
This is a repository copy of Aerobatic tic-toc control of planar quadcopters via
reinforcement learning.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/185244/

Version: Accepted Version

Article:

Wang, Z., Groß, R. orcid.org/0000-0003-1826-1375 and Zhao, S. (2022) Aerobatic tic-toc
control of planar quadcopters via reinforcement learning. IEEE Robotics and Automation
Letters, 7 (2). pp. 2140-2147.

https://doi.org/10.1109/lra.2022.3142730

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JANUARY, 2022 1

Aerobatic Tic-Toc Control of Planar Quadcopters

via Reinforcement Learning
Zhikun Wang, Roderich Groß, Shiyu Zhao

Abstract—This paper studies aerobatic tic-toc control of
quadcopters. Tic-toc control enables rotorcraft to fly almost
in the vertical plane rather than the horizontal plane. It is one
of the most challenging manoeuvrers to achieve autonomously.
The problem has to our knowledge not yet been studied for
quadcopters. Studying it could expand their flight envelope and
improve their performance in extreme, aerobatic flight tasks.
In this paper, we employ a deep deterministic gradient policy
approach to train reinforcement learning (RL) controllers based
on carefully designed rewards. The obtained RL controllers are
shown to generate two flight modes, spin and tic-toc. We analyse
the properties of these flight modes and screen out unfavourable
RL controllers. The qualified RL controller is then enhanced
by combining it with PID and LQR controllers which achieves
better flight performance and enables the quadcopter to track
a moving reference point and recover to hovering flight status.
Physical simulations using Simscape are presented to verify the
proposed approach.

Index Terms—Variable-Pitch Propeller Quadcopter, Flight
Control, Reinforcement Learning

I. INTRODUCTION

Quadcopter unmanned aerial vehicles (UAVs) are widely

used due to their simple mechanical design and control struc-

tures. Nowadays, an increasing amount of tasks pose high

requirements on the manoeuvrability and anti-interference

ability of quadcopter UAVs. Variable pitch propeller (VPP)

quadcopters are a relatively new type of quadcopter, that

can exhibit performances superior to the conventional fixed-

pitch ones. Specifically, a VPP can control its pitch angle

by an actuator, thereby generating forces in either positive

or negative directions. As a result, a VPP quadcopter can

fly upside-down, which is impossible for fixed-pitch quad-

copters. Therefore, VPP quadcopters exhibit great potential

in many applications that require high-performance flight.

Although VPP quadcopters have received increasing at-

tention in recent years, studies mainly focus on fault-tolerant

control [1, 2]. The great potential in manoeuvring flight has

not been well explored up to now. In fact, VPP quadcopters

Manuscript received: September 9, 2021; Revised: December 3, 2021;
Accepted: December 24, 2022.

This paper was recommended for publication by Editor Pauline Pounds
upon evaluation of the Associate Editor and Reviewers’ comments.

Z. Wang and R. Groß are with the Department of Automatic Control and
Systems Engineering, The University of Sheffield, United Kingdom. S. Zhao
is with the School of Engineering at Westlake University and the Institute of
Advanced Technology at the Westlake Institute for Advanced Study, China.
Z. Wang completed part of this work when he was a visiting student at West-
lake University. {zwang119, r.gross}@sheffield.ac.uk,
zhaoshiyu@westlake.edu.cn

Corresponding author: Shiyu Zhao.
Digital Object Identifier (DOI): see top of this page.

Fig. 1: A typical tic-toc (also known as ‘the pendulum’) manoeuvrer of the
devil sticks.

are suitable for a variety of aerobatic flight manoeuvres. Ex-

ploring these manoeuvres could broaden the flight envelope

and help address complex flight scenarios. They could be

relevant in entertainment and military applications as well as

in applications requiring aircraft to navigate narrow confined

spaces, all of which have received increased attention in

recent years.

