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Abstract: Transportation and inventory are essential to hazardous materials logistics, while different 

classes of hazardous materials are often transported over a network simultaneously. Despite their in-transit 

and storage incompatibility, the superimposed risks among different materials, which results from possible 

chemical reaction once accidents (e.g., leakage, explosion) happen, further complicate the comprehensive 

plans. In this study, we introduce a new multi-class hazmat distribution network design problem with 

inventory and superimposed risks (MHND) in a multi-echelon supply chain, where the planning of 

locations, inventory, and routes are made together. The long-term detour cost/risk and the cyclic time 

windows penalty costs under the time-dependent (periodic) road closure policy are explicitly formulated. 

We further propose a new population-based risk definition that evaluates the risk for the population at any 

location and any time with respect to its multi-class hazmat logistics system. In particular, to capture the 

interactions between different types of materials, we introduce risk superposition coefficients to capture 

possible superimposed risks among different hazmat that accommodate a general system with more than 

two hazmat types. We develop a knowledge-based NSGA-II algorithm with cyclic dissimilarity-based 

elitist selection (NSGA-II-CD) to solve the problem. The devised cyclic dissimilarity-based elitist selection 

(CD) operator can tackle the issue of speeding proliferation, which greatly improves the solution quality. 

Our model is applied to a metropolitan-wide real-world case study in Guangzhou, China. The results 

suggest that, from the perspective of the traffic management sector, the periodic road closures policy in 

Guangzhou could be possibly upgraded to a full-time prohibition. Moreover, the results provide the 

following insights to authorities (1) there is a positive convex relation between risk minimization and risk 

equilibration. The authorities should not try to find a perfect distribution of risk, and they should make a 

trade-off between the risk equity and total exposed risk; (2) there is a positive correlation between the level 

of service and total risk. Thus, in practice, the agencies should make a trade-off between economic viability 

of the system, exposed risk, and maintaining good service for customers; and (3) the interactions between 

different types of hazmat considerably affect the distribution network design; specifically, the route 

overlapping ratio for different types of hazmat decreases when their interactions intensify. 

                                                
1 Corresponding author, E-mail: ctwtwu@scut.edu.cn 
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1. Introduction 

Hazardous materials (hazmat) form an important integral part of industrial raw material and economic 

development in many industrialized countries. In China for instance the annual tonnage of ethylene shipped 

has reached 18.218 million tons, while Guangzhou ranks the first in production with 13.6%. Daya Bay in 

Huizhou city has become one of the seven largest petrochemical production bases in China. Large amounts 

of hazmat are frequently transported routinely. However, the tremendous use of hazmat also brings about 

growing risks that may seriously imperil humans, property, and the environment. As such, the management 

of hazmat logistics is essential to sustain our industrial lifestyle in that the transportation cost and safety 

should be considered concurrently. 

The overall process of hazmat transportation can be divided into several phases with environmental risk, 

including loading, in transit, storage, unloading, and waste treatment. Due to the nature of hazardous 

materials, each production, storage, and transportation activity associated with their use presents an 

inherent risk for both society and the environment. An analysis for 207 hazmat accidents reports that 38.6% 

of hazmat accidents can produce the domino effect (Kourniotis, et al., 2000). Once an explosion or leakage 

takes place, catastrophic interlocking accidents will easily occur. To reduce the potential negative impact of 

catastrophic interlocking accidents, collaborative management for the overall process of hazmat 

transportation is imperative. Besides technical improvement and regulation on the hazmat routing, the 

warehouse location and inventory control are also important aspects of risk reduction. Warehouse locations 

directly affect the routing options, while any specific routes can, in turn, exert influence on the location 

decision of warehouses (Wu et al., 2021). The Chinese government has enforced regulations to reduce the 

risk stemming from the facility location and inventory management after the 2015 Tianjin Port explosion. 

As such, in the hazmat supply chain management, the risk in the transportation and other relevant stages 

(e.g., production and inventory) should be considered comprehensively. Unfortunately, to date, most 

previous works on hazmat logistics only investigated these issues separately and failed to integrate the 

planning of locations, routes, and inventory decisions. Treating these decisions separately may lead to not 

only excess costs but also a notable risk in managing the hazmat. Motivated by this fact, this paper 

investigates the distribution network design for hazardous materials, where the planning locations, 

inventory, and routes are made together. 

As reported in the Globally Harmonized System of Classification and Labeling of Chemicals (GHS), 

hazardous materials can be classified into several types such as flammable, poisonous, and corrosive 

substances, according to the dimensions in physical, health, and environmental damage. The logistics costs 

and risks of various hazardous materials are quite distinct, such that the logistics costs are not necessarily 

higher for the hazmat with higher risk. Moreover, despite their in-transit and storage incompatibility, the 

superimposed risks among different materials, which results from possible chemical reaction once 

accidents (e.g., leakage, explosion) happen, complicate the comprehensive plans. The review of the 
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literature reveals, however, that different streams of research investigate hazmat transportation only from a 

single-hazmat-type point of view. Thus, we fill this gap by integrating multiple classes of hazmat, and the 

interaction among different hazmat types in the hazmat network design. 

Another challenge of hazmat network design comes from the time-dependent road closures to hazmat 

carriers, particularly within an urban environment. In a metropolitan area, heavy traffic congestion can take 

hours in peak hours. To protect the public and environment, regulatory agencies have adopted a series of 

countermeasures to restrict hazmat transportation, notably with time-dependent (periodic) road closures 

policy. However, as noted by Kara and Verter (2004), the government intervention in route choices of 

carriers can significantly reduce transportation risks at the expense of additional high transportation costs. 

Since the location-allocation involves great capital investment and is unalterable, the long-term effect of 

time-dependent road closures and resulting detours should be explicitly incorporated in the design of the 

hazmat distribution network. 

Putting together the above challenges, this study contributes to developing a multi-class hazmat 

distribution network design problem (MHND) in a multi-echelon supply chain. The superimposed risks 

among different hazmat, which result from a possible chemical reaction, are captured. The costs and risks 

induced by plant location, inventory level, and vehicle routes are jointly included in the design of the 

hazmat logistics system. Our model is applied to a real-world case study in Guangzhou, China. Managerial 

insights are also provided. 

 

2. Literature review and main contributions 

Hazmat logistics management problems have received attention from the operations research and 

transportation community since the 1980s (Erkut et al., 2007), whereas the problems remain a prominent 

research topic because of their practical significance and inherent complexity. The literature of hazmat 

logistics management problems can be generally categorized into the following groups: network design, 

hazmat routing, and scheduling, and risk assessment. In this section, we present an overview of the relevant 

representative literature. 

2.1 hazmat network design 

The purpose of the hazmat network design problem is to optimally determine combined facility 

locations and routing. A typical application lies in the disposal of hazardous waste, which determines 

various waste facilities and the corresponding routes of hazardous wastes and waste residues between 

facilities. Kara and Verter (2004) developed a bi-level programming model of hazmat network design to 

build the relationship between the regulator and carriers. Zhao et al. (2016) investigated the network design 

problem for regional hazardous waste management. Samanliglu (2013) developed a multi-objective 

location-routing model for industrial hazardous waste management. The model decides on the locations of 

treatment and recycling facilities, as well as the routing of collection vehicles. Fontaine and Minner (2018) 

proposed a multi-cut Benders decomposition method for the hazmat transportation network design problem. 

Rabbani et al (2019) proposed a stochastic multi-period industrial hazardous waste location routing 



4 

 

problem. Ghaderi and Burdett (2019) investigated the location and routing problem for hazardous materials 

over an intermodal transportation network, where the facility disruption is also considered. Recently, Hu et 

al (2019) develop a multi-objective location-routing model for hazmat logistics with consideration of 

inter-city traffic restriction constraints. The objective is to minimize the total risk and total cost. A few 

studies (e.g., Dadkar et al, 2010; Reilly et al, 2012) investigated how to determine which facilities to 

restrict the hazmat movement and for which time. The models are based on a three-party game that 

involves government, carrier, and terrorists.  

2.2 hazmat routing (and scheduling) 

Another line of research is associated with vehicle schedule problems. Verma et al. (2011) developed a 

tactical planning model for railroad hazmat transportation. Assadipour et al. (2015) incorporated the 

congestion effect at intermodal yards and equipment capacity decisions into intermodal hazmat 

transportation. Hosseini and Verma (2017) used a value-at-risk approach to route hazmat shipment, 

considering the low probability-high consequence nature of hazmat incidents. Later, Hosseini and Verma 

(2018) presented a conditional value-at-risk methodology for routing rail hazmat shipment, which shows 

that such a method outperforms other risk assessments. Kumar et al. (2018) developed an integrated 

optimization model for mixed hazmat fleet and routing, considering the monetary loss due to en route trunk 

type-dependent stoppages. Fan et al. (2015) formulated a hazmat routing optimization model subject to 

road closure. Bronfman et al. (2016) introduced a hazmat routing optimization problem that minimizes the 

risk to vulnerable centers. Szeto et al. (2017) addressed the hazmat routing problem given unknown or 

inaccurate incident probabilities, which was achieved by a multi-demon formulation. Mohri et al. (2020) 

addressed a hazmat routing-scheduling problem considering fairness among dispatchers. 

2.3 Research gaps, objectives, and contributions 

A comparison between this study and the available representative literature on hazmat transportation 

problems can be found in Table 1. A few gaps are identified from the existing literature. First, although 

substantial research effort has been made into hazmat network design, the integration of location and 

inventory decisions in hazmat logistics has not been fully addressed in the existing literature. Addressing 

these decisions separately may underestimate not only the system efficacy but also notable risk in 

managing the hazmat. Second, traditional research on hazmat logistics still lacks practicability. A critical 

issue is that existing studies primarily focus on a single type of merchandise, and more importantly, the 

superimposed risks among multiple hazardous materials have not yet been considered. Third, the impact of 

time-dependent traffic restriction policy on the long-term planning of hazmat networks has not been fully 

addressed. 

