresponds to drivers being less 

aware of / less sensitive to 

differences in route travel cost, and a 

large 𝜃 corresponds to the opposite. 𝛽 PSL, GPSL, APSL Path size scaling parameter Scales the path size correction factor. 

A small 𝛽 value corresponds to 

drivers being less aware of route 

correlation / less sensitive to route 

distinctiveness, and a large 𝛽 

corresponds to the opposite. 𝜆𝐺𝑃𝑆𝐿  GPSL Path size contribution scaling parameter Scales the travel cost ratio path size 

contribution factor in the GPSL path 

size term. Does not have a (sensible) 

behavioural interpretation (see 

Duncan et al 2020,2021), but 

increasingly reduces the path size 

contributions of costly routes for 

greater values of 𝜆. 𝜐 CL Commonality scaling parameter Similar to the path size scaling 

parameter, scales the C-Logit 

correction factor. 𝜇 CNL Nesting coefficient Describes the degree of nesting, i.e. 

when 𝜇 = 1 CNL is equivalent to 

MNL, and as 𝜇 → 0 CNL becomes 

probabilistic at the higher (link) level 

and deterministic at the lower (nest) 

level (Prashker & Bekhor, 1999) 𝜆𝐺𝑁𝐿  GNL Similarity index Scales the GNL nesting coefficient 

factor. 𝜆𝐺𝑁𝐿 = 0 results in 𝜇 = 1 and 

thus GNL collapses to MNL, greater 𝜆𝐺𝑁𝐿  values move GNL away from 

MNL towards 𝜇 → 0. 

Table 3. Summary description of the model parameters. 

 

Fig. 10A-B display for the Sioux Falls and Winnipeg networks, respectively, the impact that varying the sizes of choice 

sets has on the route flow results from the different models. The choice sets are obtained by generating all routes (from 

the pre-generated choice sets) with a free-flow travel time less than 𝜑 times greater than the free-flow travel time on the 

quickest route for each OD movement, and it is assumed that 𝜑 = 2 are the true choice sets, i.e. flow results are 

compared between the 𝜑 = 2 generated routes only. As shown, PSL SUE is the most affected by expanding the choice 

sets, as the path size terms of the assumed true routes are adjusted significantly attempting to capture the correlation with 

the added high costing routes. GPSL & APSL SUE are the least affected (and affected significantly less than PSL SUE) 

due to the employment of path size contribution weighting techniques, reducing the impact of the added routes. Note that 
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the initial sharp increase in NRMSE is due to the fact that Sioux Falls and Winnipeg have integer free-flow travel times; 

there are many routes in the choice sets with free-flow travel times exactly e.g. two times greater than the quickest route. 

Fig. 11A-B display for the Sioux Falls and Winnipeg networks, respectively, the impact varying the common 𝜃 

parameter has on choice set robustness for the Path Size Logit SUE models, (we have omitted results for the other 

models in this figure in order to improve clarity of the most interesting findings, we look at each other model in more 

detail below). Flow results from the 𝜑 = 2 and 𝜑 = 2.5 choice sets are compared, where flows again are just compared 

between the 𝜑 = 2 generated routes. Choice set robustness improves for all models (including those not shown) as the 𝜃 

parameter is increased. The key finding though is that, for low 𝜃, the choice set robustness of APSL SUE is more similar 

to that for PSL SUE than GPSL SUE. This is more evident on the Winnipeg network, for that range of 𝜃; it is less 

evident for Sioux Falls, but as will be clear from the discussion below it would be more evident if a lower more fine-

grained range of 𝜃 was displayed. The reason this is the case is because for low 𝜃 routes are considered more evenly 

attractive (travellers are less sensitive to differences in travel cost), and hence the APSL SUE path size contribution 

factors are closer to 1 (the PSL SUE factors). Increasing 𝜃 (implying the routes are less evenly attractive) accentuates the 

travel cost differences within the factors moving them away from 1, thereby improving choice set robustness so that for 

larger 𝜃 APSL SUE is the most choice set robust.  

For GPSL SUE, however, regardless of the 𝜃 value and consequent behavioural implications, the path size 

contribution factors accentuate the travel cost differences and GPSL SUE remains relatively insensitive to the inclusion 

of routes to the choice set. This demonstrates how APSL SUE is more internally consistent and adaptable than GPSL 

SUE, where APSL SUE is always consistent with the behavioural implications of the model parameters. For small 𝜃 

values, the route choice probabilities / route flows are more evenly split due to the lower sensitivity to route cost 

differences. Therefore, if a route (with only marginally greater cost than the current routes) is added to the current choice 

set, due to the small 𝜃 parameter it will likely receive a non-small choice probability, implying it is not an unrealistic 

route according to the route choice criteria. However, the GPSL path size contribution factors will still define it as an 

unrealistic route, in which case GPSL is inconsistent. For more on the internal (in)consistency of GPSL/APSL, see 

Duncan et al (2020). 

Fig. 12A-B display choice set robustness for the CNL SUE model as 𝜇 is varied. As shown, for Sioux Falls, choice 

set robustness improves for greater values of 𝜇, where the probabilities are closer to the MNL model, thus implying that 

in this case MNL is more robust than the correlation-based models. For Winnipeg, however, choice set robustness 

worsens with 𝜇, implying the opposite. Moreover, best choice set robustness occurs for 𝜇 close to 0, however as Bekhor 

& Prashker (2001) note, the extreme case for CNL where 𝜇 → 0 is suitable in the context of route choice only when the 

total route costs are equal, otherwise 𝜇 → 0 can lead to counter-intuitive results. 

Fig. 13 display choice set robustness for the GNL SUE model as 𝜆𝐺𝑁𝐿  is varied. As shown, choice set robustness 

improves as 𝜆𝐺𝑁𝐿  increases: the nesting coefficients move away from 1 and closer 0, and thus since MNL SUE (𝜇 = 1 

for CNL/GNL) on Winnipeg has poor robustness, robustness for GNL SUE improves for greater values of 𝜆𝐺𝑁𝐿. 

Fig. 14A-B display choice set robustness for the CL SUE model as 𝜐 is varied. As shown, for Sioux Falls, since 

MNL SUE is choice set robust, CL SUE is also choice set robust for low 𝜐; however, as 𝜐 increases and the correlation 

component becomes more prominent, choice set robustness worsens dramatically. For Winnipeg, since MNL SUE is not 

robust, robustness actually improves for CL SUE as 𝜐 increases, up to a point where the correlation components become 

prominent enough that the adjustments from capturing similarities with new unrealistic routes begins to worsen 

robustness.  

