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Abstract: Bettignies et al. examine power-law relationships between drivers of energy use and urban

features at city and infra-city levels for ten different cities in six countries across four continents,

featuring a wide distribution of urban indicators from various data sources. The authors employ

univariate linear regression models using selected log-transformed indicators to investigate whether

the intensity of energy use scales with urban indicators such as population size, density, and income.

Bettignies et al. suggest that based on their findings, the urban energy-use drivers are in fact scale-

dependent, and that their results reveal a substantial heterogeneity across and within cities. They

reference this as why more consideration needs to be paid to local factors when devising urban policy.

On this note, we argue that Bettignies et al. appear to have not only misunderstood the urban scaling

literature they have cited, but have also employed flawed methodological design in their analysis

that ultimately leaves their conclusions unsubstantiated.

Keywords: urban energy drivers; urban metabolism; urban scaling; scaling; energy; power law;

multiscale analysis; cross-city analysis

1. Introduction

Bettignies et al. [1], while attempting to investigate the application of urban scaling
principles to urban energy consumption, argue for a greater consideration of local drivers
and context in the development of policies that are to assist cities in their transition towards
more sustainable consumption. On this note, while sympathetic towards the authors’
overall call for a more proactive consideration of local factors, we would like to point out
that we believe Bettignies et al.

A. Appear to have a number of misconceptions as to the nature of urban scaling frame-
works, particularly in regard to the universality and ’scale-invariance’ of character-
istics when considering cities of different sizes and the application of urban scaling
models to energy consumption;

B. Have employed flawed methodological design in their investigation of these urban
dynamics;

C. In a number of cases, have analyzed and presented data with questionable scientific
rigour that can lead to ambiguous or incorrectly interpreted results by readers.

2. A: Potential Misconceptions

Bettignies et al. contextualize their work within the urban scaling literature by stating
that urban scaling studies have focused on “analysing how urban infrastructure, socio-
economic or metabolic indicators change with either the population or the mean population
density (e.g., [14,27–45]).”—see the original paper by Bettignies et al. for these references.
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Their bulk citation of the scaling literature suggests an apparent lack of in-depth engage-
ment. The authors further rationalize their contribution by claiming that “even if a number
of studies (e.g., [13,14]) rooted in a convincing theoretical framework [61] offer a macroscale
understanding of cities’ indicators with relation to their growth, it appears that cities should
also be considered at a lower-scale level in order to account for their internal heterogene-
ity [46,62] but also to see how different cities are to one another at these more detailed
scales”. As such, the authors position their paper as one that seeks to shed light on the
drivers of urban energy consumption “by considering the specificities and internal hetero-
geneity of cities which are not yet explicitly taken into account in the urban scaling field”.
To directly address their stated goal, they list three objectives:

1. To examine the existence of power-law relationships between urban energy intensity
and population, population density, and median income of 10 cities belonging to
different urban systems;

2. To examine the existence of such relationships across geographic units building up
these urban areas, using what the authors dub Micro-Territorial Units (MTUs), to, as
they put it, “investigate the scale (in-)dependency of urban energy power laws”;

3. To determine whether such power-law relationships agree when fitting to MTUs of
each urban area individually.

The authors’ core thesis then appears to be that their objectives make it “possible to
discover whether trends and drivers identified at city level by some of the above-mentioned
studies are also true at smaller spatial scales, and thus showing whether energy use drivers
are scale invariant”. The problem is threefold.

2.1. Use of Scaling Frameworks to Study Heterogeneity

Firstly, it is a central thesis of ‘complexity’ and ‘self-organized criticality’ as applied
to cities as organized complex systems that locally heterogeneous but interdependent
interactions aggregate to result in macro-level behaviors [2,3]. References to Jacobs’ seminal
observations [3], which highlight this mixing of populations in cities as the driver of their
success, remain prevalent across studies from both theoretical urban scaling and economic
geography disciplines. Urban scaling frameworks, by nature, are designed to explore and
address the universality and prevalence of these emergent macro-level average-aggregate
urban phenomena with respect to urban size [4–7]. Hence, the attractiveness of such
frameworks rests in their ability to infer wide-ranging, system-wide properties from a
sparse set of system parameters. As such, an urban scaling perspective is inherently
ill-suited for those interested in examining the effects of intra-urban heterogeneity at
micro-levels, as the framework deals with mean responses of the system and not its local
fluctuations. Local fluctuations are inherently assumed. Incorporating these frameworks as
the sole source of one’s methodology when the stated aim is to consider the “specificities
and internal heterogeneity of cities” highlights a disconnect between the authors’ stated
aims and objectives.