Table 1 Overview of representative hazmat transportation problems 

 Problem variant  

References Routing Location Inventory Mode Objectives Characteristics 

Fontaine and Minner (2018) ✓   T R S 

Ghaderi and Burdett (2019) ✓ ✓  I R,C S 

Verma et al. (2011) ✓   RR R S 
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Assadipour et al. (2015) ✓   I R,C S 

Hosseini and Verma (2017) ✓   T R S 

Kumar et al. (2018) ✓   T R,C S 

Bronfman et al. (2016) ✓   T R S 

Bronfman et al. (2019) ✓ ✓  T R M 

Kheirkhah et al. (2015) ✓   T R,C S 

Paredes-Belmar et al. (2017) ✓   T R,C M 

Mahmoudsoltani et al. (2018) ✓   T R,C S 

Fan et al. (2015) ✓   T R S,RC 

Xie et al. (2012) ✓ ✓  I R,C S 

Szeto et al. (2017) ✓   T R S 

Beneventti G et al. (2019) ✓   T R M 

Romero et al. (2016) ✓ ✓  T E S 

Mohri et al. (2020) ✓   T E S 

Fontaine et al. (2020) ✓   I C S 

This study ✓ ✓ ✓ T R,C M,SR,RC 

Mode: RR: Railroad, T: Trunk, I: Intermodal 

Objectives: R: Min. Risk, E: Max. Risk equity, C: Min. Cost 

Characteristics: S: Single product, M: Multiple products, SR: Superimposed risk; RC: Time-dependent road closure 

As a remedy, in this study, we develop a multi-objective model to optimally determine the locating, 

vehicle routing, and inventory level in a multi-echelon hazmat supply chain, to reduce the system total 

costs and risks comprehensively. The contributions of this paper are described as follows: (1) we introduce 

a new multi-class hazmat distribution network design problem with inventory and superimposed risk in a 

multi-echelon supply chain, where the planning of locations, inventory, and routes are made together. The 

long-term cyclic time windows penalty cost with a time-dependent (periodic) route closure policy is 

explicitly formulated. Our model is scalable for multiple types of hazmat, which has significant 

implications in the realm of hazmat logistics; (2) we propose a new population-based risk definition that 

evaluates the risk for the population at any location and any time with respect to its multi-class hazmat 

logistics system. In particular, we introduce risk superposition coefficients for multi-class hazmat, which 

allows for capturing possible superimposed risks (e.g., chemical reaction) among different hazmat and 

accommodates a general system with more than two hazmat types; (3) we develop a knowledge-based 

NSGA-II algorithm with cyclic dissimilarity-based elitist selection (NSGA-II-CD) to solve the problem. 

The cyclic dissimilarity-based elitist selection (CD) operator can tackle the issue of speeding proliferation, 

which greatly improves the solution quality; (4) we present a metropolitan-wide real-world case study and 

provide managerial insights. As far as we are aware, this is the first attempt in multi-class hazmat 

distribution network design with inventory and superimposed risk. 

The rest of this paper is organized as follows. In Section 3, the model is presented, followed by the 

solution methodologies in Section 4. In Section 5, a metropolitan-wide real-world application is conducted 

and the managerial insights are provided. At last, the concluding remarks are given. 
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3 Model development 

3.1 Problem description 
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Fig. 1 Planning framework of the hazmat distribution network of a three-level supply chain 

Fig. 1 sketches the planning framework of a multi-class hazmat distribution network of a three-level 

supply chain that outputs deployment of DC locations, the distribution routes, and the corresponding order 

cycles. Two criteria are considered: (a) minimizing the total cost, including the opening costs for DCs, 

inventory cost transportation cost; (b) minimizing the total risk, which includes inventory risk and 

transportation risk associated with the population exposure, plus the superimposed risk affected by the 

chemical reactions. As the costs and risks vary over time in this system, the objective functions should 

concern the average values under long-term running. Under these evaluation criteria, as shown in Fig. 1(a), 

the first step is to acquire the long-term data including multiple plants, candidate capacitated distribution 

centers (DC), customer points, customer demand, and the restricted area. As shown in Fig. 1(b), the second 

step is to set up a hazmat distribution network by determining the optimal location of DCs, distribution 

routes, and the corresponding order cycles (departure headways of vehicles) given the long-term data and 

inventory policy. In the third step, as shown in Fig. 1(c), once the distribution network has been set up, the 

system will run for a long time, the inventories will change over time, and the vehicles depart periodically 

under the departure headways. 

3.2 Assumptions and notations 

To ease the model development, the basic assumptions or requirements are made for the MHND as 

follows: 

(A1) Customer demands are independent and identically distributed, and follow a normal distribution. 

(A2) Each plant center only produces one type of hazardous material, as with each distribution center 

and each customer. This is reasonable in practice due to the incompatibility between different hazardous 

materials. 

(A3) The production capacity of the plants is sufficient to meet the demand. 

(A4) The vehicle type is homogeneous. 

(A5) To ensure transportation safety, a truck cannot simultaneously carry different hazardous materials.  
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(A6) Each customer is only served by one distribution center. This is because each distribution center 

and each customer only handles one type of hazardous material (A2). 

(A7) Storage capacities exist for both distribution centers and customer points. 

(A8) In this study, we investigate MHND specifically tailored for the economic-order-quantity (EOQ) 

policy, where customers determine their optimal order quantity based on the principle of economic order 

quantity. The reasons are two-fold: First, due to high-security standards, such a customer-oriented ordering 

strategy can reduce the terrorist threat of attacks by limiting inventory information sharing. This is 

supported by Reilly et al. (2012) who noted that hazmat risk includes not only natural risk but also induced 

risk generated by potential terrorist activities and that countermeasures should be taken to avoid as much 

potential attack as possible. Second, due to the generalized complexity of inventory-routing categories, a 

few computationally efficient policies have been introduced in the literature, such as order-up-to policy 

(Bartazzi et al., 2002), (Q, R) policy (Javid and Azad, 2010) and EOQ policy (Chen et al., 2017). Similar to 

Chen et al (2017), we adopt EOQ policy as the long-term replenishment strategy, which facilitates deriving 

the long-run average system-wide costs and risks associated with location, inventory rules, and routing 

patterns. 

Table 2 lists the notations and their definitions used in our model. 

Table 2 Primary notations used in this paper 

Sets 𝐿 
The set of hazardous material types, 𝐿 = {𝑙|𝑙 = 1,2, … , |𝐿|}, which is also adopted as the set of 

corresponding plants (one plant for one type) 𝑀 The set of candidate distribution centers, 𝑀 = {𝑚|𝑚 = |𝐿| + 1, |𝐿| + 2, … , |𝐿| + |𝑀|} 𝑁 The set of customers, 𝑁 = {𝑛|𝑛 = |𝐿| + |𝑀| + 1, |𝐿| + |𝑀| + 2,… , |𝐿| + |𝑀| + |𝑁|} 𝐾 The set of distribution routes, 𝐾 = {𝑘|𝑘 = 1,2,… |𝑁|} 
Parameters 𝑡𝑦𝑝𝑒𝑖𝑙 1 if hazmat type 𝑙 locates at node 𝑖; 0 otherwise. 

i.e., 𝐷𝑛𝑡𝑦𝑝𝑒𝑖𝑙 indicates that the demand of hazmat type 𝑙 for customer 𝑛 is 𝐷𝑛 𝐷𝑖𝑠𝑖,𝑗 Euclidean distance between node 𝑖 and node 𝑗 𝑣𝑒𝑙 Average vehicle speed 𝐷𝑛 The random consumption rate of customer 𝑛, 𝐷𝑛~𝑁(𝜇𝑛 , 𝜎𝑛2) 𝑆𝑖 The storage capacity of node 𝑖, 𝑖 ∈ 𝑀 ∪ 𝑁 𝑆𝑙 The vehicle capacity for hazmat type 𝑙  𝑅𝑚𝑎𝑥 Maximum allowable risk 𝑐𝑚 The fixed cost of opening distribution center 𝑚 per unit time 𝐹𝑖 The ordering cost of node 𝑖, 𝑖 ∈ 𝑀 ∪𝑁 𝑢 The fixed cost of vehicle departure, loading, and unloading 𝑐𝑓 The fuel price ℎ𝑖 Holding cost for each unit of hazmat at node 𝑖 per unit time, 𝑖 ∈ 𝑀 ∪ 𝑁 𝑃𝑤𝑛 The period of time window penalty cost function of customer 𝑛 
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𝑡𝑤𝑛 The desired arrival time at the first period of time window penalty cost function of customer 𝑛 𝑚𝑤𝑛 The maximum value of time window penalty cost function of customer 𝑛 𝑟𝑙 Risk coefficient or accident probability of hazmat type 𝑙 𝜏𝑙 Attenuation coefficient of hazmat of type 𝑙 𝛽 The critical ratio of accident impacts on a region to that on the whole plane 𝜆𝑙 The accident impact radius of hazmat of type 𝑙 𝜌 Population density 𝛿𝑙𝑙′ The risk superposition coefficient between type 𝑙 and type 𝑙′ 𝐹𝑇𝑖,𝑗 The restricted time set of the segment from 𝑖 to 𝑗 
Auxiliary variables 𝑡𝑖𝑘 The vehicle travel time from the distribution center to node 𝑖 on route 𝑘 𝑞𝑖𝑘 The vehicle load when arriving at node 𝑖 on route 𝑘 𝑄𝑚 The order quantity for distribution center 𝑚 𝑄̃𝑘 The order quantity for distribution route 𝑘 𝑆𝑡𝑚 The safety stock at distribution center 𝑚 𝑃𝑚 The optimal order cycle for distribution center 𝑚 𝑃̃𝑘 The order cycle or departure headway for distribution route 𝑘 𝑈𝑚 The variable transportation cost of replenishment route from the plant to distribution center 𝑚 𝑈𝑘 The variable transportation cost of distribution route 𝑘 𝑟𝑠𝑖,𝑗,𝑘𝑙  The average risk on the segment between node 𝑖 and node 𝑗 of route 𝑘 (type 𝑙) 𝑐𝑤𝑛𝑘 The detour-modified time window penalty cost of customer 𝑛 ∆𝑐𝑘 The total detour cost on route 𝑘 per unit time ∆𝑟𝑘𝑙  The total detour risk on route 𝑘 per unit time (type 𝑙) ∆𝑡𝑖𝑘 The vehicle’s detour time when traveling from the distribution center to node 𝑖 on route 𝑘 𝐴𝑖𝑙  The affected region by hazmat of type 𝑙 at node 𝑖, 𝑖 ∈ 𝐿 ∪ 𝑀 ∪ 𝑁 𝐴̃𝑖,𝑗𝑙  The affected region by hazmat of type 𝑙 between node 𝑖 and 𝑗, 𝑖, 𝑗 ∈ 𝐿 ∪𝑀 ∪ 𝑁 𝐺(𝐴) The population of region 𝐴 𝐶𝐿 The total location cost of opening distribution centers per unit time 𝐶𝑀 The total inventory cost per unit time 𝐶𝑅 The total cost of replenishment per unit time (from plants to distribution centers) 𝐶𝐷 The total cost of distribution per unit time (from distribution centers to customers) 𝑅𝑀 The total inventory risk per unit time 𝑅𝑆 The average superimposed risk 𝑅𝑅 Total replenishment risk per unit time (from plants to distribution centers) 𝑅𝐷 Total distribution cost per unit time (from distribution centers to customers) 

Decision variables 𝑊𝑚 1 if distribution center 𝑚 is opened, 0 otherwise  𝑋𝑖,𝑘 1 if node 𝑖 is a visiting point of route 𝑘, 0 otherwise, 𝑖 ∈ 𝑀 ∪ 𝑁 
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𝑌𝑖,𝑗,𝑘 1 if the segment from node 𝑖 to node 𝑗 belongs to route 𝑘, 0 otherwise, 𝑖 ∈ 𝑀 ∪ 𝑁 
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Fig. 2 Key cost and risk components for MHND 

The overall three-level hazmat logistics system generates costs and risks in four aspects: location, 

inventory, routing, and time. The key cost and risk components for MHND are shown in Fig. 2. In the 

following sections, we derive analytical formulations for each cost and risk component. 

