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Abstract: Consumer food environments have transformed dramatically in the last decade. Food
outlet prevalence has increased, and people are eating food outside the home more than ever before.
Despite these developments, national spending on food control has reduced. The National Audit
Office report that only 14% of local authorities are up to date with food business inspections, exposing
consumers to unknown levels of risk. Given the scarcity of local authority resources, this paper
presents a data-driven approach to predict compliance for newly opened businesses and those
awaiting repeat inspections. This work capitalizes on the theory that food outlet compliance is a
function of its geographic context, namely the characteristics of the neighborhood within which it sits.
We explore the utility of three machine learning approaches to predict non-compliant food outlets
in England and Wales using openly accessible socio-demographic, business type, and urbanness
features at the output area level. We find that the synthetic minority oversampling technique
alongside a random forest algorithm with a 1:1 sampling strategy provides the best predictive power.
Our final model retrieves and identifies 84% of total non-compliant outlets in a test set of 92,595
(sensitivity = 0.843, specificity = 0.745, precision = 0.274). The originality of this work lies in its
unique and methodological approach which combines the use of machine learning with fine-grained
neighborhood data to make robust predictions of compliance.

Keywords: food safety; food environments; food hygiene; machine learning

1. Introduction

Patterns of national food consumption have changed dramatically in recent years.
In the most recent wave of the Food and You survey, it was reported that 98% of the
UK population consume food from takeaways and restaurants, and at least 43% do so
on a weekly basis [1]. Although drivers of consumer behaviors are complex and multi-
faceted, this change can be partially attributed to a proliferation of food outlets; equating
to 34% between 2010 and 2018 [2]. With consumers eating fewer home cooked meals
than ever before, the governance of food-serving businesses is increasingly important,
especially considering that an estimated 60% [3] of 2.4 million annual cases of foodborne
disease [4] are thought to be contracted whilst eating away from home. Overseen by
the Food Standards Agency (FSA), local and unitary authorities (referred to as LA’s for
the remainder of this paper) are responsible for enforcing hygiene standards within food
businesses in the UK. However, LA resources are becoming increasingly stretched.

LA spending on food control reduced from £125 to £101 million [5] between 2013 and
2019. In 2019, severe delays in routine food outlet inspections were reported, whereby
only 14% of LA’s achieved their inspection targets [5]. Furthermore, over 20,000 UK food
outlets were not inspected in the five years between 2013 and 2015. This lack of governance
is problematic. Not only are food businesses not receiving the required support, but
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critical health violations (CHVs), inappropriate procedures, and structural problems can
go unchecked, exposing consumers to unknown and potentially dangerous levels of risk.
To address these issues, the FSA have proposed a program of regulatory change, known as
Regulating Our Future (ROF) [6]. To date, the ROF program is yet to be realized, but one of
the main proposals is to outsource a proportion of food business inspections and audits to
private third-party assurance providers. This proposal has received heavy scrutiny from
many industry experts, who argue it provides LAs with a mechanism to ‘mark their own
homework’, by choosing assurance providers suited to their own needs and not necessarily
those of the consumer [7].

Given the scrutiny of the ROF program, there is a clear justification to explore al-
ternative avenues which may alleviate pressures placed on LAs. The work in this paper
provides a data-driven approach to identify high risk food outlets to prioritize inspections
for newly opened businesses and those awaiting inspections. This work capitalizes on
the theory that food outlet compliance is impacted by its geographic context, namely the
characteristics of the area within which it is located. This study assesses the utility of
machine learning approaches to predict non-compliant food outlets (with food hygiene
rating scheme scores ≤ 2). Socio-demographic, business type, and urbanness data at the
output area (OA) level were used to train the models. These include age data (percentages
of individuals in categories 0–4, 5–14, 15–19, 20–24, 25–44, 45–64, ≥65), ethnicity data
(percentages of Asian, Black, Mixed, White, and ‘Other’ individuals), deprivation data
(percentage of rented households, overcrowded households, households without car access,
and individuals who are unemployed), region, rural urban classification, and output area
classification. This approach is novel; therefore, we reviewed literature which has identified
associations between neighborhood characteristics and food hygiene compliance. We also
considered studies employing machine learning approaches in the context of food safety,
as both are relevant to this work.

1.1. Neighbourhood Demography and Food Safety

Many studies have examined associations between food safety and neighborhood
characteristics [8–11]. These studies primarily aim to investigate patterns of critical health
violations (CHVs), and socio-demographic characteristics such as deprivation and ethnicity.
For example, in their work using geographic information systems (GIS) to track CHVs in
retail facilities in Philadelphia, Darcey and Quinlan [10] found that food outlet prevalence
was higher in deprived areas; however, the frequency of CHVs was lower. This study
also found that establishments in predominantly Hispanic areas had an increased number
of CHVs, suggesting that Hispanic populations are at higher risk of foodborne illness
than other ethnicities. The authors also postulate that the findings could result from
inspection bias, where underlying factors influence both the frequency of inspections and
identification of CHVs.

Pothukuchi, Mohamed [11] also discuss the associations between socio-demographic
neighborhood characteristics and CHVs. In Detroit, Michigan, this study found that food
outlets in deprived areas and areas with primarily African American populations had an
increased number of CHVs compared to other areas. Whilst the authors also hypothesize
that these results may be a function of inspection bias, they discuss the possible roles of
language problems, inexperience with food safety practices, and cultural differences. With
regards to the latter, it has been suggested that some unsafe food handing behaviors are
more prominent among certain cultural or ethnic groups. In their ‘Kitchen Life Study’ Wills
et al. [12] found that Pakistani participants were more likely to wash raw chicken, although
this behavior opposes official guidance, as they believe it sanitary to do so. Other examples
of unsafe food handling behaviors which may be adopted by specific populations, include
eating food after its ‘use by’ date or incorrectly storing or reheating food. These behaviors
contradict official guidance and increase the risk of infection by a foodborne pathogen.

Studies undertaken by Darcey and Quinlan [10] and Pothukuchi, Mohamed and
Gebben [11] indicate that food outlet compliance, specifically CHVs, are related to or
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impacted by their geographic context. However, both studies clearly state that the reasons
for these associations are unclear and further fine-grained research is required to under-
stand the complex interactions between compliance, neighborhood characteristics, and the
micro–macro context of regulatory processes. Further to this, in a review of the literature
relating to food safety risks for populations of low socioeconomic status and minority
ethnic groups, Quinlan [13] echoes this sentiment, stating that more research is required to
understand the socio-economic associations between foodborne illness incidence, retail
access, and food handling behaviors.