Fig. 15A-B display choice set robustness for the GPSL SUE model as 𝜆𝐺𝑃𝑆 is varied. As shown, and as expected, for 

both networks, choice set robustness is equivalent to that of PSL SUE for 𝜆𝐺𝑃𝑆 = 0 (where the models are equivalent), 

and robustness improves as 𝜆𝐺𝑃𝑆 increases from 0 and the path size contribution factors accentuate the cost differences 

more, resulting in the new more costly routes having reduced contributions and thus adjusting the realistic route 

probabilities less. A peak is reached in terms of choice set robustness, however, and increasing 𝜆𝐺𝑃𝑆  further worsens 

robustness. 

Fig. 16A-B display choice set robustness for the PSL/GPSL/APSL SUE models as 𝛽 is varied. As shown, for 𝛽 = 0 

the path size models are equal to MNL SUE, where robustness is good for Sioux Falls and bad for Winnipeg. As 𝛽 

increases for Sioux Falls, the increasing prominence of the correlation components worsens robustness, where the effects 

for PSL SUE are significantly worse than for the weighted path size contribution models. For Winnipeg, robustness 

improves as 𝛽 increases for the weighted contribution models, but worsens for PSL SUE. 
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Fig. 10. Impact that varying the sizes of choice sets has on the route flow results of the different SUE models, scaled by 𝜑. A: Sioux 

Falls (𝜃 = 0.07). B: Winnipeg. 

   

Fig. 11. Impact that varying the 𝜃 parameter has on choice set robustness for the different SUE models. A: Sioux Falls. B: Winnipeg. 

  

Fig. 12. Impact that varying the 𝜇 parameter has on choice set robustness for the CNL SUE model. A: Sioux Falls. B: Winnipeg. 
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Fig. 13. Impact that varying the 𝜆𝐺𝑁𝐿 parameter has on choice set robustness for the GNL SUE model on the Winnipeg network. 

  

Fig. 14. Impact that varying the 𝜐 parameter has on choice set robustness for the CL SUE model. A: Sioux Falls. B: Winnipeg. 

  

Fig. 15. Impact that varying the 𝜆𝐺𝑃𝑆 parameter has on choice set robustness for the GPSL SUE model. A: Sioux Falls. B: Winnipeg. 
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Fig. 16. Impact that varying the 𝛽 parameter has on choice set robustness for the Path Size Logit SUE models. A: Sioux Falls. B: 

Winnipeg. 

 

4.4 Internal Consistency  

In this subsection, we conduct some numerical experiments to demonstrate the different types of internal consistency 

considered in this paper, and to show that internal consistency can make a significant difference to model output.  

We begin by demonstrating the first type of internal consistency: the internal consistency of an SUE model in terms 

of employing the same definition of flow-dependent, generalised cost in all components of the specification. Fig. 17A-B 

display for the Sioux Falls and Winnipeg networks, respectively, how link-route prominence differs between flow-

dependent and flow-independent versions of the PSL, GPSL, APSL, & CNL SUE models, for varying 𝜃. For a given 

route flow solution 𝒇∗ to one of these SUE models, we measure the difference in link-route prominence according to the 

following Proportional RMSE (PRMSE) measure: 

𝑃𝑅𝑀𝑆𝐸 = √    
      1𝑁∑ ∑ ∑ ( 

 ( 𝑙𝑎𝐿𝑚,𝑖 − 𝑡𝑎(𝜟𝒇∗)𝑐𝑚,𝑖(𝒕(𝜟𝒇∗)))12 ( 𝑙𝑎𝐿𝑚,𝑖 + 𝑡𝑎(𝜟𝒇∗)𝑐𝑚,𝑖(𝒕(𝜟𝒇∗)))) 
 2

𝑎∈𝐴𝑚,𝑖𝑖∈𝑅𝑚
𝑀𝑚=1 , 

where 𝑙𝑎 and 𝐿𝑚,𝑖 are the lengths of link 𝑎 ∈ 𝐴𝑚,𝑖 and route 𝑖 ∈ 𝑅𝑚, respectively, and 𝑡𝑎(𝜟𝒇∗) and 𝑐𝑚,𝑖(𝒕(𝜟𝒇∗)) are the 

flow-dependent, congested travel times of link 𝑎 ∈ 𝐴𝑚,𝑖 and route 𝑖 ∈ 𝑅𝑚, respectively. The numerator is the difference 

in link-route prominence and the denominator is the mean value of the two link-route prominences. Therefore, the 

PRMSE provides a measure of how significant the differences are between the flow-dependent and flow-independent 

link-route prominences. It is clear to see from the PRMSE values in Fig. 17A-B that the differences for all models can 

indeed be significant. This is particularly the case for Sioux Falls where 0.6 seems a large average proportional 

difference. The differences between the models, in terms of their individual difference between flow-dependent and flow-

independent link-route prominences, are more prominent for Winnipeg. This is likely due to the 𝜃 range being relatively 

large for Sioux Falls here and the travel cost components thus dominating the probability relations. As one can start to 

see, smaller ranges of 𝜃 on Sioux Falls will display greater differences (between models). 

Fig. 18A-B display how the route flow result differences between the flow-dependent and flow-independent 

versions of the SUE models vary with 𝜃. As shown, the route flow differences are also significant. Interestingly, PSL has 

the least similar link-route prominences but the most similar route flows. Clearly, the path size contribution factors for 

GPSL and APSL – which will also be different for the flow-dependent and flow-independent versions – also affect the 

flow results considerably. Since the GPSL flow results are so different compared to the other models, but relatively the 

link-route prominences are not as different, it is clear that the routes with the quickest/slowest travel times are not 

necessarily the shortest/longest routes. 
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Fig. 17. The differences between the flow-dependent and flow-independent link-route prominence features for the different SUE 

models, for varying 𝜃. A: Sioux Falls. B: Winnipeg. 

  

Fig. 18. The differences in flow results between the flow-dependent and flow-independent versions of the different correlation-based 

SUE models, for varying 𝜃. A: Sioux Falls. B: Winnipeg. 

