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The size, composition, and spatial distribution of both people and households have a 
substantial impact on the demand for and development and delivery of infrastructure 
required to support the population. Infrastructure encompasses a wide range of 
domains including energy, transport, and water, each of which has its own set of spatial 
catchments at differing scales. Demographic projections are required to assess potential 
future demand; however, official projections are usually not provided at a high level of 
spatial resolution required for infrastructure planning. Furthermore, generating bespoke 
demographic projections, often incorporating a range of scenarios of possible future 
demographic change is a specialist, resource intensive job and as such is often missing 
from infrastructure development projects. In this paper we make the case that such 
demographic projections should be at the heart of infrastructure planning and present a 
set of open- source models which can be used to undertake this demographic projection 
work, thus providing the tools needed to fill the identified gap. We make use of a case 
study for the United Kingdom to exemplify how a range of scenarios can be assessed using 
our model.

Introduction

Population and household estimates and projections are necessary to make informed decisions 
about infrastructure investments, from building new rail lines to broadband provision. The lo-
cation and the composition of the population dictates current needs and demands, while pro-
jected changes in the population will dictate future needs. There is also a feedback, whereby any 
changes to the current infrastructure might influence demographic decisions, driving future pop-
ulation change. For example, developing new transport infrastructure might make an area more 
accessible, and thus attractive, but this might also drive- up property prices which would change 
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the socio- economic composition of the area. We argue therefore that the estimation, modeling, 
and projection of demographic demand is an essential but often overlooked component of any 
project which is focused on the delivery of infrastructure projects or the assessment of current 
and future infrastructure needs.

A key issue in many countries is the lack of fine- scale and detailed population data avail-
able to help inform infrastructure plans. National Statistical Agencies (NSAs) around the world 
produce population estimates and projections; however, projections in particular are not rou-
tinely available at fine spatial scale. For example, in England and Wales, the Office for National 
Statistics (ONS) produce small area population estimates, usually released for the previous 
year, to a fine- scale Lower Super Output Area (LSOA) level (statistical areas which contain on 
average 1,500 people). However, population projections are only produced at a coarse Local 
Authority (LA) scale and the same is true for household projections (LAs denote the bound-
aries for local government and vary in population size, from around 2,500 to over 1.5 million 
people).

Additionally, there is a lack of flexibility in that the NSAs release pre- tabulated outputs, with 
models not generally available to be adapted to the specific needs of the infrastructure model-
ing team. This means that to assess different growth scenarios requires a bespoke demographic 
modeling solution. That demographic projections are needed at a local level for all kinds of 
applications is emphasized by Diamond, Tesfaghiorghis, and Joshi (1990), who make the point 
that many users will use official projections as a base and supplement these with additional in-
formation to deliver the detail they need.

Developing the models and providing the data needed for effective demand estimation and 
projection is the gap that the work outlined in this paper fills. We describe a comprehensive 
framework of open- source models for the projection of people and of households at fine spa-
tial scale for the whole of the United Kingdom, which can be flexibly adapted to incorporate 
a wide range of infrastructure planning scenarios. These high- resolution projections from the 
demographic models are then coupled with a land- use model which allows us to better under-
stand the spatial requirements and implications of the scenarios. Our models sit at the heart of 
a broader ecosystem called the National Infrastructure Systems Model (NISMOD) (Hall, Tran 
and Hickford 2016), with demographic data driving infrastructure demand models across a range 
of different sectors including transport, digital communications, energy, solid waste, and water 
supply. The modeling teams working on each of these different infrastructure sectors form the 
Infrastructure Transitions Research Consortium (ITRC), focused on creating a joined- up “sys-
tem of systems” model, providing tools and results which are helping to inform and shape the 
future of infrastructure development in the United Kingdom.

This paper sets out the methodology and rationale for the demographic models used by the 
ITRC and fulfils the following objectives: (1) to demonstrate that demographic estimates are 
an essential input to infrastructure demand models, (2) to provide an overview of a comprehen-
sive modeling framework that can be used by other modeling teams to produce demographic 
estimates and projections linked to land- use outputs, and (3) to demonstrate how that frame-
work can be used to explore a range of spatial development scenarios. This latter objective 
is fulfilled by providing a case study of development in the Cambridge, Milton Keynes, and 
Oxford development “Arc” in the United Kingdom, but the model is adaptable to other areas 
where sufficient data exist. The model can also be used to estimate demographic change across 
a range of other sectors outside of infrastructure where high resolution and bespoke data are 
required.
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Literature review

In the introduction, we outlined the need for detailed and customisable demographic estimates 
and projections when planning for infrastructure delivery. Here we deal briefly with water, trans-
port, and energy to demonstrate the utility of such data where they can provide detailed disag-
gregation in terms of geographical scale and demographic attributes. We also discuss methods 
and approaches used for small area projection and summarize the theoretical underpinning of the 
land- use model used to allocate the demographic projection data.

Demographic variation in demand
Water consumption varies by the socio demographic attributes of households, as discussed by 
Willis et al. (2013) in an Australian context, while Shandas and Parandvash (2010) make the link 
between socio- economic variables and water demand in a case study of Oregon. Custom forecasts 
of households were developed by Rees, Clark, and Nawaz (2020) for the purpose of forecasting 
domestic water demand in London and the Thames Valley. They argue for the necessity of hav-
ing good forecasts given that consumption is dependent on the number and type of individuals 
within households. They forecast population, households, dwellings, and then assess household 
and per- captia water consumption. For wastewater, Schlor, Hake, and Kuckshinrichs (2009) use 
three case studies to investigate sustainable development in the context of German population 
aging and decline. The challenge of “shrinking cities” when planning for water (and wastewater) 
infrastructure is covered by Faust, Abraham, and McElmurry (2016), Faust, Mannering, and 
Abraham (2016) who demonstrate that it is not only population growth which causes planning 
and delivery challenges, the reduced funding, and reduction in demand associated with popula-
tion decline causes its own set of problems.

