This is a repository copy of On population-based structural health monitoring for bridges.
White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/185378/
Version: Accepted Version

Article:

Gosliga, J., Hester, D., Worden, K. orcid.org/0000-0002-1035-238X et al. (1 more author) (2022) On population-based structural health monitoring for bridges. Mechanical Systems and Signal Processing, 173. 108919. ISSN 0888-3270
https://doi.org/10.1016/j.ymssp.2022.108919
© 2022 Published by Elsevier Ltd. This is an author produced version of a paper subsequently published in Mechanical Systems and Signal Processing. Uploaded in accordance with the publisher's self-archiving policy. Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

On Population-based structural health monitoring for bridges

J. Gosliga ${ }^{\mathrm{a}, 1}$, D. Hester ${ }^{\mathrm{b}}$, K. Worden ${ }^{\mathrm{a}}$, A. Bunce ${ }^{\text {b }}$
${ }^{a}$ Dynamics Research Group, Department of Mechanical Engineering
University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
${ }^{b}$ Civil Engineering, School of Natural and Built Environment, Queens University Belfast, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland

Abstract

The maintenance and repair of bridges (and other large scale infrastructure projects) is a major area which could benefit from Structural Health Monitoring technology. Inspections on bridges can take a long time and require many people, and are therefore conducted infrequently. This low frequency of inspection leaves the chance that damage and dangerous critical failures can occur during the long timeframes between inspections. It might even be the case that an inspection fails to identify sub-surface damage. Therefore some form of continuous monitoring is desirable, especially if such systems can reliably detect sub-surface damage.

However, the application of SHM to bridges is made challenging by the cost and practicability of obtaining damage-state data for bridges. Over the lifetime of a single bridge, it is hoped that a critical failure will never occur, and only a small number of the possible damage states will occur. It is also unpractical to intentionally damage structures to obtain damage-state data.

Population-based structural health monitoring seeks to overcome the obstacle of the limited data available for a single structure, by allowing data to be shared between similar structures. Bridges represent an interesting challenge for PBSHM as each bridge is unique. As such, an assessment of how similar bridges are to each other is required. To provide this assessment, one must develop an abstract representation for each bridge, and using this to perform a comparison.

This paper describes the use of a general approach for assessing the similarity of structures, applied to several bridge examples which are representative of common types of bridges, to show that it can be applied in this field.

Keywords: Population-Based Structural Health Monitoring, Civil infrastructure, Bridge management systems, Data sharing

[^0]
1. Introduction

1.1. Existing bridge management systems

There are a number of recent studies reporting on the deficits of existing infrastructure; for example, a backlog of bridge maintenance works in the UK - identified in 2019 - will cost $£ 6.7$ bn [1]. Further, a French study showed that a third of 12000 state-maintained bridges across the country were in need of repair, and 840 were in danger of collapse [2]. In this context, managing bridges is a challenging task as there are many gradually ageing/deteriorating bridges, while the available maintenance budgets are in many cases constrained.

Currently, the bridges on a given network are managed via a system of periodic visual inspections undertaken by a bridge inspector. As part of this inspection, the different elements of the bridge are viewed and each element is assigned a condition score. Any damage present is noted and, where relevant, an appropriate repair is called for by the inspector. This information is then logged for each bridge on the network in a central database. Collectively, the system of inspections and the database are generally referred to as the bridge management system (BMS). The specifics of the BMS used varies between different countries/organisations [3]; however, the philosophy described above is common to them all. The BMS is then used by the bridge manager to identify top-priority maintenance, which in effect decides where the limited maintenance budget will be spent.

Unfortunately, not all bridge damage is readily identifiable via visual inspection, for example a railway bridge in Ireland [4] collapsed within days of an inspection, while a pedestrian bridge in Florida [5] collapsed only hours after an inspection. Therefore, the last two decades has seen a significant body of research into how much value sensor data could add to the existing management procedure. This work on the application of structural health monitoring (SHM) to bridges has seen many different approaches proposed, where the dynamic response of the bridge is analysed to identify the presence of damage. The proposed approaches tend to be either physics- based or data-based.

In broad terms, physics-based approaches exploit the underlying physics which govern the behaviour of the bridge to identify anomalous behaviour. For example, measuring acceleration $[6,7]$, displacement $[8,9]$, or rotation $[10,11]$. Physics-based approaches notionally have the advantage that a given model is applicable to all bridges. However, the application of physics-based approaches are often limited by either (i) small subtleties in the dynamic response for each individual bridge (for example, a boundary condition that does not exactly match the theoretical ideal) or (ii) confounding influences, such as environmental conditions.

Data-based approaches $[12,13]$ do not rely on any physical understanding so they are more robust to discrepancies between the model and the real world structure, or variations arising from environmental conditions. However, data-based approaches also have their limitations. Firstly, to implement supervised learning ${ }^{1}$ requires a range of normal condition and damage-state training data for that bridge. The necessary damage-state data are practically never available as collecting such data would involve allowing a real bridge structure to become (potentially critically) damaged. This issue means that in the vast majority of cases the data models will employ unsupervised learning, where the model is trained only on healthy-state data and subsequently looks for anomalous behaviour.

In a situation where an operator is only concerned with one bridge, this is a reasonable approach. However, if an operator were to have 1000 bridges, and 20 of these bridges are very similar (for example, all constructed as part of the same road scheme), then treating these 20 data models as entirely independent feels like a missed opportunity. If these 20 bridges are genuinely similar in their design and construction, then the dynamic behaviour of the bridges should be similar. Treating these 20 bridges as a population (rather than individual structures) opens up the possibility of identifying anomalous behaviour of a given bridge relative to the group. Work exploring how the behaviour of an individual structure to that of a population was of similar structures for the purposes of damage detection was carried out for a wind farm [14, 15]. Furthermore, if at some point in the future, one of the 20 bridges experiences damage and data are available for this event, these data can be used to improve the data models for all bridges within the population.

This pooling of data would massively leverage the available information and hence is a very attractive proposition. However, for it to be achievable it requires a systematic way to measure 'similarity' between bridge structures, otherwise one can not define the population of similar bridges. The next section describes such an approach where, initially, structures are represented as graphs before the graphs are then compared to calculate a similarity score.

1.2. Population-based structural health monitoring

The aim of Population-based structural health monitoring (PBSHM) is to increase the availability of data and models for solving SHM problems, by sharing these data between structures. In fact, if structures within a population of homogeneous structures (structures that are nominally identical), a single model can be used to describe the entire population [16]. However, to effectively transfer data and models between structures that cannot be considered homogeneous, a certain level of similarity

[^1]is required to avoid negative transfer [17]. Negative transfer occurs where classification labels are inconsistent between the source and target domains; for example, either each domain contains a different number of labels, or a pair of labels become switched. This could be thought of in an SHM context as mislabelling the damage location, type, or severity.

The question then becomes one of determining which structures are similar enough to share models and data. This is a question that requires a quantifiable answer. A method is therefore required for encoding qualitative information about the construction of a structure so that a quantitative analysis of the similarity of two structures can be performed.

The first step in the methodology applied here is to define the constituent parts of the structure and describe them using Irreducible Elements (IEs). These Irreducible Elements capture information about the geometry and material properties of each part of the structure. Naturally, these elements feature physical connections between one another, which are described by joints. Joints capture information about the physical connection between two elements, such as whether the connection is fixed (static) or free to move in some way (dynamic), as well as the location of the joint within the structure. Together, the Irreducible Elements and joints form an Irreducible Element model (IE model) [18] which describes the physical construction of the structure.

Once the IE model for a structure has been created, it will exist in a database. This database will feature methods (functions) that allow for automatic comparisons to be made between the various structures in the database. These comparisons are performed by treating the information stored in the IE model as an attributed graph. By treating the information as an attributed graph, existing graph comparison methods can be used [19, 20, 21] to quantify the similarity between IE models.

The method for converting a structure into an IE model (and the subsequent conversion of that IE model into a hypergraph for comparison purposes) is summarised in Section 2.

1.3. Contribution of this paper

In Section 1.1 the need for a new framework is described and Section 1.2 gives details on the work on PBSHM to date. The focus of this paper is to extend PBSHM to bridges and test whether meaningful comparisons can be made between real-world structures. This is not a trivial exercise, as these real-world bridge structures are much larger and have far more elements (e.g. by one or two orders of magnitude) than the simple 'toy' structures that have been modelled to date. Hence, the current work represents a significant validation of the PBSHM approach, testing whether this approach can be applied across a population of real-world structures. It was also important to test whether this approach generalised across different bridges. To that
end, five main bridge types (beam-and-slab, truss, cable-stayed, arch and suspension) are included, which cover the vast majority of bridge constructions.