3.3 Inventory models  

3.3.1 The replenishment strategy for customers 

As mentioned previously (A8), in the hazmat supply chain, the customers are assumed to determine 

their optimal order quantity based on the principle of economic order quantity to reduce the terrorist threat 

of attacks by limiting inventory information sharing. Following this principle, the reliable optimal delivery 

quantity of route 𝑘 takes the following form (see detailed derivation in Appendix A). 

 𝑄̃𝑘 = 2∑ 𝑋𝑛,𝑘𝐹𝑛𝑛∈𝑁∑ 𝑋𝑛,𝑘ℎ𝑛𝜇𝑛𝑛∈𝑁 ∑𝑋𝑛,𝑘(𝜇𝑛 + 𝜎𝑛𝑧𝛼)𝑛∈𝑁  (1) 

 𝜇𝑘 = 𝑃̃𝑘 ∑𝑋𝑛,𝑘𝑛∈𝑁 𝜇𝑛 (2) 

 𝑃̃𝑘 = √ 2∑ 𝑋𝑛,𝑘𝐹𝑛𝑛∈𝑁∑ 𝑋𝑛,𝑘ℎ𝑛𝜇𝑛𝑛∈𝑁  (3) 

where 𝑧𝛼  represents the quantile statistics with a confidence level of 𝛼. A higher value of 𝛼 indicates a 

better level of service. In this way, the random variables due to uncertain demand have been transformed 

into deterministic values.  

3.3.2 The replenishment strategy for distribution centers 

The replenishment for distribution centers depends on the delivery quantity for customers. The 
expected hazmat consumption of route 𝑘 is ∑ 𝑋𝑛,𝑘𝜇𝑛𝑛∈𝑁 , then the expected total demand served by 

distribution center 𝑚 is  
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 𝐷̅𝑚 = ∑∑𝑋𝑛,𝑘𝑋𝑚,𝑘𝜇𝑛𝑘∈𝐾𝑛∈𝑁  (4) 

The optimal order quantity can be obtained by minimizing the total inventory cost, which is the 

summation of the ordering cost and inventory holding cost with safety stock. The ordering cost equals the 

ordering times (total demand divided by the ordering quantity) multiplied by the ordering cost. The 

inventory cost equals the unit holding cost multiplied by the average stock level, where the average stock 

level is half of the order quantity. The optimal order quantity 𝑄𝑚 for distribution center 𝑚 is obtained 

applying first-order condition, which yields: 

 
𝐷̅𝑚𝑄𝑚 ∙ 𝐹𝑚 + ℎ𝑚 (𝑄𝑚2 + 𝑆𝑡𝑚) ⇒ 𝑄𝑚 = √2𝐷̅𝑚𝐹𝑚ℎ𝑚  (5) 

The lead time equals the order cycle of the distribution center, and the demand variation is √∑ ∑ 𝑋𝑚,𝑘𝑋𝑛,𝑘𝜎𝑛2𝑘∈𝐾𝑛∈𝑁 . Given the confidence level 𝛼 and safety coefficient 𝑧𝛼 , the safety stock can be 
determined as follows: 

 𝑆𝑡𝑚 = 𝑧𝛼√𝑃𝑚∑∑𝑋𝑚,𝑘𝑋𝑛,𝑘𝜎𝑛2𝑘∈𝐾𝑛∈𝑁  (6) 

Therefore, the order cycle for distribution center 𝑚 can be determined as follows: 

 𝑃𝑚 = 𝑄𝑚𝐷̅𝑚√ 2𝐹𝑚ℎ𝑚 ∑ ∑ 𝑋𝑚,𝑘𝑋𝑛,𝑘𝜇𝑛𝑘∈𝐾𝑛∈𝑁  (7) 

3.3.3 Location cost  

The opening of a distribution center consumes a fixed cost. Hence, the fixed cost of distribution centers 

depends on the number of opened distribution centers: 

 𝐶𝐿 = ∑ 𝑊𝑚𝑐𝑚𝑚∈𝑀  (8) 

3.3.4 Inventory cost  

The average inventory cost is related to the unit holding cost, the average stock level, and the order 

cycle. As the average stock level is half of the optimal order quantity, the average inventory cost is 12 𝜇𝑛ℎ𝑛. 

Therefore, the total inventory costs of customers per unit time are 12∑ ℎ𝑛𝜇𝑛𝑛∈𝑁 . 

Similar to the inventory costs for customers, the average inventory cost for distribution centers is 12∑ ∑ ∑ 𝑋𝑚,𝑘ℎ𝑚𝜇𝑘𝑛∈𝑁𝑘∈𝐾𝑚∈𝑀 , and the inventory cost of the safety stock is 12∑ 𝑊𝑚ℎ𝑚𝑆𝑡𝑚𝑚∈𝑀 . The total 

inventory cost for distribution centers is the summation of these two parts. As a result, the total inventory 

cost is the addition of those of customers and distribution centers. 

 𝐶𝑀 = 12 ∑ ∑𝑋𝑚,𝑘ℎ𝑚𝑃̃𝑘𝜇𝑘𝑘∈𝐾𝑚∈𝑀 + 12 ∑ 𝑊𝑚ℎ𝑚𝑆𝑡𝑚𝑚∈𝑀 + 12∑ ℎ𝑛𝜇𝑛𝑛∈𝑁  (9) 
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3.4 Transportation models 

3.4.1 Cyclic time windows penalty cost  

In the supply chain, customers often have a requirement for the arrival time of goods due to factors such 

as production planning, loading and unloading storage costs, and natural conditions, and this requirement is 

usually repeated in natural cycles such as days, weeks, months, and years (e.g., daily 8 a.m., every Monday, 

1st of each month, after the Spring Festival), particularly for the JIT systems. As an industrial raw material, 

the JIT delivery of hazmat is essential to production efficiency, customer experience, and satisfaction. Time 

windows penalty cost raises upon arrival at the undesirable time, such as the early and late arrival. Given 

this fact, the vehicle routing is conducted on a periodical basis under recycling supply, and the time 

windows violation penalty cost becomes a periodic function in the long run. For this reason, a multi-period 

time windows model in response to recycling supply, instead of single-period time windows, is adopted and 

incorporated into the system total cost. Prior to deriving the time windows violation penalty cost, the 

following properties are provided. 

Proposition 1: As the independent variable of an infinite arithmetic progression {𝑇1𝑡𝑛 + 𝜑1}, when the  

tolerance 𝑇1 is not equal to the integral times of the trigonometric function’s period 𝑇2, the mean value of 

substituting the sequence elements into the function one by one is 0. When 𝑇1 is equal to the integral times 

of 𝑇2, the mean of substituting the sequence elements into the function one by one is a constant:  

 lim𝑇→+∞ 1𝑇∑cos [2𝜋𝑇2 (𝑇1𝑡 + 𝜑1)+ 𝜑2]𝑇
𝑡=1 = { 0 , ∀𝜅 ∈ 𝑁+, 𝑇1 ≠ 𝜅𝑇2cos (2𝜋𝑇2 𝜑1+ 𝜑2) , ∃𝜅 ∈ 𝑁+, 𝑇1 = 𝜅𝑇2 (10) 

Proof: A formal proof of this proposition can be found in Appendix B. 

Corollary 1: For any periodic function with a period of 𝑇2, when 𝑇1 is not equal to the integral times of 𝑇2, the mean function value of substituting sequence elements into the function one by one is equal to the 

mean value of this function in one period. When 𝑇1 is equal to the integral times of 𝑇2, the mean of 

substituting the sequence elements into functions one by one is a constant: 

 lim𝑇→+∞ 1𝑇∑𝑓(𝑇1𝑡 + 𝜑1)𝑇
𝑡=1 = {1𝑇2∫ 𝑓(𝑡)d𝑡𝑇20 , ∀𝜅 ∈ 𝑁+, 𝑇1 ≠ 𝜅𝑇2𝑓(𝜑1) , ∃𝜅 ∈ 𝑁+, 𝑇1 = 𝜅𝑇2   (11) 

Proof: A formal proof of this corollary can be found in Appendix C.  

Generally, there are three models of cyclic time windows, as shown in Fig. 3(a)-(c), where the penalty 

cost changes periodically over time.  

In each distribution cycle, the travel time 𝑡𝑖𝑘 from the distribution center to visited node 𝑖, is the sum 

of travel time of prior segments of route 𝑘: 

 𝑡𝑖𝑘 = 𝑡𝑗𝑘 +𝐷𝑖𝑠𝑗,𝑖𝑣𝑒𝑙    , 𝑌𝑗,𝑖,𝑘 = 1, ∀𝑖, 𝑗 ∈ 𝑀 ∪𝑁,∀𝑘 ∈ 𝐾 (12) 

Let 𝑐𝑦𝑐 be the period index, then the vehicle arrival time of distribution in the long run is an infinite 

arithmetic progression {𝑐𝑦𝑐 ∙ 𝑃̃𝑘 + 𝑡𝑖𝑘}, as shown in Fig. 3(d). In each distribution cycle, a vehicle will 

arrive at the customer 𝑛 at a certain time and induce a certain penalty cost according to the arrival time 
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and the cyclic time windows model. When the arrival time happens to be the expected time point, such as 𝑡0 in Fig. 3(a), or within the time window [𝑡1 , 𝑡2] in Fig. 3(b), there will be no penalty cost for this 

distribution. The penalty cost at 𝑡3 in Fig. 3(c) is positive infinity, which means that vehicle arrival at that 

time is not allowed. 