Energy consumption differs by geography and household socio- economic composition 
(Druckman and Jackson 2008). Population size is a key input into an energy demand model 
developed for New Zealand by Mohamed and Bodger (2005), while population size is a 
determinant in predicting electricity consumption in Hong Kong by Fung and Rao Tummala 
(1993). At the aggregate level, energy consumption is found to be impacted by population 
size in a study covering a number of European countries (York 2007). However, they note that 
at the national level there is a high degree of elasticity and that as the population gets older, 
energy consumption increases. These findings which expand on the simple relationship be-
tween population size and consumption point toward a need for micro- level analysis. A model 
built for the assessment of local level domestic energy consumption is outlined by Cheng and 
Steemers (2011), which takes into account occupancy based on employment status and find 
that at LA level there was a relationship between energy consumption, household income, and 
socio- economic status. The demographic variables and features of the built environment are 
used alongside domestic electricity consumption data to create clusters of small areas (LSOA) 
within London Boroughs. The domestic gas consumption of these clusters is assessed, with 
reference to cluster characteristics, for example high consumption clusters contain a high 
proportion of detached houses, and low consumption clusters have lower household income 
and higher unemployment rates.

Metz (2012) discusses how per capita demand for travel has plateaued in many devel-
oping countries across all modes except air travel, with the result that increasing demand is 
driven by population growth and population aging. The spatial distribution of this popula-
tion growth is important, given that patterns of mobility differ between new development on 
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greenfield land and development in urban centers. Metz (2012) reports substantial decline 
in car use in London as rail and cycling infrastructure have been developed. Demographic 
change sits alongside, economic change, global fossil- fuel costs, and climate change in a 
transport demand model produced by Blainey and Preston (2019) which results in 504 dif-
ferent possible future scenarios. Transport is also an example of an infrastructure where the 
relationship is two- way, whereby development can drive demographic change at a local level. 
Debrezion, Pels, and Rietveld (2011) demonstrate that proximity to railway stations and the 
quality of provision (measured as the most frequented station even if this were not the clos-
est) have a positive impact on house price in the Netherlands. In an appraisal of the English 
rental market, Clark and Lomax (2018) find that shorter distances to railway or underground 
stations have the effect of increasing rental price.

Small area demographic projection methods
The above infrastructure specific examples demonstrate the need for detailed demographic esti-
mates and projections, which take into account both the spatial disaggregation and composition 
of the population. There are, however, some issues to overcome in the provision and use of these 
demographic estimates and projections. Firstly, demographic projections at a detailed spatial 
resolution are not readily available from official providers. This is partly due to a second key 
issue, which is the complexity of undertaking such projections at fine spatial scale. Third is that 
forecast uncertainty is larger for areas with small populations than those with larger populations 
(Cameron and Poot 2011) meaning considerable work is required to properly calibrate the mod-
els and communicate this uncertainty.

Cameron and Cochrane (2017) identify four broad categories of small- area projection meth-
ods, providing an assessment of the advantages and disadvantages of each. The first are “naïve” 
methods based on extrapolation or the allocation of a share of headline growth to small areas. 
The second is the widely used cohort component model. Third are statistical models of popula-
tion change and fourth is a group of techniques which fall within the category of urban growth 
modeling. The models presented in this paper draw strength from each of these categories, so 
we consider the broad context here and return to how each have informed our models in the dis-
cussion section of the paper. A subsequent review of small area projection methods over the past 
decade undertaken by Wilson et al. (2021) identifies similar broad headings, with the addition 
of microsimulation and machine- learning methods. We utilize microsimulation, but not machine 
learning in our models.

The naïve models include extrapolation of previous, observed trends in population 
change and the allocation of these extrapolated results to small areas, based on previously 
observed distributions (growth share models). The key criticism leveled at these approaches 
by Cameron and Cochrane (2017) is that they lack a strong theoretical basis given their deter-
ministic reliance on past trends, especially when used for areas that exhibit less predictable 
growth. Nonetheless, they have been found to perform well in terms of overall accuracy 
(Smith, Tayman, and Swanson 2013), often better than more complex methods such as cohort 
component models at a small area level (Smith and Tayman 2003) and have the distinct ad-
vantage of relatively low data requirements (Wilson et al. 2021) so can be applied in a broad 
range of contexts.

An increased level of complexity is offered by cohort component models, routinely used 
to produce population projections at national and regional scale (Rees et al. 2017; Lomax, 
Wohland and Rees 2020). These models age the population and then deal with each of the 
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demographic components (births, deaths, migration) separately by applying rates of change, 
disaggregated by demographic group. It is a cohort component model which provides the 
headline constraints for our model. Comparatively, these models have substantial data re-
quirements for each of the demographic components, and while this is seldom a problem at 
national and regional scale, these requirements are often too great to effectively use cohort 
component models for small area projections (Swanson, Schlottmann, and Schmidt 2010; 
Wilson, 2015).

Wilson et al. (2021) refer to as simplified cohort- component methods, namely cohort 
change ratios, of which the Hamilton- Perry method (Hamilton and Perry 1962) is widely 
used, e.g. by Swanson, Schlottmann, and Schmidt (2010) to project census tract populations 
in the United States. These methods are less data intensive than cohort component models, 
requiring as input age and sex population counts from two time points, usually derived from 
census data, from which the ratio change is calculated and then projected forward. However, 
in an assessment of methods used to project local government area population in New South 
Wales, Wilson (2016) concludes that an unconstrained Hamilton– Perry model is the least ac-
curate in a comparison of five different models, the Hamilton– Perry plus four cohort compo-
nent models which deal with the migration component in different ways. The best performing 
model in terms of lowest error is found to be a constrained bi- regional cohort component 
model.

