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Fractional Order Integral Sliding Mode Control for PWR Nuclear

Power Plant

Piyush V. Surjagade1, Jiamei Deng1,∗, Vineet Vajpayee2, Victor M. Becerra3, S. R. Shimjith4 and A. John Arul5

Abstract— This paper presents a robust control strategy for
pressurized water type nuclear power plants by combining
the optimal linear quadratic Gaussian control strategy with
the fractional-order theory based integral sliding mode control
strategy. The proposed control scheme follows the reference
set-point effectively in spite of the presence of uncertainties
in the system by spending minimal control efforts. The non-
linear nuclear power plant model adopted in this study is
characterized by 38 state variables. The non-linear model is
first linearised around steady state operating point to obtain
a linear model for which a proposed control strategy is
designed. Stability of the closed-loop system is proved with
the help of Lyapunov theory. Finally, efficacy of the proposed
control scheme for different control loops of the nuclear power
plant is demonstrated through simulations and compared with
conventional techniques.

I. INTRODUCTION

Operational safety and effective smooth operation of nu-

clear reactor core are of fundamental importance in the

Nuclear Power Plants (NPPs). The operation and control

of the NPPs represent a complex problem. The problems

are further complicated as in nuclear reactor some system

parameters vary with operating power level, fuel burn-

up, ageing effect, and internal reactivity feedbacks. These

variations in system parameters along with other system

uncertainties, such as unmodeled dynamics and external

disturbances, makes nuclear reactor control a very difficult

task.

As such, active research is continuing to develop con-

trollers for NPPs that can work successfully in presence of

these uncertainties. In the last few decades, various control

techniques such as optimal control [1], Sliding Mode Control

(SMC) [2]–[7], predictive control [8], neural network and

fuzzy control [9] have been developed and successfully ap-
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plied to control NPPs. Among different robust control strate-

gies, SMC has gained immense importance in the control

community due to its inherent robustness towards matched

uncertainties, simple structure and finite time convergence.

SMC is characterized by a discontinuous control law that

switches as the system crosses certain predefined manifold

in the state space [10]. The early work on nuclear reactor

control using SMC is reported by Shtessel, wherein the SMC

technique is used to design reactor control system in order to

provide the robust high accuracy thermal power tracking in a

start up regime and a payload current tracking in an operation

regime [2]. Reddy et al. [3] and Munje et al. [4] proposed

SMC based spatial power control strategies for large heavy

water reactors. Qaiser et al. [5] and Ansarifar et al. [6]

proposed second order sliding mode control techniques based

on super twisting algorithm for nuclear research reactor.

In recent years, Fractional-Order (FO) calculus has be-

come more popular to model as well as to control various

physical systems [11]. Fractional-order calculus, a branch

of mathematics that generalizes the integer-order calculus,

provides a more accurate realization than the integer-order

one [12], [13]. Hence, fractional-order calculus becomes a

strong controlling tool for linear as well as nonlinear sys-

tems. In literature, different fractional-order controllers have

been designed and successfully tested on nuclear reactors

[7], [14]–[16]. In [14]–[16], authors proposed robust FO

Proportional Integral Derivative (PID) controllers for global

power control of a pressurized heavy water reactor under

step-back condition. Nafiseh et al. developed a non-linear

reduced order FO-SMC for a non-linear FO model of a

nuclear reactor system [7].

Compared to integer-order controllers, the FO controllers

provide more flexibility to design the control system. For in-

stance, for system modelling, in opposite to integer order sys-

tems, FO systems have memory effect and hereditary proper-

ties, thus FO system can provide more realistic and accurate

behaviour of the system [11]. To date, FO-SMCs designed

for nuclear reactor system focused on FO sliding surface to

improve the closed-loop system performance [7], but they

spent high control energy to achieve the desired objectives.

Also, in NPP, not all the state variables are measurable. For

example, delayed neutron precursors’ concentration are not

directly measurable. To overcome these problems, in this

paper, a new optimal Fractional-Order Integral Sliding Mode

Control (FO-ISMC) strategy is proposed based on optimal

Linear Quadratic Gaussian (LQG) controller for Pressurized



Water Reactor (PWR)-type NPP. The proposed controller is

designed in two steps: first the LQG controller is designed to

obtain the optimal performance and to estimate the system

states and then the FO-ISMC is designed to increase the

robustness of the closed-loop system in the presence of

uncertainties. The LQG controller design involves two steps:

first is the Kalman filter design to estimate the system

states and second is the Linear Quadratic Regulator (LQR)

design based on the estimated states. The proposed control

strategy is then applied for control of different PWR-type

NPP subsystems, which are reactor core power control loop,

temperature control loop, steam generator pressure control

loop, pressurizer pressure and level control loop, and turbine

speed control loop.