(b) Broken line model of soft cyclic time window(a)  Trigonometric curve model of soft cyclic time window

(d) Vehicle arrival times of distribution in long-term running
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Fig. 3 Cyclic time windows model 

Let 𝑃𝑤𝑛 be the period of the penalty cost function. According to Corollary 1, for any soft cyclic time 

windows model 𝑓𝑛(𝑡), when the distribution period 𝑃̃𝑘 is not equal to the integral times of 𝑃𝑤𝑛, the mean 

penalty cost of the distribution period is equal to the mean value of 𝑓𝑛(𝑡) in a time window period; When 𝑃̃𝑘 is equal to the integral times of 𝑃𝑤𝑛, the mean penalty cost during the distribution period is equal to 

the penalty cost in the first distribution period: 

 lim𝐶𝑌𝐶→+∞ 1𝐶𝑌𝐶 ∑ 𝑓𝑛(𝑐𝑦𝑐𝑃̃𝑘 + 𝑡𝑛𝑘)𝐶𝑌𝐶
𝑐𝑦𝑐=1 = { 1𝑃𝑤𝑛∫ 𝑓𝑛(𝑡)𝑃𝑤𝑛0 d𝑡 , ∀𝜅 ∈ 𝑁+, 𝑃̃𝑘 ≠ 𝜅𝑃𝑤𝑛𝑓𝑛(𝑡𝑛𝑘) , ∃𝜅 ∈ 𝑁+, 𝑃̃𝑘 = 𝜅𝑃𝑤𝑛 , 𝑋𝑛,𝑘 = 1 (13) 

According to the Fourier transform theorem, any periodic functions with cycle 𝑃𝑤𝑛  can be 

decomposed into a couple of trigonometric functions: 

 𝑓𝑛(𝑡) = 1𝑃𝑤𝑛∫ 𝑓𝑛(𝑡)𝑃𝑤𝑛0 d𝑡 +∑𝐴𝜀 sin ( 2𝜋𝑃𝑤𝑛 𝜀𝑡 + 𝜑𝜀)+∞
𝜀=1  (14) 

Since any periodic functions 𝑓𝑛(𝑡) can be decomposed into trigonometric functions with elegant 

periodic properties, we choose the sine/cosine curve in Fig. 3(a) to approximate the time window penalty, 

which takes the following form: 

 𝑓𝑛(𝑡) = 𝑚𝑤𝑛𝑠𝑖𝑛 [ 2𝜋𝑃𝑤𝑛 (𝑡 − 𝑡𝑤𝑛) − 𝜋2] +𝑚𝑤𝑛 (15) 

where 𝑚𝑤𝑛 is the maximum value of penalty standing for the amplitude of the circular function. 𝑡𝑤𝑛 is 

the desired arrival time of the first period, which represents the initial phase of the circular function. 

As the arrival time at customer 𝑛  of each period is 𝑡 = 𝑐𝑦𝑐 ∙ 𝑃̃𝑘 + 𝑡𝑛𝑘  , 𝑋𝑛,𝑘 = 1 , using the 

trigonometric function induction formula, the sine function in Eq. (15) can be converted into the cosine 

function as follows: 

 sin [ 2𝜋𝑃𝑤𝑛 (𝑐𝑦𝑐𝑃̃𝑘 + 𝑡𝑛𝑘 − 𝑡𝑤𝑛) − 𝜋2] = −cos [ 2𝜋𝑃𝑤𝑛 (𝑐𝑦𝑐𝑃̃𝑘 + 𝑡𝑛𝑘 − 𝑡𝑤𝑛)] (16) 
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By summing up the above equations with constant terms over multiple periods, the average penalty cost 

for an infinite number of delivery cycles can be derived as follows: 

 𝑓𝑛(𝑐𝑦𝑐𝑃̃𝑘 + 𝑡𝑛𝑘) = lim𝐶𝑌𝐶→+∞ 1𝐶𝑌𝐶 ∑ {−𝑚𝑤𝑛 cos [ 2𝜋𝑃𝑤𝑛 (𝑐𝑦𝑐𝑃̃𝑘 + 𝑡𝑛𝑘 − 𝑡𝑤𝑛)] +𝑚𝑤𝑛}𝐶𝑌𝐶
𝑐𝑦𝑐=1  (17) 

According to Proposition 1, the intermediate-term in Eq. (17) can be rewritten as follows: 

lim𝐶𝑌𝐶→+∞ 1𝐶𝑌𝐶 ∑ cos [ 2𝜋𝑃𝑤𝑛 (𝑐𝑦𝑐𝑃̃𝑘 + 𝑡𝑛𝑘 − 𝑡𝑤𝑛)]𝐶𝑌𝐶
𝑐𝑦𝑐=1 = { 0 , ∀𝜅 ∈ 𝑁+, 𝑃̃𝑘 ≠ 𝜅𝑃𝑤𝑛cos [ 2𝜋𝑃𝑤𝑛 (𝑡𝑛𝑘 − 𝑡𝑤𝑛)] , ∃𝜅 ∈ 𝑁+, 𝑃̃𝑘 = 𝜅𝑃𝑤𝑛 (18) 

Up to now, the penalty cost of time windows for customer 𝑛 of each order cycle is identical. Therefore, 

the penalty cost per unit time for customer 𝑛 of route 𝑘 can be determined via dividing the average 

penalty cost for an infinite number of order cycles by the period length.  

 𝑐𝑤𝑛𝑘 = 𝑓𝑛(𝑡)𝑃̃𝑘 = { 
 𝑚𝑤𝑛2𝑃̃𝑘 , ∀𝜅 ∈ 𝑁+, 𝑃̃𝑘 ≠ 𝜅𝑃𝑤𝑛𝑚𝑤𝑛2𝑃̃𝑘 {1 − cos 2𝜋𝑃𝑤𝑛 [(𝑡𝑛𝑘 + ∆𝑡𝑛𝑘) − 𝑡𝑤𝑛]} , ∃𝜅 ∈ 𝑁+, 𝑃̃𝑘 = 𝜅𝑃𝑤𝑛 , 𝑋𝑛,𝑘 = 1 (19) 

where ∆𝑡𝑛𝑘  represents the additional travel time caused by a detour from the distribution center to 

customer 𝑛 on route 𝑘, whose specifics are described in Section 3.4.2. 

3.4.2 Detour cost/risk/time of traffic restriction 

In practice, trucks are not allowed to enter the urban area, especially during the daytime. Such a traffic 

restriction policy will induce detour cost/risk. Given the travel time from the distribution center to visited 

node 𝑖 on route 𝑘, 𝑡𝑖𝑘 (see Eq. (12)), the arrival time at visited node 𝑖 of each vehicle is its travel time 

plus the cycles that have passed, that is, 𝑡𝑖𝑘 + 𝑐𝑦𝑐 ∙ 𝑇̃𝑘 . To ensure that vehicles can run through the road 

sections before the starting restricted time, the vehicles need to enter the restricted road section 𝑡0 in 
advance, i.e., 𝑡0 = 𝐷𝑖𝑠𝑖,𝑗 𝑣𝑒𝑙⁄ . Therefore, let the restricted time set of the segment from 𝑖 to 𝑗 be 𝐹𝑇𝑖,𝑗 , 
and hazmat vehicles are restricted from 𝑡1 to 𝑡2 each day in this segment, then this set can be expressed 

as follows: 

 𝐹𝑇𝑖,𝑗 = [𝑡1 + 𝑡0: 𝑡2) ∪ …∪ [𝑡1 + 𝑡0 + 24𝜅: 𝑡2 + 24𝜅)  , ∀𝜅 ∈ 𝑁+, 𝜅 → +∞ (20) 

Suppose the vehicle arrival time is 𝑡, when 𝑡 ∈ 𝐹𝑇𝑖,𝑗, there will be a detour cost ∆𝑐𝑖,𝑗. If no path is 

available, the detour cost can be set as infinity and the routing scheme is infeasible. Likewise, this will also 
result in extra detour risk ∆𝑟𝑖,𝑗𝑙  and detour time ∆𝑡𝑖,𝑗 . (∆𝑡𝑖,𝑗  and ∆𝑐𝑖,𝑗  can be obtained from the length of 

the shortest path between node 𝑖 and node  𝑗 without restricted sections. The corresponding detour risk ∆𝑟𝑖,𝑗𝑙  can be obtained from the population along the above path based on Eq. (37) in Section 3.5.3.) Then 

the resulting detour cost 𝑐(𝑡) can be treated as the following periodic function: 

 𝑐(𝑡) = {∆𝑐𝑖,𝑗 , 𝑡 ∈ 𝐹𝑇𝑖,𝑗0 , 𝑡 ∉ 𝐹𝑇𝑖,𝑗 (21) 
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Fig. 4 Diagram of the periodic detour cost function 

Fig. 4 shows the graph of 𝑐(𝑡) overtime. The type of this graph is termed as the rectangle wave in the 

physics domain, where the high level takes the larger function value. The proportion of high levels in a 

waveform cycle is termed the duty cycle. According to the Fourier transform, the rectangular wave function 𝑐(𝑡) with a period of 24 hours and a duty cycle of 𝑡2−𝑡1+𝑡024  can be formulated as: 

 𝑐(𝑡) = 𝑡2 − 𝑡1 + 𝑡024 ∆𝑐𝑖,𝑗 +∑𝐴𝜀 sin (2𝜋24 𝜀𝑡 + 𝜑𝜀)+∞
𝜀=1  (22) 

where the first (constant) term is the average value of the detour cost function in one day.  