While statistical models for demographic projection are attractive because they offer the 
opportunity to include contextual variables which might be relevant at small area scale, the re-
views offered by both Wilson et al. (2021) and Cameron and Cochrane (2017) point out that that 
regression- based models generally do not perform any better in terms of forecast accuracy than 
simple extrapolative methods. This has been demonstrated by Chi (2009) in a study comparing 
a regression model (including variables capturing small area characteristics) with simple extrap-
olative approaches, and Chi and Voss (2011) who additionally incorporated variables capturing 
the characteristics of neighboring areas. In both cases, the extrapolative methods outperformed 
the regression methods.

Microsimulation methods that deal with the demographic projection of individuals (or 
synthetic representations of individuals) rather than population groups/cohorts are becoming 
more prevalent in the small area projection domain. The strengths of taking a micro over 
a macro approach for population projection are addressed by Van Imhoff and Post (1998), 
namely that microsimulation allows for the inclusion of a large number of individual attri-
butes (which impact on demographic behavior) and are capable of producing richer output 
than macro models in the form of a database of individuals. Examples of implementation 
include a model for Ireland (Ballas, Clarke, and Wiemers 2005), for Britain (Ballas et al. 
2005), and for the London borough of Tower Hamlets (Lomax and Smith 2017). Further ad-
vantages of micromodels identified by Van Imhoff and Post (1998) are that they are better at 
dealing with interaction effects between variables, and between individuals; however, it could 
be argued that if these are requirements of a model then they are more appropriately dealt 
with within an Agent Based framework (e.g. see Wu and Birkin 2012). A recurring criticism 
of using microsimulation approaches for demographic projection is that they are extremely 
data intensive (Wilson et al. 2021) and by extension they are difficult to calibrate and validate 
(Ballas et al. 2005).

It is not unusual to combine methods to produce a more robust set of outputs. For exam-
ple Kanaroglou et al. (2009) combine the Rogers multiregional population projection model 
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(Rogers 2008) at the regional (municipality) level and an aggregated spatial multinomial 
logit model to better account for migration at small area (census tract) level for projections 
in Ontario. Similarly, there is considerable strength to be gained from producing a population 
projection using one method and then allocating that population to small areas using another 
model. Land- use models are often used to undertake that allocation, for example Cameron 
and Cochrane (2017) use population projections (the output of a cohort component model) at 
the Territorial Authority level for the Waikito region of New Zealand and allocate these to the 
smaller scale Area Unit level using a Cellular Automata (CA) land- use model. In their work, 
the CA apportions land in to four- hectare grid cells based on zoning constraints, suitability, 
accessibility, and the composition of neighboring cells to identify suitable locations for the 
population to be allocated. Similar approaches have been used by Tayman (1996) and Tayman 
and Swanson (1996). This is broadly similar to the approach we take in this paper, so further 
context the following section provides more information on the theoretical underpinnings of 
land- use models.

The development of land- use models
Population change is often closely linked to land- use change, and both are often driven by 
changes to transport infrastructure. Wegener (2021) reviewed models of land use and transport, 
demonstrating how changes of land use are driven by human activities. Briassoulis (2000) cat-
egorized models of land- use change by their underlying modeling tradition, be that statistical/
econometric, spatial interaction, optimization, or integrated. An in- depth review of land- use 
modeling approaches was offered by van Schrojenstein Lantman et al. (2011), highlighting the 
wide- spread adoption of Cellular Automata (CA) in land- use applications.

There is a long history of the use of CA modeling of land- use change and urban develop-
ment. Couclelis (1985) introduced the concept of cellular worlds to simulate dynamic geograph-
ical processes. Cecchini (1996) and Clarke, Hoppen, and Gaydos (1997) applied these concepts 
in practical implementations of CA simulations of urban land- use change. These concepts were 
further developed by Engelen, Geertman and Smits (1999) in a decision- support framework to 
explore land- use change using CA approaches, which were built- upon by White, Uljee, and 
Engelen (2012) to demonstrate the spatial interlinkages between population change and land- use 
change. Tong and Feng (2020) offer an up- to- date review of CA approaches to modeling urban 
growth.

The identification of suitable locations for land- use change arising from population 
growth through the spatial Multi- Criteria Evaluation (MCE) is an approach first suggested by 
Carver (1991). Malczewski (2004) further demonstrated how this approach could be used to 
identify suitability for land- use changes. The coupling of CA and MCE approaches to simu-
late land- use change has been previously described by Ford et al. (2019). By mapping land- 
use change at fine spatial scale, and making assumptions about the density of development, 
it is possible to simulate the distribution of population (and thus infrastructure demand) at a 
sub- zonal level.

Summary
This review has outlined how demand for infrastructure varies by geography and demographic at-
tributes to demonstrate that estimates and projections are needed to take this into account when 
planning for delivery. It has also discussed how, while there are not necessarily readily available 
official data at fine spatial scale, there is a long- standing interest in producing small area projections, 
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and that the methods used to develop these are varied and ever evolving. The link to land- use models 
as discussed is important for understanding the spatial allocation of projection outputs sub- zonally.

Material and methods

The demographic model structure comprises a number of standalone packages which form the in-
terlinked workflow, from the download and cleaning of data from a range of sources, through the 
creation of baseline synthetic population and household datasets, projection of the baseline, custom 
scenario generation, and data output. The packages and processes which form the workflow are out-
lined in Fig. 1 and we explain these in the next sub- sections. The ethos of the model from the outset 
has been to create an ecosystem of self- contained open- source packages that are well documented 
and produce reproducible results so that the models can be run by anyone. This means that the mod-
els are flexible and adaptable, rather than just providing data and outputs, and the project provides 
the tools to produce those data and users are then free to undertake any analysis they like. Links to 
the Github repositories are available below, where further detailed documentation and model code 
(published under an open MIT licence) is available to download and run.

