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Abstract

Automatic container handling plays an important role

in improving the efficiency of the container terminal,

promoting the globalization of container trade, and

ensuring worker safety. Utilizing vision-based methods

to assist container handling has recently drawn attention.

However, most existing keyhole detection/localization

methods still suffer from coarse keyhole boundaries. To

solve this problem, we propose a real-time container

hole localization algorithm based on a modified salient

object segmentation network. Note that there exists no

public container dataset for researchers to fairly compare

their approaches, which has hindered the advances of

related algorithms in this domain. Therefore, we propose

the first large-scale container dataset in this work,

containing 1700 container images and 4810 container

hole images, for benchmarking container hole location

and detection. Through extensive quantitative evaluation

and computational complexity analysis, we show our

method can simultaneously achieve superior results on

precision and real-time performance. Especially, the

detection and location precision is 100% and 99.3%,

surpassing the state-of-the-art-work by 2% and 62%

respectively. Further, our proposed method only consumes

70 ms (on GPU) or 1.27s (on CPU) per image. We hope

the baseline approach, the first released dataset will

help benchmark future work and follow-up research on

automatic container handling. The dataset is available at

https://github.com/qkicen/A-large-scale-container-dataset-

and-a-baseline-method-for-container-hole-localization.

1. Introduction

In an era featured by the globalization of production

and consumption patterns, the demand for container trade
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volumes has been increased [1]. In the last decade, the

growth of container trade volumes has far exceeded that

of global GDP (Gross Domestic Product), distinctly man-

ifesting an explosive trend [2]. Container terminals stand

at a compulsory step of container trade, its efficiency of

container handling has a great impact on container trade

volume. In container terminals, since crane cabins are

elevated at a great height, it is difficult for the crane operator

to alone complete container handling on the ground [3]. The

ground workers, therefore, need to assist the operator with

frequent observation and communication, which immensely

decreases the efficiency of container handling as well as

raises the labor costs. As is shown in a port performance

report [4], the global average productivity of one crane is

26.7 containers per hour, which represents the utilization

of just 50%. Therefore, designing a real-time automatic

container localization method becomes an urgent need since

it can greatly reduce the handling time and thus increase

the crane utilization rate. More importantly, long-time

manual work may cause work accidents. The investigation

in [5] shows from 2015 to 2020, accidents caused by

human factors account for more than half of all accidents

at container terminals. Based on these reasons, there is a

vital need for an efficient and safe automation method to

replace manual operation.

Convolutional Neural Networks (CNN), as one of the

most popular deep learning architectures, have been proven

effective in many computer vision applications [6]. Auto-

matic container hole detection using computer vision and

CNNs has also recently drawn attention [7–10]. Benefiting

from advances in object detection [11], detection-based

methods [9, 10] can detect the bounding box of the corner

casting or keyholes with high precision, but it is actually

hard to apply such methods in the container terminal. This

is because the container can only be grabbed when the

lock on the spreader falls accurately into the lock hole

of the container. In this process, the position of keyhole

center needs to be obtained. Accordingly, a pixel-level

keyhole localization method is necessary for automatic
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Figure 1. (a) is a real container keyhole and (b) is a miniature

container keyhole.

container handling. Existing hole localization methods [7,

8] try to obtain the edge of the holes through traditional

edge detection algorithms such as Canny Detection and

Hough Transformation [12]. However, real containers are

often corroded under harsh environments, making the edge

detection algorithm easily interfered by the rust around the

keyhole(Fig. 1).

Another limiting factor is that there is no public

container dataset for container detection/localization.

Research-ers have to waste a lot of time labeling their

private datasets. In addition, the absence of a public

dataset has also made it difficult for researchers to fairly

compare their approaches in the same benchmark. Hence,

we in this work hope to propose the first public large-scale

container dataset to facilitate related studies on container

hole detection/localization.

Formally, we propose a pixel-level keyhole segmenta-

tion approach with real-time performance in the container

terminals and hope it will serve as a benchmark for future

methods in the community. The method contains two

steps. In the first step, object detection model is designed

to detect the rough keyhole region from the container

image. In the second step, we propose a new Light-EGNet

model to segment the exact keyhole region, and then the

keyhole center can be accurately positioned by calculating

the centroid of its area.

To evaluate our proposed method and advance related

research, we release the first public large-scale container

dataset. In addition, we propose a new evaluation metric

which can convert the pixel deviation in the digital image

into the physical deviation from the hole center. Experi-

mental results show that our proposed method can simul-

taneously achieve superior results on precision and real-

time performance. Through comprehensive comparisons

with state-of-the-art works, our proposed method shows

the superiority by big margins and thus can be used as

a baseline for benchmarking future methods. We hope

the baseline approach, new released dataset and evaluation

metric will be helpful for benchmarking future work and

furthering related research on automatic container handling.