 

Next, we demonstrate the second type of internal consistency: the internal consistency of a weighted contribution path 

size route choice model (e.g. GPSL, APSL) in terms of how the model’s components define a route as (un)realistic (i.e. 

how the path size contribution factor defines a route as (un)realistic). As discussed throughout the paper, APSL is more 

internally consistent than GPSL in this way, as the APSL path size contribution factor is consistent with how the choice 

probability relation assesses route feasibility, i.e. according to choice probability rather than just travel cost. To 

demonstrate this in SUE context, we examine the differences in flow results between the different Path Size Logit SUE 

models.  

Fig. 19A-B display for the Sioux Falls and Winnipeg networks, respectively, the impact the 𝜃 parameter has on the 

differences in SUE flow between the models. Most notably, in these ranges of 𝜃, the flow differences between GPSL & 

APSL SUE decrease with 𝜃 (initially for Winnipeg) and the flow differences between PSL & APSL SUE increase with 𝜃. The former is because as 𝜃 increases, the travel cost components within the APSL SUE path size contribution factors 

increase in contribution influence compared to the route distinctiveness components, and hence the factors increase in 

similarity to the GPSL SUE factors (which only consider travel cost), and thus the SUE route flows. The flows then 

begin to increase in difference as the 𝜃 parameter begins to accentuate the travel cost differences for APSL more than the 𝜆 parameter does for GPSL within the contribution factors. The latter occurs since for low 𝜃 routes are considered more 

evenly attractive and hence the APSL SUE path size contribution factors are closer to 1 (the PSL SUE factors), and 

increasing 𝜃 accentuates the travel cost differences within the factors moving them away from 1. A peak is reached and 

further increasing 𝜃 results in the travel cost components within the PSL & APSL probability relations dominating the 

distinctiveness components where the difference lies. 

Fig. 20A-B display the impact of the 𝛽 parameter. As shown, the flow differences all increase as 𝛽 increases, which 

is logical since the differences between the SUE models are the different path size correction terms scaled by 𝛽. GPSL & 

APSL SUE are amongst the least different due to their similarity in adopting path size contribution weighting techniques. 

What is noticeable is that the differences between the APSL SUE flows and PSL/GPSL SUE flows increase significantly 
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for larger values of 𝛽. This is because distinctiveness increases significantly in contribution influence within the APSL 

SUE path size terms, moving the contribution factors away from 1 (PSL) and making the travel cost component less 

prominent (GPSL). 

  

Fig. 19. Impact of the 𝜃 parameter on the differences in SUE flow between the Path Size Logit SUE models. A: Sioux Falls. B: 

Winnipeg. 

  

Fig. 20. Impact of the 𝛽 parameter on the differences in SUE flow between the Path Size Logit SUE models. A: Sioux Falls. B: 

Winnipeg.  

 

To explore the impact that varying the level of travel demand has on route choice (i.e. proportional route flow) for the 

Path Size Logit models, we measure the RMSE of the route choice probabilities, i.e. by dividing the flow results by the 

respective OD movement demands. The demand is scaled according to a parameter 𝜔 so that the demand for OD 

movement 𝑚 is 𝜔 ∙ 𝑞𝑚, 𝑚 = 1,… ,𝑀. Fig. 21A-B display the impact different levels of travel demand have on the 

differences in choice probabilities between the Path Size Logit SUE models, with 𝜃 = 0.01 for Sioux Falls. Most notably 

for Sioux Falls, the differences between the GPSL & APSL SUE probabilities decrease from being the most different as 

the demand level increases, while the PSL & APSL SUE probability differences increase from being the least different. 

At zero demand, the relatively low setting of 𝜃 given the zero flow link costs dampens the travel cost differences within 

the APSL path size contribution factors resulting in the PSL probabilities being closer and the GPSL probabilities further 

away to APSL. As demand increases however and the link costs increase in scale, the travel cost differences become less 

dampened and the APSL contribution factors consequently move away from 1 (PSL) and closer to the GPSL factors, 

where the travel cost differences are accentuated. For Winnipeg, due to the overall lower level of congestion, the effects 

are less significant; however, the flow differences between the GPSL & APSL SUE probabilities also decrease while the 

PSL & APSL SUE probability differences increase. This time though the GPSL & APSL SUE probabilities are the most 

similar, due to the similar path size contribution weightings given the scale of travel costs. 
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Fig. 21. Impact that different levels of demand has on the differences in choice probability between the Path Size Logit SUE models, 

demand scaled by 𝜔. A: Sioux Falls. B: Winnipeg. 

 

4.5 Uniqueness of Solutions 

Zhou et al (2012) prove existence for the congestion-based CL SUE model, though uniqueness cannot be guaranteed. In a 

similar vein, solutions can be proven to exist for the other SUE models (as shown in Section 3.3), but it is expected that 

uniqueness can also not be guaranteed. This is because standard approaches for proving solution uniqueness require the 

SUE fixed-point function (i.e. 𝐻𝑚,𝑖 in Section 3.3) to be monotonic, which is not necessarily the case with flow-

dependent correction terms / correlation components.  

Since standard approaches for proving solution uniqueness cannot be applied to the SUE models in this paper, the 

uniqueness of SUE solutions is investigated numerically. After experimenting on Sioux Falls and Winnipeg with 

different model parameters and initial conditions, we did not identify cases of multiple solutions for any of the models 

except from for APSL SUE. Further analysis is required to identify whether solutions are in fact guaranteed to be unique 

for the other SUE models e.g. establish a mathematical proof, or to identify uniqueness conditions, if they exist. For the 

APSL SUE model, however, since it is not guaranteed that even APSL probability solutions are unique, some attention is 

required. Due to the possibility of non-unique APSL probability solutions, before our research was conducted it was 

uncertain whether it would first even be possible to solve APSL SUE and second whether solutions would be unique. As 

our experiments found, however, uniqueness conditions appear to exist for the APSL SUE model: APSL SUE solutions 

are unique when APSL probability solutions are universally unique. For details of these experiments and methods for 

identifying the uniqueness conditions, see Supplementary Material C. 