Considering studies which have been undertaken in the UK, these often utilize the
food hygiene rating scheme (FHRS), whereby every food serving outlet is awarded a score
from zero to five following inspection by a public health official (aside from those located
in Scotland where a pass–fail system operates). Scores of 3–5 represent ‘broadly compliant’
businesses and 0–2 represent ‘broadly non-compliant’ business (we use the terms ‘compli-
ant’ and ‘non-compliant’ throughout this paper). In their work, Fleetwood et al. [3] used
the FHRS data to find significant associations between low scoring food establishments
and contaminated microbiological food samples. This suggests that FHRS scores can be
used as a proxy for foodborne illness risk.

Oldroyd, Morris and Birkin [14] also used the FHRS to examine associations with
neighborhood characteristics and compliance. Logistic regression was employed to identify
socio-demographic, urbanness and business type determinants of non-compliant food
outlets in England and Wales. Specifically, this work reported that food outlets located in
the most deprived quintile were 25% less likely to meet hygiene standards compared to
those in the least deprived quintile. Takeaways and small convenience retailers, alongside
outlets in large conurbation areas, were also less likely to score a FHRS score of three
or above compared to restaurants and food outlets in rural areas. Small but significant
associations were also reported between non-compliance and increased prevalence of
certain age-group categories and Black, Asian, Mixed and ‘Other’ ethnicities. The findings
of this study, particularly that food outlets in more deprived areas and those with higher
proportions of ‘non-white’ ethnicities, support those found by previous research. A review
of the literature to date indicates that compliance, or lack of, is most likely influenced by
spatial location and geographic context.

1.2. Machine Learning Approaches for Food Safety

We now turn our attention to studies which have utilized machine learning methods
to examine aspects of food safety. This will inform the methodological approach of this
work. Considered a subset of artificial intelligence, machine learning is concerned with the
ability of a system to undertake a specific task without being explicitly programmed to do
so. Rather, patterns and inference are used to automatically learn algorithms and improve
upon them without a given set of instructions [15]. In a scoping review of the literature
relating to methods for monitoring foodborne illness, Oldroyd, Morris and Birkin [16]
report that the majority of food safety studies using machine learning aim to rapidly detect
outbreaks of foodborne disease or calculate incidence over a specific time interval. They do
so by classifying consumer-generated data (CGD), such as social media data or restaurant
reviews, to identify first-person reports of illness and filter spurious data records which do
not contain symptomatic reports. These approaches are often adopted to address problems
with national reporting data which is untimely and underestimates the true incidence
of foodborne illness as underreporting occurs at both the General Practitioner (GP) and
patient level [17]. CGD can be analyzed in near real time and can be used to quantify
foodborne illness incidence more accurately. Most food safety machine learning studies
utilize content analysis and none, to our knowledge, have explored compliance prediction
using neighborhood level data; however it is important to consider existing methodological
approaches and how they can inform this research.

Sadilek et al. [18] used support vector machine (SVM) to classify 3.8 million tweets
gathered from restaurant visitors in New York over a four-month period. Using check-
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ins and geolocation data, this study identified restaurant patrons and monitored their
subsequent tweets for symptomatic language, determining 480 potential cases of food
poisoning which had not been reported via the Department of Health. This study states that
one of the main problems associated with machine learning classifiers is class imbalance,
whereby a supervised machine learning algorithm will favor assignment of unlabeled
records to the majority class if the classes are extremely imbalanced. By assigning all
records to the majority class, the simple accuracy metric is improved [19]. Sadilek et al. [18]
therefore used a method of human-guided machine learning, whereby tweets belonging to
the minority class, those reporting symptoms of foodborne illness, were actively provided
to the model during the training phase. As the class of interest is often the minority, class
imbalance is an important consideration for many applications, and so too is the use of a
model metric which is suitable for imbalanced problems. This holds true for classification
of FHRS scores where non-compliant outlets comprise the minority class.

Alongside the use of Twitter data, other studies have analyzed the utility of restaurant
review data to detect first person reports of foodborne illness [20,21]. Harrison et al. [22]
used a probabilistic classifier to analyze 294,000 data records collected from the restaurant
review platform Yelp. Reviews containing the words ‘sick’, ‘vomit’, ‘diarrhea’, or ‘food
poisoning’, where two or more persons were reported ill, and those with an incubation
period ≥ 10 h were used for subsequent analysis. This study identified 16 cases of food-
borne illness which had not been reported via official channels. The results were verified
via phone interviews conducted by epidemiologists. Although this study highlights the
utility of CGD to detect foodborne illness, the authors state that this approach requires
significant time and resources. They also emphasize that the methods should be used to
supplement traditional approaches, as opposed to replacing them.

Although many studies have reported promising results from the use of machine
learning approaches to identify outbreaks of foodborne illness using occurrences of spe-
cific key words in consumer-generated data, none to our knowledge have explored the
utility of predicting food outlet compliance in a UK setting using small area data. In this
work we used openly accessible socio-demographic, business type, and urbanness data
to identify non-compliant food outlets. We analyzed various sampling approaches to
address class imbalance as reported by previous studies. We aimed to answer the following
research questions: Can non-compliant food outlets be identified through machine learning
approaches, and if so, which are the most effective algorithms and sampling strategies?

2. Methodology

Three supervised machine learning approaches were trained and tested with a view to
predict non-compliant food outlets (FHRS ≤ 2) in England and Wales: linear SVM; radial
SVM; and random forest. Although linear SVM and radial SVM are permutations of the
same algorithm with a different kernel, we refer to them as different approaches for the
remainder of the paper to ease interpretation.

An overview of the methodology can be viewed in Figure 1 and is as follows: prepare
data, split dataset into training and testing sets, resample training set at different ratios
using different strategies, train models using repeated cross-validation, apply algorithm to
unseen testing set, calculate model metrics. We consider each step in further detail in the
following sections.
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Figure 1. An overview of the analysis process. The full FHRS dataset is split into training and testing phases prior to
SMOTE and under-sampling. † Synthetic minority oversampling technique. * Cross-validation.