Broadly there are six main phases to the workflow outlined in Fig. 1: Phase 1 involves down-
loading, cleaning, and making consistent population, household, and projection data for the United 
Kingdom; Phase 2 involves the creation of synthetic individual level population and household 
datasets which can be used as a baseline input for projection; Phase 3 involves the simulation and 
projection of populations and households over time at a fine spatial resolution; Phase 4 involves the 
creation of custom scenario constraints for projection; Phase 5 deals with the output and storage of 
demographic results; while Phase 6 allocates these demographic outputs to 1 hectare cells within the 
zone. The modular structure is designed in such a way as to allow for components to be updated, 
adapted, and even substituted entirely depending on user requirements.

Figure 1. A schematic diagram of the different software packages and how they fit together.
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Phase 1: Download, cleaning, and making consistent data (1a) and creating projection 
constraints (1b)
Demographic data for the United Kingdom is increasingly being made available from a range of 
sources, thanks largely to improvement in computing, storage, and the publication of application 
programing interfaces (APIs), which facilitate the automation of data download when develop-
ing software. There still exist, however, substantial inconsistencies in the format and accessibility 
of datasets produced by the NSAs which are responsible for data for different parts of the United 
Kingdom: The ONS for England and Wales, the National Records for Scotland (NRS), Statistics 
Wales and the Northern Ireland Statistics, and Research Agency (NISRA). These inconsistencies 
have been identified previously, see for example Lomax, Norman and Rees (2013) who construct 
a consistent set of internal migration estimates from data derived from the NSAs. In the past, pre- 
processing of demographic data was done manually, largely due to the difficulties of producing 
a “one size fits all” tool for dealing with inconsistent data and partly because the reproducibility 
of work in the social sciences is a relatively new, but very welcome, phenomenon (Hardwicke 
et al. 2020).

We discuss two packages in this section which occupy the right- hand side of Fig. 1: 
UKCensusAPI extracts and makes consistent census and mid- year population estimate data from 
a range of sources and UKPopulation extracts household estimate data and projection data (and 
produces constraining projection results). There is a third process which involves the aggregation 
of 2011 Census microdata and processing of survey data which has been implemented to produce 
a dataset used in the assignment of people to households.

Access, query, and make consistent baseline census data using the UKCensusAPI package
As a baseline, the estimates and projections need a consistent dataset containing counts of 
people and households at small area scale. This baseline is constructed from 2011 Census 
data, which are extracted by the UKCensusAPI package (Smith 2017). This package pro-
vides both a Python and an R wrapper around the API provided via Nomis (the web- based 
service provided by ONS for accessing labor market and census data), as well as the NRS 
and NISRA websites. UKCensusAPI allows for the querying of table metadata and auto- 
generating customized Python and R query code for future use. The automated cache down-
loads data modify the geography of queries and add descriptive information to tables (from 
metadata). For more information on the UKCensusAPI package on Github see https://github.
com/virge smith/ UKCen susAPI. UKCensusAPI feeds data directly to the packages ukpopula-
tion and household microsynthesis.

Access, query, and make consistent the official U.K. population projections using the 
ukpopulation package
The next step in the process is to download and make consistent the official projection data for 
the United Kingdom. These headline projections are needed because they form the constraints 
for small area projections. Having a model which is constrained to official estimates provides re-
assurance to users that the overall totals are in line with what they would expect to see from other 
sources. We do however offer an opportunity to create custom constraints which are independent 
from the official projections (Phase 4, discussed at section 2.4 and demonstrated later in the case 
study). Constraints are produced at LA scale in the first instance.

The ukpopulation package (Smith and Russell 2018) downloads and harmonizes the pro-
jection data from different sources. Projections here are comprised of the National Population 

https://github.com/virgesmith/UKCensusAPI
https://github.com/virgesmith/UKCensusAPI
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Projections (NPP), Sub National Population Projections (SNPP), and the Sub National Household 
Projections (SNHP). The other dataset used for constraining small area population estimates are 
the Mid- Year Estimates (MYE).

For population projection data, while the data sources are disparate, the basic attributes are 
consistent: a count of population by age, sex, and LA area. In creating the constraints for popu-
lation data, the steps are to:

• use MYE data up to 2018, disaggregated by age and sex.
• then use SNPP data up to 2041, disaggregated by age and sex.
• After 2041, extrapolate the SNPP using NPP data and age- sex structure where the NPP 

horizon is 100 years into the future.

The extrapolation of the SNPP using NPP trends is done independently for each age and sex 
in order to try to capture the age- sex structure and trends in the original population. Aggregation 
only takes place on the extrapolated age- sex specific values. This means that the trends shown by 
SNPP geographies with different age- sex structures will differ.

This methodology can be more formally explained by the following equation for the aggre-
gate SNPP S(g,y) for a given geography (g) and year (y):

where N is the NPP, a is age, s is sex, 
y
 is a reference year (typically the final year in the SNPP 

data), and c(g) represents a mapping from a SNPP geography (LA) to a NPP (country).
This method can also be used to create variants from the data. Fig. 2 shows the high (hhh) 

principal (ppp) and low (lll) projections for Newcastle LA. These are creating by taking the na-
tional variant (published in the ONS data), weighting by the age and sex structure in Newcastle 
(relative to the principal projection) and plotting the result.