 

4.6 Findings of the Numerical Experiments 

To summarise, the key findings of the numerical experiments were that: 

a) GPSL/APSL SUE were generally more robust than PSL, CL, CNL, & GNL SUE to the inclusion of unrealistic 

routes to the choice set. 

b) Internally consistent SUE formulations for the correlation-based models can have a significant impact on model 

outcome. 

c) APSL SUE was more internally consistent than GPSL SUE in terms of dealing with unrealistic routes in the 

adopted choice sets, i.e. the theoretical consistency of the path size contribution factor. 

d) Computing choice probabilities for the internally consistent SUE formulations of CL, CNL, GNL, & PCL was 

more computationally burdensome than for PSL & GPSL (considerably on the larger-scale Winnipeg network). 

e) As such, typically, computation times were quickest for solving PSL & GPSL SUE, with the slowest being CL, 

CNL, GNL, then PCL SUE. (Convergence rates were similar). 

f) Convergence rates for solving APSL SUE were similar to that for PSL & GPSL SUE, however the 

computational burden involved in computing the APSL choice probabilities for each FAA iteration resulted in 

much longer total computation times. 

g) On-the-other-hand, the computational burden involved in computing the APSL′ choice probabilities was similar 

to that for PSL & GPSL (similarly closed-form), but the APSL′ SUE convergence rate was comparatively slow, 

and thus total computation times were also longer. 
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h) In general, the FPIM convergence parameter 𝜉 (and thus the accuracy of the APSL choice probabilities) must be 

at a certain level for convergence of the FAA to the APSL SUE solution. 

i) However, by utilising ‘follow-on’ initial FPIM conditions – where the initial conditions for solving the APSL 

probabilities at iteration 𝑛 of the FAA are set as the route flow proportions from iteration 𝑛 − 1 – the FAA will 

converge to the APSL SUE solution regardless for all 𝜉. 

j) There was a computational trade-off between solving APSL & APSL′ SUE: solving APSL SUE with low 𝜉 and 

follow-on initial conditions simulated solving APSL′ SUE where the convergence rate was slow, while larger 

values of 𝜉 resulted in comparatively quick convergence rates but lengthy computation times for the iterations.  

k) There was an ‘optimal’ intermediate value of 𝜉 for solving APSL SUE with follow-on initial FPIM conditions 

whereby a suitable SUE convergence rate meets suitable computation times for each iteration. Optimal values 

for the examples in this study were 𝜉 = 1 for Sioux Falls and 𝜉 = 0 for Winnipeg. 

l) Another technique that improved APSL SUE computation times was to stipulate a set number of FPIM 

iterations to perform at each FAA iteration: optimal values were 3 and 2 FPIM iterations for Sioux Falls and 

Winnipeg, respectively. 

m) Best computation times for solving APSL SUE were found when utilising a combination of a maximum number 

of FPIM iterations and an intermediate value of 𝜉: 3 FPIM iterations and 𝜉 = 5 for Sioux Falls, 2 FPIM 

iterations and 𝜉 = 4 for Winnipeg. 

n) APSL SUE can thus be solved in feasible computation times – typically longer than PSL & GPSL SUE, but 

quicker than CL, CNL, GNL, & PCL SUE (significantly on the larger-scale Winnipeg network). 

o) Uniqueness conditions appeared to exist for APSL SUE: for 𝛽 in the range 0 ≤ 𝛽 ≤ �̅�𝑚𝑎𝑥(𝜃), where APSL 

probability solutions are unique. 

p) �̅�𝑚𝑎𝑥,𝑚(𝜃) values (uniqueness for OD movement 𝑚) in experiments were all close 1. 

The ‘optimal’ values for the methods in k)-m) for solving APSL SUE are particular to the network, model, and algorithm 

specifications, e.g. model parameters, adopted step-size scheme, choice set sizes. However, by fixing the optimised 

values for a given specification, and then varying the specifications, it was shown that the method was robust in its 

effectiveness compared to solving APSL SUE in a standard way (i.e. where the APSL fixed-point probabilities are 

accurately solved with non-follow-on initial conditions). Future research could explore an intelligent, adaptive process 

whereby the optimal values of 𝜉 and the maximum number of FPIM iterations to perform at each FAA iteration are learnt 

/ worked out as the FAA progresses. 

 

5 Conclusion 
This paper explores internal consistency and choice set robustness for correlation-based Stochastic User Equilibrium 

(SUE) models. Internally consistent SUE formulations for GEV structure and correction term correlation-based route 

choice models (namely: Path Size Logit (PSL), C-Logit (CL), Cross-Nested Logit (CNL), Generalised Nested Logit 

(GNL), and Paired Combinatorial Logit (PCL)) are formulated, where the functional forms in the correlation components 

are based upon generalised, flow-dependent congested costs, rather than e.g. length / free-flow travel time as done 

typically. Without explicit mechanisms for dealing with unrealistic routes in the adopted choice sets, however, there are 

questions over how robust these models are to choice set mis-generation.  

This paper thus also investigates the SUE application of the Generalised PSL (GPSL) and Adaptive PSL (APSL) 

route choice models. GPSL & APSL have explicit mechanisms for dealing with unrealistic routes: weighting the 

contributions of routes to path size terms with path size contribution factors. The integration of the APSL model within a 

SUE model is not straightforward, since the probabilities are a solution to a fixed-point problem. As explored in the 

paper, however, the requirement of solving fixed-point problems to compute APSL choice probabilities can be 

circumvented in SUE application, since at equilibrium the route flow proportions and choice probabilities equate.  

Solutions are proven to exist for the internally consistent SUE models, but standard proofs for uniqueness of 

solutions could not be applied. Solution uniqueness is instead investigated numerically, where non-uniqueness was not 

found for any of the models except APSL. Experiments on the Sioux Falls and Winnipeg networks suggest that APSL 

SUE uniqueness conditions exist. These conditions are analogous to those for the uniqueness of APSL probability 

solutions, and APSL SUE solutions appear to be unique when APSL solutions are unique. 

Computational performance and choice set robustness of the different internally consistent SUE models are analysed 

in numerical experiments on the Sioux Falls and Winnipeg network, where a flow-averaging solution algorithm with 

Method of Successive Weighted Averages step-size scheme is used. The key findings from the numerical experiments 

were that: 

a) GPSL/APSL SUE are generally more robust than PSL, CL, CNL, & GNL SUE to the inclusion of unrealistic 

routes to the choice set. 
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b) APSL SUE is more internally consistent than GPSL SUE in terms of dealing with unrealistic routes in the 

adopted choice sets. 

c) One can trade-off the accuracy of APSL probabilities (and thus computation times of each iteration) with rate of 

SUE convergence, and as such, APSL SUE can be solved in feasible computation times. 

d) Typically, computation times are quickest for solving PSL & GPSL SUE, followed by APSL SUE, with the 

slowest being CL, CNL, GNL, & PCL SUE (considerably on the larger-scale Winnipeg network). 