2.1. Data and Data Preparation

Outcome and predictor variables can be viewed in Table 1. For the outcome variable,
FHRS scores for individual food outlets in England and Wales were converted to a binary
format where scores ≤ 2 were coded as 1 (‘non-compliant’, or the positive class) and
scores ≥ 3 were coded as 0 (‘compliant’, or the negative class). These thresholds align
with the FSA’s definitions of ‘not broadly compliant’ and ‘broadly compliant’ outlets,
respectively. This format allows a binary classification to be undertaken. The FHRS scores
represent hygiene standards at the time of the last inspection. The counts of scores across
rating value categories are presented in the Supplementary Materials.

Table 1. Data sources and variables.

Data Domain and Source Geography Variable Categories/Levels

Food Hygiene Rating
Scheme Scores [23]

Reported for individual
food outlets

FHRS score (ordinal) 0 (Improvement necessary), 1, 2, 3, 4,
5 (Very good)

Business Type (categorical)

Restaurants, cafés, & canteens; other
retailers; super- & hyper-markets;

other catering; pubs, bars, &
nightclubs; takeaways & sandwich
shops; hotels, guesthouses, bed &

breakfasts

Region (categorical)

East Midland, West Midlands, East of
England, London, North East, North
West, South East, South West, Wales,

Yorkshire
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Table 1. Cont.

Data Domain and Source Geography Variable Categories/Levels

Socio-demographic 2011
census data [24]

Reported at OA level

Age (% of persons) 0–4; 5–14; 15–19; 20–24; 25–44; 45–64;
65+

Ethnicity (% of persons) Asian, Black, Mixed, Other, White

Unemployment (% of persons)

Overcrowding (% of
households)

No car access (% of
households)

Renting (% of households)

Rural Urban Classification
[25] Reported at OA level RUC (categorical):

Urban cities and towns; rural hamlets
and isolated dwellings; rural town
and fringe; rural village; and urban

conurbation

Output Area Classification
[26] Reported at OA level OAC Supergroups

(categorical):

(1) Rural residents; (2) cosmopolitans;
(3) ethnicity central; (4) multicultural

metropolitans; (5) urbanites;
(6) suburbanites; (7) constrained city

dwellers; (8) hard-pressed living

(FHRS = Food Hygiene Rating Scheme Score, OA = Output Area, OAC = Output Area Classification, RUC = Rural Urban Classification).

Predictor input features included: business type; region; rural and urban classification
(RUC); output area classification (OAC); percentage of individuals in each age category;
percentage of individuals in each ethnicity category; percentage of unemployed individuals;
percentage of households with no car access; percentage of overcrowded households; and
percentage of rented households. See Table 1 for full descriptions of variables and data
sources. All input variables were collected at OA level, aside from business type and region
which formed part of the FHRS dataset and were therefore reported for individual outlets.
OAs were chosen as they represent the smallest statistical geography and are designed to
be internally homogenous.

Business types which do not serve food to the immediate public were removed prior
to analysis, including: hospitals, childcare centers, care homes; distributors, transporters;
importers, exporters; farmers, growers; manufacturers, packers; schools, colleges, universi-
ties; mobile caterers. To ensure a sufficiently large number of data points in each category,
the ten RUC categories were collapsed into five variables: urban cities and towns; rural
hamlets and isolated dwellings; rural town and fringe; rural village; and urban conurbation.
Categorical variables (business type; RUC; OAC; and region) were converted to binary
dummy variables, where a column was created for each unique category. A value of 1 was
assigned to indicate presence of the variable and 0 to indicate absence.

To attach neighborhood characteristics, each food outlet was matched to an OA code
via its postcode using the Office for National Statistics Postcode to OA lookup [27]. In
total, 99.7% of food outlets were matched to an OA code using this method and 0.3% of
food outlets were discarded. The OA code was then used to join the aggregate OA level
data to each food outlet. The final dataset comprised individual food outlets including
their business type, FHRS and region, with OA level predictor variables attached, to
represent the characteristics of the neighborhood. This allowed predictions to be made for
individual outlets.

All analysis was undertaken using the R statistical programming language, Vienna,
Austria, v 5.3.1 [28]. Descriptive statistics for numerical predictor variables can be found
in Table 2.
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Table 2. Descriptive statistics for numerical predictor variables. All variables are reported at output area level (SD =
Standard Deviation).

Variable Level Mean SD Min. Max.

Ethnicity (%)

White 84.06 19.64 0.00 100.00

Mixed 2.42 2.31 0.00 26.61

Asian 8.73 13.69 0.00 99.76

Black 3.28 6.41 0.00 78.04

Other 1.40 2.69 0.00 48.90

Age (%)

0–4 5.62 2.86 0.00 29.30

5–14 9.10 4.49 0.00 52.20

15–19 5.86 4.62 0.00 84.62

20–24 9.13 8.35 0.00 85.12

25–44 30.72 11.59 0.00 88.33

45–64 23.74 7.96 0.00 69.19

≥65 15.83 10.35 0.00 96.75

Unemployment (% of individuals) - 7.35 5.53 0.00 55.68

Overcrowding (% of households) - 2.57 3.76 0.00 38.00

No Car Access (% of households) - 34.45 21.48 0.00 96.71

Renting (% of households) - 47.53 24.77 0.00 100.00

2.2. Dataset Partition

The dataset (n = 308,655) was divided into training and testing sets with a 70:30 split,
respectively. Stratified sampling was used to maintain the ratio of compliant and non-
compliant establishments in each set. The largest proportion of the dataset was used to
train the algorithms; the remaining 30% was set aside for testing performance. Whilst the
training set was subject to different sampling strategies, the testing set was not resampled
to ensure performance metrics were a true reflection of the model’s ability to predict the
imbalanced dataset.

2.3. Sampling Strategy

Given the imbalanced nature of the dataset, whereby the class of interest (non-
compliant food outlets) comprises only 7% of the total dataset, the training dataset was
resampled at several ratios using two different techniques. This would allow the optimal
model to be determined.

2.3.1. Undersampling

Five undersampled training datasets were created. These comprised of five ratios
(1:1, 3:2, 2:1, 2:3, 1:2) of non-compliant to compliant outlets. These are referred to as sets
1–5 respectively. To create the undersampled training datasets, firstly, all non-compliant
establishments in England and Wales (with a FHRS score ≤ 2) were selected (n = 14,226)
from the parent training dataset. A randomly sampled subset of compliant outlets was then
added to the non-compliant outlets. The number of which varied for each set based upon
the required ratio. Under-sampling is the least resource-intensive sampling strategy as no
additional computation is required; however, it can arguably lead to a weaker classifier
due to the reduction of available training data.