Including various bridge types also made it possible to check whether the similarity scores between notionally similar bridges were sensible. To check this, an IE model was developed for a second beam-and-slab bridge, a second truss bridge and a second suspension bridge. The similarity scores between bridges of the same type were greater than the similarity scores between dissimilar bridges, which is in line with what one would expect based on engineering judgement. This the first time this approach has been applied to real-world structures and represents a potential step change in how bridges are managed.

The specific contributions of of the paper are:

- For the first time it is shown that PBSHM can credibly be applied to bridges, covering all the major types of bridge construction
- The systematically calculated similarity scores returned by PBSHM are shown to be sensible based on engineering judgement
- To accommodate some of the more complex bridge types, hypergraphs have been used for the first time within the PBSHM framework

These contributions are delivered via the sections below. Specifically, Section 2 summarises existing work that has been carried on PBSHM. Section 3 describes the bridges used in the study, the IE models prepared for each bridge and the resulting graphs. The graph comparison method used is described in Section 4. The results from the graph comparisons are given in Section 5.

The bridges studied in this paper are all real bridges. The beam and slab bridges (Figures 6(b), 20(a) and 20(g)), the truss bridges (Figures 8(b), 20(b) and 20(h)) and the tied-arch bridge (Figure 12(a)) are all on or over two lane highways in Northern Ireland. The cable stayed footbridge (Figure 10(c)) is over a two-lane highway in Exeter, UK. The two suspension bridges are recognisable as the Humber bridge (Figure 14(a)) in the UK and the Bosphorus bridge (Figure 20(i)) in Turkey.

2. Background on population-based structural health monitoring

This section provides some background information on PBSHM; this section provides only a brief overview of the process for creating IE models, since this process is described in depth for bridges in Section 3. This procedure follows that laid out in [18], with the main modification being the use of hypergraphs (described in Section 2.2.2), as well as the use of attributes (described in Section 4). This section also provides the graph definitions used in PBSHM that will be necessary for the rest of the paper.

Figure 1: The evolution from a real structure (a) to an IE model (b) (with elements labelled) and finally into the attributed graph of the structure (c).

Table 1: List of elements and their properties for Turbine 1. FRP here stands for Fibre-Reinforced Polymer.

Wind Turbine					
Name	Element ID	Material Class	Material	Geometry	Shape
Rotor blade	A	Composite	FRP	Beam	Aerofoil
Rotor blade	B	Composite	FRP	Beam	Aerofoil
Rotor blade	C	Composite	FRP	Beam	Aerofoil
Rotor hub	D	Composite	FRP	Complex	Rotor hub
Nacelle	E	Composite	FRP	Shell	Cuboid
Tower	F	Metal	Steel	Beam	Cylindrical
Foundation	G	Ceramic	Concrete	Plate	Cylindrical
Name	Element ID	Boundary	-	-	-
Footing	1	Ground	-	-	-

The numbers outside of the circles in Figure 1(c) label the joints in the structure, which represent the physical connection between elements. These joints also possess properties which provide the location of the joints in the structure (as $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates), as are listed in Table 2.

Table 2: List of joints and their properties for Turbine 1

Wind Turbine							
Joint ID	Element set	Coordinate	Class	Type	Disp. DoF	Rot. DoF	
1	$\{\mathrm{~A}, \mathrm{D}\}$	$(8,15,235.75)$	Kinematic	Bearing	$[\mathrm{x}, \mathrm{y}, \mathrm{z}]$	$[\mathrm{y}, \mathrm{z}]$	
2	$\{\mathrm{~B}, \mathrm{D}\}$	$(8,14,254)$	Kinematic	Bearing	$[\mathrm{x}, \mathrm{y}, \mathrm{z}]$	$[\mathrm{y}, \mathrm{z}]$	
3	$\{\mathrm{D}, \mathrm{E}\}$	$(10,15,253)$	Kinematic	Bearing	$[\mathrm{x}, \mathrm{y}, \mathrm{z}]$	$[\mathrm{y}, \mathrm{z}]$	
4	$\{\mathrm{D}, \mathrm{C}\}$	$(8,16,254)$	Kinematic	Bearing	$[\mathrm{x}, \mathrm{y}, \mathrm{z}]$	$[\mathrm{x}, \mathrm{y}]$	
5	$\{\mathrm{E}, \mathrm{F}\}$	$(15,15,250)$	Kinematic	Bearing	$[\mathrm{x}, \mathrm{y}, \mathrm{z}]$	$[\mathrm{x}, \mathrm{y}]$	
6	$\{\mathrm{~F}, \mathrm{G}\}$	$(15,15,5)$	Static	Bolted	-	-	
$\mathbf{7}$	$\{\mathrm{G}, \mathbf{1}\}$	$\mathbf{(1 5}, \mathbf{1 5}, \mathbf{0})$	Static	Clamped	-	-	

well as describing the nature of the connection between them; such joint properties

Also shown in Figure 1(c) is the boundary condition element (denoted by the circle with ' 1 ' inside) and corresponding joint (denoted by the joint label ' 7 ') which shows where a boundary condition, such as the ground, interacts with the structure. The exact nature of the boundary condition is actually described by the joint between the boundary condition and the relevant element of the structure.

For a more detailed description of this method the reader should refer to [18].

2.2. Graphs and hypergraphs

2.2.1. Definitions

As well as graphs, hypergraphs can be used to describe these IE models, as described in brief here, along with the necessary graph and hypergraph definitions for the paper [22].

Definition 1: A graph G is defined by a pair $G=(X, E)$, where X is a set of elements and E is a set of edges. In a graph, each edge in E connects exactly two elements in X; formally, $E \subseteq\left\{(x, y) \mid(x, y) \in X^{2} \wedge x \neq y\right\}$.

Definition 2: A hypergraph is a generalisation of a graph where an edge can join any number of elements. Formally, a hypergraph H is a pair $H=(X, E)$, where X still represents a set of elements, but E now represents a set of subsets called hyperedges, $E \subseteq \mathcal{P}\{X\} \backslash\{\emptyset\}$, where \mathcal{P} is the power set.

Definition 3: A graph G^{\prime} is said to be a subgraph of G, if $G^{\prime} \subseteq G$, which implies $X^{\prime} \subseteq X$ and $E^{\prime} \subseteq E$, likewise, a hypergraph H^{\prime} is said to be a subhypergraph H, if $H^{\prime} \subseteq H$. Subgraphs (resp. subhypergraphs) are created by taking a subset of elements and hyperedges (resp. hyperedges) from the original graph (resp. hypergraph).

Figure 2: In a graph (a), each edge (solid black lines) connects exactly two elements (black circles). In a hypergraph (b), each hyperedge (shaded areas) connects any number of elements.

Definition 4: A subgraph (resp. subhypergraph) G^{\prime} is said to be induced if for a subset of elements X^{\prime} from G the edge set E^{\prime} contains all edges from E that have both endpoints in X^{\prime}, formally $E^{\prime}=\left\{(x, y) \in E \mid x, y \in X^{\prime}\right\}$.

Definition 5: The neighbourhood N of an element is the set of adjacent elements. For a graph,this is defined as $N(y)=\{x \in X \mid(x, y) \in E\}$.

Definition 6: A graph (resp. hypergraph) is said to be connected if there exists a path from any one element to all other elements in the graph (resp. hypergraph).

2.2.2. Use of graphs and hypergraphs in population-based structural health monitoring

Hypergraphs feature hyperedges, which can connect any number of elements (Definition 2); whereas, a graph features edges, which only ever connect two elements (Definition 1). As such, graphs are used to represent networks such as internet connections or social networks where each relationship is considered as only linking two elements. An example of a graph is shown in Figure 2(a). Hypergraphs, on the other hand, are used to represent data where a single relationship may link multiple elements, for example hyperlinks on a webpage or paper citations. An example of a hypergraph is shown in Figure 2(b).

Hypergraphs are useful for describing IE models, as there are certain cases where it is convenient to consider a single joint (edge) as connecting multiple elements. One such case is in truss structures, where multiple elements meet at either bolted or welded joints. A truss structure, as well as the resulting hypergraph, is shown in Figures 3(a) and 3(b) respectively.