Among aerobatic flight manoeuvres, tic-toc is one of the

most challenging to be achieved autonomously. The tic-toc

manoeuvre attempts to fly the UAV in a vertical plane rather

than a horizontal plane. As the UAV is not able to fly steadily

in a vertical plane due to the lack of vertical lift, it has

to periodically swing back and forth to approximately keep

a vertical flight pose. Such a periodic movement can be

observed in juggling (see Fig. 1). It is a typical aerobatic

manoeuvre of helicopters [3]. The work in [4, 5] realized

autonomous tic-toc control of a helicopter using inverse

reinforcement learning. Such a method, however, requires

data of tic-toc trajectories generated by expert pilots in

advance.

Up to now, an autonomous tic-toc manoeuvre of a quad-

copter has not yet been reported in the literature. Moreover,

how to realize it by self-learning without data generated by a

skilled pilot is still an open problem. This paper studies this

problem. As the dynamical system is extremely complex, we

consider a simplified planar quadcopter model to simulate

a VPP quadcopter [6, 7]. Even though the dynamic model

is simplified to be two-dimensional, we still face many of

the challenges. In particular, as the tic-toc movement is

not around any equilibrium point, equilibrium-based control

approaches are not applicable.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JANUARY, 2022

σl σr

er

x

z

el

cr
cl

mg

f

θd

Fig. 2: Schematic diagram of the whole period of the VPP quadcopter tic-toc
manoeuvrer.

As far as the authors are aware, the tic-toc manoeuvre has

not been achieved by any conventional control approaches in

the literature. In this paper, we design controllers for tic-toc

aerobatic flight for planar VPP quadcopters via reinforcement

learning (RL). RL is a method that enables an agent to use the

reward obtained from its interactions with the environment

to generate its control policy [8]. It has received significant

attention in recent years due to its potential to address prob-

lems that are challenging to solve by conventional control

approaches [9, 10]. Although RL has been applied to the

control of multi-rotor drones, it is mainly used to achieve

flight near the equilibrium point, such as throw-and-hover

[11] and attitude control [12].

We use the deep deterministic gradient policy (DDPG)

approach to train RL controllers based on carefully designed

rewards. The obtained RL controllers are shown to generate

two flight modes: spin and tic-toc. The flight performance

of either mode is carefully analysed. Then, we evaluate and

screen out unfavourable RL controllers by a non-dominated

sorting approach [13]. Finally, we extend the remaining RL

controller by introducing a compensation control, so that

the tic-toc motion can follow a moving reference point, and

an LQR-based recovery control, so that the quadcopter can

recover from tic-toc to hovering flight. A series of studies

are conducted in simulation to verify the proposed approach.

II. PROBLEM STATEMENT

The planar VPP quadcopter is modelled as a stick with

uniform mass distribution as illustrated in Fig. 2. A force

f is applied at one end of the stick. Its direction is always

perpendicular to the stick. Its sign can be positive or negative

(see Fig. 3). We consider only a single force as doing so

is already sufficient to achieve the tic-toc manoeuvre as

demonstrated by Fig. 1. Interestingly, a single force acting

on the stick end is not sufficient for a quadcopter to hover.

Tic-toc is one of a few flight modes that a quadcopter could

use to stay in the air under these constraints.

Let d be the distance between the centre point and a

reference point (i.e., the red point in Fig. 2). The control

(a)

(b)

Fig. 3: A VPP actuator can use spinning speed and propeller pitch angle
to change the required force and torque. A counter-clockwise rotating VPP
generates a positive force with a positive propeller angle (a) and a negative
force with a negative propeller angle (b).

objective is to design f such that d is as small as possible. As

there are no equilibrium states, it is challenging to formally

define the target state. We will later quantify the objective by

using rewards when designing RL algorithms.