2.3.2. Synthetic Minority Oversampling Technique

Chawla et al. [29] suggest that the synthetic minority oversampling technique (SMOTE),
whereby the minority class is oversampled whilst the majority class is undersampled, can
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achieve better classifier performance compared to under-sampling the majority class alone.
To create synthetic points, the SMOTE method utilizes K-nearest neighbor to generate new
data points, maximizing the amount of data available during the algorithm training process.
For further information see Altman [30]. The DMwR package in R [31] was used to generate
five SMOTE training datasets with the same class ratios as reported in Section 2.3.1.

2.4. Training Phase

Using both undersampled and SMOTE training datasets, a total of 33 models (five
undersampled, five SMOTE datasets, and one unsampled dataset across the three algo-
rithms) were trained using repeated 10-fold cross-validation (CV). The CV process is as
follows: Each dataset is split into 10 equal folds using stratified sampling. A subset of the
parameters across the 9 folds of data is used to fit the model and the tenth fold is used
to compute performance metrics for that parameter subset. For each fold, the process is
repeated three times. The area under the receiver operating characteristic curve (AUC)
was computed for each cross-validation iteration and used to select the optimum input
and tuning parameters. At the end of the training process the optimum model algorithm
was reported.

To explain the AUC metric, we first considered the ROC curve which is a graph
generated by plotting the proportion of correctly classified actual positives (in this case non-
compliant outlets), known as the sensitivity, against the proportion of correctly classified
actual negatives (compliant outlets), known as specificity, at various probability thresholds.
There is often a trade-off between sensitivity and specificity whereby as one increases the
other decreases. Therefore, a perfect ROC curve assumes the shape of a right angle, which
passes through point (1,1) on the graph, indicating 100% specificity and sensitivity and
maximizing the AUC.

An AUC value of 1 indicates that 100% of the model predictions are correctly classified
and a value of 0.5 indicates that only 50% of the classifications are correct, effectively
allocating points at random. AUC accounts for both correctly and incorrectly classified
data points, and is therefore considered superior to the accuracy metric when evaluating
classifiers concerned with imbalanced classes [32].

2.5. Model Specifications

A brief overview of the three model algorithms is provided in the following sections.

2.5.1. Linear Support Vector Machine

SVM is a non-probabilistic binary classifier which aims to find the optimum hyper-
plane between two classes in a 2D space. New data points are assigned to one of two
classes depending on which side of the hyperplane they fall [33]. For further information
see Vapnik [34]. In the Caret package in R, it is possible to impose a penalty for the misclas-
sification of points during the training process, through the cost parameter. The higher the
cost parameter, the lower the probability of the model misclassifying a point. We varied the
value of the cost parameter throughout the training process using the tuneGrid function in
Caret. The optimal and final value of which is reported in Table 3.

2.5.2. Radial Support Vector Machine

In addition to performing linear classification, SVM can also perform non-linear clas-
sification by applying a Kernel Trick [35]. Whereby the model predictors are replaced with
kernel functions. This enables the algorithm to operate in a high dimensional implicit fea-
ture space; for example, a 3D space. Coordinates of the data points in the newly transformed
space are not explicitly calculated, which means this approach is more computationally
efficient than others. Instead, the relationship between pairs of data is calculated [35].
Caret automatically tunes the cost parameter for radial SVM, the final values of which are
reported in Table 3.
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Table 3. Final model tuning parameters. For linear and radial SVM, the cost parameter represents the optimal penalty
threshold for misclassifications. For the random forest models, mtry, the optimal number of randomly selected predictor
variables is reported (SVM = Support Vector Machine, SMOTE = Synthetic Minority Oversampling Technique).

Sampling Set/Ratio
(Non-Comp:Comp)

Model Tuning Parameters

Linear SVM (Cost) Radial SVM (Cost) Random Forest (Mtry)

SMOTE Under-Sampled SMOTE Under-Sampled SMOTE Under-Sampled

Set 1 (1:1) 1.895 0.842 32.00 32.00 5 3

Set 2 (2:1) 0.632 0.947 64.00 0.250 5 3

Set 3 (3:2) 0.316 0.105 64.00 2.000 6 3

Set 4 (2:3) 2.000 2.000 16.00 16.00 5 3

Set 5 (1:2) 1.368 2.000 16.00 0.250 5 3

(SVM = Support Vector Machine, SMOTE = Synthetic Minority Oversampling Technique).

2.5.3. Random Forest

The third classification model we employ is random forest; an ensemble learning
algorithm that averages the outcomes of several decision trees [36]. Combining multiple
decision trees can address problems of overfitting, where individual classifiers often learn
highly irregular patterns based upon training data resulting in low bias and extremely
high variance, limiting their application beyond the training set. For ensemble learners, the
variance of the overall model is decreased without increasing the bias, usually resulting in
better performance than individual learners.

Random forest differs from other ensemble learning methods as only a specific number
of randomly sampled input features are available for each learner. The number of input
features used in any one-fold of the cross-validation process is represented by the mtry
argument; in Table 3 we report the final and optimal values for mtry. Commonly, learners
opt for more predictive input features during training which can result in both overfitting
and correlated outcomes between individual learners [37]. The advantage of choosing only
a set number of random predictive variables is that those which appear highly predictive
in the training set, but which are not in the testing set, are not oversampled during the
learning process. For further information see Breiman [38].

2.6. Testing Phase

Following cross-validation whereby the models are fitted, their performance was
assessed through the classification of unseen data points, the testing phase. Class probabili-
ties were calculated for each unseen food establishment using the learnt algorithms and
class labels were assigned using a probability threshold. The optimal probability threshold
is the point on the ROC curve which maximizes both the distance from the diagonal and
therefore the AUC, defined using Youden’s J statistic [39]. This is extracted using the coords
function from the pROC package [40]. Once unseen data points were labeled, model metrics
were calculated to test the model’s ability to predict non-compliant food outlets. Alongside
AUC, sensitivity, and specificity, Cohen’s Kappa statistic and confusion matrices were also
generated. A confusion matrix includes the number of true positives (TP), non-compliant
food outlets correctly classified; false positives (FP), compliant food outlets incorrectly
classified; false negatives (FN), non-compliant food outlets incorrectly classified; and true
negatives (FN) compliant outlets correctly classified.