The contributions of this paper are summarized as follows:

1. Release the first large-scale publicly available con-

tainer dataset, containing 1700 real container images

and 4810 corner hole images.

2. Propose a new container hole segmentation method

based on a new Light-EGNet model, and verify its pre-

cision and real-time performance through exhaustive

quality and computational complexity evaluation.

3. Propose a strict practical metric for evaluating the

practical hole center deviation.

2. Related work

2.1. Object detection based on deep learning

Deep learning-based object detection not only focuses

on the position where the object exists, but also recognizes

the object class [11] . Its methods can be divided into

two classes, depending on whether to exist region proposal.

Two-stage detection methods, e.g. [13–15], first use region

proposal to generate potential bounding boxes in an image,

and then run a classifier on the region proposal to find a

probable object. Finally, post-processing is used to filter

the non-objected bounding boxes and duplicated objects

from all probable objects. One-stage detection predicts the

position and class of detected objects by the end-to-end

way. Typical one-stage methods include YOLO-based algo-

rithm [16, 17], FCOS algorithm [18], SSD algorithm [19],

etc. Compared with two-stage object detection, one-stage

methods have higher real-time performance while compro-

mising the detection precision slightly. However, regardless

of the one-stage or two-stage object detection model, the

model’s output is a bounding box containing the object but

cannot represent the object contour. Accordingly, simply

adaption of detection techniques to container detection will

suffer from coarse container keyhole localization [10].

2.2. Salient object segmentation

Salient object segmentation can capture the distinctive

region that attracts human attention from the complex

scene. In the perspective presented in [20], most salient

object segmentation methods can directly discover the most

salient object, while a few salient object detection methods

include two stages: detecting the salient object region and

segmenting the most salient object from that region. It is

worth noting that the salient object region can include one

or more objects. By means of pixel-wise segmentation, the

accurate contour of the most salient object can be obtained.

In particular, relying on deep network structures and deep

supervised learning at different convolutional hierarchies,
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salient object detection methods [21–24] perform remark-

ably on the evaluation benchmark of precision, such as

Precision-recall and F-measure [20]. In this paper, to satisfy

the real-time performance in the specific container handling

domain, we propose a modified edge guidance network

[24] named Light-EGNet and apply it to container keyhole

localization.

2.3. Vision­based Container Detection

Early research has well explored a variety of handcrafted

features [25, 26] to detect the container. Both Wei et al.

[25] and Yoon et al. [26] use a stereo camera to measure

the depth information of the container and then detect the

container edges through Hough line transform [27]. With

the in-depth study of container detection, later researchers

have tended to investigate how to detect tiny but crucial

features, e.g., container keyholes and corner casting. [7]

first utilizes color segmentation to extract the container

region from the background. Further, the coarse corner

casting boundaries are defined via calculation based on the

international standard of the shipping container size. Lastly,

the keyhole can be located by using the General Hough

Transform fitting algorithm onto ellipses [27]. However, in

the real terminals, such a method is sensitive to lighting,

view angles, etc. To enhance robustness, Mi et al. [28]

propose a sliding window algorithm for the right corner

casting detection, by first extracting the features of casting

in the right corner through HOG [29] and then using SVM

[30] to recognize the right corner casting. Finally, the

position of left corner casting can be obtained by mirror

algorithm. Although the mirroring algorithm can improve

the real-time performance, the process of sliding window

needs to traverse the whole image window by window, still

consuming a lot of time. In addition, the size of the sliding

window is a fixed default, lacking adaptations to changes in

view angles. To tackle this issue, Diao et al. [8] design a

new adaptive local sliding window algorithm to detect the

corner casting.

Benefiting from the ability of deep neural networks,

Lee et al. [9] apply the LSTM model [31] to improve

the detection efficiency. [10] also gets a similar real-time

performance through using YOLO algorithm [16]. All

existing deep learning-based methods focus on detecting

corner casting. However, only outputting the coarse corner

boundaries is not far enough to guide the crane to auto-

matically move the container. To this end, a pixel-wise

keyhole localization is essentially needed. The existing

keyhole localization methods [7, 8] rely on Canny edge

detection [32] and ellipses fitting method [33]. However,

such approaches can not guarantee location precision as

handcrafted features are sensitive to interference in actual

working conditions.