The rest of the paper is organized as follows: preliminaries

of fractional calculus are discussed in Section II. Section

III formulates the control problem. Section IV presents

the proposed control design approach. Application of the

proposed control scheme to PWR-type nuclear reactor is

presented in Section V. Finally, conclusions are drawn in

Section VI indicating main contributions.

II. PRELIMINARIES OF FRACTIONAL CALCULUS

Fractional-order calculus is the generalization of the

integer-order calculus. Fractional calculus represents the

fractional-order integration and fractional-order differentia-

tion. The theorems and rules in fractional-order calculus

are applicable to their integer-order counterparts in a more

generalized representation but not always in a straightforward

manner [11], [17]. The definition of fractional-order cal-

culus mainly includes Grunwald-Letnikovs (GL) definition,

Riemann-Liouvilles (RL) definition and Caputo definition

[11]. However, the RL definition and the Caputo definition

are the two most commonly used definitions, which are

inspired by the definition of Cauchy generalized n ∈ N–

fold integral of function by replacing the factorial function

by the more generalized Gamma function.

Definition 1: [11] The αth-order fractional integration of

the function f : (0,∞) → R with respect to t > 0 and

terminal value t0 > 0 is given by

t0I
α
t f(t) :=

1

Γ(α)

∫ t

t0

f(τ)

(t− τ)(1−α)
dτ, (1)

where 0 < α < 1 and Γ : (0,∞) → is the Euler’s Gamma

function defined as:

Γ(α) :=

∫ ∞

0

x(α−1)e−x dx (2)

Definition 2: [11] The R-L definition of the αth-order

fractional derivative is given by

RL
t0

Dα
t f(t) :=

1

Γ(m− α)

dm

dtm

∫ t

t0

f(τ)

(t− τ)(α−m−1)
dτ, (3)

where m ∈ N such that m ≥ ⌈α⌉, where ⌈α⌉ is the smallest

integer greater than or equal to α.

Definition 3: [11] The Caputo definition of the αth-order

fractional derivative of the m times continuously differen-

tiable function f : (0,∞) → R or f ∈ Cm((0,∞),R) is

given by

C
t0
Dα

t f(t) :=
1

Γ(m− α)

∫ t

t0

f (m)(τ)

(t− τ)(α−m−1)
dτ. (4)

In this work, the Caputo definition is employed to design

a FO-ISMC.

III. PROBLEM FORMULATION

Let us consider an uncertain linear time invariant single-

input single-output (SISO) system, represented as

ẋ(t) = Ax(t) +B
(

u(t) + ξ(t)
)

+ ω(t) (5a)

y(t) = Cx(t) + ν(t), (5b)

where x(t) ∈ R
n is the state vector, u(t) ∈ R is the control

input, and y(t) ∈ R is the system output. A ∈ R
n×n is the

system matrix, B ∈ R
n is the input vector, and C ∈ R

1×n

is the output vector. Furthermore, the continuous function

ξ(t) ∈ R represents the uncertainty, which includes uncer-

tainty due to parameter variations and unmodeled dynamics,

non-linear functions, and external disturbances. ω(t) ∈ R
n

and ν(t) ∈ R are process noise and measurement noise with

zero mean and covariance matrices E(ω(t)ω⊤(t)) = Ξ and

E(ν(t)ν⊤(t)) = Θ, respectively, where Ξ ≥ 0 ∈ R
n×n and

Θ > 0 ∈ R. For system (5) following assumptions are made

1) The system is fully controllable under the control input

u(t).
2) The unknown uncertainty ξ(t) and its fractional order

derivative Dαξ(t) are bounded and they satisfy the

inequalities

∥ξ(t)∥ ≤ φξ, φξ > 0 and ∥Dαξ(t)∥ ≤ φα
ξ , φα

ξ > 0.
(6)

Objective of the proposed control method is to design

a robust fractional order controller for the linear uncertain

system (5), such that the system output asymptotically tracks

the desired trajectory.

IV. DESIGN OF FRACTIONAL-ORDER INTEGRAL SLIDING

MODE CONTROLLER

In a nuclear power plant, not all the system states are

directly measurable. Therefore, in this work the Kalman

filter is employed to estimate the unmeasurable states and

then based on the estimated states the FO-ISMC strategy is

designed.