Cohen’s kappa statistic, henceforth referred to as kappa, provides a measure of agree-
ment between two classifiers. More specifically, in supervised machine learning problems,
kappa indicates the reliability of the generated class labels compared to the true labels,
defined as:

k =
po − pe

1 − pe
(1)
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where po is the observed accuracy or the number of correctly classified instances, and pe
is the expected accuracy; the accuracy that a random classifier could expect to achieve by
simply considering class frequencies alone.

As kappa accounts for the number of instances in each class through inclusion of the
expected accuracy metric, it is far more suited to the evaluation of imbalanced classification
problems compared to the simple accuracy metric. Landis and Koch [41] provide a frame-
work for the interpretation of kappa whereby they suggest a value < 0 indicates no agree-
ment in actual and generated class labels, 0–0.20 indicates a slight agreement, 0.21–0.40
fair agreement, 0.41–0.60 moderate, 0.61–0.80 substantial, and 0.81–1 as almost perfect
agreement. It is important to note that kappa must be interpreted on a case-by-case basis
and alongside a confusion matrix indicating the number of true and false classifications
for each class. An acceptable value of kappa will therefore differ depending upon the
classification problem.

For the five top performing algorithms, the impact of assigning a cost weighting to the
probability threshold was assessed. This acts as a penalty for false negative outcomes. In
the seminal paper ‘The Foundations of Cost-Sensitive Learning’, Elkan [42] states “Given a
specification of costs for correct and incorrect predictions, an example should be predicted to have the
class that leads to the lowest expected cost” (Elkan, 2001, p. 973). As the cost of misclassifying
a non-compliant outlet is much higher than misclassifying a compliant outlet, a relative
cost of 30 was applied to reduce false negative labels. For weighted (applied cost penalty)
probability thresholds, class labels were reassigned, and model metrics were recalculated
to assess performance. Weighted and unweighted model metrics were compared.

Finally, for the best performing model, predictor variable importance was calculated
using the varImp function from the Caret package in R. Importance scores for variables are
generated by calculating the mean decrease in accuracy across trees when the variable is
excluded. For more information see Liaw and Wiener [43]. The variable importance scores
are scaled between 1 and 100 to aid interpretation. We reran the best performing model
with the 20 most predictive variables and found that this did not alter the model metrics.
Therefore, we decide not to undertake further feature selection.

3. Results

In this section, we first consider ROC curves and AUC values to give an overview
of the predictive power of the approaches across sampling strategies. For the top five
performing models we then present model metrics for labels generated using weighted
(applied cost penalty) and unweighted probability thresholds. Model metrics for all models
are presented in the Supplementary Materials. Finally, we present predictor variable
importance scores for the top performing model and consider the direction of association.
We do not report the results of the CV process here; however, average model metrics for
kappa and AUC across CV iterations can be viewed in the Supplementary Materials.

3.1. ROC Curve Analysis

Of the three algorithms and sampling strategies, random forest models trained
with SMOTE data reported the best predictive power, achieving AUC values ranging
from 0.859 and 0.873. SMOTE radial SVM models reported the second highest AUC
values (AUC = 0.740–0.761) closely followed by undersampled random forest models
(AUC = 0.715–0.718). Linear SVM models trained with both SMOTE and undersampled
datasets reported the lowest AUC values at 0.608–0.698 and 0.660–0.696, respectively.

A large range of AUC values are reported for SMOTE datasets across models (0.873–0.608);
however, there was smaller difference in performance between the AUC values for under-
sampled datasets (0.718–0.660) indicating that sampling strategy has a greater influence
over predictive performance than algorithm. ROC curves for the five top performing mod-
els are reported in Figure 2. See Supplementary Materials for all remaining ROC curves.
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3.2. Application of Cost Penalty

To further increase the sensitivity of the five top-performing random forest algorithms,
and therefore classification of the non-compliant class, a cost penalty for false negative
classifications was applied as described in Section 2.6. Weighted (applied cost penalty)
and unweighted model metrics for the five SMOTE random forest models are presented
in Table 4. Here we also include the results of the random forest model trained on an
unsampled dataset. The size of the testing set remains constant to allow comparisons.

As expected, application of the cost penalty lowers the probability threshold, resulting
in an increase in the number of records classified as non-compliant. Although this strategy
increases the number of FP classifications, it results in a large reduction of FN classifica-
tions, equal to 35%, 26%, 36%, 39%, and 30% for random forest sets 1 to 5, respectively.
Sensitivity measures for weighted models are much higher (0.833–0.853) than unweighted
sensitivity measures (0.745–0.784), reflecting an increase in the predictive power of the
non-compliant class.

Application of the cost penalty negatively effects the overall model metrics, with
weighted models exhibiting lower AUC, kappa, and precision values compared to their
weighted counterparts, where precision represents the fraction of non-compliant outlets
among those labeled as such. However, in an applied setting, a reduction in FN classifica-
tions takes precedence over model metrics. Of all weighted classifiers, random forest set
4 reports the lowest number of FN classifications (895) and the highest sensitivity (0.853);
however, this model also reports the highest number of FPs and the lowest kappa value
(0.21), indicating a borderline slight/fair agreement between expected and observed values
and a move towards a ‘catch-all’ approach compared to other classifiers.
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Table 4. Weighted and unweighted performance metrics for random forest models utilizing SMOTE datasets across 5 sampling strategies where weighted observations have a cost penalty
applied (30) when extracting the optimal probability threshold and where precision is the proportion of correctly classified non-compliant outlets.

Metric

RF Set 1
n = 92,595

RF Set 2
n = 92,595

RF Set 3
n = 92,595

RF Set 4
n = 92,595

RF Set 5
n = 92,595

RF Unsampled
n = 92,595
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Probability Threshold 0.603 0.481 0.729 0.645 0.657 0.515 0.595 0.459 0.473 0.367 0.067 0.021

Area Under Curve 0.87 0.87 0.859 0.859 0.864 0.864 0.868 0.868 0.873 0.873 0.796 0.796

Sensitivity 0.759 0.843 0.773 0.833 0.745 0.838 0.76 0.853 0.784 0.849 0.661 0.859

Specificity 0.858 0.745 0.836 0.741 0.859 0.737 0.85 0.724 0.836 0.737 0.797 0.481

True Positives 4624 5139 4712 5076 4540 5107 4630 5201 4781 5175 4029 5903

False Positives 12,264 21,676 14,572 22,383 12,180 22,752 12,976 23,872 14,210 22,773 17,571 77,591

True Negatives 74,235 64,823 71,924 64,116 74,319 63,747 73,523 62,627 72,289 63,726 68,928 8908