It would also be possible to represent all the elements as being linked to only one other element to create a graph. However, this would create a more complicated graph, and

Figure 3: Panel (a) shows a truss structure with four elements $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ all meeting at the same point $\left(e_{1}\right)$. Panel (b) shows the same truss structure, where e_{1} is now represented as a hyperedge connecting all four elements of the truss structure.
may not be necessary to differentiate different structures. There is an argument that the web itself here could be considered as another element, thus creating a graph. In the final database implementation, it will be possible, where desired, to model every part of the structure using an element.

However, in structural analysis or truss structures, the web is not usually considered, and this is also typical in early stages of bridge design. By allowing multiple elements to be specified in an abstract hyperedge, flexibility is given to the user to reduce the detail in the IE model, where including such detail is not relevant to the comparison and would result in a more complicated IE model than is necessary.

2.2.3. Visualising hypergraphs

Hypergraphs can be visualised using different coloured areas to represent hyperedges; however, for more complex hypergraphs, this soon becomes unclear with multiple areas overlapping and elements becoming obscured. Hypergraphs can also be visualised using dummy vertices to represent the hyperedges, as shown in Figure 4. Again, with hundreds of elements and hyperedges, this would soon become incomprehensible.

One method that clearly shows the connections in the hypergraph, even when they become complex, is the Parallel Aggregated Ordered Hypergraph (PAOH) visualisation method [23]. In this method, the elements of the hypergraph are represented as rows and the hyperedges are represented as vertical lines with points where they connect to an element, as shown in Figure 5. The method was developed to visualise the evolution of $18^{\text {th }}$-century business relationships over time. This visualisation method is useful for bridges, as their IE models often result in complex hypergraphs that are

Figure 4: A hypergraph plotted using dummy vertices $\left(e_{1}, e_{2}, e_{3}\right)$.

Figure 5: This figure represents the same hypergraph shown in Figure 2(b), but here the PAOH visualisation has been used, as generated using software on http://www.di.uniba.it/~buono/ paohvis/paoh.html.
not easy to visualise using other methods, such as the dummy vertex or shaded area method.

3. Creating Irreducible Element models for five common bridge types

This section focuses on creating IE models for bridges of varying types, for the purpose of testing the ability of the attributed graph (or hypergraph) to represent different bridges and the ability of the chosen hypergraph comparison method to identify differences between them. Bridges can vary significantly in construction; therefore, a series of bridges are selected that can be categorised into five main types of construction. There could be arguments for more types of bridges to be defined; however, for the purpose of testing the application of PBSHM to bridges, the five categories are sufficient for capturing a range of bridge topologies. A summary of the five types are given in Table 3, and a description of preparing the IE models for them is provided in Sections 3.1 to 3.5 .

Table 3: A table providing brief descriptions of the bridge types modelled in this study.

Bridge type	Description
Beam-and-Slab	These bridges are made up of two abutments (potentially with a number of intermediate piers). The deck is supported by longitudinal beams spanning between the supports. This is a very common type of bridge.
Truss	Variations within this type include the type of truss, the support conditions of the truss, and the location of the truss relative to the deck, e.g. the deck of truss bridges can be at the top, bottom, or middle of the truss.
Arch	An arch bridge is one where the deck is supported by one or more arches spanning between supports. The deck of an arch bridge tends to be either above the arch supported on struts, or below the arch supported on hangers.
Cable-Stayed	A cable-stayed bridge is one where the deck is supported by cables that connect directly to the pylon(s).
Suspension	Suspension bridges feature at least two towers with main cables running between them, anchored at abutments, with the bridge deck suspended from the main cables by hangers.

3.1. Beam-and-slab bridge

3.1.1. Beam-and-slab bridge description

The beam-and-slab bridge presented in this section is a real integral abutment beam-and-slab bridge in Northern Ireland. As an integral abutment bridge, the skeletal abutments are designed to flex with deck movement. A schematic of the elevation of the bridge and a photo of the bridge are shown in Figures 6(a) and 6(b) respectively. The vertical break lines in Figure 6(a) indicate the parts of the bridge that are shown in more detail in Figure 6(c), where a 3-D schematic of the bridge's North abutment and intermediate pier are shown in the left and right of the figure, respectively. The South abutment is not shown, as it is merely a mirror image of the North abutment. The abutment and intermediate pier each comprise a foundation slab and four columns with a cap beam on top. In practice, the columns in the abutment are encased in concrete sleeves with an annulus of air between the interior of the concrete sleeve and the exterior of the column as is typical of integral bridge construction. However, for ease of visualisation the concrete sleeve is omitted from the diagram. The facing of the abutment evident on the left of Figure 6(b) is provided using a reinforced earth wall. The deck is formed using four precast concrete U-beams which sit on the cap beams, and are fixed in place by cast in-situ diaphragms. The diaphragms are cast at the same time as the deck slab, thus providing a fixed connection between the precast

Figure 6: Beam-and-slab bridge: (a) schematic elevation of the bridge, (b) photo of the bridge and (c) stepped sections of the North abutment (left) and intermediate pier (right) annotated with Element and Joint IDs.
concrete U-beams of the deck, the deck slab, and cap beam. The element and joint

3.1.2. Beam-and-slab bridge: Irreducible Element model and Attributed Graph

Figure 6(c) shows the basic components of a beam-and-slab bridge. To convert this representation into an IE model, each element is first given a unique identifier. The Element IDs (letters) and Joint IDs (numbers) are shown in Figure 6(c) using square and circular markers, respectively. The rationale for the labelling shown is discussed later when presenting information in Table 5. However, before looking at the labelling
in detail, it is useful to understand that for each element defined with unique IDs, it is necessary to also capture the material class, material, element type and shape of the element. Table 4 presents some material classes, and the associated materials. The selection of the material class will dictate the range of materials that can be chosen from.

Table 4: Sample presets of information to choose from for Material Class and Material for each element.

Material class	Material
Metal	Steel
	Copper Aluminium
Composite	Reinforced concrete Prestressed concrete

The remaining properties to be defined for each of the elements are element type and shape. As this study is focussed on bridges, the classifications presented are relevant for bridges. It should be noted that, in the context of PBSHM, this list is not exhaustive as other other element types and shapes are necessary when describing other structures such as wind turbines or aeroplanes. The element types encountered for the set of bridges modelled include: beam, column, wall, slab, plate and cable. The corresponding shapes of the elements include cuboid, cylinder and trapezoid (solid and hollow), and C, I, T and U (precast beam shapes).

To demonstrate the IE modelling procedure, Table 5 shows a sample of each of the main elements of the beam-and-slab bridge deck bridge annotated in Figure 6(c). The table shows the initial information captured for each element. To avoid repetition, not all elements of the bridge are shown. The rows have been numbered R1-R11 to aid in referencing the table of elements (the information for the joints will be discussed later in Table 7). Table 6 presents the list of boundary conditions defined for the beam-and-slab bridge in Figure 6.

The left side of Figure 6(c) shows the North abutment of the bridge and the right-hand image shows the intermediate pier support. When describing the elements comprising these structures, the element IDs have been assigned the first letters ' N ' and ' I ' respectively. Elements pertaining to the deck have been given 'D' as the first letter. A naming convention of this sort for the Element IDs helps with the mapping of joints, particularly when a bridge has a large number of elements and becomes more complicated for joint mapping.

Starting on the bottom of the North abutment (see Figure 6(c)), the first element is the pad foundation. This element is labelled as NA, and is identified as having a material class, material, geometry class and shape shown in row R1 in Table 5. The next elements are the columns on the pad foundation, identified as NB to NE.

Table 5: Element Table for elements shown in Figure 6(c), with additional column for Row number to aid discussion.