In the following, the states of the stick and the dynamic

model are presented. The position and velocity of the centre

point of the stick are [x, z] and [u,w], respectively. The

attitude of the planar quadcopter is described by θ, which

is the angle between the stick and the x-axis. The spinning

rate is q. Let m and l denote the mass and half length of the

stick, respectively, I the moment of inertia, g the gravitational

constant, and fT and τT the total thrust and torque, which

are given by

fT =f,

τT =fl.
(1)

Then, the overall state vector is [x, z, θ, u, w, q] and the

dynamic model is
















ẋ
ż

θ̇
u̇
ẇ
q̇

















=

















u
w
q

−fT sin θ/m
fT cos θ/m− g

−τT /I

















. (2)

III. REINFORCEMENT LEARNING CONTROLLER:

TRAINING AND ANALYSIS

A. Algorithm Structure

We apply the DDPG approach reported in [9] to train the

RL controller. The approach comprises two parts, an actor

Neural Network (NN) and a critic NN. The actor NN is an

agent that works in the environment whereas the critic NN

evaluates the performance of the agent. A deterministic policy

gradient algorithm is used to update the actor NN. The critic

NN is a value based deep Q-learning NN that uses state

feedback and action as input while its output is a temporal-

difference error used to evaluate the performance of the actor.

WANG et al.: AEROBATIC TIC-TOC CONTROL OF PLANAR QUADCOPTERS VIA REINFORCEMENT LEARNING 3

f

. . .

. . .

7 states

200 nodes

Relu128 nodes

Tanh

(a) Actor NN structure

f

. . .

. . .

7 states

Relu128 nodes

Relu200 nodes

Value

(b) Critic NN structure

Fig. 4: The neural networks of the DDPG training algorithm.

The NN structures are shown in Fig. 4. Subsequent layers

are fully connected. The output of the actor NN is the force f
that acts at the end of the planar quadcopter. There are 7 state

feedbacks which are obtained by the agent from its interac-

tion with the environment:
[

sin(θ), cos(θ), θ̇, x, z, ẋ, ż
]

. The

state feedback quantities are also used to design rewards.

The whole NN is built in the Matlab Deep Reinforcement

Learning toolbox environment.

B. Training Process

As there are no target equilibrium states, we must design

a representative reward to reflect our control objective. The

rewards are explained in the following. Positive and negative

rewards, respectively, are used to encourage and penalize

certain behaviour.

1) To reward the centre point of the quadcopter for ap-

proaching the target location, we design the following

distance deviation penalty function:

r(d) = −0.1d2 − 100dfar,

where

dfar =

{

0, if d < 4;

1, if d ≥ 4.

TABLE I: Planar quadcopter parameters

Parameter Symbol Value Unit

Original mass mo 1 kg
Mass mn 0.665 kg

Gravitational acceleration g 10 m/s2

Original moment of inertia Io 0.083 kg· m2

Moment of inertia In 0.007 kg· m2

Original length lo 0.5 m
Length ln 0.175 m
Original force limit max fo 200 N
Force limit max fn 25 N

Force changing rate limit max ḟn 1000 N/s

Here, d is a non-negative distance value and dfar gives a

strong penalty when the centre point gets too far away

from the reference point. When dfar = 1, the episode is

stopped.

2) To reward the quadcopter for assuming a vertical attitude

(i.e. θ close to −π/2), we use reward function

r(θ) = −0.01(θ + π/2)2,

where θ ∈ [−π, π).
3) To minimize the required force magnitude, a force

penalty is designed as

r(f) = −0.01f2.

4) To encourage the quadcopter to remain in the air for a

long time, we increase the reward with the flying time

by

r(t) = 0.1t,

where t is the time elapsed since the start of the episode.

In total, the reward function is

R = r(d) + r(θ) + r(f) + r(t). (3)

For each episode, the quadcopter starts from the initial

hovering state, which is x0 = 0, z0 = 0, θ0 = 0. The target

reference position is randomly generated, xt, zt ∈ [−1, 1].
The latter helps strengthening the RL controller’s gener-

alization ability and stability [14]. The parameters of the

quadcopter used for training are provided with subscript o in

Table I. Within each episode, the quadcopter tries to reach,

and remain close to the target position. If the quadcopter flies

too far away (more than 4 m), the episode will be marked

as a failure and stop. We train the DDPG agent for 30000

episodes, with each episode lasting at most 10 s with 0.02 s

sampling time. All episodes whose returns are greater than

-50 are saved for further analysis.