The extrapolation methodology above can equally be applied to synthesizing SNPP variants 
from SNPP principal and NPP variant data. The equivalent expression to the above is:

S (g, y) =
∑

a

∑

s

S (a, s, g, y)
N (a, s, y, c (g))

N (a, s, y, c (g))

Figure 2. Example of the headline variants for Newcastle local authority district.
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where the subscripts v and 0 refer to the variant and the principal projections, respectively. In 
Fig. 2, the large points represent the SNPP data disaggregated by the NPP variant, and the smaller 
points represent the extrapolated data variants. Note that while these NPP data are available to 
the year 2118 and the extrapolation could continue to this point; however, we stop in 2065 for the 
purpose of this example. Anyone using these data will need to consider that uncertainty increases 
in line with the time horizon and that this method would need augmenting if a user wishes to 
project beyond the data points available in the NPP.

Household projection data are less consistent than the population projection data. Each 
country’s NSA provides projections of households, disaggregated by household type. However, 
there is not enough consistency between the definitions to produce a unified classification, so 
we instead use the definitions “as is” when producing the LA level constraints. This means that 
the categories used in the different datasets are maintained in the data used for constraint. No 
extrapolation, nor application of a national projection variant, is currently undertaken on these 
datasets. A detailed summary of the different methods and subsequently different outputs pro-
duced for each of the constituent nations of the United Kingdom can be found in ONS (2020). 
The definition disparities are summarized in Table 1.

In summary, ukpopulation provides the constraints at LA scale for the population estimates, 
population projections, and household projections produced by our model. Documentation and 
code for ukpopulation can be found at https://github.com/nismo d/ukpop ulation.

Preserving individual and household relationships in the simulation
There is a further process in Phase 1 of the model. This involves the aggregation of census mi-
crodata into a relationship matrix, which allows us to preserve the relationship between house-
hold reference person (HRP) and other household members, disaggregated by age, sex, and 
ethnicity. We also use data from the Understanding Society survey (University Of Essex 2020) 
to assess the relationship between household size and number of bedrooms needed for the base-
line projections. Because these datasets are safeguarded/licenced, we do not provide a process 
for the automated extraction of this matrix. This is one of the few manual steps in the workflow.

Creating synthetic microdata
Once data have been downloaded and cached, we can turn our attention to creating the base-
line microdata needed as an input to the projection models. Seen in the Phase 2 box of Fig. 1, 
this involves creating a synthetic, individual level population of households using the household 
microsynthesis package and a synthetic, individual level population of individuals using the hu-
manleague package (Smith 2018).

Generating synthetic household data using the household microsynthesis package
household microsynthesis is a Python package for creating household populations from cen-
sus data, including communal and unoccupied residences. household microsynthesis combines 
census data (fed from the UKCensusAPI package) on occupied private households, communal 
residences, and unoccupied dwellings to generate a synthetic population of households classified 
across a number of categories. The synthetic population is consistent with the census aggregates 

Sv (g, y) =
∑

a

∑

s

S0 (a, s, g, y)
Nv (a, s, y, c (g))

N0 (a, s, y, c (g))

https://github.com/nismod/ukpopulation
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at the specified geographical resolution and can be simulated from Output Area (OA) level up-
wards. The output data consists of a csv file containing the synthetic population where each row 
represents a single household. The code and documentation for household microsynthesis can be 
found at https://github.com/nismo d/house hold_micro synth.

Generating synthetic population data using the humanleague package
humanleague (Smith 2018) is a Python and an R package for creating synthetic populations from 
marginal and seed data using microsimulation. The package is implemented in C++ for perfor-
mance. Three microsimulation methods are offered to undertake the population synthesis within 
the package: the deterministic reweighting method of Iterative Proportional Fitting (IPF) (Lomax 
and Norman 2016), a probabilistic resampling method called Quasirandom Integer Sampling 
(QIS) (Smith, Lovelace, and Birkin 2017), and a hybrid approach called Quasirandom Integer 
Sampling of IPF (QISI). A worked example of the output can be found in Lomax and Smith 
(2017). Also see https://github.com/virge smith/ human league.

Projections
Using the synthetic data as an input, the processes outlined under Phase 3 in Fig. 1 are concerned 
with projecting the population and households forward through time. Households and individu-
als are handled separately, with an assignment algorithm which places people into households. 
Broadly speaking, the processes used in the main part of the workflow are static, in so much as 
they are time independent and reliant on the headline constraints calculated at LAD level to ad-
just a small area seed in each year that the projection is run. The projection of population, house-
holds, and the assignment is described in the documentation for the microsimulation package 
https://github.com/nismo d/micro simul ation.

Small area projections
Population projections are handled within the microsimulation package. A seed population of 
individuals at Middle Super Output Area (MSOA) level (which contain on average is fed through 
from the humanleague package and is adjusted to fit the local authority level constraints taken 
from either the ukpopulation package described above, or alternatively a custom projection vari-
ant derived from the SIMIM package described later. The simulated population is estimated by 
single year of age, sex, and ethnicity.

Household projections require as an input the synthetic household dataset generated by the 
household microsynthesis package. Households persist according to a survival probability and 
new households are created randomly to match the local authority level household constraints 
generated by ukpopulation.

The adjustment of the microdata can be undertaken using two different methods. The first 
is iterative proportional fitting. The second is quasi- random integer sampling. IPF is much faster 
so is used where a large number of areas need to be simulated. Quasi- random integer sampling 
is much slower so should be used if only a small number of areas need to be simulated or High 
Performance Computing (HPC) is available. The model can be run in parallel processing to 
speed up data generation for multiple areas at once.