Scope for future research includes providing some empirical evidence to support the hypothesis that the internally 

consistent SUE formulations have greater behavioural realism than the original formulations, i.e. estimating/calibrating 

the correlation-based SUE models with flow-dependent and flow-independent correlation components and comparing 

goodness-of-fit. Choice set robustness could then also be explored in estimation, e.g. how variations to the adopted 

choice set affects parameter estimate values and goodness-of-fit. 

Future research could also explore computational performances of the models under different averaging step-size 

schemes, such as the self-regulated averaging method (Liu et al, 2009), which has been applied with success in various 

SUE models (e.g. Yang et al, 2013; Xu & Chen, 2013; Kitthamkesorn & Chen, 2013,2014; Chen et al, 2014; Yao et al, 

2014). It has not yet been explored whether similar techniques to those described in Section 4.2.1 for solving APSL SUE 

– where the APSL probabilities need not be computed accurately – are applicable for some ‘inexact’ step-size schemes, 

such as the self-adaptive method (e.g. Chen et al, 2012b, 2013; Xu et al, 2012; Zhou et al, 2012). Furthermore, future 

research could explore alternative algorithms, such as the New Self-Adaptive Gradient Projection algorithm (Chen et al, 

2012a), which has been applied with success to solve SUE for the Congestion-based C-Logit SUE model (Zhou et al, 

2012). 

As mentioned at the end of the previous section, to further improve computation times solving APSL SUE, one 

could explore an intelligent, adaptive process whereby the required accuracy of the APSL choice probabilities is learnt / 

worked out as the algorithm progresses, perhaps in a similar way to the self-regulated averaging method (Liu et al, 2009). 

Moreover, future research could also explore utilising a different fixed-point algorithm (to the FPIM)) for computing the 

APSL probabilities within the SUE algorithm, or perhaps a combination of fixed-point algorithms could be used, e.g. 

Newton Raphson’s Method for early iterations, Steffenson’s Method for middle iterations, and the FPIM for latter 
iterations, as the initial conditions for the probabilities become closer to the solution through the use of follow-on initial 

conditions. 

Lastly, as Marzano & Papola (2008) and Marzano (2014) find, the overall correlation between routes is smaller in a 

larger choice set. This may have implications for choice set robustness and internal consistency. For example, if choice 

set robustness worsens as the level of overall correlation increases, then given the above finding, generating larger choice 

sets should in theory result in greater choice set robustness between choice sets that size. This potentially supports the 

approach that is typically done in practice for large-scale networks, where choice sets are typically generated sufficiently 

large to minimise the possibility of excluding what might later turn out to be a realistic alternative. Moreover, if the 

overall route correlation is greater in smaller choice sets, then perhaps the need for internally consistent SUE 

formulations is greater. Further research could investigate these aspects. 
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8 Supplementary Material 

8.1 Supplementary Material A – Effectiveness of the APSL SUE* Solution Technique 

Fig. 22A-B display for the Sioux Falls and Winnipeg networks, respectively, how the computation time for APSL SUE* 

as well as for solving APSL SUE with follow-on and fixed initial FPIM conditions, varies as the 𝛽 parameter is 

increased. Fig. 23A-B display how the average number of FPIM iterations per OD movement per FAA iteration and how 

the total number of FAA iterations vary as 𝛽 is increased. As shown, for APSL SUE follow-on & fixed, while the 

number of FAA iterations do not vary considerably, the average number of FPIM iterations increases exponentially with 𝛽 and hence so do computation times. For APSL SUE*, the number of SUE iterations increases as 𝛽 increases, while the 

average number of FPIM iterations remains low (decreasing slightly due to more SUE iterations), resulting in the 

technique significantly improving in effectiveness as 𝛽 increases. 

   

Fig. 22. Computation time for APSL SUE*, APSL′ SUE, and solving APSL SUE with follow-on and fixed initial FPIM conditions as 𝛽 is increased. A: Sioux Falls. B: Winnipeg. 
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Fig. 23. Number of FAA iterations, and average number of FPIM iterations for APSL SUE*, APSL′ SUE, and solving APSL SUE 

with follow-on and fixed initial FPIM conditions as 𝛽 is increased. A: Sioux Falls. B: Winnipeg. 

 

Fig. 24A-B display for the Sioux Falls and Winnipeg networks, respectively, how the computation time for APSL SUE* 

as well as for solving APSL SUE with follow-on and fixed initial FPIM conditions, varies as the choice set sizes are 

increased. Fig. 25A-B display how the average number of FPIM iterations per OD movement per FAA iteration and how 

the total number of FAA iterations vary. The choice sets are obtained by generating all routes (from the master generated 

choice sets used throughout this section) with a free-flow travel time less than 𝜑 times greater than the free-flow travel 

time on the quickest generated route for each OD movement. As shown, computation times increase as the choice sets 

are expanded. The greater number of routes to capture the correlation between means that more FPIM iterations are 

required for APSL probability convergence, which, combined with a greater number of FAA iterations required for SUE 

convergence, results in increasing computation times (more SUE iterations that each take longer on average). It is also 

shown again how effective APSL SUE* can be. 

  

Fig. 24. Computation time for APSL SUE* and solving APSL SUE with follow-on and fixed initial FPIM conditions the choice set 

sizes are increased, scaled by 𝜑. A: Sioux Falls. B: Winnipeg. 
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Fig. 25. Number of FAA iterations, and average number of FPIM iterations for APSL SUE* and solving APSL SUE with follow-on 

and fixed initial FPIM conditions the choice set sizes are increased, scaled by 𝜑. A: Sioux Falls. B: Winnipeg. 

 

8.2 Supplementary Material B – Computational Performance Sensitivity Analysis 

We investigate here for all SUE models, how total computation times and number of FAA iterations vary according to 

different sizes of choice sets, levels of travel demand, and model parameters. Since we do not have calibrated model 

parameters, we perform sensitivity analysis by investigating the effects of choice set size and demand level on 

computational performance for fixed parameter settings, then explore how varying the parameters effects results (with 

fixed choice sets / demand).  