Row number	Description	Element ID	Material Class	Material	Geometry class	Shape
R1	Pad foundation	NA	Concrete	Reinforced concrete	Slab	Cuboid
R2	Column	NB	Concrete	Reinforced concrete	Column	Cylinder
R3	Cap beam	NF	Concrete	Reinforced concrete	Beam	Cuboid
R4	Diaphragm	DA	Concrete	Reinforced concrete	Beam	Cuboid
R5	Precast beam	DB	Concrete	Reinforced concrete	Beam	U
R6	Precast beam	DG	Concrete	Reinforced concrete	Beam	U
R7	Deck slab	DL	Concrete	Reinforced concrete	Slab	Cuboid
R8	Parapet	DM	Concrete	Reinforced concrete	Beam	Cuboid
R9	Pad foundation	IA	Concrete	Reinforced concrete	Slab	Cuboid
R10	Column	IB	Concrete	Reinforced concrete	Column	Cylinder
R11	Cap beam	IF	Concrete	Reinforced concrete	Beam	Cuboid

Once the elements of the bridge have been defined, and attribute information captured, the next stage is to define the boundaries of the structure (Table 6). The final stage

Table 6: Boundary Conditions of the first beam-and-slab bridge.

Element	Name	Boundary
Footing N	A	Ground
Footing I	B	Ground
Footing S	C	Ground

Table 7: Joints table for joints connecting members as annotated in Figure 6(c).

Joint ID	Element set	x-location	y-location	z-location	Type
1	NA, A	2.509331	20.349	6.2175	Soil
2	NA, NB	1.163573	21.849	1.593	Fixed
6	NB, NF	1.163573	25.924	1.593	Fixed
12	DA, DB	1.87143	29.049	1.62	Fixed
16	DB, DL	13.44143	30.0445	1.62	Fixed
20	DB, DF	25.01143	29.64	1.62	Fixed
24	IA, B	27.84933	20.477	6.2175	Soil
25	IA, IB	26.50357	21.477	1.593	Fixed
29	IB, IF	26.50357	28.29	1.593	Fixed
33	IF, DF	27.84933	28.865	6.2175	Fixed
35	DF, DG	28.01143	29.64	1.62	Fixed
59	DL, DN	30.98866	30.983	12.435	Fixed

is mapping the joints between the elements and, where relevant, boundaries of the structure (Table 7). The joints are numbered incrementally, and modelled as being at the centroid of where two elements meet. The location for the joint is defined using global X, Y and Z coordinates. The type of joint and its degrees of freedom are recorded, as well as the set of elements associated with the joint. A sample of the joints used in this model is provided in Table 7. As an integral-abutment bridge, each of the joints is identified as a fixed joint with no degrees of freedom associated (i.e. the joints are not designed to articulate), and as such, these columns have been omitted from Table 7.

Following the procedure outlined in Section 2.1, once the IE model has been fully described (using the approach shown in Tables 5 to 7), the next step is to convert the information into an attributed graph. No information is created or lost at this stage, it is simply rearranged to make it easier for the computer to perform comparisons between structures. The attributed graph (in this case) can be visually represented as either a simple graph as shown in Figure 7(a), or a hypergraph, as shown in Figure 7(b). The graph and hypergraph in Figure 7 are in fact identical; they have simply been visually represented in different ways.

Plotting structures as a simple graph, such as the one in Figure 7(a) has the advantage that the spatial and geometric significance (in relation to the real bridge structure) of
the graph topology is evident in a 2-D plot. The geometric significance of different groupings of elements are annotated on Figure 7(a) to show how they correspond to the actual bridge structure. However, visually representing the bridges as simple graphs has the disadvantage that, as the number of elements increases, the groupings become less evident.

To overcome this limitation, a hypergraph representation, such as the one shown in Figure 7(b), can be used. Visually, the groupings are not as immediately evident in the hypergraph representation as they are in the simple graph; however, by separating out the elements and hyperedges, the information in the hypergraph representation remains clear even with a large number of elements and joints.

The top row of Figure 7(b) concerns element DL, which is the deck slab (see Figure 6(c)). Every hollow circle on this row represents a connection that element DL has to some other element. Following the vertical lines dropping from these circles indicates which other elements DL is connected to. In total on the first row there are 15 hollow circles and this information is communicated as a summary bar chart down the left-hand side of the figure. The second and third rows show the same information for elements DF (diaphragm intermediate pier) and DA (diaphragm North abutment) respectively. The remaining rows show the connections for the remaining elements. The numbers (1-5) toward the bottom of the figure are the boundary conditions, so for example the bottom row shows that boundary condition 3 is connected to element SA which is the South abutment.

Due to the greater complexity of structures in the remainder of the paper, a hypergraph representation will primarily be used. In addition, for later structures, occasionally the joints will connect more than one element, which means they can no longer be plotted as simple graphs.

3.2. Truss bridge

3.2.1. Truss bridge description

The first truss bridge modelled is a simply-supported, single-span footbridge located in Northern Ireland and features a Warren type truss [24] for both walls of the bridge. In general, truss bridges are more complicated and feature more elements than a traditional beam-and-slab bridge, and multiple members may be considered as sharing the same joint.

Figure 8(a) shows a schematic elevation of the bridge and Figure 8(b) shows a photo of the bridge elevation. Figure 8(c) shows a 3-D view of a portion of the bridge, showing the vertical plane of the truss as well as the horizontal members connecting the North truss wall to the South truss wall. In this view it can be seen how several members connect at the same point. The blue circled joint has been reproduced in Figure 8(d) at a larger scale, to show a particular joint (59) that features six members connected

Figure 7: showing the attirbuted graph (a) where the elements in the attributed graph for the first beam-and-slab bridge have been labelled to show which sections of the bridge structure they correspond to, and (b) the same structure respresented as a hypergraph.

Table 8: Element information for the truss bridge.

Description	Element ID	Material Class	Material	Geometry class	Shape
Top Chord South truss	SF	Metal	Steel	Beam	SHS
Inclined member South truss	SL	Metal	Steel	Beam	RHS
Inclined member South truss	SM	Metal	Steel	Beam	RHS
Transverse canopy member	CB	Metal	Steel	Beam	RHS
Bracing member in canopy	CJ	Metal	Steel	Beam	RHS
Bracing member in canopy	CK	Metal	Steel	Beam	RHS

Table 9: Example of a multi-element connection in the truss bridge.

Joint ID	Joint set	x-location	y-location	z-location	Type
59	SF, SL, SM, CB, CJ, CK	6.1	26.6098371	2.5	Fixed

at the same location. The beam elements have been greyed out and replaced with red lines to represent the elements (running through the centroid of the sections), with the red dot representing the joint location, at the centroid of where the members intersect.

A naming convention similar to the one used for the beam-and-slab bridge in the previous section was used for this truss bridge. The bridge spans East to West, resulting in ' E ' and ' W ' labels for the supports, and ' N ' and ' S ' labels for the North and South truss walls which form the primary structure of the bridge. Deck members again have the label ' D '. Members pertaining to the canopy are labelled with ' C ', where canopy refers to the horizontal elements joining the two top chords of the two truss walls.

3.2.2. Truss bridge: Irreducible Element model and Attributed Hypergraph

The joint detailed in the top right of Figure 8(d) (Joint ID: 59) features a continuous top chord beam element (SF) connected to 2 of the truss wall members (SL and SM), as well as three of the canopy members, one lateral (CB) and two diagonal (CJ and CK). The information captured by the IE model is the same as in the previous section and this information is shown in Table 8 for the selection of elements shown in Figure 8(d). Table 9 shows the joint information for joint number 59. The main difference between the joints shown in Table 9 and the joints shown in Table 7 is that there are six elements meeting at a single point, where the beam-and-slab bridge only ever had two elements per joint. Having given examples of how to prepare the element table (Tables 5 and 8) and joint table (Tables 7 and 9) that make up the IE model, to avoid repetition these tables are not presented for the cable-stayed, arch and suspension bridges modelled in Sections 3.3 to 3.5 respectively. However, the procedure used is the same.

The hypergraph for the truss bridge is shown in Figure 9. Comparing the hypergraph representation for the truss bridge in Figure 9 to the hypergraph representation of the beam-and-slab bridge in Figure 7, the first observation is the number of rows

Figure 8: Truss footbridge: (a) elevation of bridge showing span, (b) photo of bridge elevation, (c) annotated stepped section of the bridge with top chord joint highlighted in blue and (d) zoomed and greyed out view of circled joint in (c) with element centroids drawn in red, joint location marked with red dot and element and joint IDs labelled (square and circle respectively)
in the table has increased from 37 to 109. This increase in rows is a result of the significantly greater number of elements required to describe the truss bridge. The second observation is that several of the vertical lines on the diagram intersect with multiple hollow circles. For example, the vertical line shown in grey relates to the elements shown in Figure 8(d), where the top hollow circle in the figure corresponds to element SF and, as one moves downwards, the circles correspond to elements CB , CK, and further down still, CJ, SL and SM.