Household assignment algorithm
The relationship between individuals and households is essential for (1) providing consistency 
between the two projections and (2) understanding the composition of households, which have 

https://github.com/nismod/household_microsynth
https://github.com/virgesmith/humanleague
https://github.com/nismod/microsimulation
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different infrastructure demands. Individuals are grouped into households by randomly sam-
pling the synthetic population to form distributions defined by census microdata. This preserves 
the relationship between age, sex, and ethnicity of the HRP and the age, sex, and ethnicity of 
other household members. This helps to avoid nonsensical or unlikely household combina-
tions such as children who are only fractionally younger than a parent. The effect is to largely 
preserve the distribution of household structures seen in the 2011 census but aligned with the 
household and population projections which are consistent with the projection constraint.

Of the household structures defined in the census, all contain one household reference per-
son, and some categories are more precise about the number and status of the occupants. For ex-
ample, single- occupant households must contain a single adult; single- parent households of size 
3 must contain one adult and two children. Conversely, multiple occupant households containing 
4+ occupants are less well defined.

Assignment means linking rows in two tables: the household table is given an additional 
column that refers to an entry in the person table, this is the HRP. The person table is given a col-
umn containing a household ID. Once assignment is complete, every person will be associated 
with a household, and every household will be associated with a HRP. The approach taken by the 
algorithm is to get the specific structures assigned first. Once a household is filled, it is marked 
as such and no more people can be assigned to it. The algorithm loops over the MSOAs in the 
LA, assigning people to households in the following order:

• First HRP, as this is the key link between people and households. We rely on distributions 
from census microdata that link the HRP characteristics with those of other members of the 
household.

• partners of HRPs are then sampled for the relevant households.
• children are then sampled.
• multi- person households are constructed.
• communal establishments are constructed.

At this point many households will be fully assigned, but there will generally be unassigned 
adults and children in the population. They are assigned to those households that are not already 
full.

Creating custom growth scenarios
There is often a need to create custom headline constraints that reflect changes which might be antic-
ipated at local level, for example the development of new housing, new jobs, or transport infrastruc-
ture. These custom constraints can replace those produced by the UKPopulation package. While any 
custom constraint could be introduced to the model (see Phase 4 in Fig. 1 for detail of where this 
fits in), we have created a scenario generation tool called SIMIM, a spatial interaction model (SIM) 
which takes into account user assumptions about the development of housing, transport connectivity, 
and the strength of the local economy in a specific area.

Internal migration is one of the most difficult demographic processes to model given that 
migration has an impact at both origin, where people leave, and destination, where people 
arrive. This complexity is further extended when there are changes to the infrastructure at 
either origin or destination. The provision of new housing, roads, or job creation can make an 
area more attractive, increasing the inflow of internal migration to that area as people move 
to take advantage of improved infrastructure. Conversely, these people move from other areas 
which are relatively less attractive, which has implications for the origin area.
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There is a rich history of modeling internal migration, taking into account the relative 
attractiveness of different areas using SIMs. The idea that areas that are closer to one another 
are more attractive than those which are further away from a human migration perspective 
was developed by Zipf (1946) as “gravity models.” Subsequent work by Wilson (1971) intro-
duced constraints at origin, destination, or both (termed doubly constrained models) which 
meant that limits could be imposed on the total outflow or inflow. A useful guide for the 
implementation of SIMs can be found in Dennett (2018). In their SMILE model of the Irish 
population, Ballas et al. (2005) note that the treatment of internal migration could be better 
handled using a SIM.

Our model SIMIM builds on these well- established principles and utilizes the SpInt module 
in the Python spatial analysis library (PySAL) (Oshan 2016). SpInt provides the functionality 
to produce both constrained and unconstrained models. We introduce the option to alter the at-
tractiveness of areas based on the number of new jobs created, the local distribution of regional 
Gross Value added (GVA) (as a proxy for relative economic strength), and number of new homes 
being built.

In order to generate scenarios of change, all of these factors can be varied in each year 
of the projection to be run. These can be set manually, but we have also produced a web- 
based user interface which allows for changes to an area to be set using this interface. This 
model interface was developed in collaboration with the Data Analytic Facility for National 
Infrastructure (DAFNI) and the interface is hosted on the platform (Hall 2019). An account 
of the DAFNI implementation of SIMIM can be found in Lomax and Smith (2020) but by 
way of example:

• Within a region of the United Kingdom, each LA area has a baseline projection (supplied 
via the UKPopulation package).

• A user can use the SIMIM interface to increase the supply of housing and jobs within an 
area to reflect a planning scenario. This can vary for each year of the projection.

• The user can also increase the GVA of that area (relative to other areas)— this is a proxy for 
economic growth and based on prior expertize, or is the output from some other economet-
ric model (as is the case in the example presented later in this paper). This can also be varied 
in each year.

• The user can then choose the type of SIM to run: unconstrained, origin- , destination- , or 
doubly- constrained as well as the type of distance metric to be used.

• SIMIM is run for the first year of the projection, which redistributes the LA population 
based on the relative attractiveness of that area and distance from other areas. Some areas 
(e.g. those with new houses and jobs) will gain population while others will lose population 
(e.g. those without any new development) to those areas. There is a distance decay effect, 
whereby areas that are closer are more likely to lose population to the more attractive areas 
than those which are further away.

• The new headline (LA level) projection for the given year replaces the UKPopulation 
constraint

• SIMIM then runs for the next year of the projection, taking in to account user assumptions 
for that time period.

In each year, the total population can be adjusted to match the totals reported in the SNPP/
NPP extrapolated data, so SIMIM effectively deals with the redistribution of population 
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within the country. The documentation for SIMIM can be found at https://github.com/nismo 
d/simim.