Container dataset. In [8], Diao et al. collect the images

Figure 2. Overview of container hole localization.

of the container miniatures as the dataset. In [9, 10, 28],

corner casting datasets are captured on a practical container

terminal. To our best knowledge, all previous corner

castings datasets do not be released. In addition, there is

currently no dataset labeling the keyhole contours. Thus

no comparisons can be conducted. More importantly, the

accuracy, generalization and robustness of a deep neural

network cannot be boosted due to a lack of sufficient large-

scale datasets. We, therefore, release the first public large-

scale container dataset.

3. Methodology

Inspired by [24], we propose a light edge guidance

network (Light-EGNet) for pixel-wise keyhole localization.

Given that segmenting the hole from the original inputs

will cause a huge computation consumption, we thus first

extract the bounding box of a keyhole using YOLOv4-tiny

[17], and then utilize edge guidance network to segment

the hole edge from the extracted coarse hole region. In

the second step, we note that directly adapting the original

edge guidance network (EGNet) [24] causes parameter

redundancy and heavy memory footprint, while directly

pruning the redundant layer compromises the precision (see

Sec.5.2). To eliminate the trade-off between precision and

speed, we propose a new light edge guidance network,

named Light-EGNet. Light-EGNet reduces the original

model parameters while still retaining the original keyhole

semantic features. The overview of the algorithm is shown

in Fig.2, in which the global coordinate of the keyhole

center (xo, yo) is calculated by Eq.1.

(xo, yo) = (xb, yb) + (xc, yc) (1)

3.1. Container keyhole detection

Container hole detection aims to extract the bounding

box of the container hole from the original inputs. Given
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that the YOLOV4-tiny object detection model [17], which

has achieved state-of-the-art performance in many real-

time applications [34, 35], is applicable to small networks

while maintaining optimal speed and accuracy, we adopt

it for keyhole detection. In order to improve the detection

speed of YOLOV4-tiny model, we resize the original image

resolution 960 × 540 to 416 × 416 as the model input.

We follow [17] to employ CSPDarkNet53-tiny [17] as the

backbone to extract the latent feature of container hole

since CSPDarkNet53-tiny matches almost all optimal ar-

chitecture features obtained by network architecture search

technique [36]. To have a good adaption of YOLOV4-

tiny to container hole detection, the semantic information at

different depths of the convolutional layer of the backbone

is used to predict container hole with different sizes. Then,

YOLO heads output the confidence score and position of

container hole. Finally, unreliable and duplicated container

hole can be eliminated by the threshold value of confidence

score and non-maximum suppression.

3.2. Container keyhole segmentation

In the second step, we aim to locate the hole center

though segmenting the hole region. EGNet [24] integrates

salient object features and edge features, thus can make the

predicted edge of the keyhole more accurate. However, the

original EGNet model is time-consuming for the specific

domain due to lacking the adaption to hole segmentation.

We, therefore, propose a modified EGNet model to solve

this problem.

3.2.1 Edge guidance network (EGNet)

The pipeline of EGNet is shown in Fig.3. VGG16 is used

as the backbone via truncating the last fully connected

layers and adding another side path to the last pooling layer.

Thus the six side features from the backbone network are

represented as Block1-2, Block2-2, Block3-3, Block4-3,

Block5-3 and Block6-3. Block N-M represents the N th

convolutional block in the backbone network containing M

convolutional layers. The side path S(1) is thrown away

and the other five side paths S(2), S(3), S(4), S(5), S(6) re-

mained as Block1-2 is too close to the input. For simplicity,

these five features could be denoted by a backbone features

set C:

C =
{

C(2), C(3), C(4), C(5), C(6)
}

(2)

where C(2) denotes the Block2-2 features and so on.

Progressive salient object features extraction module

(PSFEM). To obtain more robust features, three convolu-

tional layers and followed ReLu layer after each convolu-

tional layers are added on each side path (Conv in Fig.3).

Besides, deep supervision is used on each side path. A

convolutional layer is adapted to convert the feature maps

Table 1. Details of each side output in EGNet. T denotes

the ’Conv’ block. Each T contains three convolutional layers:

T1, T2, T3 and three followed ReLu layers. We show the kernel

size, padding and channel number of each convolutional layer.

D denotes the transition layer which converts the multi-channel

feature map to one-channel activation map. S denotes the side

path.

S T1 T2 T3 D

2 3 1 128 3 1 128 3 1 128 3 1 1

3 3 1 256 3 1 256 3 1 256 3 1 1

4 5 2 512 5 2 512 5 2 512 3 1 1

5 5 2 512 5 2 512 5 2 512 3 1 1

6 7 3 512 7 3 512 7 3 512 3 1 1

to the single-channel prediction mask and is denoted as D

in Tab. 1. The details of the convolutional layers are shown

in Tab. 1.