False Negatives 1472 957 1384 1020 1556 989 1466 895 1315 921 2067 193

Kappa 0.338 0.230 0.301 0.218 0.334 0.216 0.325 0.210 0.313 0.220 0.210 0.010

Precision 0.274 0.192 0.244 0.185 0.272 0.183 0.263 0.179 0.252 0.185 0.187 0.071

(SMOTE = Synthetic Minority Oversampling Technique, RF = Random Forest).
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This ‘catch-all’ approach is clearly exemplified in the weighted model metrics for the
random forest model trained with an unsampled dataset. Here the rate of non-compliant
records remains equivalent to the original data at 7%. The probability threshold for this
model is extremely low at 0.021; therefore, the model labels all data points above this
probability threshold as non-compliant. Of 92,595 unseen records in the test set a total of
83,494 were labeled as non-compliant by the unsampled model and of these 77,591 were
incorrect classifications with an overall precision of 0.071. Kappa was reported at 0.01,
suggesting that this model performs only slightly better than a random classifier.

Of all classifiers, on balance random forest set 1 is adopted as the final classifier as
it reports the highest kappa (0.230) and precision (0.192) values of the weighted models,
indicating the lowest number of misclassifications of both classes whilst reporting low
values of FN classifications (957).

3.3. Variable Importance Scores

Variable importance scores for SMOTE random forest set 1 predictor variables are
presented in Figure 3. These are scaled between 1 and 100 to aid interpretation. Although
we decide to calculate importance scores to further understand the prediction outcomes,
there are limitations associated with entropy-based classifiers which we discuss further in
Section 4.3. To understand the direction of association, boxplots were generated for the top
20 variables. These are presented in Figure 4.

Int. J. Environ. Res. Public Health 2021, 18, x  13 of 20 
 

 

This ‘catch-all’ approach is clearly exemplified in the weighted model metrics for the 

random forest model trained with an unsampled dataset. Here the rate of non-compliant 

records remains equivalent to the original data at 7%. The probability threshold for this 

model is extremely low at 0.021; therefore, the model labels all data points above this 

probability threshold as non-compliant. Of 92,595 unseen records in the test set a total of 

83,494 were labeled as non-compliant by the unsampled model and of these 77,591 were 

incorrect classifications with an overall precision of 0.071. Kappa was reported at 0.01, 

suggesting that this model performs only slightly better than a random classifier. 

Of all classifiers, on balance random forest set 1 is adopted as the final classifier as it 

reports the highest kappa (0.230) and precision (0.192) values of the weighted models, 

indicating the lowest number of misclassifications of both classes whilst reporting low 

values of FN classifications (957). 

3.3. Variable Importance Scores 

Variable importance scores for SMOTE random forest set 1 predictor variables are 

presented in Figure 3. These are scaled between 1 and 100 to aid interpretation. Although 

we decide to calculate importance scores to further understand the prediction outcomes, 

there are limitations associated with entropy-based classifiers which we discuss further in 

Section 4.3. To understand the direction of association, boxplots were generated for the 

top 20 variables. These are presented in Figure 4.  

 

Figure 3. Variable importance scores for SMOTE random forest set 1 where red variables have higher predictive strength 

and blue variables have lower predictive strength. 
Figure 3. Variable importance scores for SMOTE random forest set 1 where red variables have higher predictive strength
and blue variables have lower predictive strength.



Int. J. Environ. Res. Public Health 2021, 18, 12635 14 of 20
Int. J. Environ. Res. Public Health 2021, 18, x  14 of 20 
 

 

 

Figure 4. Boxplots for numeric predictor variables reported across the two classes. 

Overcrowding, with a score of 100, was reported as the most predictive variable for 

food establishment compliance in the SMOTE random forest set 1 model. This is closely 

followed by ethnicity categories, Black (95.64), Asian (94.21), Other (92.80), and White 

(91.80). Following the ethnicity categories, no car access scored 81.50, mixed ethnicity 

scored 80.9, and percentage of unemployed individuals scored 78.26. Age categories were 

also reported to be highly predictive with scores between 74.40 and 77.89. For other vari-

ables, we saw a large drop in the reported predictive power. Takeaways and sandwich 

shops showed mild predictive strength with variable importance score of 36.82, and all 

other business types, RUC, region, and OAC variables scored below 20. Rural hamlets and 

isolated dwellings were reported as the least predictive variable with a score of 0. 

By examining boxplots for numeric predictor variables and the difference in median 

across the two classes (compliant and non-compliant food outlets), we can assess the di-

rection of association. The majority of variables were negatively associated with non-com-

pliance, i.e., the median for these variables was higher for non-compliant food outlets 

compared to compliant food outlets. These included: all non-White ethnicities, over-

crowding, no car access, renting, unemployment, and age categories 25–44 and 19–44. The 

percentage of White individuals, those aged over 65, and between 45–64 were positively 

associated with non-compliance and exhibited a higher median for compliant outlets. The 

differences in class medians for age categories 0–4, 5–14, and 15–19 were <1 and therefore 

did not very greatly across classes.  

4. Discussion 

Of the three models, we found that the random forest algorithm produced the strong-

est predictive classifier. Of the adopted sampling strategies, models utilizing SMOTE 

training data at a 1:1 ratio yielded the best results and outperformed models trained with 

undersampled data and SMOTE data at different ratios. Furthermore, we found that this 

sampling strategy greatly improved model metrics, and the frequency of FN predictions 

Figure 4. Boxplots for numeric predictor variables reported across the two classes.

Overcrowding, with a score of 100, was reported as the most predictive variable for
food establishment compliance in the SMOTE random forest set 1 model. This is closely
followed by ethnicity categories, Black (95.64), Asian (94.21), Other (92.80), and White
(91.80). Following the ethnicity categories, no car access scored 81.50, mixed ethnicity
scored 80.9, and percentage of unemployed individuals scored 78.26. Age categories
were also reported to be highly predictive with scores between 74.40 and 77.89. For other
variables, we saw a large drop in the reported predictive power. Takeaways and sandwich
shops showed mild predictive strength with variable importance score of 36.82, and all
other business types, RUC, region, and OAC variables scored below 20. Rural hamlets and
isolated dwellings were reported as the least predictive variable with a score of 0.