To find the estimated state vector x̂(t) using Kalman filter

estimation problem, the error covariance is chosen as

Jk = lim
t→∞

E
{(

x(t)− x̂(t)
)(

x(t)− x̂(t)
)⊤}

. (7)

Minimizing (7) using Kalman filtering problem the Kalman

gain Kk is obtained as

Kk = PkC
⊤Θ−1, (8)

where Pk ≥ 0 is symmetric matrix computed using algebraic

Riccati equation as

APk + PkA
⊤ + ΓkΞΓ

⊤

k − PkC
⊤Θ−1CPk = 0, (9)



where Γk ∈ R
n is disturbance input matrix. Thus, the

estimated state vector x̂(t) for nominal system is obtained

as

˙̂x(t) = Ax̂(t) +Bu(t) +Kk

(

y(t)− Cx̂(t)
)

. (10)

Defining estimation error x̃(t) as

x̃(t) = x(t)− x̂(t), (11)

(10) can be written as

˙̂x(t) = Ax̂(t) +Bu(t) +KkCx̃(t). (12)

Let us assume that the state estimation error x̃(t) and its

fractional order derivatives Dαx̃(t) are bounded and they

satisfy the inequalities

∥x̃(t)∥ ≤ ϕx, ϕx > 0 and ∥Dαx̃(t)∥ ≤ ϕα
x , ϕα

x > 0. (13)

Now, based on the estimated information given by (10) the

fractional order integral sliding surface is designed as [18]

σ(t) = G
[

Dα
(

x̂(t)− x̂(0)
)

−Dα−1
(

Ax̂(t) +Buc(t)
)]

,

(14)

where G ∈ R
1×n is the projection vector and uc(t) is

the nominal controller designed for nominal system. Here,

G is selected as left pseudo-inverse of input distribution

vector i.e., G = (B⊤B)−1B⊤ such that GB is invertible.

Note that Dα represents the fractional derivative and D−α

represents the fractional integration. The nominal control

uc(t) is designed as

uc(t) = −Kxx̂(t)−Krr(t) (15)

where Kx is the feedback control gain responsible for the

performance of the nominal system and Kr is the feed-

forward control gain which is introduced to track the ref-

erence signal r(t).

In (15), the feedback control gain Kx can be designed by

any state feedback control design method to achieve desired

nominal performance. Here, Kx is designed satisfying the

infinite horizon LQR cost function

Jc = min
uc(t)

∫ ∞

0

(

x̂⊤(τ)Qx̂(τ) + u⊤

c (τ)Ruc(τ)
)

dτ (16)

subject to

Ax̂(t) +Buc(t) = 0 and Cx̂(t) = r(t) (17)

where Q ≥ 0 ∈ R
n×n and R > 0 ∈ R are appropriate

weighing matrices, to achieve optimal control input. With

this, feedback control gain Kx and feed-forward control gain

Kr are obtained as [19]

Kx = R−1B⊤Pc, and Kr =
(

C(A−BKx)
−1B

)−1
, (18)

where Pc > 0 is the symmetric matrix which satisfies the

algebraic Riccati equation

A⊤Pc + PcA+Q− PcBR−1B⊤Pc = 0. (19)

In sliding mode control, once the system states are on the

sliding surface the closed-loop system is completely invariant

towards the matched type of uncertainties. Thus, the control

law which maintains the system states on the sliding surface

(14) is designed based on the exponential reaching law as

ud(t) = −(GB)−1
{

D−α
(

µ1σ(t) + µ2 sign(σ(t))
)}

(20)

where µ1 > 0, µ2 > 0 and sign(.) is a standard signum

function.

Finally, the total control law is designed as a combination

of (15) and (20) as

u(t) = uc(t) + ud(t). (21)

In the following, Lyapunov stability of the proposed

controller (21) with the sliding surface (14) is analysed.

Consider the Lyapunov function,

V (t) =
1

2
σ2(t) (22)

Taking the time derivative of V (t) and using (5), (14) and

(12), we get

V̇ (t) = σ(t)σ̇(t) = σ(t)
{

GDα
[

˙̂x(t)−Ax̂(t)−Buc(t)
]}

= σ(t)
{

GDα
[

Ax̂(t) +Buc(t) +Bud(t) +KkCx̃(t)

+Bξ(t)−Ax̂(t)−Buc(t)
]}

= σ(t)
{

GDα
[

Bud(t) +KkCx̃(t) +Bξ(t)
]}

= σ(t)
{

GDα
[

−B(GB)−1D−α
(

µ1σ(t)