Non-local salient edge features extraction module(NLS-

EM). Given that Block2-2 can preserve better edge infor-

mation [37], the local edge information is directly extracted

from Block2-2. To restrain the non-salient edge, the top-

level location information is propagated to the side path

S(2) via a top-down location propagation. The fused

features C
(2)

can be obtained via:

C
(2)

= C(2) + Up(φ(Trans(F̂ (6); θ));C(2)) (3)

where Trans(∗; θ) is a convolutional layer with

parameter θ to change channel numbers and φ() is

a ReLU activation function. Up(∗;C(2)) is bilinear

interpolation operation to up-sample * to the same

size as C(2). F̂ (6) = f(C(6);W
(6)
T ) means the

enhanced features in side path S(6), where W
(i)
T denotes

the parameters in T (i). For simplicity, we denote

UpT (F̂ (i+1); θ, C(i)) = Up(φ(Trans(F̂ (i+1); θ));C(i)).
The enhanced features in S(3), S(4), S(5) can be computed

via:

F̂ (i) = f(C(i) + UpT (F̂ (i+1); θ, C(i));W
(i)
T ) (4)

where f(∗;W
(i)
T ) denotes a series of convolutional and

non-linear operations with parameters W
(i)
T . Similarly, the

final salient edge features FE in S(2) can be computed

as f(C
(2)

;W
(2)
T ). The loss for modeling the salient edge

feature can be defined as:

(5)

L(2)(FE ;W
(2)
D ) = −

∑

j∈Z+

logPr(yj = 1|FE ;W
(2)
D )

−
∑

j∈Z−

logPr(yj = 0|FE ;W
(2)
D )

where Z+ and Z− are the salient edge pixels set and

the non-salient edge pixels set, respectively. WD denotes

4



Figure 3. The pipeline of EGNet [24]. The thick red lines is represented information flows between the scales. PSFEM: progressive salient

object features extraction module. NLSEM: non-local salient edge features extraction module. O2OGM: one-to-one guidance module. FF:

feature fusion; Spv: supervision. S(i) represents the Nth side path and Block N-M represents the N th convolutional block in the backbone

network containing M convolutional layers.

Figure 4. The pipeline of Silly-EGNet model.

the parameters of the transition layer as shown in Tab. 1.

Pr(yj = 1|FE ;W
(2)
D ) is the prediction map in which each

value denotes the salient edge confidence for the pixel.

Similarly, the supervision of salient object detection can be

defined as:

L(i)(F̂ (i);W
(i)
D ) = −

∑

j∈Y+

logPr(yj = 1|F̂ (i);W
(i)
D )

−
∑

j∈Y−

logPr(yj = 0|F̂ (i);W
(i)
D ), i ∈ [3, 6]

(6)

where Y+ and Y− denote the salient and non-salient region

pixels set. Finally, the total loss of features extraction can

be written as:

L = L(2)(FE ;W
(2)
D ) +

6
∑

i=3

L(i)(F̂ (i);W
(i)
D ) (7)

One-to-one guidance module (O2OGM). O2OGM aims

to utilize the salient edge features to guide the salient

object features to have superiority on both segmentation and

localization. To this end, the salient edge features are fused

into enhanced salient object features in each sub-side path

to get the salient edge guidance features(s-features):

G(i) = UpT (F̂ (i); θ;FE) + FE , i ∈ [3, 6] (8)

Then the enhanced s-features Ĝ(i) can be calculated by

Eq.4. The loss of each sub-side output prediction map can

be calculated as:

L(i)(Ĝ(i);W
(i)
D′ ) = −

∑

j∈Y+

logPr(yj = 1|Ĝ(i);W
(i)
D′ )

−
∑

j∈Y−

logPr(yj = 0|Ĝ(i);W
(i)
D′ ), i ∈ [3, 6]

(9)

where WD′ denotes the model parameters in O2OGM.

Then, the multi-scale prediction graph is fused to obtain a

fusion graph, and the loss of this step is:

L
(i)
f (Ĝ;WD′) = σ(Y,

6
∑

i=3

βif(Ĝ
(i);W

(i)
D′ )) (10)
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Figure 5. The pipeline of Light-EGNet.

where the σ(∗, ∗) denotes the cross-entropy loss between

prediction map and saliency ground-truth. Thus the loss for

O2OGM (L′) and the total loss for EGNet ((Lt)) can be

written as:

L
′ = L

(i)
f (Ĝ;WD′) +

6
∑

i=3

L(i)(Ĝ(i);W
(i)
D′ ) (11)

Lt = L+ L
′ (12)

3.2.2 The modifications of EGNet

Silly-EGNet. In the practical application of container han-

dling, keyhole localization has high real-time constraints.