Figure 9: Hypergraph representation of the truss bridge, with the hyperedge corresponding to the joint described in Table 5 highlighted.

3.3. Cable-stayed bridge

3.3.1. Cable-stayed bridge description

The example cable-stayed bridge is a footbridge, shown in Figure 10, and located in Exeter, UK. Figures 10 (a) and 10 (b) show the elevation and end elevation, respectively, and Figure 10(c) shows a photo of the bridge. Figure 10(d) presents a stepped section of the bridge deck and it can be seen that cables attach to the deck via 'transverse cable stay beams' which run below the main longitudinal girders. The deck is supported on transverse beams which run between the longitudinal girders.

3.3.2. Cable-stayed bridge Attributed Hypergraph

The IE model for this bridge was prepared using the same approach as in Section 3.1.2, and the resulting hypergraph is presented in Figure 11. For ease of visualisation, the figure has some annotation along the top to indicate the different zones within the figure:

- The first row of the figure corresponds to the West longitudinal girder. As was shown in Figure 10(d), the East longitudinal girder is connected to many transverse beams and is also connected to a smaller number of transverse cable stay beams. Each of these connections is represented by the vertical lines dropping from the circles along the first row. At the bottom of each vertical line is a circle on the row corresponding to the element to which the longitudinal girder is connected. Collectively, this results in a triangular shape on the left-hand side of the figure.

Figure 10: Cable-stayed footbridge: (a) elevation of the bridge, (b) end elevation (c) photo of the bridge and (d) part section of the deck with elements shaded and annotated.

- The second row of the figure corresponds to the West longitudinal girder and, as it is connected to the same elements as the East longitudinal girder, it results in an almost identical triangular shape.
- The third row of the figure represents the deck, which is also connected to the transverse beams so again a triangular shape results.
- The last portion of the graph, on the right-hand side, relates to the remaining elements of the bridge. In particular, the fourth and fifth rows of the hypergraph represent the legs of the pylon.

A quick inspection of Figure 11 reveals that the bridge has relatively few multi-element joints, i.e. not many lines that have multiple circles on them. This bridge has 77 elements, which is slightly fewer than the truss bridge described in the previous section, which had 109 elements.

Figure 11: Hypergraph representation of the cable-stayed bridge.

The hypergraphs are plotted in such a way that the element with the most connections is plotted on the top row. This is referred to as the 'degree of the element' and this will be discussed further in Section 4.

3.4. Tied-arch bridge

3.4.1. Tied-arch bridge description

The arch bridge used in this study is an East/West-spanning 103m-span steel tied-arch bridge, located in Northern Ireland. The bridge features two independent box-section arches, one at each side of the bridge. Longitudinal girders tie the arches at each end of the bridge and provide vertical support from hangers coming from the arch. The deck is supported by transverse beams at discrete intervals along the length of the longitudinal girders. Figure 12(a) shows a photo of the bridge, Figure 12(b) shows a labelled schematic of part of the bridge, and Figure 12(c) shows an elevation of the bridge.

3.4.2. Tied-arch bridge Attributed Hypergraph

The IE model for this bridge was prepared using the same approach as in Section 3.1.2, and the resulting hypergraph is presented in Figure 13. Again, for ease of visualisation the figure has some annotation along the top to indicate the different zones within the figure.

The first two rows of the hypergraph represent the longitudinal girders which connect to both transverse beams and vertical hangers. The third row represents the deck, which connects to the transverse beams. The fourth and fifth rows represent the

Figure 12: Tied-arch bridge (a) photo of the bridge, (b) shaded, stepped section of the bridge with labelled elements and (c) elevation of the bridge.

Figure 13: Hypergraph representation of the tied-arch bridge.
arches which are connected to the hangers. The remaining right-hand portion of the graph relates to the bridge abutments.

The hypergraph in Figure 13 has a number of similarities to the graph for the cablestayed bridge shown in Figure 11; specifically:

- The ladder deck arrangement in both is leading to triangular patterns associated with the longitudinal girders and the deck.
- Both bridges have relatively few multi-element joints, i.e. not many lines that have multiple circles on them.
- Both bridges have a similar number of elements: 86 elements for the arch bridge, compared to 77 for the cable-stayed bridge.

3.5. Suspension bridge

3.5.1. Suspension bridge description

The suspension bridge modelled for this study is the Humber suspension bridge (UK), with a total span of 2.22 km . The bridge comprises three spans of $280 \mathrm{~m}, 1,410 \mathrm{~m}$, and 530 m in a North-South direction. This bridge has a box-girder deck suspended from main cables by an inclined-hanger system. The towers comprise a pair of tapered legs and four cross beams, with foundations cast on hollow caissons. Figure 14(a) shows a photo of the bridge, Figure 14(b) shows an elevation of a tower, Figure 14(c) presents a section view of the North tower with element groups labelled, and Figure 14(d) shows an elevation of the bridge.

3.5.2. Suspension bridge Attributed Hypergraph

The suspension bridge features by far the largest number of elements and joints of any other bridge modelled in this paper, and as such, the hypergraph representation is much larger than for previous bridges. Whilst dense, the hypergraph shown in Figure 15 is still somewhat intuitive. The first row of the graph is the centre span of the bridge deck. The second row is the main cable on the West side of the centre span, and row three is the main cable on the East side of the centre span. The subsequent three rows represent the South span, and rows 7 to 9 , the North span.

As the deck connects to all hangers that also connect to the cables, the left-hand shape that begins at row one is similar to the next two shapes, that begin from rows two and three, combined. The fourth row is the deck for the South span and the fifth row is the deck from the North span. The $6^{\text {th }}$ and $7^{\text {th }}$ rows are the main cables from the South span and the $8^{\text {th }}$ and $9^{\text {th }}$ rows are the main cables from the North span, with the same similarity again emerging between four, 6 and 7 , as well as between five, 8 and 9 . The final portion of the graph, on the right-hand side, are the support

Figure 14: Suspension bridge, (a) photo of the bridge (b) bridge deck section showing elevation of the tower, (c) annotated stepped section of the north tower and (d) elevation of the bridge.
elements, such as towers and foundations. This was the largest graph produced so far, and tested the ability of the algorithm to cope with larger, more complex structures.

4. Graph comparison methods

4.1. Procedure for comparing two structures

Note: There is very little in this procedure specific to either graphs or hypergraphs. As such, to simplify the language in this section, the term 'graph' will be used to refer to both graphs and hypergraphs. Anything specifically relating to hypergraphs will be indicated as such.

Two bridges can be deemed similar if they share the same construction. To describe the construction of bridges it is useful to break them into elements. The structure (arrangement) of these elements and their material and geometric properties should provide a full description of the construction of the bridge. This gives a basis for determining similarity as if, for example, two beam-and-slab bridges share the same centre span construction, they should be considered more similar than any other bridges that feature a different design.

Therefore, the similarity scores described in this paper examine these two aspects of the bridges: the similarity of their structure, and the similarity of the materials and geometry within that structure. Two sets of elements will only be deemed identical if

Figure 15: Hypergraph representation of the suspension bridge.
their structure is the same (they are arranged, i.e. connected, in the same way) and their attributes (shape, geometry, material properties) are the same.

The set of elements that two bridges have in common represents the largest subcomponent (subgraphs in the AG) they share, whether this be an entire truss structure or simply a single pier of the same design that is common to both bridges. A large set of elements that are common to both bridges would suggest that the two bridges are similar. Two bridges that are completely different in design may only share the deck as a common subcomponent, whereas if two bridges are identical, this common subcomponent will be the entire bridge. The size of this subcomponent therefore gives an indication of how similar the two structures are.

As mentioned, there are two ways in which two sets of elements can be similar. The first way is if two sets of elements are connected in the same way, i.e. they have the same topology. The second way is if all the attributes for the elements in one set (e.g. shape or material properties, or both) are the same as the attributes of the elements in the second set (referred to as attribute matching). Information about the topology and attributes of a structure can be efficiently stored in the form of an attributed graph. In this paper, both the topology and attributes of the graph will be checked to determine the similarity of two bridges.

4.2. Description of graph-matching algorithm used

Graphs are used to describe the structure of the data, in this case the topology and attributes included in the IE model, and facilitate comparisons between structures. The graph for a structure can be further divided into subgraphs (Definition 3) for the purposes of comparison.