Fig. 26A-B display for the Sioux Falls and Winnipeg networks, respectively, how the total computation times for 

the different SUE models vary as the choice set sizes are increased. Fig. 27A-B display how the required number of FAA 

iterations varies. As shown, for Sioux Falls, although the number of iterations required for convergence decreases for 

most of the models, computation times increase due to additional burden involved in computing choice probabilities / 

working with more routes. For APSL SUE, computation times increase significantly due also to the more burdensome 

fixed-point problems (i.e. Fig. 24/Fig. 25). For Winnipeg, the number of iterations requited for SUE convergence 

increases, increasing to the computational burden of larger choice sets. 

  

Fig. 26. Computation times for solving the SUE models as the choice set sizes are increased, scaled by 𝜑. A: Sioux Falls. B: 

Winnipeg. 
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Fig. 27. Number of iterations required for convergence for the SUE models as the choice set sizes are increased, scaled by 𝜑. A: Sioux 

Falls. B: Winnipeg. 

 

Fig. 28A-B display for the Sioux Falls and Winnipeg networks, respectively, how the total computation times vary for 

the different SUE models as the level of travel demand is varied. Fig. 29A-B display how the required number of FAA 

iterations varies. The demand is scaled according to the parameter 𝜔 so that the demand for OD movement 𝑚 is 𝜔 ∙ 𝑞𝑚, 𝑚 = 1,… ,𝑀. As shown, and as expected (due to logic and results from e.g. Chen et al (2012b,2014) for the non-additive 

traffic equilibrium problem and flow-independent PCL SUE model, respectively), the number of iterations required for 

convergence increases for all SUE models as the level of demand increases, thus increasing total computation times. 

APSL′ SUE experiences a significant increase for large demand. 

  

Fig. 28. Computation times for solving the SUE models as the level of travel demand is increased, scaled by 𝜔. A: Sioux Falls. B: 

Winnipeg. 
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Fig. 29. Number of iterations required for convergence for the SUE models as the level of travel demand is increased, scaled by 𝜔.  

A: Sioux Falls. B: Winnipeg. 

 
Fig. 30A-B display for the Sioux Falls and Winnipeg networks, respectively, how the total computation times vary for 

the different SUE models as the common 𝜃 parameter is varied. Fig. 31A-B display how the required number of FAA 

iterations varies. As shown, apart from for APSL′ SUE on the Sioux Falls network, convergence for the SUE models 

generally gets slower as 𝜃 increases and the route cost differences are accentuated more resulting in greater flow 

fluctuations. Note that for the flow-dependent C-Logit SUE model, this is the same result found by Zhou et al (2012), Xu 

et al (2012). 

Fig. 32A-B and Fig. 33A-B display how total computation times / number of iterations vary, respectively, for the 

CNL SUE model as the 𝜇 parameter is varied. As shown, for both networks, the number of iterations (and thus 

computation time) required for convergence decreases for greater values of 𝜇, i.e. as CNL SUE increases in similarity to 

MNL SUE. This is a typical finding for CNL SUE models, e.g. Bekhor et al (2008a). 

Fig. 34A-B display results for the GNL SUE model as the 𝜆𝐺𝑁𝐿  parameter is varied. As shown, the number of 

iterations (and thus computation time) required for convergence decreases for greater values of 𝜆𝐺𝑁𝐿 . Note that for 𝜆𝐺𝑁𝐿 = 0, GNL SUE is equivalent to MNL SUE (since 𝜆𝐺𝑁𝐿 = 0 results in 𝜇𝑚 = 1, 𝑚 = 1,… ,𝑀). 

Fig. 35A-B and Fig. 36A-B display results for the GPSL SUE model as the 𝜆𝐺𝑃𝑆 parameter is varied. As shown, the 

number of iterations (and thus computation time) required for convergence increases for greater values of 𝜆𝐺𝑃𝑆, where 

greater fluctuations occur within the path size contribution factors.  

Fig. 37A-B and Fig. 38A-B display results for the PSL/GPSL/APSL SUE models as the common 𝛽 parameter is 

varied. As shown, for APSL′ SUE and APSL SUE*, the number of FAA iterations increases exponentially with 𝛽. For 

the other models however, the effects are not as significant, though for APSL SUE – as also shown in Fig. 22/Fig. 23– 

total computation times increase exponentially with 𝛽 due to the fixed-point probability computation. 

  

Fig. 30. Computation times for SUE convergence as 𝜃 is varied. A: Sioux Falls. B: Winnipeg. 

  

Fig. 31. Number of iterations required for SUE convergence as 𝜃 is varied. A: Sioux Falls. B: Winnipeg. 
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Fig. 32. Computation times for CNL SUE convergence as 𝜇 is varied. A: Sioux Falls. B: Winnipeg. 

  

Fig. 33. Number of iterations required for CNL SUE convergence as 𝜇 is varied. A: Sioux Falls. B: Winnipeg. 

  

Fig. 34. Winnipeg: GNL SUE convergence as 𝜆𝐺𝑁𝐿 is varied. A: Computation time [mins]. B: Number of iterations. 
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Fig. 35. Computation times for GPSL SUE convergence as 𝜆𝐺𝑃𝑆 is varied. A: Sioux Falls. B: Winnipeg. 

   

Fig. 36. Number of iterations required for GPSL SUE convergence as 𝜆𝐺𝑃𝑆 is varied. A: Sioux Falls. B: Winnipeg. 

  

Fig. 37. Computation times for convergence for the Path Size Logit SUE models as 𝛽 is varied. A: Sioux Falls. B: Winnipeg. 
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Fig. 38. Number of iterations required convergence for the Path Size Logit SUE models as 𝛽 is varied. A: Sioux Falls. B: Winnipeg. 

 

Lastly, Fig. 39A-B display for the Sioux Falls and Winnipeg networks, respectively, and for the different SUE models, 

how the number of iterations required for convergence varies for different settings of the MSWA parameter 𝑑. For MNL, 

PSL, GPSL, & APSL SUE, 𝑑 = 5 and 𝑑 = 10 provide roughly the best convergence for Sioux Falls and Winnipeg, 

respectively. As shown, for APSL′ SUE and APSL SUE*, convergence improves significantly with greater values of 𝑑, 

though for APSL SUE* the number of FPIM iterations and 𝜉 value has been ‘optimised’ for 𝑑 = 15.  