However, it is hard for original EGNet to conduct real-time

hole segmentation, because EGNet has a deep backbone

network and five side paths, whose learned redundant

features cause huge computations consumption. Especially,

as the last two of the five side paths account for 60% of

the total parameters of EGNet, it is not essential to learn

such deep features for keyhole segmentation. Given that the

hole features are not intricate and container hole images are

small as input data, one natural choice for modifying EGNet

is directly pruning the backbone block and side paths with

redundant features. Specially, we prune the last two side

paths(S(5) and S(6)) and the corresponding convolutional

blocks (Blocks5-3 and Block6-3) in the backbone network,

and thus replace S(6) with S(4) for top-down location prop-

agation in NLSEM. The pruned architecture is shown in

Fig.4, named Silly-EGNet. Correspondingly, the backbone

features set C (Eq. 2) becomes:

C =
{

C(2), C(3), C(4)
}

(13)

The fused features C
(2)

(Eq. 3) become:

C
(2)

= C(2) + Up(φ(Trans(F̂ (4); θ));C(2)) (14)

Light-EGNet. Although Silly-EGNet can avoid heavy

memory footprint, it severely sacrifices location precision.

We suspect this is because Block4-3 is relatively near to

Block2-2, and thus the side path S(4) cannot propagate

the top-level location information to the side path S(2) in

NLSEM. To tackle this problem, we use a subpath S(4′)

instead of S(4) for the operation of top-down location

propagation. The new modified EGNet is called Light-

EGNet and its overview architecture is shown in Fig. 5.

The Block5-3 is added to provide to provide high-level

hole semantic information for subpath S(4′). Different

from EGNet and Silly-EGNet adding three convolutional

layers and three followed ReLu layers(Conv in Fig. 3, 4)

on each side path, only one convolutional layer and one

followed ReLu layer is added on subpath S(4′). Consid-

ering that keyhole edge feature information is simple and

not rich, choosing one convolutional layer is sufficient to

fuse its deep semantic features in comparing with ‘Conv’

containing three convolution layers. Also, less convolution

layer can reduce the floating-point operations consuming to

reduce its processing time. Similar to Tab. 1, the details

of the convolutional layers in Light-EGNet can be found in

Tab. 2. Thus its fused feature C
(2)

is denoted as:

C
(2)

= C(2) + Up(φ(Trans(F̂ (4′); θ));C(2)) (15)

where the enhanced features in subpath S(4′) can be repre-

sented as F̂ (4′) = f(C(5);W
(4′)
T ). Note that the subpath

S(4′) is only activated when obtaining C
(2)

via the opera-

tion of top-down location propagation in NLSEM. Thus the

total loss can be denoted as:

L = L(2)(FE ;W
(2)
D ) +

4
∑

i=3

L(i)(F̂i;W
(i)
D )

L
′ = σ(Y,

4
∑

i=3

βif(Ĝ
(i);W

(i)
D′ ) +

4
∑

i=3

L(i)(Ĝ(i);W
(i)
D′ )

Lt = L+ L
′ (16)
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Table 2. Details of each side output in Light-EGNet. T denotes

the ’Conv’ block. Each T contains three convolutional layers:

T1, T2, T3 and three followed ReLu layers. We show the kernel

size, padding and channel number of each convolutional layer.

D denotes the transition layer which converts the multi-channel

feature map to one-channel activation map. S denotes the side

path. Note that Silly-EGNet only have side S(2)
− S(4), not

including S(4′)

.
S T1 T2 T3 D

2 3 1 128 3 1 128 3 1 128 3 1 1

3 3 1 256 3 1 256 3 1 256 3 1 1

4 5 2 512 5 2 512 5 2 512 3 1 1

4′ 5 2 512 n/a n/a n/a n/a n/a n/a 3 1 1

4. Container dataset and benchmark metrics

4.1. Container dataset

We release two datasets: Container dataset and Con-

tainer Miniature dataset. The former is captured from the

real container yard, for holes detection/location. While

the latter is captured from the simulation laboratory, for

container/container holes detection. For more details about

Container Miniature dataset please refer to our preliminary

work [8]. The Container dataset consists of 1700 container

images marked with container holes and 4810 container

hole images marked with holes region, which both are

captured from the container station. Some examples of the

Container dataset can be found in Fig.6. The container

images are randomly selected from the video sequences. To

increase the diversity of the container dataset, we change

the view angels from time to time, and smoothly move

the camera along in either a horizontal or vertical direction

while keeping the container casting within the perception

field. Note that we add some slightly blurred images into the

dataset, which aims to simulate the real conditions, mean-

while, improve the generalization and robustness of the

models. The collected images are diverse in view angles,

lighting conditions, background and container texture. We

also release 144 video streams to encourage future studies

to draw attention to time-series data.