C. Analysis of Results

The trained RL controllers exhibit two flight modes. The

first is a spin mode, where the planar quadcopter spins around

a fixed position, therefore θ varies from 0 to 360 degrees

(see Fig. 5). The second is a tic-toc mode, where the planar

quadcopter swings around a point back and forth, therefore

θ is constrained in a bounded interval (see Fig. 6).

In either of the flight modes, the entire flight can be split

into two phases. The first is a settling phase, in which the

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JANUARY, 2022

(a)

(b)

Fig. 5: Results of a quadcopter holding its position by using the spin mode
neural network. (a) shows the quadcopter’s motion during the first 2 seconds,
whereas (b) shows the state evolution during the full 20 seconds duration.
The colour bar represents time. It takes the quadcopter about 2 seconds to
reach the manoeuvre phase.

planar quadcopter starts from a horizontal attitude and then

gradually converges to a steady periodic motion. During this

phase, there will be large position and attitude deviations.

The second is a steady periodic phase, in which the states

vary in a steady periodic manner.

In order to quantify the settling time, we use trigonometric

functions to fit the steady periodic curve. As illustrated in

Fig. 7, the distance d between the quadcopter centre point

and the reference point is shown by the blue curve. We can

fit the blue curve in the steady periodic phase by

df (t) = A0 +A1 cos(ωt) +A2 sin(ωt).

Once |d(t)− df (t)| remains below a threshold (for example,

0.1) the settling phase ends and the corresponding time is

the settling time. We have checked all the trained controllers

and noticed that it takes a longer settling time for the spin

mode (around 6 s) than for the tic-toc mode (around 3 s).

By comparing the performance of the spin and tic-toc

modes as shown in Figs. 5 and 6, the tic-toc mode does not

(a)

(b)

Fig. 6: Results of a quadcopter holding its position by using the tic-toc mode
neural network. (a) shows the quadcopter’s motion during the first 2 seconds,
whereas (b) shows the state evolution during the full 20 seconds duration.
The colour bar represents time. The quadcopter succeeds in switching to the
tic-toc manoeuvre with very little initialization time.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

original data

FFT

Fig. 7: Settling time quantification through comparison of the original
distance curve and the Fourier fitting curve. To avoid interference via the
initialization phase, we exclude the first 5 seconds when generating the
Fourier fitting curve. The fitting distance function shown in the figure is
df (t) = 0.76 + 0.11 cos(14.46t) − 0.001 sin(14.46t), and the settling
time is around 2.8 s.

exhibit significant fluctuations during the settling phase and

reaches the steady periodic phase faster. In terms of space

occupation, the spin mode takes more space than the tic-toc

mode (observed from the XZ plane). In terms of required

force, the spin mode requires high force (70 N maximum) in

the settling phase and then much less force (25 N maximum)

WANG et al.: AEROBATIC TIC-TOC CONTROL OF PLANAR QUADCOPTERS VIA REINFORCEMENT LEARNING 5

0 1 2 3 4 5 6 7 8 9 10

-3

-2

-1

0

0 1 2 3 4 5 6 7 8 9 10
-50

0

50

100

(a)

0 1 2 3 4 5 6 7 8 9 10

-3

-2

-1

0

0 1 2 3 4 5 6 7 8 9 10
-50

0

50

100

(b)

0 1 2 3 4 5 6 7 8 9 10

-3

-2

-1

0

0 1 2 3 4 5 6 7 8 9 10
-50

0

50

100

(c)

Fig. 8: Comparison of different NNs that have similar reward value where
(a) shows a high-speed tic-toc mode NN performance, (b) shows a medium-
speed tic-toc mode NN performance and (c) shows a low-speed tic-toc mode
NN performance. It is difficult to distinguish these performances by only
considering the reward function.