+µ2 sign(σ(t))
)

+KkCx̃(t) +Bξ(t)
]}

= −µ1σ
2(t)− µ2∥σ(t)∥+ σ(t)GKkCDαx̃(t)

+σ(t)GBDαξ(t)

≤ −µ2∥σ(t)∥+ σ(t)GKkCDαx̃(t) + σ(t)GBDαξ(t)

≤ −µ2∥σ(t)∥+ ∥σ(t)∥ ∥GKkC∥ ∥Dαx̃(t)∥

+∥σ(t)∥ ∥GB∥ ∥Dαξ(t)∥

≤ ∥σ(t)∥
(

− µ2 + ϕα
x∥GKkC∥+ φα

ξ ∥GB∥
)

(23)

Thus, for any choice of µ2 ≥ ϕα
x∥GKkC∥+ φα

ξ ∥GB∥+ η,

(23) becomes

V̇ (t) = σ(t)σ̇(t) ≤ −η∥σ(t)∥ ≤ 0, (24)

where η is a small positive constant. Hence, from (24) it

is proved that the system trajectories remain on the sliding

surface σ(t) once they start from it at t = t0 and then,

asymptotically converge to equilibrium point.

V. APPLICATION TO PWR NUCLEAR POWER PLANT

In this work, the non-linear dynamic model of PWR type

nuclear reactor and associated subsystems given in Ref. [20]

is adopted for the study. The model considers the dynamics

of the reactor core, thermal hydraulics, piping and plenum,

pressurizer, steam generator, condenser, and turbine-governor

system, in addition to various actuators and sensors. For

system equations, definitions of variables and values of

parameters used in this work, the readers are referred to [20].

The proposed control strategy is applied to the different

control loops (reactor core power control loop, temperature

control loop, steam generator pressure control loop, pres-

surizer pressure and level control loop, and turbine speed
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control loop) of PWR NPP and its performance is tested

in the presence of external disturbance for load following

operation. Here, in each control loop a sinusoidal external

disturbance in the control input is considered throughout

system response as

ξ(t) = ξ0 × sin(0.1t), (25)

where ξ0 is the magnitude of the disturbance.

First, the non-linear model of PWR NPP is linearised

around steady state operating point to obtain the linear

model on which the effectiveness of the proposed controller

has been tested. The definition of input and output signals

for every SISO control loop and the value of controller

parameters are given in Table I.

A. Steam Generator Pressure Control Loop

In this control loop, the steam generator pressure, Ps

is controlled by adjusting input signal, utg to the turbine-

governor valve. Here, the performance of the proposed con-

troller is evaluated for a set-point change in steam generator

pressure in the presence of external disturbance (25) where

the value of ξ0 is considered as 1 × 10−3. Initially, it is

assumed that secondary pressure is at 7.2857 MPa and then

the set-point is decreased to 7.2 MPa during time t = 100 s

to t = 150 s. During this transient, variation of output

secondary pressure, control input, and sliding surface with

the proposed controller are shown in Figs. 1, 2, and 3,

respectively. It can be observed that, the set-point is reached

without any overshoot and at the same time the proposed

controller is able to mitigate the disturbance present in the

system.

B. Pressurizer Pressure Control Loop

In this control loop our aim is to maintain the coolant

pressure within permissible limit. Primary coolant pressure,

Pp can be controlled by bank of heaters, spray flow rate,
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Fig. 4. Pressurizer pressure controlled by heater.
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power operated relief valves, or safety valves. However,

in this study, the coolant pressure control is studied only

by actuating a bank of heaters, Qheat. Performance of

the proposed controller is tested for a set-point change in

pressurizer pressure in the presence of external disturbance

(25) where the value of ξ0 is considered as 20. Initially,

it is assumed that pressurizer pressure is at 15.4097 MPa

and then the set-point is reduced to 15.3 MPa during time

t = 100 s to t = 120 s and again it is increased to

15.4097 MPa in two steps. During this transient, variation

of output secondary pressure, control input, sliding surface

with proposed controller are shown in Figs. 4, 5, and 6,

respectively. It can be observed that the proposed controller

is able to follow the set-point with minimum tracking error

in spite of the presence of uncertainty.