By examining boxplots for numeric predictor variables and the difference in me-
dian across the two classes (compliant and non-compliant food outlets), we can assess
the direction of association. The majority of variables were negatively associated with
non-compliance, i.e., the median for these variables was higher for non-compliant food
outlets compared to compliant food outlets. These included: all non-White ethnicities, over-
crowding, no car access, renting, unemployment, and age categories 25–44 and 19–44. The
percentage of White individuals, those aged over 65, and between 45–64 were positively
associated with non-compliance and exhibited a higher median for compliant outlets. The
differences in class medians for age categories 0–4, 5–14, and 15–19 were <1 and therefore
did not very greatly across classes.

4. Discussion

Of the three models, we found that the random forest algorithm produced the strongest
predictive classifier. Of the adopted sampling strategies, models utilizing SMOTE training
data at a 1:1 ratio yielded the best results and outperformed models trained with undersam-
pled data and SMOTE data at different ratios. Furthermore, we found that this sampling
strategy greatly improved model metrics, and the frequency of FN predictions compared
to unsampled data. In this section, we discussed the implications of our findings before
discussing the model algorithms, sampling strategies, and variable importance.
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4.1. Strengths and Policy Implications

This work presents a model which can make robust predictions of food outlet com-
pliance using small-area socio-demographic, neighborhood, and business type data. To
our knowledge, this is the first study to utilize such data for predictive purposes in the
domain of food safety. This work is similar in some respects to the previously reviewed
literature [8–11] which focused on determining associations between food outlet CHVs and
both ethnicity and deprivation. However, we extended previous research by identifying
high-risk food outlets, highlighting the intrinsic link between food safety and neighborhood
characteristics.

Although the prediction of food outlet compliance does not help to meet the LA targets
with regards to required inspections, it could reduce consumer risk by capturing high
risk establishments earlier in the inspection cycle. Especially given that over 20,000 food
outlets in the dataset have not been inspected within the last five years. It is clear how a
classifier of this nature could advance current food inspection processes by prioritizing
food outlets awaiting repeat inspections of those newly opened. However, as we discuss
in Section 4.3, we must ensure that predictions of this nature do not enforce biases which
may or may not already be present in the system. For a newly opened food outlet or
one awaiting inspection, we envisage that predictor variables would be gathered at OA
level using the postcode reported on the business registration documentation. Once
complete with all required predictor variables, the data record would be used to classify the
individual food outlet using the pre-learnt algorithm which would be assigned a risk rating
depending on a pre-defined probability threshold. In an applied setting, we postulate
that if our test set were to represent food outlets awaiting inspection, approximately
26,815 (28%) of 92,595 outlets could be prioritized for inspection by the LA. Of these
inspections, approximately 5139 would result in a FHRS score of 2 or below, capturing 84%
of the total number of non-compliant outlets. A total of 72% of outlets would be labeled as
lower priority, easing the strain on local authority inspectors, and reducing consumer risk.

It should be noted that the figures reported by our model represent averages across
LA’s in England and Wales and therefore the predictive strength of the model will vary
geographically. In further work we will examine spatial variations in model predictions
and predictor variable strength. The impact of varying probability thresholds, dependent
upon different cost weighting, will also be assessed.

4.2. Appropriateness of Algorithms and Sampling Strategies

Overwhelmingly, we found that the classification problem cannot be solved by linear
SVM. These models reported the lowest metrics across both SMOTE and undersampled
datasets, with some linear models reporting equivalent performance to a random classifier.
Radial SVM, which transforms data into a non-linear space, performed slightly better than
its linear equivalent; however, the random forest algorithms reported the best predictive
power for unseen data points. Therefore, future work will look at advanced learners such
as gradient boosted decision trees which may further improve performance metrics.

Of sampling strategies, we found SMOTE to be the most effective for compliance
prediction. Unlike undersampling, where a large proportion of the majority class is dis-
carded resulting in the loss of important contextual information, SMOTE retains most
of the data points in the majority class whilst adding synthetic points to the minority
class. Subsequently, SMOTE training datasets are inherently larger than undersampled
counterparts, which could account for differences in predictive strength between models.
We found that compliance prediction using unsampled data was not possible.

With regards to sampling ratios, models utilizing training sets which best reflect real-
world ratios, i.e., those with a higher frequency of compliant food outlets, report higher
model metrics than those with a higher frequency of non-compliant outlets. Models trained
with a 2:1 non-compliant to compliant dataset report the lowest AUC values regardless of
sampling strategy. Future work will look towards supplementing the minority class with



Int. J. Environ. Res. Public Health 2021, 18, 12635 16 of 20

additional data such as historical records of non-compliant food outlets to attain more data
whilst maintaining representative ratios.

4.3. Variable Importance

Although we calculated variable importance to further understand the outcomes of
our model, the way in which scores are calculated for entropy based classifiers mean they
should be approached with caution [44,45]. Decision tree algorithms, such as random
forest, attempt to reduce entropy at each division in the data. Variables with multiple levels
or values inherently provide more flexibility for data partition compared to categorical
variables and are subsequently afforded greater importance [46].

We clearly see this effect in the variable importance scores for our predictive model.
Continuous numerical variables representing overcrowding, ethnicity, age, unemployment,
no car access, and renting households have high predictive importance compared to
categorical variables: RUC, region, OAC, and business type. These findings contrast
those found previously by Oldroyd, Morris and Birkin [14] where large effect sizes were
found for takeaways and sandwich shops, and major urban conurbations, alongside
smaller but significant associations for Mixed, Asian, Black, and Other ethnicities. This
study did however find a clear gradient of association between increased deprivation
and non-compliance, where the Townsend deprivation score was used [47], comprising of
overcrowding, unemployment, renting households, and households without car access.
These variables proved highly predictive in our final model algorithm.

Further research is required to understand associations and potential relationships be-
tween highly predictive variables and non-compliance. Firstly, as we discuss in Section 1.1,
such associations maybe a function of inspection bias. Darcey and Quinlan [10] discuss
the influence of confirmation bias, which exists when inspection results align with a pre-
conceived notion based on the type of neighborhood within which an outlet is located.
Furthermore, Pham et al. [48] state that health inspectors report communication problems
with business owners who do not speak English. Aside from inspection bias, another
possible explanation for associations between neighborhood ethnicity and non-compliance
is the role of ethnic cuisine. Some studies have reported higher numbers of CHVs at
outlets serving ethnic cuisine [49–52]; however, it is unclear whether the location of such
food outlets relates to the underlying population composition. For example, are Chinese
restaurants more commonly located in areas with higher numbers of Chinese residents?
Moreover, the relationship between unsafe food behaviors and ethnicity also warrants
further research. As discussed in Section 1.1, Wills, Meah [12] found that some populations
are more likely to undertake unsafe food behaviors in domestic settings but it is unclear
whether these findings would translate into a commercial setting.