TABLE II: Comparison among three tic-toc manoeuvre NNs with different
speeds.

High-speed Medium-speed Low-speed

Swing Angle (rad) 1.12 1.38 2.26
Time Period (s) 0.45 0.56 0.94
Maximum Force (N)(+) 73.68 50.34 32.65
Maximum Force (N)(-) -46.43 -55.28 -48.34

in the steady periodic phase. As a comparison, the required

force of the tic-toc mode does not vary significantly during

different phases and the maximum value is 50 N.

While we have incorporated an angle penalty reward

function r(θ), why could the controller still learn the spin

mode? This is because the total reward function considers

other properties as well and we stored all the RL NNs whose

overall rewards were greater than the set threshold.

IV. REINFORCEMENT LEARNING CONTROLLER:

FURTHER EVALUATION AND SCREENING

In the last section, we showed that the tic-toc flight mode

has less settling time and lower space occupation than the

spin mode. It should be noted that different training episodes

can lead to different controllers, which may all achieve

the tic-toc mode but have very different performances. The

inherent diversity of solutions (and performances) is funda-

mentally due to the total reward function being composed of

a mixture of metrics, and the trained controllers may place

different emphasis on different metrics. In this section, we

evaluate different tic-toc controllers and show how to screen

out solutions according to additional metrics.

Figure 8 shows three examples to demonstrate the per-

formance of different controllers. The examples could be

classified to be high-speed, medium-speed, low-speed con-

trollers based on the periodic time of their steady phases.

The specific values of the maximum swing angles, periodic

time, and maximum forces of these examples are given in

Table II, where the parameters of the dynamical system used

for training is given in Table I. As can be seen, the smaller

the swing angle and the shorter the time period, the larger

the force that is required.

In the rest of the section, we introduce three metrics to

evaluate different RL controllers and propose a method to

screen out unfavourable ones.

A. Evaluation Metrics

To give an overall evaluation of the performance of the

NN, we use the following three metrics:

1) The first metric is the mean distance between the centre

and reference points. It is denoted as dmean.

2) The second metric is the maximum space occupation

smax, which is defined as

smax = max (|er| , |el|) , (4)

where er and el denote respectively the rightmost and

leftmost distance of the stick’s top end from the vertical

plane (see Fig. 2).

3) The third metric, fmax, is the maximum magnitude of the

force during the entire control process including both

settling and steady periodic phases. This metric would

be relevant for practical realizations of the RL controller.

It must be noted that the three metrics could not be

designed as rewards during the training process. That is

because they are defined for the entire control process and can

not be used for timely feedback to evaluate the performance

of the training NN controller.

It is favourable if dmean, smax, and fmax are small; the

smaller the better.

B. Network Screening

This subsection addresses how to screen a large number

of RL controllers based on the aforementioned three metrics.

One approach is to assign different weights to the three

metrics according to ones’ own preferences and then use a

weighted summation of the three metrics as a single metric.

Since many networks perform well on one metric but worse

on another, one overall metric may not be sufficient to choose

a suitable controller. Therefore, we use a screening algorithm

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JANUARY, 2022

(a) (b)

Fig. 9: Screening of trained NN controllers. Each axis represents a different
metric; (a) shows the point cloud of all trained NNs and (b) shows the
Pareto-efficient frontier point cloud of all trained NNs.

to identify the set of best NNs from all the trained NNs. Here

“best” refers to NNs that are not dominated by other NNs.

Figure 9(a) shows all trained NNs as a point cloud in

the metric space, where the axes correspond to the three

metrics dmean, smax and fmax, respectively. Figure 9(b) shows

the corresponding Pareto-efficient frontier.