   

Fig. 39. Number of iterations required for SUE convergence for varying settings of the MSWA parameter 𝑑. A: Sioux Falls. B: 

Winnipeg. 

 

8.3 Supplementary Material C – Uniqueness of APSL SUE Solutions 

In this section, we explore the uniqueness of APSL SUE solutions. For some of the experiments, we consider a small 

example network (Fig. 40) that consists of 3 nodes, 4 links, and 1 OD movement (with demand 200). The BPR function 

parameters are 𝐷 = 0.15, 𝐵 = 4, 𝐾𝑎 = 100 for all links, and 𝑇0,𝑎 for each link is shown in Fig. 40. The working choice 

set utilises all 4 routes, where the routes are Route 1: 1 → 3, Route 2: 1 → 4, Route 3: 2 → 3, Route 4: 2 → 4. 
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Fig. 40. Small example network. 

 

As demonstrated in Duncan et al (2020), for a given setting of the link costs 𝒕 and 𝜃 value, a 𝛽 value exists, 𝛽𝑚𝑎𝑥,𝑚(𝒕, 𝜃) > 0, for OD movement 𝑚 such that APSL choice probability solutions are unique for all 𝛽 in the range 0 ≤𝛽 ≤ 𝛽𝑚𝑎𝑥,𝑚(𝒕, 𝜃). This means that a 𝛽 value exists, 𝛽𝑚𝑎𝑥(𝒕, 𝜃) > 0, such that solutions are unique for all OD movements 

for all 𝛽 in the range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥(𝒕, 𝜃), i.e. 𝛽𝑚𝑎𝑥(𝒕, 𝜃) = min (𝛽𝑚𝑎𝑥,𝑚(𝒕, 𝜃)). And, assuming the link costs are 

bounded, i.e. they have a maximum and minimum value (for example due the fixed demands), for a given 𝜃 value, a 𝛽 

value exists, �̅�𝑚𝑎𝑥(𝜃) > 0, such that APSL solutions are unique for all OD movements and for all feasible flow vectors 

(and thus costs) for all 𝛽 in the range 0 ≤ 𝛽 ≤ �̅�𝑚𝑎𝑥(𝜃). Obviously, �̅�𝑚𝑎𝑥(𝜃) ≤ 𝛽𝑚𝑎𝑥(𝒕, 𝜃) ≤ 𝛽𝑚𝑎𝑥,𝑚(𝒕, 𝜃).  
While it is not guaranteed that in all cases APSL SUE solutions will be unique when APSL probabilities are 

universally unique, i.e. for 𝛽 in the range 0 ≤ 𝛽 ≤ �̅�𝑚𝑎𝑥(𝜃), as we show below, it appears from numerical experiments 

that this is often the case.  

Fig. 41A-B plot, for two runs, the small example network route flows at each iteration of the FAA when the initial 

conditions for the FPIM computing the APSL probabilities are randomly generated, for 𝛽 = 0.9 and 𝛽 = 1.1, 

respectively, 𝑣1 = 2, 𝑣2 = 𝑣3 = 𝑣4 = 1, 𝜃 = 1, 𝜉 = 8. The step-size is set as 𝜂𝑛 = 1 (𝑛 = 1,2, …) and the algorithm is 

stopped after 20 iterations if convergence is not reached. As shown, for 𝛽 = 0.9, because the APSL probabilities are 

unique for the route costs (from the flows) at each iteration, the route flows on both runs converge in the same way to the 

same APSL SUE solution. For 𝛽 = 1.1, however, as demonstrated clearly at iteration 1, there are multiple APSL 

probabilities for the route costs at each iteration, and hence due to the step-size the flows fluctuate randomly and do not 

converge. This suggests that APSL probability solutions are universally unique for 𝛽 = 0.9, but not for 𝛽 = 1.1, and 

hence that 0.9 ≤ �̅�𝑚𝑎𝑥(1) < 1.1.  

Fig. 42A-B plot for 𝛽 = 0.9 and 𝛽 = 1.1, respectively, and for multiple runs, the flows at each iteration of the FAA 

utilising follow-on initial conditions for the FPIM computing the APSL probabilities, where the initial SUE conditions 

are randomly generated, 𝑣1 = 2, 𝑣2 = 𝑣3 = 𝑣4 = 1, 𝜃 = 1, 𝜉 = 8. As shown, for 𝛽 = 0.9, all initial conditions lead to 

the same solution, whereas for 𝛽 = 1.1, two solutions are found with different initial conditions. Fig. 43A-B plot the 

flows at each iteration of the FAA for solving APSL′ SUE. As shown, for 𝛽 = 0.9, all initial conditions again lead to the 

same solution, whereas for 𝛽 = 1.1, two solutions are found. 

  

Fig. 41. Small example network: APSL SUE route flows at each iteration of the FAA with randomly generated initial FPIM 

conditions, two runs (𝑣1 = 2, 𝑣2 = 𝑣3 = 𝑣4 = 1, 𝜃 = 1, 𝜉 = 8). A: 𝛽 = 0.9. B: 𝛽 = 1.1. 
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Fig. 42. Small example network: APSL SUE route flows at each iteration of the FAA with follow-on FPIM initial conditions and 

randomly generated initial SUE conditions, multiple runs (𝑣1 = 2, 𝑣2 = 𝑣3 = 𝑣4 = 1, 𝜃 = 1, 𝜉 = 8). A: 𝛽 = 0.9. B: 𝛽 = 1.1. 

  

Fig. 43. Small example network: APSL′ SUE route flows at each iteration of the FAA with randomly generated initial SUE conditions, 

multiple runs (𝑣1 = 2, 𝑣2 = 𝑣3 = 𝑣4 = 1, 𝜃 = 1). A: 𝛽 = 0.9. B: 𝛽 = 1.1. 