Considering associations between non-compliance and deprivation (overcrowding,
no car access, unemployment, and renting households), in their work, Pothukuchi, Mo-
hamed [11] hypothesized that associations between neighborhood poverty and CHVs
may reflect inferior building infrastructure in poorer neighborhoods, resulting from lack of
monetary resources. This work also considers the role of competition between economically
weak businesses: “The consistent effect of neighbourhood poverty on violations . . . may suggest
either absence of competition or fierce price competition between economically weak businesses in
ways that permit fewer resources to be devoted to food safety” (Pothukuchi, Mohamed, and
Gebben, 2008, p. 329). This hypothesis is an interesting one, especially considering compe-
tition in the UK context. Display of FHRS scores outside food premises is not mandatory in
England and Wales (as it is in Scotland and Northern Ireland) and there is an argument that
this therefore reduces the incentive for food businesses to improve their ratings. Without
physical display of the FHRS, consumers cannot make an informed decision as to whether
the food outlet poses a risk, or whether to eat at a higher rated nearby outlet. Further-
more, deprived populations often have little choice over where they can purchase food,
stemming from low levels of relative car access (and high fuel prices) and low uptake of
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e-Commerce [53]. Therefore, sustained business from consumers, through lack of choice,
may also sustain non-compliant practices.

Population transience, staff turnover, and business turnover is also an avenue that
requires further investigation. Yapp and Fairman [54] found that business proprietors
were less likely to send staff on food safety training courses if their business experienced
high staff turnover. This could explain low lower likelihood of compliance in large urban
areas and areas with more individuals who are more likely to migrate, such as certain age
brackets. With regards to business turnover, newly established businesses are thought
to be disadvantaged during the inspection process as they do not have comprehensive
records of food safety compliance. Whilst undertaking street audits to validate FSA food
establishment data, Wilkins et al. [55] found less agreement in urban areas compared to
rural areas, which was attributed to a higher turnover of food businesses, which again
supports the argument that outlets in large urban areas are less likely to comply with food
hygiene standards.

As discussed, these importance scores should be interpreted with caution and in future
work we will utilize more sophisticated post hoc model interpretation techniques such
as Local Interpretable Model-agnostic Explanations (LIME) [56], with the aim to provide
a higher degree of confidence in the variable importance scores of predictive variables,
such that we can postulate more confidently about associations. We will also explore
alternative approaches such as partial permutations [30] or growing unbiased trees [57].
These algorithms are designed to reduce bias towards continuous variables during variable
selection. Future work will also undertake further fine-grained analysis of the composite
measures that make up the FHRS scores, such as confidence in management scores and
structural integrity scores, to further unpick the relationships between highly predictive
variables and model outcomes.

4.4. Methodological Limitations

As with all studies utilizing area-based measures, there may be problems associated
with the geographical scale of analysis. The Modifiable Areal Unit Problem arises when
point data, such as individuals or households, are aggregated to polygons [58]. The size
and shape of the polygon will determine the aggregated units and therefore different
results maybe reported when using an alternative geography. We used a small geography
to minimize the effect; however, this cannot be entirely mitigated without using individual
level data.

Our analysis assumes that the FHRS data reflect current hygiene scores at food serving
establishments across England and Wales. When calculating model metrics and the number
of false and true positives and negatives. we used the FHRS data as a gold-standard
measure. However, as only 14% of local authorities are up to date with their planned
inspections, this measure may not entirely represent current food hygiene practices and our
calculated metrics may under or overestimate model performance as a result. Furthermore,
false positive predictions, i.e., food establishments predicted non-compliant but with a
compliant FHRS score, may provide strong indication of where repeat inspections should
be undertaken.

Our model is static and does not incorporate dynamic data which would contribute
real-time information to improve the classification of non-compliant food outlets. We also
did not include features relating to inspection history as these are not reported in the FHRS
dataset; however, limited research has suggested that the inclusion of such data could
help improve predictions. In future work we will incorporate CGD such as restaurant
reviews and ratings, and we will also investigate the possibility of including individual
outlet inspection data to further improve the predictive power of the model.

5. Conclusions

Using socio-demographic, business type, and neighborhood data, we determined a
random forest model that can predict non-compliant food outlets in England and Wales
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with 84% sensitivity. We conclude that training the model using SMOTE data at 1:1 ratio is
effective at addressing problems associated with highly imbalanced classes. We conclude
that food outlet compliance is a function of geographic context by identifying highly
predictive neighborhood features such as measures of deprivation, underlying population
composition, and urbanness. To summarize, this data driven approach could be utilized to
prioritize food outlet inspections for high-risk outlets, to deploy scarce LA resources more
effectively and to reduce consumer exposure to unsafe food practices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijerph182312635/s1, Figure S1: Count of Food Hygiene Rating Scheme Scores in England
and Wales. Figure S2: Box and whisker plots are generated for the Kappa metric averaged for
cross-validation iterations. The minimum, maximum, mean and interquartile range are calculated
for each model. Where US = under-sampled datasets; SMOTE = Synthetic Minority Oversampling
Technique datasets; Linear = Linear SVM; Radial = Radial SVM; RF = Random Forest. Suffixed
numbers represent sampling ratios of non-compliant to compliant food outlets as follows: 1 = 1:1;
2 = 2:1; 3 = 3:2; 4 = 2:3; 5 = 1:2. Figure S3: Box and whisker plots are generated for the AUC metric
averaged for cross-validation iterations. The minimum, maximum, mean and interquartile range
are calculated for each model. Where US = under-sampled datasets; SMOTE = Synthetic Minority
Oversampling Technique datasets; Linear = Linear SVM; Radial = Radial SVM; RF = Random Forest.
Suffixed numbers represent sampling ratios of non-compliant to compliant food outlets as follows:
1 = 1:1; 2 = 2:1; 3 = 3:2; 4 = 2:3; 5 = 1:2. Figure S4: ROC curves and AUC values are generated for
each model. Steep ROC curves and high AUC values indicate better performance than shallow
ROC curves and low AUC values. SMOTE Radial 1 and under-sampled Radial 3 did not converge.
Table S1: Sensitivity, specificity, precision, and kappa for all models.
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