Subgraphs describe subcomponents within the larger structures, for example, there will be a section of the overall graph for a beam-and-slab bridge that describes a single pier. Possible subgraphs between two structures are compared to see if they have matching topology and attributes. This comparison is performed until the largest subgraph (and hence subcomponent) between two structures has been found. The largest subgraph between two graphs is known as the maximum common subgraph.

The process of finding the maximum common subgraph is referred to as graph-matching. There are various methods for performing graph-matching. The method used in this paper is an implementation of the algorithm described by [21]. This was chosen over the classic Bron Kerbosch algorithm [19] and even the modified version [20] for its superior computational speed and relative ease when it comes to implementing attribute matching.

The algorithm described by [21], can be applied to two graphs G_{1}, G_{2} to find the maximum common subgraph between them. The algorithm works by taking pairs of elements $\left(u_{1}, u_{2}\right)$, where u_{1} is an element from G_{1} and u_{2} is an element from G_{2}. Each
of these pairs is checked to see whether or not they can form part of the trial solution.

The checks performed are as follows:

1. The attributes for u_{1} and u_{2} must match. This ensures that the properties of the elements (material, geometric) are the same. For this paper, only one attribute was used for each element.
2. Both u_{1} and u_{2} are adjacent to elements in at least one other pair that already forms part of the solution. This ensures that the resulting maximum common subgraph is connected - see Definition 6
3. The neighbourhoods (Definition 5) of u_{1} and u_{2} must contain the same number of matched elements. This ensures that nodes in the resulting maximum common subgraph are adjacent, if and only if they are adjacent in both parent graphs. In simple graphs, this results is an induced subgraph - see Definition 4.

Figure 16 shows how the algorithm works. For the example shown in Figure 16, the attribute used for each element was the colour of the element. In the real bridge examples, the contextual labels were used as the attribute for each element. Contextual labels are attributes for an element that are purely human description, e.g. slab, beam, wall, column, that describe something of the function of that element within the structure.

The algorithm first selects 1 b , as this element has the highest degree in G_{1}, with a degree of 2 . The pair $(1 \mathrm{~b}, 2 \mathrm{~b})$ is formed as 2 b is one of the elements with the highest degree in G_{2}. The other possible starting element would have been 1 c as this also has degree 2 , resulting in the initial pair (1c, 2b). This would lead to a different solution being reported, but in this case both these solutions would be equal in length.

Once the starting pair (1b, 2b) has been chosen, the first check is performed to see whether the attributes for the elements in this pair match. In this case, both elements have matching attributes (they are both white) so the pair is accepted. The second check does not apply at this stage since there are no pairs in the solution already, so it is not possible to check adjacency. The third stage is passed since the neighbourhoods for both elements in the pair contain zero matched elements. Therefore, this pair is accepted into the trial solution.

Using ($1 \mathrm{~b}, 2 \mathrm{~b}$) as the trial solution, the algorithm then moves on element 1 c , since 1 c has the highest degree out of the remaining elements in G_{1}. (1c, 2a) is selected as 2a is one of the elements with the highest degree remaining in $G_{2}{ }^{2}$. The attributes of 1c and 2 a are then checked to see if they match. The attributes do not match, so this

[^2]

Figure 16: Illustration of the graph-matching algorithm. The colour of these elements can be considered as their attribute, with each element being either black or white. For $G_{1}, X_{1}=\{1 \mathrm{a}, 1 \mathrm{~b}$, $1 \mathrm{c}, 1 \mathrm{~d}\}$ and $E_{1}=\{(1 \mathrm{a}, 1 \mathrm{~b}),(1 \mathrm{~b}, 1 \mathrm{c}),(1 \mathrm{c}, 1 \mathrm{~d})\}$, and for $G_{2}, X_{2}=\{2 \mathrm{a}, 2 \mathrm{~b}, 2 \mathrm{c}\}$ and $E_{2}=\{(2 \mathrm{a}, 2 \mathrm{~b})$, $(2 \mathrm{~b}, 2 \mathrm{c})\}$. The figure shows each iteration of the algorithm, starting with the initial solution (1b, 2b), checking every possible pair to see whether it can form part of the solution and eventually reporting the solution: (1b, 2b), (1a, 2a).
pair is excluded from the solution. Remaining on element 1c, the next pair to try is (1c, 2c). Again, the attributes of these elements do not match so this pair is excluded from the solution.

The algorithm now moves onto element 1a in G_{1}. This then forms part of the pair (1a, 2a). These elements have the same attributes. They are also adjacent to both elements in a pair that already forms part of the solution, that is: 1a is adjacent to 1 b and 2 a is adjacent to 2 b . These elements both have exactly the same number of matched elements in their neighbourhood. This pair has passed all three checks and can therefore be accepted into the trial solution.
The algorithm now moves onto 1 d in G_{1}. This then forms part of the pair (1d, 2c) since 2c is the only element remaining in G_{2} that is not already in the solution. 1d and 2c have matching attributes so this check is passed. However, while 2c is adjacent to an element that forms part of the trial solution $-2 \mathrm{~b}, 1 \mathrm{~d}$ is not adjacent to any element in the trial solution, and so the pair (1d, 2c) is excluded from the solution. There are no remaining elements in G_{2} that aren't already part of the solution and can therefore be paired with 1d.

Since all of the elements in G_{1} have now been visited, this particular search is considered complete and the current trial solution is reported: (1b, 2b), (1a, 2a). If (1c, 2b) had been chosen instead at the start, the reported solution would have been: (1c, $2 b),(1 d, 2 c)$. These are both valid solutions for the problem of finding the maximum common subgraph. Finding all valid solutions involves backtracking to previous steps and trying the alternative combinations.

4.3. Graph-matching applied to the truss bridge and the beam-and-slab bridge

Applying the same procedure to the graphs for the truss bridge and the beam-and-slab bridge, one arrives at the solution: (ND, DF), (NC, IF), (NE, DB), (NS, DC), (DF, DD), (DJ, DE), (DL, DG), (SV, DK), and (SG, SF), where the first element in each pair comes from the truss bridge, and the second element comes from the beam-andslab bridge. Figures 17 (a) and 17 (b) show a reproduction of the hypergraphs from Section 3 for the truss bridge and beam-and-slab bridge, respectively, except this time the elements for each that are included in the maximum common subgraph have been highlighted.

In Figure 18, the maximum common subgraph is constructed using the elements for each graph. Taking the first element in each pair of the maximum common subgraph and taking the corresponding edges from the truss bridge graph gives the graph shown in Figure 18(a). Taking the second element in each pair and including the corresponding edges from the beam-and-slab bridge graph gives Figure 18(b). As expected, both graphs in Figure 18 have identical topology.

Figure 17: PAOH visualisation for (a) the truss bridge and (b) the beam-and-slab bridge with the elements in the maximum common subgraph highlighted in red.

Since element pairs are only included in the maximum common subgraph if they have matching attributes, it can also be assumed that the corresponding elements in Figure 18 (ND and DF, DL and DG, etc.) have the same attributes. The conclusion is that the graphs shown in Figure 18 are in fact, identical. Therefore, the collection of elements that form the maximum common subgraph (shown in Figures 17 and 18) in each graph can be considered to have a similar construction. This collection of elements in fact gives the largest subcomponent shared by both bridges.

Figure 18: The structure of elements in the maximum common subgraph, where this structure is found in (a) the truss bridge and (b) the beam-and-slab bridge.

It should be noted, that due to the considerable differences in the construction of the two bridges, this subcomponent does not carry a large amount of physical significance. Examining the elements, one sees that this MCS is made up of interconnected beam elements in both bridges. The algorithm has aligned some of the beam elements in the truss with pre-cast and other beam elements supporting the deck in the beam-and-slab bridge. The elements in the truss bridge are: truss wall braces SV and NS; bottom chord elements NC, ND and NE; transverse deck elements DF, DJ and DL; and a top chord element SG. The elements in the beam-and-slab bridge are: precast beams DD, DE, DG, DB, and DC; cap beams IF and SF; and diaphragms DF and DK. It is clear that there is little structural significance in associating these sets of elements, and instead they were associated simply because they represent sets of beams with identical topology.

4.4. Repeating the graph comparison procedure for all five bridge types

The analysis in Section 4.3 shows the maximum common subgraph for the truss bridge and the beam-and-slab bridge; however, it is possible to apply this procedure to every possible pairing of the bridges described in Section 3, including comparing the bridges with themselves, which naturally returns a maximum common subgraph which is identical to the bridge itself. The size of the maximum common subgraph found for each of these bridge pairs in shown in Table 10.