While this method screens out a large portion of un-

favourable NNs, we can further reduce the selection based

on our preferences. For example, if we want the space

occupation to be as small as possible, we could choose the

bottom-left red dot in Fig. 9(b). In addition, we can choose

NNs from anywhere on the Pareto optimal surface to meet

multiple metric requirements.

V. REINFORCEMENT LEARNING CONTROLLER:

AN EXTENSION

This section extends the RL controllers to further improve

their performance. In addition, a recovery controller is de-

signed to restore hovering flight and a NN migration method

is provided to realize the control of different dynamic models

by the target NN.

A. Trajectory Compensation

A problem of the RL controllers is that there may exist

steady-state errors between the average position of the centre

point and the reference point. We now seek to suppress

this steady error. Moreover, we seek to further decrease the

maximum space occupation smax.

We design a trajectory compensation method that uses

a PID controller to compensate the steady-state error and

reduce smax. The idea of this method is to design a swing tra-

jectory to offset unnecessary displacement, thereby reducing

the maximum manoeuvrer distance deviation. In our scenario,

the error between actual and desired trajectories is given to

the PID controller as the input where the output value is the

trajectory that needs to be compensated.

Figure 10 verifies the effectiveness of the proposed con-

troller. As can be seen, the compensation method can re-

duce the average steady-state error from [−0.54,−0.22] to

[−0.05,−0.12]. Moreover, smax decreased from 0.98 m to

0.51 m. However, this comes at the cost of the maximum

force increasing from 78 N to 165 N.

(a) (b)

Fig. 10: Simulation results (steady periodic phase) of the planar quadcopter
with or without trajectory compensation. The trained NN strikes a good
balance among all three objective functions (dmean, smax and fmax). (a) shows
the simulation results of the NN controller without trajectory compensation
and (b) shows the simulation results of the NN controller with trajectory
compensation. The overall maximum space occupation is decreased by 53%.

The advantage of this compensation controller is that we

can flexibly enhance the flight performance of an existing

trained RL controller according to our needs, instead of

training new RL controllers.

B. Recovery Controller System

Our trained RL controller can only achieve tic-toc flight.

If the planar quadcopter was to restore hovering flight, a new

controller would need to be designed and integrated.

We introduce an LQR controller for hovering flight control

based on a modified version of (1) and (2). The modification

is to change the single force as in (1) to two forces applied

on the two ends of the stick. As a result, (1) becomes

fT =fr + fl,

τT =(fr − fl)l,

where fr and fl are the forces acting on right and left ends

of the VPP quadcopter, respectively. Then, we linearise the

system based on the dynamic model presented in (2). A

standard LQR controller is designed based on the linearised

model. The design of the LQR controller is omitted here.

By combining such a controller with the RL controller, a

quadcopter could start from a hovering position, switch to the

tic-toc flight, and finally switch back to the hovering mode.

It should be noted that two forces are required for hovering

and only one force is needed for tic-toc. The overall control

structure is illustrated in Fig. 11.

C. Network Migration

When we train an RL controller, we need to specify a

set of parameters of the planar quadcopter such as its mass

and length. However, once we apply the trained controller in

practice, the parameters may vary across different platforms.

To solve this problem, we could adjust the force and torque

generated by the trained RL controller according to the

WANG et al.: AEROBATIC TIC-TOC CONTROL OF PLANAR QUADCOPTERS VIA REINFORCEMENT LEARNING 7

Trajectory
Compensation

RL
Controller

Simscape
Environment

LQR
Controller

Controller
Switch

Trajectory
Generator

Maneuver
Command

Controller
Decision

Trajectory
Generation

Fig. 11: Overall control system structure used for the narrow space passing
simulation. The structure is divided into three parts, trajectory generation
(shown in blue), controller decision (shown in red) and simulation environ-
ment.

specific parameters of the target platform to

fn =
mn

mo

fo,

τn =
loIn
Ioln

τo,
(5)

where parameters and variables with subscript o and n
correspond to the original and new parameters, respectively.