According to Corollary 1, for any periodic function with a period of 𝑇2, when the independent 

variable is an infinite arithmetic progression and its tolerance is not equal to the integral times of function 

period (i.e., the distribution period 𝑃̃𝑘 is not equal to the integral times of 24 hours), the following 

equation holds: 

 lim𝐶𝑌𝐶→+∞ 1𝐶𝑌𝐶 ∑ 𝑐(𝑐𝑦𝑐𝑃̃𝑘 + 𝑡𝑖𝑘)𝐶𝑌𝐶
𝑐𝑦𝑐=1 = 𝑡2 − 𝑡1 + 𝑡024 ∆𝑐𝑖,𝑗 + 0   , 𝑋𝑖,𝑘 = 1 (23) 

On the other hand, when the distribution period 𝑃̃𝑘 equals to the integral times of 24 hours, vehicles 

will encounter the same traffic restriction condition in each cycle such that the detour cost is identical. If 
the segment is not restricted, the restricted time set 𝐹𝑇𝑖,𝑗  is empty and the detour cost is zero. As a result, 

the total detour cost per unit of time on route 𝑘 is the sum of average detour cost in each segment per 

distribution period divided by the period length. 

 ∆𝑐𝑘 = 1𝑃̃𝑘 ∑ ∑ ∑𝑌𝑖,𝑗,𝑘 × {  
  𝑡2 − 𝑡1 + 𝑡024 ∆𝑐𝑖,𝑗 , ∀𝜅 ∈ 𝑁+, 𝑃̃𝑘 ≠ 24𝜅0 , ∃𝜅 ∈ 𝑁+, 𝑃̃𝑘 = 24𝜅, 𝑡𝑖𝑘 ∉ 𝐹𝑇𝑖,𝑗∆𝑐𝑖,𝑗𝜅 , ∃𝜅 ∈ 𝑁+, 𝑃̃𝑘 = 24𝜅, 𝑡𝑖𝑘 ∈ 𝐹𝑇𝑖,𝑗𝑘∈𝐾𝑗∈𝑀∪𝑁𝑖∈𝑀∪𝑁  (24) 

The total detour risk (change caused by detour) per unit of time on route 𝑘, ∆𝑟𝑘𝑙  can be calculated 
from ∆𝑟𝑖,𝑗𝑙  in the same way. Note that the risk is associated with type 𝑙 while the cost is not. Again, the 

cumulative detour time ∆𝑡𝑖𝑘 (change of travel time caused by detour) when vehicles travel from the 

distribution center to node 𝑖 on route 𝑘 is: 

 ∆𝑡𝑖𝑘 = ∆𝑡𝑗𝑘 + ∆𝑡𝑗,𝑖    , 𝑌𝑗,𝑖,𝑘 = 1, ∀𝑘 ∈ 𝐾 (25) 

3.4.3 Transportation cost from distribution centers to customers 
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The transportation cost includes the fixed cost and variable cost. The former refers to the nonrecurring 

costs due to vehicle start-ups, such as vehicle delivery management and driver scheduling, while the latter 

is associated with the mileage. To better reflect the reality, in our model the vehicle fuel consumption cost 

is incorporated into the variable transportation cost and total cost. Herein, we adopt the Comprehensive 

Model Emission Model (CMEM) proposed by Barth et al. (2005) to calculate the vehicle fuel consumption. 

In the CMEM model, the vehicle fuel consumption 𝐹 (unit: Litre) is related to the driving speed 𝑣𝑒𝑙, 
driving range 𝑑 and vehicle load 𝑞. Similar to Huang et al. (2007), the fuel computation formula is 

expressed as follows: 

 𝐹 = 0.28 𝑑𝑣𝑒𝑙 + 1.529 × 10−3𝑑𝑣𝑒𝑙2 + 8.403 × 10−3𝑑(3.85 + 𝑞) (26) 

The travel time between customers 𝑖 and 𝑗 is 𝐷𝑖𝑠𝑖,𝑗 𝑣𝑒𝑙⁄ , and the corresponding load is: 

 𝑞𝑗𝑘 = 𝑞𝑖𝑘 − 𝜇𝑖    , 𝑌𝑖,𝑗,𝑘 = 1, ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾 (27) 

Then the variable transportation cost of route 𝑘 equals the route-specific total fuel consumption 
multiplied by the fuel price 𝑐𝑓 . 

𝑈𝑘 = 𝑐𝑓 ∑ ∑ 𝑌𝑖,𝑗,𝑘 [0.28𝐷𝑖𝑠𝑖,𝑗𝑣𝑒𝑙 + 1.529 × 10−3𝐷𝑖𝑠𝑖,𝑗𝑣𝑒𝑙2 + 8.403 × 10−3𝐷𝑖𝑠𝑖,𝑗(3.85 + 𝑞𝑗𝑘)]𝑗∈𝑀∪𝑁𝑖∈𝑀∪𝑁  (28) 

Consequently, the total transportation cost per unit time equals the transportation cost of a delivery 

divided by the order cycle plus the time windows penalty cost and the cost changed by detour. 

 𝐶𝐷 = ∑∑𝑋𝑛,𝑘 (𝑢 + 𝑈𝑘 + 𝐹𝑛𝑃̃𝑘 + 𝑐𝑤𝑛𝑘 + ∆𝑐𝑘)𝑘∈𝐾𝑛∈𝑁  (29) 

3.4.4 Replenishment cost from plants to distribution centers 

The replenishment cost includes the ordering cost and transportation cost. The distance from a plant to a 
distribution center and the load are 𝐷𝑖𝑠𝑙,𝑚 and 𝑄𝑚, respectively. Alternately, the detour journey is empty 

with a distance of 𝐷𝑖𝑠𝑚,𝑙. Similar to Section 3.4.3, the variable transportation cost can be derived as: 

 
𝑈𝑚,𝑙 = 0.28𝐷𝑖𝑠𝑙,𝑚 + 𝐷𝑖𝑠𝑚,𝑙𝑣𝑒𝑙 + 1.529 × 10−3(𝐷𝑖𝑠𝑙,𝑚 +𝐷𝑖𝑠𝑚,𝑙)𝑣𝑒𝑙2 +8.403 × 10−3[𝐷𝑖𝑠𝑙,𝑚𝑄𝑚 + 3.85(𝐷𝑖𝑠𝑙,𝑚 +𝐷𝑖𝑠𝑚,𝑙)] (30) 

The replenishment cost per unit time is the cost of a replenishment divided by the order cycle, thus the 

total replenishment cost of all distribution centers per unit time takes the following form: 

 𝐶𝑅 =∑ ∑ 𝑡𝑦𝑝𝑒𝑚𝑙 𝑢 + 𝑈𝑚,𝑙 + 𝐹𝑚𝑃𝑚𝑚∈𝑀𝑙∈𝐿  (31) 

3.5 Risk assessment models 

The storage of hazmat forms a dangerous area, and their transportation could be viewed as a movement 

of this area along a route. The severity of an explosion accident should not only account for the impact area 

but also the exposed receptors in the vicinity. Therefore, in this study, the risk is defined as the product of 
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accident frequency, exposed population, and economic loss per capita. In what follows, the node risk and 

arc risk are first derived, based on which the systematic inventory risk and transportation risk are derived.  

3.5.1 Exposed population 

The residents in the vicinity are considered as the exposed receptors. Given the affected region 𝐴, and 

the population density 𝜌(𝑥, 𝑦) of any point (𝑥, 𝑦) on the plane, then the exposed population 𝐺(𝐴) can 

be calculated as the double integrating 𝜌(𝑥, 𝑦) in region 𝐴, or the average value of function 𝜌(𝑥, 𝑦) in 

region 𝐴 multiplied by the corresponding area 𝑆(𝐴). In practice, 𝜌(𝑥, 𝑦) is difficult to acquire in a 

straightforward, but it can be approximated by randomly or equidistantly sampling 𝑎̂ points in region 𝐴:  

 𝐺(𝐴) = ∬ 𝜌(𝑥, 𝑦)d𝑥d𝑦𝐴 = 𝑆(𝐴) × 𝜌𝐴 ≈ 𝑆(𝐴) 1𝑎̂∑𝜌(𝑥𝑎, 𝑦𝑎)𝑎̂
𝑎=1    , (𝑥𝑎, 𝑦𝑎) ∈ 𝐴 (32) 

3.5.2 Node(inventory) risk 

A circular explosive field is used to represent the range and intensity of the impact of hazmat accidents 

that attenuate from the inside out. Since the impact intensity decreases quickly as the distance increases, 

given the location of the hazmat (𝑥0, 𝑦0)  and the attenuation coefficient 𝜏𝑙  of hazmat type 𝑙 
(representing the rate at which the impact intensity decreases with the distance), the impact intensity at the 

location (𝑥, 𝑦) can be formulated in an exponential way as (Carotenuto et al., 2007): 

 𝑒−𝜏𝑙[(𝑥−𝑥0)2+(𝑦−𝑦0)2] (33) 

Therefore, taking the location (𝑥, 𝑦) as the origin, and taking the anomalous integral of Eq. (33) yields 

the impact of hazmat accident on the whole plane as follows: 

 ∫ ∫ 𝑒−𝜏𝑙[(𝑥−𝑥0)2+(𝑦−𝑦0)2]d𝑥d𝑦+∞
−∞

+∞
−∞ = ∫ d𝜃∫ 𝑒−𝜏𝑙𝑟2𝑟d𝑟+∞

0
2𝜋
0 = 𝜋𝜏𝑙 (34) 

where 𝜃 is an auxiliary variable used for the surface integral. 