Keyhole detection. The collected containers have different

colors, appearance, and views. All container images are

annotated carefully. Specially, we use bounding boxes

to mark container hole on the container images, and then

generate the class label correspondingly, as shown in the

first two column of the Fig.6. Note that the size of

the bounding box should be slightly greater than that of

container hole so that the entire container hole can be

detected during the test.

Keyhole edge detection and hole center location. A lot

of rust around the container holes(the third column in Fig.6

is not only a challenge to the robustness of the models, but

also makes it difficult to mark the hole center directly. In

Figure 6. Examples(a-d) of Container dataset. The first column is

the raw container images; the second column is the images marked

the keyhole’s bounding box; the third column is the raw keyhole

images; the last column is the hole images marked the hole edge

region.

Figure 7. The process of labeling the hole edge utilizing Third-

order Bezier curves.

addition, the location precision may have a big deviation

from the ground truth if determining the position of the hole

center only relies on eye observation [8]. To tackle this

problem, third-order Bezier curves [38] defined in Eq.17

are utilized to match the hole edge, and the hole region(the

last column in Fig.6) enclosed by curves can be filled. The

process of hole edge matching is presented in Fig.7.
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B(i)(t) = (1− t)3P
(i)
0 + 3t(1− t)2P

(i)
1

+3t2(1− t)P
(i)
2 + t3P

(i)
3 , t ∈ [0, 1] (17)

where P
(i)
0 and P

(i)
1 represent the start point and the

endpoint of the curve i, respectively. P
(i)
2 and P

(i)
3 are the

control point for the curvature of the curve i. B(i)(t) is the

coordinate of the intermediate point of the curve. In Fig.6,

the matched hole is described by a mass of white area (the

fourth column), hole center (green point) can be calculated

by hole region centroid.

4.2. Benchmark metrics

Metrics for keyhole detection. We follow [9, 10] to

evaluate the container hole detection performance using

precision and recall rate, which are described in Eq.18-

Eq.19.

precision =
Nms

Ns

× 100% (18)

where Nms and Ns represent the number of correctly de-

tected container holes and the total number of the detected

container holes respectively.

recall =
Nms

Nm

× 100% (19)

where Nm represents the total number of container holes in

the dataset.

Metrics for keyhole localization. The existing keyhole

localization metric calculate the pixel deviation on digital

images [8]. But it is not applicable in the physical world

and thus can not be the localization criteria in actual

container terminals. To solve this problem, we release a

new adaptive metric which can convert the pixel deviation

into the physical deviation of the hole center:

l =
√

(x̂o − xo)2 + (ŷo − yo)2 ×

√

STrue

Spixel
(20)

pi =

{

1, l < δ mm

0, else
(21)

location precision =

∑Ns

i=1 p
i

Ns

(22)

where Spixel is the pixel region within the keyhole in the

image, STrue is the practical region within the keyhole.

Referring to [39], the practical area STrue is 3496.32mm. l

is the Euclidean distance deviation, δ is a fixed threshold.

If l < δ, we define the keyhole center localization is

corrected. According to the empirical results in container

yards, the deviations within 1.5 mm will not affect the

container handling, so we set δ = 1.5. The averaged

location precision can be calculated by Eq.22.

Table 3. Training settings for YOLOv4-tiny

Parameter Value

Number of epochs 100

Optimizer Adam(weight decay = 5e-4)

Learning rate adjustment strategy StepLR(stepsize=1,gamma=0.95)

Batch size 16

Learning rate e−3, e−4

Table 4. Training settings for EGNet-based networks

Parameter Value

Number of epochs 50

Optimizer Adam(weight decay = 5e−4)

Batch size 1

Learning rate 5e−5

5. Experiments

5.1. Setup

All experiments are conducted on the PyTorch platform

with one NVIDIA RTX 3090 GPU and Intel I7-10th CPU,

and evaluated on the new released Container dataset. We

follow a ratio of 80% and 20% to randomly split the dataset

into a train and test set. For training YOLOv4-tiny, we

follow the setting in [17]. We chose Adam optimizer and

StepLR learning rate adjustment strategy. The backbone

network of the model is loaded with pre-training weights.

The number of epochs was set to 100. In the first 50

epoch, the parameters update of the backbone are frozen,

the initial learning rate is e−3. In the last 50 epochs, all the

parameters were updated, the initial learning rate is e−4.