Substituting the migration equations (5) to (2) gives

fo sin θ/mo = fn sin θ/mn,

fo cos θ/mo = fn cos θ/mn,

τolo/Io = τnln/In.

Therefore, once the parameters of the standard training model

and the target model are known, we can migrate the RL

controller to the target model to make their performance

consistent.

D. Simulation Validation

We study three simulation scenarios to examine the perfor-

mance of the integrated system, comprising the RL controller,

compensation controller, network migration subsystem and

hovering recovery controller.

The simulation is conducted in Simscape, a physical

simulation environment in Matlab. We discard aerodynamic

forces caused by the obstacles. Table I lists the physical

parameters of the VPP quadcopter model as used in training

(with subscript o) and simulation (with subscript n).

In the first scenario, as shown in Fig. 12, from t = 0 to

t = 5, the quadcopter switches from a hovering position to

a tic-toc flight mode. Starting from t = 5, it tracks a moving

reference point upward thereby passing a narrow passage. At

t = 12, it switches successfully back to hovering.

In the second scenario, noises and wind disturbance are

considered during validation. Noise with a signal-to-noise

ratio of 15 dB is added to all the feedback states. The

wind disturbance is 2 N along x-axis and 2 N along z-

axis from 3 s to 6 s. Moreover, actuator constraints are

added to the simulation where the maximum thrust of the

actuator is limited to 25 N and the maximum thrust changing

rate is limited to 1000 N/s [15]. The result presented in

Fig. 13 indicates that our designed control system has good

robustness (green lines represent the duration of the wind

disturbance).

-2 -1 0 1

0

1

2

3

4

5

6

7

8

0s

15s

0 5 10 15
-1

0

1

simulation reference

0 5 10 15

0

5

10

simulation reference

0 5 10 15

-3

-2

-1

0

1

0 5 10 15
-100

0

100

0 5 10 15
-100

0

100

Fig. 12: Simulation results of passing through vertical obstacles with the
NN migration, where the overall maximum force was 84 N and maximum
space occupation was 0.4 m.

In the third scenario, we assume that the parameters of the

real system can not be measured accurately. The values of the

parameters used in (5) are mismatched, with different degrees

of uncertainty. In particular, these parameters are sampled

from uniform distributions within a mismatch percentage as

follows an = ar(1 + ka), ka ∈ [−b, b], where ar is the real

value of the parameter, an is the inaccurate value of the

parameter used in Eq. (5), ka is a random variable drawn

uniformly from [−b, b], and b is the model parameters mis-

match percentage. We test the controller with different model

parameters mismatch percentage b ∈ {0.1, 0.2, . . . , 0.8}. For

each tested mismatch percentage, we repeated the simulation

for 100 episodes and calculate the average success rate. The

episode is marked as success when the agent can perform

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JANUARY, 2022

0 1 2 3 4 5 6 7 8 9 10
-2

0

2

4

0 1 2 3 4 5 6 7 8 9 10
-2

0

2

4

0 1 2 3 4 5 6 7 8 9 10

-3

-2

-1

0

1

0 1 2 3 4 5 6 7 8 9 10

-20

0

20

0 1 2 3 4 5 6 7 8 9 10

-20

0

20

0 1 2 3 4 5 6 7 8 9 10
-1000

0

1000

0 1 2 3 4 5 6 7 8 9 10
-1000

0

1000

Fig. 13: Results of a VPP quadcopter in the tic-toc mode facing external
disturbances and noises.

1 1 1 1
0.94 0.91

0.86 0.82

0.66

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

Fig. 14: Results of a VPP quadcopter holding its position with tic-toc mode
under different parameter mismatches.

the tic-toc manoeuvrer for 5 seconds. The result is shown

in Fig. 14. It indicates that our trained controller reliably

performs the tic-toc manoeuvre if the mismatch is not large.

This suggests that the reinforcement learning based control

system has certain generalization ability to handle model

mismatches.