2.2. Universality and ‘Scale-Invariance’

Secondly, the authors appear to conflate small urban areas with arbitrary geographical
units of small populations comprising urban areas (the authors’ MTUs) when discussing the
‘scale-invariance’ of urban phenomena. The authors seemingly equate the universality of
urban dynamics across size with the expectation that the same power laws that link urban
size to prevalence of urban phenomena are to hold for the prevalence of such phenomena
against size when considering MTUs that are decidedly not self-contained urban entities
and are of arbitrary boundary definitions. The authors’ investigation of scale-invariance by
examining intra-urban geographic units therefore appears to rest on a misapprehension of
the application of scaling frameworks. This is in fact explicitly discussed in the material
cited by the authors, which formally outlines how using geographic boundaries that cut
across functional urban areas would, from a statistical point of view, result in a vanishing
of scaling effects [8].



Sustainability 2022, 14, 4230 3 of 6

2.3. Scaling of Energy Use with Population

Lastly, Bettignies et al. do not seem to have explored whether any of the urban scaling
theoretical frameworks [5–7,9]—and not studies investigating the empirical existence of
power laws in real world data [10]—have any reason to or do in fact claim to predict a power-
law relationship between urban size and urban energy consumption. Such theoretical
frameworks, including those cited by Bettignies et al. themselves, outline theoretical
models that often rely on the core assumption that the urban metrics of interest are by-
products of and commensurate with the number of human interactions that occur within
cities. On this basis, these works put forward theoretical mechanisms that seek to explain
the power-law relationships often empirically observed for economic output, urbanized
area, and a few other metrics [11]. We note that we do not discount the ability of allometric
frameworks to provide valid models of urban energy consumption. Arguably, one could,
by extension to existing models, develop theoretical expectations for such scaling behavior
for transport energy use. This would be due to the potentially strong coupling of mobility,
and by extension transport, and urbanized area [5]. There is, however, no reason suggested
by the scaling frameworks cited by the authors or the authors themselves, as to why
aggregate energy consumption across various uses could potentially be an outcome of
human interactions.

3. B: Flawed Methodology

Our contention regarding the authors’ application of flawed methodology concerns
their regression design, as the authors intend to examine the existence of power-law
dynamics across cities and their MTUs, pooling together cities that are from different
countries and continents. As Bettignies et al. point out, these scaling dynamics are often
empirically investigated by calculating OLS estimates for the linearized log-transformation
of power laws in the form

log10Y = log10Y0 + β log10N (1)

where Y is the urban phenomenon of interest, N population size, β the exponent de-
termining the nature of the scaling regime, and Y0 the general prevalence of the phe-
nomenon [4,5,7]. Crucially, this formulation applies to cities which share a given general
prevalence Y0 and as such belong to a coherent urban system. Often, these urban systems
sharing a common baseline prevalence of phenomena are intuitively taken to be the national
groupings of cities [11,12]. The problem in the authors’ work arises from their explicitly
combining data from cities and MTUs from very different urban systems that have no rea-
son to share an underlying baseline energy consumption, that is, Y0 in Equation (1), as the
authors themselves point out that the cities are from “. . . different economic development
stages, as well as in different climatic zones. . . ”.

Consider, as an example, two urban systems in different climates: one extremely cold
and the other temperate. Average total and per capita energy consumption across the cities
of the former would have to be higher due to the additional heating demand caused by
the climate for that urban system. This would result in the temperate urban system to be
described by a smaller Y0, comparatively. If cities from both urban systems are being used
together to estimate a single β, which in essence quantifies the population-elasticity of a
phenomena regardless of the choice of urban system, then data from each urban system
need to be treated beforehand to eliminate the effect of a varying Y0.

To apply the univariate regression meaningfully, the authors should have eliminated
the intercept log10Y0 by normalizing each unit’s values against the average value of the
urban system to which they belong before estimating the scaling regime β. We illustrate
this in Figure 1. In panel A, we show randomly generated values for N and Y and their
individual regression fit for four urban systems with different values of the intercept log10Y0.
See online Supplementary Materials for code and data used for in Figure 3. This is similar to
the authors’ application of their univariate model to MTUs of each city individually. As an
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attempt to duplicate the regression plots presented by the authors in Figure 3 of the original
paper, panel B demonstrates the result of not normalizing values before calculating the
regression fit when pooling the urban systems together. Finally, in panel C, we normalize
values for each city by the mean value across the urban system to which it belongs before
estimating the regression coefficients. Once again, this is a peculiar oversight given that the
work by Bettencourt and Lobo [12] cited by the authors is dedicated to setting out such an
approach using cities belonging to various European urban systems.
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Figure 1. Scaling of phenomenon Y with population N for four synthetic urban systems (A), the OLS

fit to all the cities combined (B), and the OLS fit to mean-normalized values (C).