Allocation of demographic outputs within zones
The final step of the workflow, outlined at Phase 6 of Fig. 1, involves calculating the spatial 
distribution of the demographic scenarios at a sub- zonal scale. To do this, we employ a model 
called the Urban Development Model (UDM). UDM takes the outputs described at Phase 5 as 
input, alongside constraints including current population density and land availability. UDM uses 
a spatial multi- criteria evaluation approach coupled to a cellular automata model to calculate the 
likely spatial locations of demographic outputs within a given MSOA zone. The projected popu-
lation increases are used to estimate future land requirements, based on a set of density assump-
tions, and these requirements are then mapped to their most likely spatial locations according to 
a set of suitability drivers (such as proximity to transport infrastructure) and planning constraints 
(such as protected land). The output is a one- hectare raster grid of urban development at a given 
future timestep arising from the population growth in a given zone. The model is described in 
detail in Ford et al. (2019) and the open- source code can be found at https://github.com/geosp 
atial ncl/OpenUDM.

Summary of methodological contribution
The packages and processes described in this section have been designed to fill a gap by 
providing a framework for producing small area population estimates and results in a flex-
ible and reproducible way. In summary, the contribution of the framework is five- fold: (1) 
to streamline the download and processing of data needed for demographic estimates; (2) 
to generate baseline synthetic estimates of people and of households; (3) to project both of 
these units forward through time and assign people to households in order to retain a relation-
ship; (4) provide the tools for flexibly generating custom scenarios of small area composition 
which drive demographic change; and (5) to assign these outputs to sub- zone spatial units. 
This project will continue to evolve, so the above provides a snapshot of current capability. 
Further iterations will follow the guiding principles of providing open- source and reproduc-
ible models and workflows.

Results and discussion: A case study of the Arc development corridor

We apply our models to the Oxford- Milton Keynes- Cambridge “Arc” region of the United 
Kingdom (Valler, Jonas, and Robinson 2020) to demonstrate their utility. The Arc has been 
identified as an area for potential urban and economic development (National Infrastructure 
Commission 2017), and population change scenarios produced by SIMIM have already informed 
analysis of demand for 5G mobile phone infrastructure in the Arc (Oughton and Russell 2020). 
The impacts of the different growth scenarios on road transport, energy, water, urban drain-
age, urban form and green infrastructure have been addressed by the ITRC and are reported in 
Hickford, Russel and Hall (2020). Here we summarize how the headline (LA- scale) constraints 
of potential Arc growth scenarios are translated to small area projections of households and peo-
ple in order to inform high resolution estimates of demand for infrastructure. We assign the de-
mographic outputs to 1 hectare grid squares and assess the levels of urban development required 
and resulting population densities.

https://github.com/nismod/simim
https://github.com/nismod/simim
https://github.com/geospatialncl/OpenUDM
https://github.com/geospatialncl/OpenUDM
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The development scenarios
We make use of four different development scenarios for the Arc, which are outlined in Hickford 
et al. (2020, p. 24). In brief these comprise:

1. Baseline, which takes the average annual number of new dwellings completed between 
2007 and 2017 (14,500 per annum for the entire Arc region) and carries this forward 
for each year. There is no new transport infrastructure developed for the Arc and no 
allowance for development on Greenbelt land.

2. Unplanned development, assumes a higher number of new dwellings per annum (19,000) 
and that laissez- fair planning policy allows for development driven by market forces: dwell-
ings are concentrated closer to a newly developed road expressway and rail line running 
east to west through the Arc region. This scenario allows for some limited development on 
Greenbelt land.

3. Expansion of existing settlements, whereby a larger number of new dwelling com-
pletions (30,000 per annum) are split between the existing towns and cities within the 
Arc and both expressway and east- west rail are developed. Construction is allowed on 
Greenbelt land.

4. New Settlements, whereby there would be major growth (30,000 dwellings per annum) in 
five new towns within the Arc region. Both rail and road infrastructure are developed and 
some limited building on Greenbelt land is allowed.

These scenarios are translated to LA level assumptions which reflect annual dwelling 
completions, the distribution of regional Gross Value Added (GVA) (which represents the 
relative economic attractiveness of each LA, calculated separately using an input- output ap-
proach), and the number of new jobs in each year. These LA level constraints are used by 
SIMIM to redistribute population based on the relative attractiveness of each area, and these 
new totals form the basis for the spatially disaggregated results presented in the next section. 
It should be noted that SIMIM is run nationally, i.e. population can be gained or lost from 
areas outside of the Arc region, but we limit our results to the impact on the Arc region only. 
With reference to Fig. 1, the scenario constraints replace the official constraints generated by 
UKPopulation. The dataset containing the parameters used by SIMIM can be found in Russell 
(2019).

Results: Sub- LA population distributions
Fig. 3 demonstrates that when the headline constraints are translated to MSOA level outputs, 
there are clear differences in the spatial distribution of population for each of the scenarios. Each 
map displays the percentage increase/decrease in total population in 2050 compared with 2018 
data.

Under the Baseline scenario, all MSOA populations grow and while there is a fairly uniform 
distribution of growth, higher percentage change occurs in the area between Oxford and Milton 
Keynes. Population growth under the new settlements scenario is highest in those MSOAs which 
constitute or are adjacent to those new towns, both because of the additional new housing and the 
increase in GVA and employment opportunities. There is population loss from Cambridge under 
the New Settlements scenario. Unplanned growth results in more pronounced population growth 
in the southern and eastern areas of the Arc when compared with Baseline. Under the Expansion 
of existing settlements scenario, population growth is highest in the existing urban centers and 
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areas surrounding, not surprising given the focus on providing more housing and jobs in these 
areas.

Under these four scenarios, we can see that the spatial distribution of population change 
differs substantially. This in itself is useful for the planning of infrastructure and services in 
that it provides information about the level of demand which might need to be provisioned for. 
For some applications, however, a higher resolution, sub- zonal indication of potential popula-
tion distribution is needed. For example, estimation of increased energy demand or additional 
pressure on drainage systems requires indications of potential settlement patterns at the highest 
resolution. We may also need an idea of how realistic or sustainable the scenario is in terms of 
the land available to house the projected population. To provide this additional detail, the MSOA 
level scenarios are passed to UDM.