The findings demonstrate the potential application of the

proposed control approach. To the best of our knowledge, no

other methods has previously achieved autonomous tic-toc

manoeuvrer with a quadcopter model.

VI. CONCLUSION

This paper presented for the first time an RL NN con-

troller which was trained on a planar quadcopter model to

successfully perform the tic-toc manoeuvre. We extended the

controller and demonstrated its ability to perform position

tracking and narrow vertical tunnel passage in a simulation

environment. The supplementary video contains these and

other demonstrations. In this paper, flying through a narrow

gap is an example to show the potential applications of

our proposed control system. Our study aims to explore the

limit of the manoeuvrability of VPP quadcopters. It could

deepen our understanding of the dynamical features of VPP

quadcopters and lead to more interesting and practical control

strategies. Future work will consider controllers acting in

more realistic scenarios and validating them on physical

quadcopters.

VII. ACKNOWLEDGEMENT

The authors would like to thank Kai Eivind Wu for his

helpful suggestions on the evaluation and screening part of

our controller.

REFERENCES

[1] Z. Wang, R. Groß, and S. Zhao, “Controllability analysis and controller
design for variable-pitch propeller quadcopters with one propeller fail-
ure,” Advanced Control for Applications: Engineering and Industrial

Systems, p. e29, 2020.
[2] A. Baldini, R. Felicetti, A. Freddi, S. Longhi, and A. Monteriù,

“Actuator fault tolerant control of variable pitch quadrotor vehicles,”
in Proceedings of 21st IFAC World Congress, vol. 53, no. 2. IFAC,
2020, pp. 4095–4102.

[3] F3CN, “Helicopter Manoeuvre Descriptions,” 2020. [On-
line]. Available: https://www.f3cn.org/index.php/system/files/archive/
Annex%205F.1%20F3N%20Manoeuvre%20Descriptions.pdf

[4] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of
reinforcement learning to aerobatic helicopter flight,” in Advances in

Neural Information Processing Systems, 2007, pp. 1–8.
[5] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter aero-

batics through apprenticeship learning,” The International Journal of

Robotics Research, vol. 29, no. 13, pp. 1608–1639, 2010.
[6] T. Tomić, M. Maier, and S. Haddadin, “Learning quadrotor maneuvers

from optimal control and generalizing in real-time,” in Proceedings

of 2014 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2014, pp. 1747–1754.
[7] G. Wu and K. Sreenath, “Safety-critical control of a planar quadrotor,”

in Proceedings of 2016 American Control Conference (ACC). IEEE,
2016, pp. 2252–2258.

[8] R. S. Sutton, A. G. Barto et al., Reinforcement learning: An introduc-

tion. MIT press, 1998.
[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,

D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[10] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[11] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096–2103, 2017.

[12] W. Koch, R. Mancuso, R. West, and A. Bestavros, “Reinforcement
learning for uav attitude control,” ACM Transactions on Cyber-

Physical Systems, vol. 3, no. 2, pp. 1–21, 2019.
[13] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision vari-

able clustering-based evolutionary algorithm for large-scale many-
objective optimization,” IEEE Transactions on Evolutionary Compu-

tation, vol. 22, no. 1, pp. 97–112, 2016.
[14] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,

“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp.
23–30.

[15] D. Bicego, J. Mazzetto, R. Carli, M. Farina, and A. Franchi, “Nonlinear
model predictive control with enhanced actuator model for multi-rotor
aerial vehicles with generic designs,” Journal of Intelligent & Robotic

Systems, vol. 100, no. 3, pp. 1213–1247, 2020.

	Introduction
	Problem Statement
	Reinforcement Learning Controller: Training and Analysis
	Algorithm Structure
	Training Process
	Analysis of Results

	Reinforcement Learning Controller: Further Evaluation and Screening
	Evaluation Metrics
	Network Screening

	Reinforcement Learning Controller: An Extension
	Trajectory Compensation
	Recovery Controller System
	Network Migration
	Simulation Validation

	Conclusion
	Acknowledgement