More details of YOLOv4-tiny training are shown in Tab.3.

For training EGNet-based networks, we follow the setting

in [24]. The gradients of the model parameters are updated

every 10 epochs. Further information about models training

is described in Tab.4.

5.2. Ablation study

The major variants of our model are EGNet-based net-

works with different components. Therefore, we first show

an ablation study to evaluate the performance of EGNet,

Silly-EGNet and Light-EGNet. The original EGNet [24] is

used as a baseline method. Both Silly-EGNet and Light-

EGNet are our proposed modifications for EGNet, whose

architecture details can be found in Sec. 3.2.2. Results

are shown in Tab. 5. The Silly-EGNet consumes the least

time but the location precision is 3.7% less than EGNet,

while as we will show in Sec.5.4, EGNet cannot directly be

applied to the practical terminals due to its terrible real-time

performance. In comparison with EGNet and Silly-EGNet,

Light-EGNet eliminates the trade-off between precision

and efficiency. Its average time is halved compared to

8



Table 5. Effectiveness of the different components on EGNet-

based models. Precision means location precision. Times means

the averaged testing time of one input for segmentation.

Location methods Precision(%) Times(s)

EGNet 99.5 0.038

Silly-EGNet 95.8 0.013

Light-EGNet 99.3 0.018

Figure 8. The results of EGNet-based salient object segmentation.

GT presents the ground truth of hole region.

EGNet, while the precision still reaches 99.3%, which is

only a 0.2% difference with EGNet. We suspect the reason

for superior results is that although we prune the model,

we still retain most of the high-level semantic feature

information, which can store more valid features utilizing

fewer network layers. The visual results in Fig.8 further

prove our assumption. The segmentation results from Silly-

EGNet often cannot retain complete keyhole edge, while

the Light-EGNet retains the complete hole segmentation

information like EGNet. We leave the computational

analysis to Sec.5.4. Unless specified otherwise, we use

Light-EGNet in our proposed method by default.

5.3. Evaluation results and comparisons

Since the container keyhole localization algorithm we

proposed is a two-stage method containing hole detection

and hole segmentation, we report and analysis its detection

and segmentation performance respectively. For evaluating

keyhole detection performance, we choose 4 recent the

state-of-the-art methods [7, 9, 10, 28] for comparisons. [8]

is excluded as their results on container miniature datasets

are difficult to fairly compare with other results on actual

container datasets. [9, 10] are deep learning-based methods

Table 6. Comparison with state-of-the-art methods. DP means

detection Precision, DR means detection recall and LP means

location precision.

Method DP DR LP

HOG+SVM [28] 97.63% n/a n/a

Binarization,morphology [7] 96.4% n/a 0.3%

RNN+LSTM [9] 98% 84% n/a

Improved YOLO [10] 96% 83% 37.3%

Ours(YOLOv4-tiny+Light-EGNet) 100% 100% 99.3%

and [7, 28] are methods based on hand-crafted features.

The results are shown in Tab. 6. We do not list the

processing time because the used devices are different and

their codes are also not public. We observe that our

method simultaneously has 100% detection precision and

recall, which outperforms all the other methods on detection

performance.

We next show the location performance. Unlike hole

detection algorithm only used for assisting manual oper-

ation, any localization method that cannot survive under

the strict practical location metric will not be applied

to automatic container handling. The existing keyhole

localization method [7] utilizes Canny edge and ellipse

fitting to segment the keyhole edge. We use [7] as a baseline

for comparison. Considering that bounding box-based

detection methods is a common strategy in the container

hole detection domain, we thus choose [10] as another

baseline. Because the code in [7, 10] are not public, we

reproduce their method and conduct on our newly released

Container dataset for a fair comparison. In practice, we

use YOLOv4-tiny to replace YOLO in [10] as they have

similar structure and YOLOv4-tiny has better detection

performance.

As is shown in Tab.6. Light-EGNet can achieve 99.3%

location precision, while [7] and [10] only have 0.3% and

37.3% location precision respectively. We further conduct

qualitative evaluation as shown in Fig. 9. The center

predicted by [10] obviously deviates from the true hole

center, and some predicted centers by [7] is even totally

far away from the true center(row (d), third column in

Fig.9). The huge performance difference between ours

and [7] is easily understandable as such hand-craft feature

detection is not robust to the rust around keyholes and

is sensitive to lighting, view angles, etc, while bounding

box-based detection methods [10] suffer from coarse obejct

boundaries. Light-EGNet focuses on the complementarity

between keyhole edge information and keyhole object in-

formation and thus naturally has better location precision.