As shown in Fig. 5, assume that the affected region by hazmat accident is a circle. When the ratio of 

accident impact on a circle to that on the whole plane is higher than a critical value 𝛽 (e.g., 90%), it can be 

recognized that the accident effects are distributed within the circle, then its impact radius 𝜆𝑙 can be 

determined to be 

∫ d𝜃∫ 𝑒−𝜏𝑙𝑟2𝑟d𝑟𝜆𝑙0
2𝜋
0 = 𝛽∫ d𝜃∫ 𝑒−𝜏𝑙𝑟2𝑟d𝑟+∞

0 ⇒2𝜋
0 𝜋𝜏𝑙 (1 − 𝑒−𝜏𝑙𝜆𝑙2) = 𝛽 𝜋𝜏𝑙 ⇒ 𝜆𝑙 = √−ln (1 − 𝛽)𝜏𝑙  (35) 

 

Fig. 5 Affected circle 𝐴𝑖𝑙  and the determination of its radius 
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Let 𝐺(𝐴𝑖𝑙) be the exposed population and risk coefficient 𝑟𝑙 be the product of accident probability and 

economic loss per capita of hazmat type 𝑙, then the inventory risk at node 𝑖 can be calculated as follows: 

 𝑟𝑙𝐺(𝐴𝑖𝑙) = 𝑟𝑙∬ 𝜌(𝑥, 𝑦)d𝑥d𝑦𝐴𝑖𝑙 = 𝑟𝑙𝜋𝜆𝑙2𝜌𝐴𝑖𝑙 ≈ 𝑟𝑙𝜋𝜆𝑙2𝑎̂ ∑𝜌(𝑥𝑎, 𝑦𝑎)𝑎̂
𝑎=1    , (𝑥𝑎, 𝑦𝑎) ∈ 𝐴𝑖𝑙 (36) 

3.5.3 Path(transportation) risk 

The movement of hazardous materials would impose risk on the surroundings along a route. As shown 

in Fig. 6, when the hazmat is moved along the arc (𝑖, 𝑗), the potentially affected region forms a ribbon, 

which is the combination of two semicircles and a rectangle (Batta and Chiu, 1988). 

l

i j i j
Ⅰ ⅡⅢ

 

Fig. 6 The form of an affected ribbon 

By integrating the density function in the affected region 𝐴̃𝑖,𝑗𝑙 , i.e., the ribbon, the exposed population 𝐺(𝐴̃𝑖,𝑗𝑙 ) can be approximated as the average population density, 𝜌̅𝐴𝑖,𝑗𝑙 , of region 𝐴̃𝑖,𝑗𝑙 , multiplied by its 

corresponding area 𝑆(𝐴̃𝑖,𝑗𝑙 ). 
 𝐺(𝐴̃𝑖,𝑗𝑙 ) = ∬ 𝜌(𝑥, 𝑦)d𝑥d𝑦𝐴̃𝑖,𝑗𝑙 = 𝜌̅𝐴𝑖,𝑗𝑙 𝑆(𝐴̃𝑖,𝑗𝑙 ) = 𝜌̅𝐴𝑖,𝑗𝑙 [𝑆(I) + (II) + (III)] (37) 

In a real situation, the path or road is often not straight. To facilitate the calculation of exposed 

population between two visited points, a curved road can be approximated as a set of nodes and links, 

where the nodes can be the road turnings, as shown in Fig. 7. Naturally, a larger number of inserted nodes 

indicate a higher accuracy of road network extraction at the expense of greater computation burden. 

Nevertheless, this can be computed in a pre-processing phase before running the model. 

(a) 0 point to describe routing (b) 1 point to describe routing (c) 5 points to describe routing

j

ii

j

i

j

Node in the model Point set to describe real routing Route Affected region

 

Fig. 7 Schematic of the road network extraction 
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Fig. 8 The integration of exposed ribbon 

With this in mind, we proceed to discuss the calculation of the population along a curved road. As 

shown in Fig. 8, suppose that the road has only a turning between node 𝑖 and node 𝑗, then the affected 

ribbon can be partitioned into six mutually disjoint regions, including two semicircles at the nodes (I and 

VI), two angle-deficient rectangles in between (II and V), a quadrilateral (IV) and a sector (III) at the 

junction. If we remove the sector and add a quadrilateral, the affected ribbon can be approximated as the 

combination of two semicircles and two rectangles. 

 𝐺𝐴̃𝑖,𝑗𝑙 = I + II + III + IV + V + VI ≈ 𝐴̃𝑖,𝑗𝑙 ′ = I + (II + IV) + (IV + V) + VI (38) 

In this vein, a curved road with a number of turning points can be simplified into a combination of two 
semicircles and a couple of rectangles. As a result, the total exposed population 𝐺(𝐴̃𝑖,𝑗𝑙 ) along a curved 

road can be obtained by summing up the area of each region multiplied by the corresponding population 

density (or its sample average), then the transportation risk is:  

 𝑟𝑙𝐺(𝐴̃𝑖,𝑗𝑙 ) = 𝑟𝑙∬ 𝜌(𝑥, 𝑦)d𝑥d𝑦𝐴𝑖,𝑗𝑙 ≈ 𝑟𝑙𝑆(𝐴̃𝑖,𝑗𝑙 ′) 1𝑎̂∑𝜌(𝑥𝑎, 𝑦𝑎)𝑎̂
𝑎=1    , (𝑥𝑎 , 𝑦𝑎) ∈ 𝐴̃𝑖,𝑗𝑙 ′ (39) 

3.5.4 Systematic risk per unit time 

The purpose of this section is to calculate the expected risk involved in the hazmat distribution network. 

According to the average inventory level derived from Section 3.3, and the inventory risk (Eq. (36)), the 

network-wide total inventory risk can be calculated.  

Since the average inventory level for a retailer is 𝜇𝑛, the inventory risk for customers per unit time 

equals ∑ ∑ 𝑡𝑦𝑝𝑒𝑛𝑙 𝜇𝑛𝑟𝑙𝐺(𝐴𝑛𝑙 )𝑛∈𝑁𝑙∈𝐿 . Similarly, the average inventory level at the distribution center 𝑚 is 

its safety stock plus the customers’ demand, thus the inventory risk for distribution centers per unit time is ∑ ∑ 𝑡𝑦𝑝𝑒𝑚𝑙 𝑟𝑙𝐺(𝐴𝑚𝑙 )(∑ ∑ 𝑋𝑚,𝑘𝑋𝑛,𝑘𝑛∈𝑁𝑘∈𝐾 𝜇𝑛 + 𝑆𝑡𝑚)𝑚∈𝑀𝑙∈𝐿 . As a result, the overall inventory risk is the 

summation of those of customers and distribution centers. 

 𝑅𝑀 =∑∑𝑡𝑦𝑝𝑒𝑛𝑙 𝜇𝑛𝑟𝑙𝐺(𝐴𝑛𝑙 )𝑛𝜖𝑁𝑙∈𝐿 +∑ ∑ 𝑡𝑦𝑝𝑒𝑚𝑙 𝑟𝑙𝐺(𝐴𝑚𝑙 )(∑∑𝑋𝑚,𝑘𝑋𝑛,𝑘𝜇𝑛𝑛∈𝑁𝑘∈𝐾 + 𝑆𝑡𝑚)𝑚∈𝑀𝑙∈𝐿  (40) 

The average risk on the segment between node 𝑖 and 𝑗 is associated with the arc-specific vehicle load 𝑞𝑗𝑘, exposed population 𝐺(𝐴̃𝑖,𝑗𝑙 ), and the order cycle 𝑃̃𝑘. 

 𝑟𝑠𝑖,𝑗,𝑘𝑙 = ∑ ∑ 𝑌𝑖,𝑗,𝑘𝑗∈𝑀∪𝑁𝑖∈𝑀∪𝑁
𝐺(𝐴̃𝑖,𝑗𝑙 )𝑟𝑙𝑃̃𝑘 𝑞𝑗𝑘 (41) 

Despite their in-transit and storage incompatibility, the superimposed risks among different materials, 

which results from possible chemical reaction once accidents (e.g., leakage, explosion) happen, further 

complicate the comprehensive plans. Specifically, when a location is within the affected range of multiple 

hazmat classes at the same time, the combined impact of the hazmat incident cannot be a “simple sum”. For 

example, some chemical energy that can produce a chemical reaction would result in a consequence much 

greater than the sum. To capture the compound effect, we introduce a new variable 𝛿𝑙𝑙′ that represents the 
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risk superposition coefficient between hazmat type 𝑙 and 𝑙’. When the route 𝑘 (of type 𝑙) overlaps route 𝑘’ (of type 𝑙’) at a specific segment, there will be an additional superimposed risk 𝛿𝑙𝑙′√𝑟𝑠𝑖,𝑗,𝑘𝑙 𝑟𝑠𝑖,𝑗,𝑘′𝑙′  on 

the segment. 𝛿𝑙𝑙′ > 0 indicates that the coexistence of 𝑙 and 𝑙’ will cause the additional superimposed 

risk due to chemical reaction; 𝛿𝑙𝑙′ = 0 indicates that 𝑙 and 𝑙’ can coexist without any chemical reaction 

(or they are the same type of hazmat, i.e., 𝑙 = 𝑙’). 𝛿𝑙𝑙′ < 0 indicates that the coexistence of 𝑙 and 𝑙’ can 

reduce the total risk. In practice, the value of 𝛿𝑙𝑙′ can be tuned by fine-tuned or estimated by rule-of-thumb 

by chemical engineers. Then, the additional total superimposed risk 𝑆𝑅 can be calculated as the product of 𝛿𝑙𝑙′√𝑟𝑠𝑖,𝑗,𝑘𝑙 𝑟𝑠𝑖,𝑗,𝑘′𝑙′ , routing decision variables and hazmat type parameters of each segment of each route. 

Since every two segments are multiplied twice, the additional total superimposed risk 𝑆𝑅 is the sum of all 

products divided by 2. 𝑆𝑅 = 12 ∑ ∑ ∑∑ ∑∑ ∑ ∑ 𝑌𝑖,𝑗,𝑘𝛿𝑙𝑙′√𝑡𝑦𝑝𝑒𝑚𝑙 𝑋𝑚,𝑘𝑟𝑠𝑖,𝑗,𝑘𝑙 × 𝑡𝑦𝑝𝑒𝑚′𝑙′ 𝑌𝑚′,𝑘′𝑟𝑠𝑖,𝑗,𝑘′𝑙′𝑘′∈𝐾𝑚′∈𝑀𝑙′∈𝐿𝑘∈𝐾𝑚𝜖𝑀𝑙∈𝐿𝑗∈𝑀∪𝑁𝑖∈𝑀∪𝑁  (42) 

As a result, the total distribution risk per unit time takes the following form, where the average risk 

change ∆𝑟𝑘𝑙  caused by the detour of route 𝑘 per unit time is calculated by the same way of Eq. (24). 

 𝑅𝐷 =∑ ∑ ∑𝑡𝑦𝑝𝑒𝑚𝑙 𝑋𝑚,𝑘 (∆𝑟𝑘𝑙 + ∑ ∑ 𝑟𝑠𝑖,𝑗,𝑘𝑙𝑗∈𝑚∪𝑁𝑖∈𝑚∪𝑁 ) + 𝑆𝑅𝑘∈𝐾𝑚∈𝑀𝑙∈𝐿  (43) 

Given the order quantity of the distribution center 𝑚 (Eq. (5)), the transportation risk from the plants 

to distribution centers per unit time can be determined as: 

 𝑅𝑅 =∑ ∑ 𝑡𝑦𝑝𝑒𝑚𝑙 𝐺(𝐴̃𝑖,𝑗𝑙 )𝑟𝑙𝑃𝑚 √2𝐹𝑚ℎ𝑚 ∑∑𝑋𝑚,𝑘𝑋𝑛,𝑘𝜇𝑛𝑘∈𝐾𝑛∈𝑁𝑚∈𝑀𝑙∈𝐿  (43) 

3.6 Spatio-temporal risk distribution 

In the hazmat logistics system, the inventory level of distribution centers and demand points, and the 

vehicle load over the network will change over time. Due to the radiation and compounded effects of the 

hazmat risks, excessive risk threats may be imposed to a specific location at a specific time in the operation. 