Table 10: The number of elements in the maximum common subgraph for each pair of bridges. Note that where bridges have been compared with themselves, this number is simply the number of elements in that bridge's hypergraph.

	Beam-and-slab	Truss	Cable-stayed	Arch	Suspension
Beam-and-slab	37	9	10	8	3
Truss	9	109	10	10	3
Cable-stayed	10	10	77	26	7
Arch	8	10	26	86	3
Suspension	3	3	7	3	476

4.5. Calculating a similarity score based on the size of the maximum common subgraph

For the purposes of demonstrating the graph comparison method, the Jaccard index will be used [25]. The Jaccard index was used because it is easy to implement and simple to understand.

This similarity index tells us how similar two sets of elements are, by comparing the intersection of the two sets with the union of the two sets. This is the number of overlapping elements compared with the total number of distinct elements. This can be expressed mathematically as

$$
\begin{equation*}
J(A, B)=\frac{|A \cap B|}{|A \cup B|}=\frac{|A \cap B|}{|A|+|B|-|A \cap B|} \tag{1}
\end{equation*}
$$

This means that the Jaccard index is essentially normalised with respect to the total number of elements and ranges between 1 and 0 . If the similarity index is one, then the two sets are the same. If the similarity index is 0 , then the two sets are completely different.

In this case, the elements are the elements in the two parent graphs. The intersection is then the maximum common subgraph, as these can be considered shared between the two graphs since they share the same attributes and topology. In the case of the truss footbridge and the beam-and-slab bridge, there are 109 elements in the truss footbridge and 37 in the beam-and-slab bridge. There are 9 elements in the maximum common hypergraph between these two, so

$$
\begin{equation*}
J(A, B)=\frac{9}{109+37-9}=0.066 \tag{2}
\end{equation*}
$$

5. Results

Figure 19 shows the resulting similarity scores for the five bridges presented in Section 3. The similarity scores in Figure 19 have been calculated using the method described

Figure 19: Shown are the resulting pairwise Jaccard similarity scores for the five bridges described in Section 3, calculated using the procedure described in Section 4. Cells which are green represent a close match between two bridges, while cells which are yellow indicate that two bridges are less similar.
in the previous section. The similarity scores between each bridge were calculated in the same fashion as for the truss footbridge and the beam-and-slab bridge, with the resulting similarity score of 0.066 shown (rounded to 0.07) in row 1 , column 2 of Figure 19.

As can be seen from Figure 19, where bridges are compared to themselves, they are identical and (as described in Section 4.5) the similarity score is 1 and appears on the diagonal. It can also be seen that between most bridges the similarity scores are relatively low, and in most cases are 0.1 or less. The highest similarity occurs for the arch and the cable-stayed bridges. Here, both the arch and the cable-stayed bridge have a ladder deck construction, which gives rise to the higher similarity score. The least similar bridge was the suspension bridge, which is unsurprising as it is far more complex than the other bridges.

In conclusion, it was possible to describe all five different bridge types using IE models, and successfully convert these to graphs. Using the graphs, it was possible to compare all of the five different bridge types. The results of the pairwise comparisons for all five bridge types gave similarity scores which matched reasonably well with physical intuition, albeit that it is difficult to have a great feeling for the significance of the numbers.

The next step was to include bridges that would be considered similar to bridges that already existed within the population, and check if they returned scores that were consistent with what one would suspect based on engineering judgement.

5.1. Revised table with extra bridges

This sub-section investigates the introduction of three additional bridges to the existing bridge population, assessing how the comparisons perform at identifying the similarities between bridges of the same type. Section 5.1.1 describes the three comparator bridges included, and Section 5.1.2 presents the results of the graph comparisons.

5.1.1. Comparator bridges used

Figures 20(a) to 20(c) show photos of the beam-and-slab, truss and suspension bridge originally presented in Section 3. Figures 20(d) to 20(f) present some key structural information about these bridges. Figures 20(g) to 20(i) show the three new comparator bridges that have been introduced to the study. Figure $20(\mathrm{~g})$ shows a beam and slab, and Figure 20(h) shows a truss bridge, both located in Northern Ireland. Figure 20(i) shows the Bosphorus bridge located in Istanbul, Turkey. Figures 20(j) to 20(l) present some key information about the new bridges.

- For the beam-and-slab bridges, the key difference between them is that the original bridge (Figures 20(a) and 20(d)) had skeletal abutments but the new bridge (Figures $20(\mathrm{~g})$ and $20(\mathrm{j})$) has bank seat abutments. In essence, the deck and intermediate pier of both bridges are quite similar, but the abutments are significantly different. There are also some smaller differences, such as the bridge in Figure 20(a) has four precast longitudinal beams per span, whereas the bridge in Figure $20(\mathrm{~g})$ has a slightly longer span and five precast beams per span.
- The two truss bridges are practically identical, with the main differences being (1) the new bridge has a 2 m shorter span than the original bridge and (2) the new bridge has piled foundations compared to the pad foundations of the original.
- The new suspension bridge is similar to the originally-modelled bridge (Section 3.5) in that it has a box girder deck and inclined hangers. However, the main span of new bridge is appreciably shorter (1074 m compared to 1410 m) and the back spans are supported on columns rather than being suspended from the main cables via hangers like the centre span.

5.1.2. Results including comparator bridges

Figure 21 shows the results of including the three additional comparator bridges in the analysis. The size of the maximum common subgraph found for each bridge pair is shown in Table 11.

- The two beam-and-slab bridges show a similarity score of 0.51 (circled in red in Figure 21). Intuitively, this feels a credible score as the middle portion of both bridges is quite similar, but the ends are significantly different. Also, the

Figure 20: Three of the original bridges from Section 3 and the corresponding three comparator bridges (a) original beam-and-slab bridge, (b) original truss bridge, (c) original suspension bridge, (d) elevation of original beam-and-slab bridge, (e) elevation of original truss bridge, (f) elevation of original suspension bridge, (g) comparator beam-and-slab bridge, (h) comparator truss bridge, (i) comparator suspension bridge, (j) elevation of comparator beam-and-slab bridge, (k) elevation of comparator truss bridge, (l) elevation of comparator suspension bridge. Sub-figure (i) is titled "Boğaziçi Köprüsü / Bosphorus Bridge" by Jun Seita and is licensed under CC BY 2.0.

Table 11: The number of elements in the maximum common subgraph for each pair of bridges. Note that where bridges have been compared with themselves, this number is simply the number of elements in that bridge's hypergraph. Some of the names of the bridges have been shortened to improve readability: beam-and-slab has been shortened to 'B\&S', cable-stayed is now 'Cable', and suspension is now 'Susp.'.

	B\&S 1	Truss 1	Cable	Arch	Susp. 1	B\&S 2	Truss 2	Susp. 2
B\&S 1	37	9	10	8	3	23	10	7
Truss 1	9	109	10	10	3	10	107	3
Cable	10	10	77	26	7	12	10	3
Arch	8	10	26	86	3	8	10	3
Susp. 1	3	3	7	3	476	3	3	249
B\&S 2	23	10	12	8	3	31	10	7
Truss 2	10	107	10	10	3	10	111	3
Susp. 2	7	3	3	3	249	7	3	304

Figure 21: Shown are the resulting pairwise Jaccard similarity scores for the five bridges described in Section 3 as well as the additional three comparator bridges described in Section 5.1.1, calculated using the procedure described in Section 4. Cells which are green represent a close match between two bridges, while cells which are yellow indicate that two bridges are less similar.

Beam-and-Slab 2 is slightly wider (five beams) than Beam-and-Slab 1 (four beams). The geometry of the elements and their materials was considered to be similar in this case.

- Truss 1 and Truss 2 have a similarity score of 0.95 (circled in black in creffig:results including comparator bridges). This high similarity score was expected, as these two bridges were deliberately selected to be very similar. The geometry of the members that make up the truss, as well as the materials used, were identical. The only two differences between these bridges was that they were different sizes, and that one featured pile foundations. If a high score was not returned here, it would cast doubt on the validity of the approach.
- Suspension 1 and Suspension 2 have a similarity score of 0.47 (circled in blue in creffig:results including comparator bridges). Again this seems reasonable as the main spans of both bridges are quite similar, but the back spans are different. In Figure 21, it is evident that the two suspension bridges show very low similarity to any bridge other than another suspension bridge. Considering the complexity of these two bridges relative to everything else, this is not surprising.