5.4. Complexity and real­time evaluation

In order to make the model work on low computational

devices, it is important to reduce model complexity while

9



Figure 9. The visual comparisons with [7, 10]. The green point

represents the true hole center and the white circle represents the

predicted hole center.

Table 7. Complexity of EGNet-based models.

Method Parameters(M) GFLOPs Model Size(Mb)

EGNet 108 96.7 278.5

Silly-EGNet 37.3 42.3 182.0

Light-EGNet 45.5 55.7 217.0

Table 8. Real-time performance of the EGNet-based models on

various devices. Pre means location precision and Times means

the averaged testing time of one input. xxx/xxx is the processing

time pre/post AMP accelerating. Note that CPU I7-10th and GTX

1660Ti cannot use AMP due to lacking Tensor Core.

Reference Unit type Pre(%) Times(s) △T(%)

EGNet

RTX3090

99.5

0.038/0.021

N/AGTX1660Ti 0.12

CPU I7-10th 2.24

Silly-EGNet

RTX3090

95.8

0.013/0.0075 65.7

GTX1660Ti 0.05 58.3

CPU I7-10th 0.45 79.9

Light-EGNet

RTX3090

99.3

0.018/0.0093 52.6

GTX1660Ti 0.06 50.0

CPU I7-10th 1.20 46.4

still retain a high precision. Therefore, we count the number

of model parameters, floating-point operations (FLOPs)

and model size to evaluate the model complexity. FLOPS

represents the number of multiplication and addition opera-

tions in a forward propagation process, reflecting the model

complexity. For convolutional kernels we compute FLOPs

as:

FLOPs = 2HW (CinK
2 + 1)Cout (23)

where H ,W and Cin are height, width, and number of

channels of the input feature map, K is the kernel width

Table 9. Total time of the proposed two-step methods

Detection+Location Unit type Total times(s)

YOLOv4-tiny+EGNet

RTX3090 0.09

GTX1660Ti 0.19

CPU i7-10th 2.31

YOLOv4-tiny+Silly-EGNet

RTX3090 0.06

GTX1660Ti 0.12

CPU i7-10th 0.52

YOLOv4-tiny+Light-EGNet

RTX3090 0.07

GTX1660Ti 0.13

CPU i7-10th 1.27

(assumed to be symmetric), and Cout is the number of

output channels. For fully connected layers we compute

FLOPs as:

FLOPs = (2I − 1)O (24)

where I is the input dimensionally and O is the output

dimensionality. The number of model parameters and

saved model size reflect the complexity of model space.

The complexity evaluation are shown in Tab.7, and model

details can be found in Tab. 1, 2. Silly-EGNet and Light-

EGNet reduce the model complexity by about 50%. What’s

more, Light-EGNet utilizeS subpath S(4′) instead of S(6)

in top-down location propagation in NLSEM, which can si-

multaneously retain high-level location information(99.3%

location precision) and reduce redundant features.

Light-EGNet is expected to have a good real-time per-

formance on RTX3090 GPU with no surprise. We further

compare the processing time on GTX1660Ti GPU and

Intel I7-10th CPU, two commonly used devices in practical

applications. The experiment platform is Pytorch. In

order to compare the processing time, time-saving(△T ) is

calculated by Eq.25:

△T =
TEG − Tcom

TEG

(25)

where TEG represents the location time of EGNet model

and Tcom is the location time of the specific method for

comparison. We also adopt the automatic mixed preci-

sion (AMP) technique [40] to further speed up the infer-

ence process on GPU. Tab.8 shows the averaged testing

time for keyhole location and time-saving on devices with

RTX3090, GTX1660Ti GPU and i7-10th CPU. Fist, Silly-

EGNet has the best real-time performance, but heavily

compromise location precision. Unlike EGNet and Silly-

EGNet, Light-EGNet eliminates the precision-speed trade-

off. In addition, utilizing software optimization such as

AMP can further reduce the processing time of the EGNet-

based methods on GPU devices. In Tab.9, we show the

total time including detection and segmentation. We find

our proposed method can still easily meet the real-time

requirement on any device.
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6. Conclusion

To better further the future studies on automatic con-

tainer handling, we release the first large-scale publicly

available container dataset. Along with the dataset, a new

metric for evaluating the practical hole center deviation

is also released. Moreover, we propose a new baseline

approach, whose detection precision and location precision

reach 100% and 99.3% respectively in overall consuming

70 ms per image. Both the detection and location perfor-

mance surpass the state-of-the-art works. Note that only

our proposed method can survive under the strict practical

metric, demonstrating the great potential of salient object

segmentation-based methods. We expect the first released

dataset, new metric and the new idea of locating container

holes will shed a light on exploring automatic container

handling.
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