 

Fig. 42 & Fig. 43 suggest that the APSL SUE solution is unique for 𝛽 = 0.9, and solutions are non-unique for 𝛽 = 1.1, 

and Fig. 41 suggests that this due to the APSL choice probability solutions being universally unique for 𝛽 = 0.9, but not 

for 𝛽 = 1.1. One can imply from this that 0.9 ≤ �̅�𝑚𝑎𝑥(1) < 1.1, and potentially that APSL SUE solutions are unique for 𝛽 in the range 0 ≤ 𝛽 ≤ 0.9 ≤ �̅�𝑚𝑎𝑥(1).  
Duncan et al (2020) demonstrate how APSL choice probability solutions for OD movement 𝑚 are unique for 𝛽 in 

the range 0 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥,𝑚(𝒕, 𝜃). Here, we utilise a similar method to that described in Section 4.4 of Duncan et al (2020) 

for the APSL model, to attempt to identify �̅�𝑚𝑎𝑥,𝑚(𝜃) values and thus �̅�𝑚𝑎𝑥(𝜃) = min(�̅�𝑚𝑎𝑥,𝑚(𝜃):𝑚 = 1,… ,𝑀) for the 

APSL SUE model, where the costs are not fixed. �̅�𝑚𝑎𝑥,𝑚(𝜃) is estimated by plotting trajectories of APSL SUE solutions 

for OD movement 𝑚 for varying 𝛽, and identifying where a unique trajectory of solutions ends and multiple trajectories 

begin. A simple method for obtaining trajectories of APSL SUE solutions is as follows: 

Step 1. Identify a suitably large value for 𝛽 (where it is predicted that solutions will be non-unique). 

Step 2. Solve APSL SUE for this large 𝛽 with a randomly generated SUE initial condition. 

Step 3. Decrement 𝛽 and obtain the next APSL SUE solution with the SUE initial condition set as the solution 

for the previous 𝛽. 

Step 4. Continue until a suitably low value of 𝛽 (where it is predicted that solutions will be unique). 

By plotting the route flows for OD movement 𝑚 at each decremented 𝛽, and repeating this method several times, one can 

determine where non-unique solution trajectories end and hence estimate �̅�𝑚𝑎𝑥,𝑚(𝜃). If after several repetitions (with 

different randomly generated initial conditions) only a single trajectory of solutions is shown, then the initial large 𝛽 

value is increased. Similarly, if only multiple trajectories are shown, the stopping low 𝛽 value is decreased. However, 

one can test beforehand whether the initial and stopping 𝛽 values are suitable by solving for each a few times with 
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random initial conditions and observing whether there are different solutions for the initial 𝛽 value and the same solution 

for the stopping 𝛽. In the experience of the authors, the �̅�𝑚𝑎𝑥,𝑚(𝜃) values typically range between 0.9 and 1.1 (usually 

around 1). If in large-scale networks it is computationally burdensome to solve APSL SUE once at a time for each 

decremented value of 𝛽, then one can instead (by possibly harnessing parallel processing) solve for different 𝛽 values 

simultaneously, each with randomly generated initial conditions. This should also identify where solutions are and are 

not unique. Moreover, one can plot flow trajectories for all OD movements simultaneously, so the method does not need 

to be repeated for each OD movement. We illustrate the approach graphically here, but there is no need to draw graphs 

for general networks. One can instead observe the route flow values, where a finer grained decrement of 𝛽 will provide a 

more accurate estimation of �̅�𝑚𝑎𝑥,𝑚(𝜃). 
In the case of the small example network where there is a single OD movement, we estimate �̅�𝑚𝑎𝑥(1) using the 

above method. Fig. 44 displays trajectories of APSL SUE route flow solutions as the 𝛽 parameter is varied for 𝑣1 = 2, 𝑣2 = 𝑣3 = 𝑣4 = 1, 𝜃 = 1, 𝜉 = 8. 𝛽 was decremented by 0.005 and the initial large 𝛽 value was 1.2. The solution 

trajectory plotting was repeated until multiple trajectories were shown. As shown, there is a unique trajectory of route 

flow solutions up until 𝛽 = �̅�𝑚𝑎𝑥(1) where there then becomes multiple trajectories. The estimated �̅�𝑚𝑎𝑥(1) value is 

0.995. While two APSL SUE solutions were found for 𝛽 = 1.1 in Fig. 42B & Fig. 43B, Fig. 44 shows that there are three 

solutions. 

 

Fig. 44. Small example network: Trajectories of APSL SUE solutions as 𝛽 is varied (𝑣1 = 2, 𝑣2 = 𝑣3 = 𝑣4 = 1, 𝜃 = 1, 𝜉 = 8). 

 

We use the same technique of plotting flow trajectories to estimate the APSL SUE uniqueness conditions for the Sioux 

Falls and Winnipeg networks. Fig. 45 displays for Sioux Falls the maximum route flow from three trajectories of APSL 

SUE solutions as the 𝛽 parameter is varied for four different randomly chosen OD movements. 𝛽 was decremented by 

0.005, and the initial large 𝛽 and stopping small 𝛽 values were 𝛽 = 1.1 and 𝛽 = 0.9, respectively. As shown, the �̅�𝑚𝑎𝑥,𝑚(0.01) values for these OD movements appear to be close to 1. Fig. 46 display results for the Winnipeg network 

(two trajectories are plotted), where the �̅�𝑚𝑎𝑥,𝑚(0.5) values also appear to be close 1.  
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Fig. 45. Sioux Falls: Maximum route flow for four different OD movements from three trajectories of APSL SUE solutions as 𝛽 is 

varied. 

  

  

Fig. 46. Winnipeg: Maximum route flow for four different OD movements from two trajectories of APSL SUE solutions as 𝛽 is 

varied. 

 

In our experience, the ranges of 𝛽 that exist for the uniqueness of APSL and APSL SUE solutions provide enough scope 

for fitting to behaviour, where typical 𝛽𝑚𝑎𝑥  values range between 0.9 and 1.1. Duncan et al (2020) experienced no 

difficulties in estimating APSL on a real-life large-scale network, and obtained a maximum likelihood estimate of 𝛽 =0.84, where it was verified that this was within the uniqueness range. Although there are obvious differences in the 

models, we note that this ‘safe’ range for 𝛽 for APSL uniqueness also includes values for 𝛽 reported in empirical studies 

with PSL & GPSL (e.g. Ramming, 2002, Bovy et al, 2008, Hoogendoorn-Lanser et al, 2005; Frejinger & Bierlaire, 2007; 

Prato, 2013), where estimated values have been reported in the range 0.6 to 0.93. We also emphasise that, as per Duncan 
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et al (2020), the recommendation is that the APSL model is only used when solutions are unique. Thus, since we are not 

concerned with APSL when solutions are non-unique, and the uniqueness range provides enough scope for fitting to 

behaviour, it is an important and encouraging finding that APSL SUE solutions are unique when APSL solutions are 

unique. 

 

 