Results: Allocation of population using UDM
UDM was used to simulate 1ha (100 × 100 m) resolution development patterns for the four 
MSOA- level demographic scenarios. By using a set of spatial attractors (such as proximity to 
transport networks, proximity to existing urban development, and natural capital scores) and 
constraints (nature reserves, water bodies, open green space, etc.), the most likely locations of 
land development are mapped. Development takes place at the observed density of people/ha in 
each MSOA to retain the local character of each geographical zone.

From Fig. 4, it can be seen that the different population growth rates combined with different 
planning policies for each scenario result in contrasting locations and amounts of development 
in each case. The new settlement scenario concentrates growth along the proposed new east- west 

Figure 3. Percent population change at MSOA level in 2050 compared with 2018 under four 
scenarios.
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rail corridor in the Oxford- Cambridge Arc, showing the close links between land- use change and 
transport infrastructure development.

Fig. 5 shows a larger- scale depiction of the Expansion scenario development pattern for the 
city of Cambridge. The areas of development can be seen to agglomerate around existing urban 
areas, shaped by constraints and attractors in UDM. MSOA boundaries are shown in the figure, 
demonstrating the improvement in spatial resolution that can be gained by running the MSOA- 
scale population projections through this model stage.

The outputs from UDM can be used to provide assessments of the impacts of population 
changes on factors such as available land, loss of greenspace, and changes to population den-
sity (and thus urban character). In some cases, UDM can also provide a check on the realism 
of the population projections by taking into account available land and planning constraints. 
If all projected population cannot be accommodated in the available land for new develop-
ment in an MSOA zone, the model will report back an overflow and the required increase 
in population density that would be required to accommodate the projected population. This 
gives a useful feedback on the areas where there is the most pressure on land or where the 
projected population increases may be unrealistic. Fig. 6 shows the required population den-
sities for each MSOA for each of the four scenarios.

It can be seen from Fig. 6 that in some cases the increased population density is very high, 
with almost an additional 100 people/ha required in some MSOAs in the Expansion scenario in 

Figure 4. Land- use development patterns arising from population increases at MSOA scale for 
the Oxford- Cambridge Arc region, showing future development in red.
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order to fit the projected population in places like Oxford and Cambridge. The maximum in-
crease is lower for the Baseline and Unplanned scenarios, as these do not attempt to concentrate 
population in desirable locations (e.g., around existing urban centers of public transport hubs). 
This demonstrates the trade- off between protecting greenspace, encouraging use of sustainable 
transport, and increasing development density.

Conclusions

This paper has made the case that demographic estimates and forecasts are an essential but 
often overlooked component of infrastructure planning projects. Indeed, they are a specialist 
component which often needs a dedicated team to estimate and present the data which feed 
directly into demand models. The paper sets out the detail of a workflow which deals with 
data download and consistency, the creation of synthetic microdata, the small area projection 
of people and households, and their allocation to 1- hectare grids based on land availability. 
We demonstrate how a range of scenarios can be created at high spatial resolution using 
these methods and that by considering land availability the impact of these scenarios can be 
checked (e.g. in terms of the amount of land that would need to be developed) and their fea-
sibility assessed, in this case by looking at the change in population density that would result 
from the scenario becoming reality.

Returning to the four broad categories of small- area projection methods identified by 
Cameron and Cochrane (2017), the models presented in this paper takes advantages of the 

Figure 5. Urban development patterns arising around the city of Cambridge in the Expansion 
scenario.
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strength offered by each, which means that the system is greater than the sum of its parts. 
The naïve extrapolation and growth share methods that have been found to perform well in 
previous literature are used to support a robust baseline projection in our models by provid-
ing the headline constraints via the ukpopulation package. Because these headline (LA level) 
constraints are derived from data produced using a cohort- component model (produced by the 
United Kingdom NSAs), they are arguably more robust than simple extrapolations from past 
data. A statistical model is utilized in the scenario- generation module SIMIM, which incor-
porates important contextual variables and redistributes population accordingly. The strength 
of using SIMIM to produce counterfactual headline scenarios is that it allows the user to 
introduce variables which are usually missing from cohort component or extrapolative meth-
ods within the robust framework described. The CA- based urban development model used 
to allocate the small area population projections to spatial units is grounded in theory and is 
able to account for fine- scale local considerations in the way that other approaches are not. 
Underpinning all of this is a microsimulation approach, whereby individual level population 
and household data are produced. This provides the benefit of rich output detail as identified 
by Wilson et al. (2021) and the high resolution outputs are fairly novel in a small area pro-
jection context.

The models described in this paper are open source, meaning they could be applied to any 
infrastructure planning project and allow for a range of scenarios and options to be assessed. 

Figure 6. The required increase in population density above current observed density in each 
MSOA under the four scenarios for the Oxford- Cambridge Arc.
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This model structure could help planners to better assess the benefits and trade- offs which 
arise at a very detailed level of geographical disaggregation. This framing of the models as 
tools for assessing alternative scenarios is important because there is the potential for results 
to influence real- world events in so much that investment decisions based on simulated growth 
would serve to enable that particular outcome over other alternatives. The models can also be 
utilized in other noninfrastructure planning contexts where high- resolution demographic data 
are required, for example individual level data have been used as an input to a disease tran-
sition model (Spooner et al. 2021). This work is ongoing and as such various improvements 
and extensions are in progress. These include a stochastic projection model at Phase 3 of the 
workflow and the development of alternative scenario generation modules at Phase 4.
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