C. Pressurizer Level Control Loop

The purpose of pressurizer level control loop is to maintain

the water level for the reactor core coolant system. In this

simulation study, the controller performance is analysed by

varying set-point in the pressurizer level in the presence of

external disturbance (25) where the value of ξ0 is considered

as 5×10−2. It is assumed that initially the system is at steady

state and pressurizer level is at 28.06 m. The set point is then

reduced to 27.5 m in two steps and again it is increased to

28.06. Fig. 7 shows the variation of output pressurizer level

with respect to demand. Variation of control input is shown

in Fig. 8. Fig. 9 shows the plot for sliding surface.



TABLE I

CONTROLLER PARAMETERS

Loop
Signal LQR Kalman Filter FOISMC

I/P O/P Q R Ξ Θ µ1 µ2 α

A utg Ps 5× 10
−3In 1× 10

2
5× 10

−5In 1 1 1× 10
−1

8× 10
−1

B Qheat Pp 1In 1× 10
−8

1× 10
−2In 1 50 25 8× 10

−1

C ṁsur lw 1× 10
3In 1× 10

−2
6In 1 1 1× 10

−1
8× 10

−1

D utg ωtur 2× 10
3In 1× 10

−2
1In 1 1 1× 10

−1
8× 10

−1

E.1 vrod irtd 1× 10
−3In 1× 10

3
1× 10

0In 1 5 1× 10
−1

8× 10
−1

E.2 vrod ilo 1× 10
−3In 1× 10

5
5× 10

0In 1 10 1 8× 10
−1
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D. Turbine Speed Control loop

This loop is responsible for controlling the shaft speed by

varying the steam flow. In this simulation study the controller

performance is tested by varying the demand power from

the generator in the presence of external disturbance (25)

where the value of ξ0 is considered as 1× 10−4. During the

transient, variation of output turbine speed, control input,

and sliding surface are shown in Figs. 10, 11, and 12,

respectively. Here, it can be observed that the output turbine

speed follows the demand with acceptable undershoot. In

case of nuclear reactor, minimum value of overshoot and

undershoot is always preferable.

E. Load Following Mode of Operation (Power Control Loop)

In load following mode of operation the reactor power

adjusts according to demand of electricity throughout the

day. The reactor power can be controlled using neutronic

power or through average coolant temperature. Also, in this
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Fig. 14. Control rod speed movement.

subsection, superiority of the proposed controller over some

conventional control strategies are shown.

1) Temperature Control Loop: In this case study the reac-

tor power is controlled with the help of coolant temperature.

Here, the performance of the proposed controller is compared

with the state feedback LQG controller in the presence of ex-

ternal disturbance (25) where the value of ξ0 is considered as

1×10−4. The variation of measured Resistance Temperature

Detector (RTD) current corresponding to the output power

with proposed controller and the LQR controller is shown

in Fig. 13. It can be observed that, the proposed controller

is able to overcome the disturbance and tracks the demand

perfectly. While, with the LQR controller the disturbance

superimposed on the output signal and fails to maintain

the desired demand. Variation of control input for both the

controllers and variation of sliding surface for the proposed

controller are shown in Figs. 14 and 15, respectively.

2) Core Neutronics Control Loop: In this control loop

the reactor power is controlled directly with the help of

ex-core detectors. Here, the performance of the proposed

controller is compared with the state feedback LQG con-

troller (setting ud(t) = 0) and conventional Integral Sliding

Mode Control (ISMC) (setting α = 0) in the presence of

external disturbance (25) where the value of ξ0 is considered
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as 1×10−4. Initially, it is assumed that the NPP is operating

at full power. Then the demand power is reduced from full

power to 0.9 FFP during time t = 100 s to t = 200 s.

During this transient, variation of excore detector logarithmic

amplifier output current correspond to the reactor power

with the proposed controller, LQG controller and ISMC is

shown in Fig. 16. It can be observed that the proposed

controller and ISMC are able to follow the change in demand

in spite of presence of uncertainty in the system and the

performance of the closed-loop system is improved with

the proposed controller as compared to ISMC. Whereas, the

LQG controller fails to maintain the demand. The control

input for three controllers is shown in Fig. 17. The variation

of sliding surface for proposed controller is shown in Fig.

18.

VI. CONCLUSIONS

This paper presents an optimal fractional-order integral

sliding mode control scheme, which assures asymptotic

tracking of reference set-point in the presence of uncertain-

ties and external disturbances. To obtain the optimal perfor-

mance linear quadratic Gaussian control is combined with

fractional-order integral sliding mode control. The proposed

control scheme offers robustness towards uncertainties and

guarantees minimal use of control energy. Simulation results

show that the proposed control scheme provides satisfactory

tracking performance in the presence of parametric uncer-

tainty and external disturbance for the different control loops

of nuclear power plant.
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