This point could be either a node in the network or any location outside the road network. Therefore, it is 

imperative to deduce the spatio-temporal risk distribution and introduce the spatio-temporal risk constraint 

in the optimization model (see constraints (71)). The inventory risk depends on the inventory volume and 

the population exposure. With the decision variables and mathematical formulations, the location and load 

of vehicles, and the inventory level over time can be calculated. Based on this, the risk value can be derived 

as a function of the location and time, from which the spatio-temporal risk distribution is obtained.  

3.6.1 Inventory risk distribution for customers 

The customer 𝑛 is served once within each order cycle 𝑃̃𝑘, and the corresponding demand is 𝐷𝑛𝑃̃𝑘. 

The travel time from the distribution center to customer 𝑛 on route 𝑘 is the travel time 𝑡𝑛𝑘  (Eq. (12)) 
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plus the time change caused by detours between each pair of visited points before this customer ∆𝑡𝑛𝑘 (Eq. 

(25)). 

In other words, the vehicle arrival time at the customer 𝑛 that departs from the distribution center at 

time is 𝑡𝑛𝑘 + ∆𝑡𝑛𝑘. The customer 𝑛 will be served every order cycle 𝑃̃𝑘 after the first delivery, and the 

corresponding delivery quantity is 𝐷𝑛𝑃̃𝑘. Therefore, given any time 𝑡, the difference between this time 

point and that of preceding delivery equals the remainder of the difference between this time point and that 

of first delivery after dividing the order cycle: 

 mod(𝑡 − 𝑡𝑛𝑘 − ∆𝑡𝑛𝑘 , 𝑃̃𝑘) (45) 

where mod is the modulus operator.  

The demand during the time interval equals the product of the consumption rate and the interval: 

 𝐷𝑛mod[𝑡 −∑𝑋𝑛,𝑘(𝑡𝑛𝑘 + ∆𝑡𝑛𝑘)𝑘∈𝐾 , 𝑃̃𝑘] (46) 

As a result, the inventory level for customer 𝑛  at time 𝑡  is the delivery quantity minus the 

consumption in the current cycle: 

 𝐼𝑙,𝑛(1)(𝑡) = 𝑡𝑦𝑝𝑒𝑛𝑙𝐷𝑛 {𝑃̃𝑘 −mod [𝑡 −∑𝑋𝑛,𝑘(𝑡𝑛𝑘 + ∆𝑡𝑛𝑘)𝑘∈𝐾 , 𝑃̃𝑘]} (47) 

Taken together, the risk of any coordinate (𝑥, 𝑦) affected by the inventory of customer 𝑛 at time 𝑡 
can be expressed as follows: 

 𝑅𝑙,𝑛(1)(𝑡, 𝑥, 𝑦) = 𝑟𝑙𝜌(𝑥, 𝑦)𝐼𝑙,𝑛(1)(𝑡)𝑒−𝜏𝑙[(𝑥−𝑥𝑛)2+(𝑦−𝑦𝑛)2] (48) 

3.6.2 Inventory risk distribution for distribution centers 

The distribution center 𝑚 will be replenished from the plants every order cycle 𝑃𝑚, and the average 

replenishment quantity is 𝑄𝑚. On the other hand, the customers will be replenished from the distribution 

center 𝑚  through distribution route 𝑘 . At time 𝑡 , the replenished quantity 𝑄𝑚  delivered to the 

distribution center 𝑚 at the beginning of each order cycle has been consumed for a time of mod(𝑡, 𝑃𝑚), 
thus the consumption of distribution center 𝑚 at time 𝑡 is: 

 𝑄𝑚mod(𝑡, 𝑃𝑚)𝑃𝑚  (49) 

Considering the safety stock 𝑆𝑡𝑚, the inventory level for distribution center 𝑚 at time 𝑡 can be 

calculated as the sum of safety stock and replenished quantity, minus the consumption in the current cycle. 

 𝐼𝑙,𝑚(2)(𝑡) = 𝑊𝑚𝑡𝑦𝑝𝑒𝑚𝑙 {𝑆𝑡𝑚 +𝑄𝑚 [1 − mod(𝑡, 𝑃𝑚)𝑃𝑚 ]} (50) 

Therefore, the risk of any coordinate (𝑥, 𝑦) affected by the inventory of distribution center 𝑚 takes 

the following form: 

 𝑅𝑙,𝑚(2)(𝑡, 𝑥, 𝑦) = 𝑟𝑙𝜌(𝑥, 𝑦)𝐼𝑙,𝑚(2)(𝑡)𝑒−𝜏𝑙[(𝑥−𝑥𝑚)2+(𝑦−𝑦𝑚)2] (51) 
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3.6.3 Transportation risk distribution from distribution centers to customers 

The en-route vehicles will bring about transportation risks. The risk level is associated with the number 

of en-route vehicles, which vary with the difference between the order cycle 𝑃̃𝑘  and travel time of a 

distribution route (𝑡𝑚𝑘 + ∆𝑡𝑚𝑘 ), and could be 0 when 𝑃̃𝑘 > 𝑡𝑚𝑘 + ∆𝑡𝑚𝑘    , 𝑋𝑚,𝑘 = 1. 

 

Fig. 9 The number of vehicles on a distribution route 

As shown in Fig. 9, let the set of vehicles driving on route 𝑘  at time 𝑡  be 𝑉̃𝑘𝑡 ={1,2, … , ⌊(𝑡 + 𝑡𝑚𝑘 + ∆𝑡𝑚𝑘 ) 𝑃̃𝑘⁄ ⌋ − ⌊𝑡 𝑃̃𝑘⁄ ⌋}, then the accumulated travel time of 𝑣𝑡ℎ vehicle in this set is mod(𝑡, 𝑃̃𝑘) + (𝑣 − 1)𝑃̃𝑘    , 𝑣 ∈ 𝑉̃𝑘𝑡 . Based on this, we introduce the following state variable: 

Θ(𝑘, 𝑖, 𝑗, 𝑣, 𝑡) = {1, [mod(𝑡, 𝑃̃𝑘) + (𝑣 − 1)𝑃̃𝑘 − 𝑡𝑖𝑘][mod(𝑡, 𝑃̃𝑘) + (𝑣 − 1)𝑃̃𝑘 − 𝑡𝑗𝑘] ≤ 00, [mod(𝑡, 𝑃̃𝑘) + (𝑣 − 1)𝑃̃𝑘 − 𝑡𝑖𝑘][mod(𝑡, 𝑃̃𝑘) + (𝑣 − 1)𝑃̃𝑘 − 𝑡𝑗𝑘] > 0   , 𝑣 ∈ 𝑉̃𝑘𝑡 (52) 

where Θ = 1 indicates that 𝑣𝑡ℎ vehicle is running between node 𝑖 and node 𝑗 on route 𝑘 at time 𝑡.  

According to Eq. (27), the load of 𝑣𝑡ℎ vehicle at time 𝑡 is: 

 𝐼𝑙,𝑘,𝑣(3) (𝑡) = ∑ 𝑡𝑦𝑝𝑒𝑚𝑙 𝑋𝑚,𝑘𝑚∈𝑀 ∑ ∑ 𝑌𝑖,𝑗,𝑘Θ(𝑘, 𝑖, 𝑗, 𝑣, 𝑡)𝑞𝑗𝑘𝑗∈𝑀∪𝑁𝑖∈𝑀∪𝑁  (53) 

The coordinate of each vehicle in the set of 𝑉̃𝑘𝑡 can be calculated based on the current time 𝑡 and the 

coordinate of node 𝑖, 𝑗, thereafter the set of vehicle coordinates 𝐶𝑜̃𝑘𝑡  can be built by mapping from 𝑉̃𝑘𝑡. 
More specifically, the segment length can be known based on the coordinate of node 𝑖, 𝑗. The ratios 

between the mileages that vehicles have traveled in this segment and the total length of this segment at time 𝑡 can be calculated. Then, the coordinate of each vehicle in the set of 𝑉̃𝑘𝑡 can be calculated given the node 

coordinates. Consequently, the risk of any coordinate (𝑥, 𝑦) affected by vehicles on the route 𝑘 at time 𝑡 
can be written as follows: 

 
𝑅𝑙,𝑘(3)(𝑡, 𝑥, 𝑦) = ∑ 𝑟𝑙𝜌(𝑥, 𝑦)𝐼𝑙,𝑘,𝑣(3) (𝑡)𝑒−𝜏𝑙[(𝑥−𝑥𝑣)2+(𝑦−𝑦𝑣)2]𝑣∈𝑉𝑘𝑡  (54) 

where (𝑥𝑣 , 𝑦𝑣) denotes the 𝑣𝑡ℎ element of the set 𝐶𝑜̃𝑘𝑡 . 

3.6.4 Transportation risk distribution from plants to distribution centers 
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In the transportation from plants to distribution centers, the number of vehicles en-route can be 

calculated similarly to Section 3.6.3. Let the set of vehicles driving to distribution center 𝑚 at time 𝑡 be 𝑉𝑚𝑡 = {1,2,⋯ , ⌊(𝑡 + 𝐷𝑖𝑠𝑙,𝑚) 𝑃𝑚⁄ ⌋ − ⌊𝑡 𝑃𝑚⁄ ⌋}. At this moment, the load of each vehicle takes the following 

form. Note that the vehicles running from the plant (corresponding to hazmat type 𝑙) to a distribution 

center 𝑚 are identical since there will be no unloading process en-route. 