As the approach proposed here is new, it is difficult to have an exact feeling for the significance of the similarity scores. However, in broad terms, the magnitudes of the numbers discussed in the bullet points above appear to be consistent with what
one might anticipate based on engineering judgement, which is very encouraging. Admittedly eight bridges is a small sample and hence significant further work is required to be able to definitively prove the effectiveness of the approach.

6. Conclusions

This is the first time it is shown that PBSHM can credibly be applied to real-world structures. This is done by creating IE models for five different bridge types which are representative of the bridges that can be found in the real world. The general approach to defining IE models was shown to be possible for bridges and can successfully capture the different bridge types that one may find. The five bridge types examined were beam-and-slab bridges, truss bridges, tied-arch bridges, cable-stayed bridges, and suspension bridges. It was possible to describe all of these bridge types using the IE model framework model developed for PBSHM.

Once these representations had been created for bridges, the systematically calculated similarity scores returned by PBSHM are sensible/credible based on engineering judgement. The graph-matching algorithm successfully grouped bridges that were similar to one another. Beam-and-slab bridges were more similar to one another than to the other bridge types. The truss bridges were more similar to one another than the other bridge types. The suspension bridges were more similar to one another than the other bridge types. The cable-stayed and arch bridge were found to be more similar to one another, as they share a similar deck construction.

As mentioned in the introduction, this comparison of structures is necessary for defining when data transfer is possible between structures. It is believed that it should be possible to transfer data between bridges (or any other engineering structures) that are grouped together by the graph-matching algorithm, and that where bridges are not grouped, data transfer will be limited.

Another function of the graph-matching algorithm is finding the largest subcomponent common to two structures. In two structures that are similar, this subcomponent is likely to represent parts of the structure which exhibit similar behaviour, and therefore if damage states occur within this subcomponent in one bridge, it should be possible to use this information to inform damage classification in the other.

This paper also introduces the use of attributed hypergraphs as a generalisation of the attributed graphs featured in the other PBSHM literature. This paper briefly introduces how hypergraphs can be used to describe structures and also why visualising the data as hypergraphs is useful for complex structures such as bridges.

Acknowledgements

790 A number of the bridges presented in this paper are in Northern Ireland and hence we would like to express our thanks to Northern Ireland Department for Infrastructure for 792 their support, particularly Daniel Healy and his team in HSU. The authors would like to thank Graham Farrans Joint Venture, particularly Ross McWha, for their input and information on common highway bridges. The authors would also like to thank Devon County Council for their support in carrying out this work.

796 The authors would like to thank the UK EPSRC for funding through the Established Career Fellowship EP/R003645/1 and the Programme Grant EP/R006768/1. 798 The authors would also like to thank the UK EPSRC for funding through grant EP/R513118/1.

References

[1] D. Browne. Cost of bridge maintenance backlog is $£ 6.7 \mathrm{bn}$. https://www.transport-network.co.uk/Costof-bridge-maintenance-backlog-is-67bn/15557, 2019.
[2] R. Lobley. European bridge maintenance and safety. https://www.governmenteuropa.eu/european-bridge-maintenance/92201/, 2019.
[3] H. Habeenzu, P.J. McGetrick, D. Hester, and S.E. Taylor. Bridge management systems- a review of the state of the art and recommendations for future practice. In Proceedings of the Tenth International Conference on Bridge Maintenance, Safety and Management, 2020.
[4] Railway Accident Investigation Unit. Malahide Viaduct Collapse on the Dublin to Belfast Line, on the 21st August 2009, page 115. Railway Safety Commission, 2010.
[5] A. Mohammad. Investigation of March 15, 2018 Pedestrian Bridge Collapse at Florida International University, Miami, FL, page 115. U.S Department of Labor, Occupational Safety and Health Administration, Directorate of Construction, 2019.
[6] D. Hester and A. González. A wavelet-based damage detection algorithm based on bridge acceleration response to a vehicle. Mechanical Systems and Signal Processing, 28, 2012.
[7] A. González and D. Hester. An investigation into the acceleration response of a damaged beam-type structure to a moving force. Journal of Sound and Vibration, 332(13), 2013.
[8] D. Lydon, S.E. Taylor, M. Lydon, J. Martinez del Rincon, and D. Hester. Development and testing of a composite system for bridge health monitoring utilising computer vision and deep learning. Smart Structures and Systems, 24(6), 2019.
[9] T. Khuc and F. Necati Catbas. Structural identification using computer visionbased bridge health monitoring. Journal of Structural Engineering, 144(2), 2018.
[10] F. Huseynov, C. Kim, E.J. O’Brien, J.M.W. Brownjohn, D. Hester, and K.C. Chang. Bridge damage detection using rotation measurements - experimental validation. Mechanical Systems and Signal Processing, 135, 2020.
[11] D. Hester, J.W.W. Brownjohn, F. Huseynov, E.J. O’Brien, A. Gonzalez, and M. Casero. Identifying damage in a bridge by analysing rotation response to a moving load. Structure and Infrastructure Engineering, 16(7), 2020.
[12] M. Döhler, F. Hille, L. Mevel, and W. Rücker. Structural health monitoring with statistical methods during progressive damage test of S101 bridge. Engineering Structures, 69, 2014.
[13] B. Peeters and G. de Roeck. One-year monitoring of the Z24-bridge: environmental effects versus damage events. Earthquake Engineering and Structural Dynamics, 30, 2001.
[14] I. Antoniadou, N. Dervilis, E. Papatheou, A.E. Maguire, and K. Worden. Aspects of structural health and condition monitoring of offshore wind turbines. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, 2015.
[15] E. Papatheou, N. Dervilis, A.E. Maguire, I. Antoniadou, and K. Worden. A performance monitoring approach for the novel Lillgrund offshore wind farm. IEEE Transactions on Industrial Electronics, 62:6636-6644, 2015.
[16] L.A. Bull, P.A. Gardner, J. Gosliga, T.J. Rogers, N. Dervilis, E.J. Cross, E. Papatheou, A.E. Maguire, C. Campos, and K. Worden. Foundations of populationbased SHM, Part I: Homogeneous populations and forms. Mechanical Systems and Signal Processing, 2020.
[17] P.A. Gardner, L.A. Bull, J. Gosliga, N. Dervilis, and K. Worden. Foundations of population-based SHM, Part III: Heterogeneous populations - transfer and mapping. Mechanical Systems and Signal Processing, 2020.
[18] J. Gosliga, P.A. Gardner, L.A. Bull, N. Dervilis, and K. Worden. Foundations of population-based SHM, Part II: Heterogeneous populations - graphs, networks, and communities. Mechanical Systems and Signal Processing, 2020.
[19] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph. Communications of the ACM, 16:575-577, 1973.
[20] I. Koch. Enumerating all connected maximal common subgraphs in two graphs. Theoretical Computer Science, 250:1-30, 2001.
[21] Y. Cao, T. Jiang, and T. Girke. A maximum common substructure-based algorithm for searching and predicting drug-like compounds. Intelligent Systems for Molecular Biology, 24, 2008.
[22] R. Diestel. Graph Theory, 3rd ed. Springer-Verlag, New York, 2006.
[23] P. Valdivia, P. Buono, C. Plaisant, N. Dufournaud, and J.D. Fekete. Analyzing dynamic hypergraphs with parallel aggregated ordered hypergraph visualization. IEEE Transactions on Visualization and Computer Graphics, 27, 2021.
[24] W. Lin and T. Yoda. Chapter Eight - Truss Bridges. In Bridge Engineering, pages 137-153. Butterworth-Heinemann, 2017.
[25] P. Jaccard. Etude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin del la Societe Vaudoise des Sciences Naturelles, 37, 1901.

[^0]: *Corresponding author - j.gosliga@sheffield.ac.uk

[^1]: ${ }^{1}$ Supervised learning describes a machine learning task, where a function is learnt that maps an input to an output based on example input-output pairs.

[^2]: ${ }^{2}$ As with the first step, choosing 2c would lead to a different solution. The graph-matching algorithm will eventually explore all of these alternative choices and compare the resulting maximum common subgraphs to find the largest one. For simplicity, this backtracking procedure is not described here, but the interested reader can find the full procedure in [21].