4. C: Analytical Rigour

In the previous two sections, we outlined issues arising from what we believe has been
the authors’ lack of engagement with the particularities of the scaling literature. In this
section, we point out a number of cases where the paper could have been more rigorous
with regard to the way data are analyzed and/or presented.

4.1. Correlation of the Independent Variables

In addition to population count, Bettignies et al. consider the scaling of their energy
indicators against two other independent variables. It would have been useful if the authors
had provided an examination of a possible correlation between population and their two
additional variables, i.e., population density and median income, as the two would be
expected to be correlated with population themselves in scaling frameworks [5,11,12].

4.2. Performance Measures of Regression Models

The authors provide values for the coefficient of determination and p-values as di-
agnostic statistics. While appreciated, it perhaps would have been more helpful to also
provide 95% confidence intervals for the slopes estimated. Without considering the con-
fidence intervals, it would be difficult to interpret the scaling regime with any certainty,
as it is unclear whether, for example, a super-linear exponent—a positive slope in the
authors’ work as they regress per capita values against population—remains as such over
the confidence interval.

4.3. Descriptive Statistics of the Input Data

Bettignies et al. provide descriptive statistics of their input data from each city mainly
through providing a number of kernel density estimations of the data from the MTUs. It
is unclear as to why the authors felt the need to only present the kernel density estimates,
rather than also for instance, a histogram of the actual data. Considering that a significant
proportion of their description of their data is communicated through these kernel density
figures, some small amount of information about the implementation vis a vis the kernel
bandwidth would have been helpful. While the authors present the kernel densities as those
of “. . . the studied variables for each city, at microscale in a logarithmic scale”, these are
clearly estimated from the log of the values with the x-axis relabeled to appear logarithmic,
rather than plotting original values on a logarithmic axis. Bettignies et al. appear to be
unaware of this error throughout the manuscript. The authors appear to only refer back
to these incorrect kernel estimates rather than the actual distribution when reporting on
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the standard deviation, skewness, mean, and mode of the data. Their statements such as
“Regarding uniformity of the population distribution, Glasgow, Cape Town and London
have very little skewness and small spread around their mode. . . ” are consequently
unsubstantiated. Similar statements could arguably be considered trivial given the authors’
use of log values, choice of kernel function and kernel bandwidth. Figure 2 demonstrates
the potential significance of this error by considering the population density values for
the 33 boroughs of London. In panel A, we show the normalized histogram of the data
along with its kernel estimation plotted on a logarithmic axis. In contrast, panel B shows
normalized histogram and similar kernel estimation for the log values. The substantial and
significant difference between the two kernel density estimates is clearly evident.

×10-4

Figure 2. Normalized histogram, kernel density estimates, and swarmplot of (A) actual values for

population density and (B) the log of population density for 33 London boroughs. Note that the blue

vertical lines in the swarm plots show the mean of the true population density while the red vertical

lines show the mean of the log values with the difference between the two means, 〈ρ〉 − 10〈log10ρ〉,

13% of the value of the correct mean, 〈ρ〉.

5. Final Remarks

As outlined above, aside from employing flawed methodological design and incor-
rectly analysing data, Bettignies et al. appear to have a number of misconceptions as to the
nature of the urban scaling frameworks. We reiterate that we are sympathetic to the authors’
view that a better understanding of intra-city heterogeneity is required for policy purposes
when considering urban energy use. Particularly, we do not disagree with the statement
that “. . . urban energy use is complex and driven by a multitude of intra-urban drivers
which could benefit from studies exploring their heterogeneous intra-urban patterns”.
However, we strongly believe that the manner by which the authors arrive at this argument
is based on an unnecessary misrepresentation and misapplication of the urban scaling
frameworks that ultimately leaves their conclusions unsubstantiated.

Supplementary Materials: The Jupyter notebook and London data used in the creation of the

figures are available online at https://github.com/cip15ha/sustanability-comment (accessed on 28

March 2022).
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