 𝐼𝑙,𝑚(4)(𝑡) = 𝑄𝑚 = 𝑊𝑚𝑡𝑦𝑝𝑒𝑚𝑙 √2𝐹𝑚ℎ𝑚 ∑∑𝑋𝑚,𝑘𝑋𝑛,𝑘𝜇𝑛𝑘∈𝐾𝑛∈𝑁  (55) 

The coordinate of each vehicle in the set of 𝑉𝑚𝑡  can be calculated based on the current time 𝑡 and the 

coordinates of plants and distribution centers, then the set of vehicle coordinates 𝐶𝑜𝑚𝑡  can be built by 

mapping from 𝑉𝑚𝑡 . Specifically, according to the replenishment period and route length, the ratios between 

the mileages that vehicles have traveled and the total route length at time 𝑡 can be calculated. Then, given 

the node coordinates of plants and distribution centers as well as the associated routes, the coordinate of 

each vehicle in the set of 𝑉𝑚𝑡  can be calculated. Therefore, the risk of any coordinate (𝑥, 𝑦) affected by 

vehicles on the route from the plant (corresponding to hazmat type 𝑙) to distribution center 𝑚 at time 𝑡 
can be written as follows: 

 𝑅𝑙,𝑚(4)(𝑡, 𝑥, 𝑦) = ∑ 𝑟𝑙𝜌(𝑥, 𝑦)𝐼𝑙,𝑚(4)(𝑡)𝑒−𝜏𝑙[(𝑥−𝑥𝑣)2+(𝑦−𝑦𝑣)2]𝑣∈𝑉𝑚𝑡  (56) 

where (𝑥𝑣 , 𝑦𝑣) denotes the 𝑣𝑡ℎ element of the set 𝐶𝑜𝑚𝑡 . 

3.6.5 Superimposed risk 

Given the additional superimposed risk affected by the possible chemical reactions between every two 

risks, that is, the product 𝑅𝑙(ℓ)𝑅𝑙′(ℏ)𝛿𝑙𝑙′, ℓ, ℏ ∈ {1, 2, 3, 4} (1~4 corresponding to the four risks in Section 

3.6.1~3.6.4), the total superimposed risk of a point (𝑥, 𝑦) is the sum of all products divided by 2:  

 𝑅𝑆(𝑡, 𝑥, 𝑦) = 12∑∑∑∑𝑅𝑙(ℓ)(𝑡, 𝑥, 𝑦)𝑅𝑙′(ℏ)(𝑡, 𝑥, 𝑦)𝛿𝑙𝑙′4
ℏ=1

4
ℓ=1𝑙′∈𝐿𝑙∈𝐿  (57) 

3.6.6 The consolidated formulation for transportation risk distribution 

By combining the inventory risk with transportation risk, the total risk can be summarized as follows: 

 𝑅(𝑡, 𝑥, 𝑦) =∑[∑𝑅𝑙,𝑛(1)𝑛∈𝑁 + ∑ (𝑅𝑙,𝑚(2) +𝑅𝑙,𝑚(4))𝑚∈𝑀 +∑𝑅𝑙,𝑘(3)𝑘∈𝐾 ]𝑙∈𝐿 + 𝑅𝑆 (58) 

Given the location (𝑥, 𝑦) and time 𝑡, the risk value can be calculated directly by Eq. (58), from which 

the location with excessive risk can be identified. 

3.6.7 Optimization model 

The objective of this paper is two-fold: one aims to find out the optimal location, inventory, and routing 

schedule simultaneously that minimizes the total cost from the system perspective, while the other aims to 

minimize the total risk exposing the population of the regional area. This gives rise to a bi-objective 
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optimization problem. In addition, to prevent any site from being exposed to excessive risks, we enhance 

the solution approach by additionally incorporating the risk tolerance. 

With the costs and risk distribution discussed above, the optimization model for the multi-class hazmat 

distribution network design problem could be formulated as follows: 

 min𝐶𝐿 + 𝐶𝑀 + 𝐶𝑅 + 𝐶𝐷 (59) 

 min𝑅𝑀 + 𝑅𝑅 + 𝑅𝐷 (60) 

s.t. 

 ∑ 𝑊𝑚𝑡𝑦𝑝𝑒𝑚𝑙𝑚∈𝑀 ≥ 1   , ∀𝑙 ∈ 𝐿 (61) 

 ∑𝑋𝑚,𝑘 {= 0   ,𝑊𝑚 = 0≥ 1   ,𝑊𝑚 = 1𝑘∈𝐾    , ∀𝑚 ∈ 𝑀 (62) 

 ∑ 𝑋𝑚,𝑘𝑚∈𝑀 {= 0   ,∑ 𝑋𝑛,𝑘𝑛∈𝑁 = 0= 1   ,∑ 𝑋𝑛,𝑘𝑛∈𝑁 ≥ 1   , ∀𝑘 ∈ 𝑘 (63) 

 ∑𝑋𝑛,𝑘 {= 0   ,∑ 𝑋𝑚,𝑘𝑚∈𝑀 = 0≥ 1   ,∑ 𝑋𝑚,𝑘𝑚∈𝑀 = 1𝑛∈𝑁    , ∀𝑘 ∈ 𝑘 (64) 

 ∑𝑋𝑛,𝑘𝑘∈𝐾 = 1   , ∀𝑛 ∈ 𝑁 (65) 

 ∑ 𝑌𝑖,𝑗,𝑘𝑗∈𝑀∪𝑁,𝑗≠𝑖 = ∑ 𝑌𝑗,𝑖,𝑘𝑗∈𝑀∪𝑁,𝑗≠𝑖 = 𝑋𝑖,𝑘    , ∀𝑖 ∈ 𝑀 ∪ 𝑁,∀𝑘 ∈ 𝐾 (66) 

 ∑ ∏ 𝑡𝑦𝑝𝑒𝑖𝑙𝑖∈𝑀∪𝑁𝑙∈𝐿 = ∑ 𝑋𝑚,𝑘𝑚∈𝑀    , ∀𝑘 ∈ 𝐾 (67) 

 ∑𝑡𝑦𝑝𝑒𝑚𝑙 𝑄𝑚𝑙∈𝐿 + 𝑆𝑡𝑚 ≤ 𝑆𝑚    , ∀𝑚 ∈ 𝑀 (68) 

 ∑∑𝑡𝑦𝑝𝑒𝑛𝑙 𝑋𝑛,𝑘𝑃̃𝑘𝑘∈𝐾𝑙∈𝐿 𝐷𝑛 ≤ 𝑆𝑛 , ∀𝑛 ∈ 𝑁 (69) 

 ∑ 𝑡𝑦𝑝𝑒𝑚𝑙 𝑋𝑚,𝑘𝑄̃𝑘𝑚∈𝑀 ≤ 𝑆𝑙    , ∀𝑙 ∈ 𝐿, ∀𝑘 ∈ 𝐾 (70) 

 𝑅(𝑡, 𝑥, 𝑦) ≤ 𝑅𝑚𝑎𝑥    , ∀𝑡, 𝑥, 𝑦 (71) 

 𝑊𝑚 ∈ {0,1}   , ∀𝑚 ∈ 𝑀 (72) 

 𝑌𝑖,𝑗,𝑘 ∈ {0,1}   , ∀𝑖, 𝑗 ∈ 𝑀 ∪ 𝑁,∀𝑘 ∈ 𝐾 (73) 
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 𝑋𝑖,𝑘 = {  
  0   , ∑ 𝑌𝑖,𝑗,𝑘𝑗∈𝑀∪𝑁 = 0
1  , ∑ 𝑌𝑖,𝑗,𝑘𝑗∈𝑀∪𝑁 = 1    , ∀𝑖 ∈ 𝑀 ∪𝑁,∀𝑘 ∈ 𝐾 (74) 

The first objective function Eq. (59) represents the summation of the opening costs, inventory cost of 

distribution centers and customers, and transportation cost of distribution and replenishment per unit time 

(see the derivation in Sections 3.3.3, 3.3.4, 3.4.3, and 3.4.4). The second objective function Eq. (60) 

represents the summation of inventory risk of distribution centers and customers and transportation risk of 

distribution and replenishment per unit time (see the derivation in Section 3.5.4). Constraints (61) ensure 

that at least one distribution center is opened for each type of hazmat. Constraints (62) ensure that an 

opened distribution center has at least one distribution route. Constraints (63) ensure that there is only one 

distribution center on each route. Constraints (64) ensure that there will be customers on each distribution 

route. Constraints (65) ensure that each customer is served. Constraints (66) ensure that each customer is 

allowed to be served by at most one distribution route, with only one delivery per order cycle, and that each 

distribution route is closed-loop. Constraints (67) ensure that for each route the hazmat type is identical for 

both the distribution center and customers. Constraints (68) ensure that the inventory level of each 

distribution center should not exceed its maximum storage capacity. Constraints (69) ensure that the 

inventory level of each customer should not exceed its maximum storage capacity. Constraints (70) 

represent the vehicle capacity constraint. Constraints (71) ensure that the spatio-temporal risk should not 

exceed a specific threshold. Constraints (72) and (73) indicate the attribute of the decision variables. 

Constraints (74) state the relationship between decision variables.  

 

4 Solution method 

MHND is an NP-hard issue as it concerns location allocation and inventory and route planning. The 

objective functions are nonconvex and discontinuous (i.e., nonlinear and non-smooth), and the constraints 

(e.g., constraints (71)) are difficult to be transformed into linear conditions. Since the decision variables are 

binary, the model optimization is a nonlinear integer programming problem, and the problem is not 

solvable by commercial solvers with exact solutions such as CPLEX and GUROBI. Besides, exact 

algorithms and solvers can only solve NP-hard problems for a limited size in a reasonable computational 

time. In comparison, metaheuristic algorithms can solve large-size problem instances within a reasonable 

computation time, which are often applied in addressing various combinatorial optimization problems. The 

NSGA-II (Non-dominated sorting Genetic Algorithm-II) algorithm is a fast non-dominated sorting genetic 

algorithm with an elite mechanism (Deb et al., 2002), which has been adopted in a variety of combinational 

optimization problems. To produce high-quality solutions, we propose a metaheuristic called 

knowledge-based NSGA-II algorithm with cyclic dissimilarity-based elitist selection operator 

(NSGA-II-CD) to solve the multi-objective optimization model and search a near-optimal solution, where 

the key components are redesigned based on the domain knowledge to obtain an efficient Pareto frontier for 
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minimizing the total cost and minimizing the total risk. In particular, we devise a cyclic dissimilarity-based 

elitist selection operator to tackle the issue of speeding proliferation, which greatly improves the solution 

quality. Then we create the benchmark networks and multiple artificial problem instances to test the 

proposed algorithm.  

4.1 Encoding of chromosome 

Representing the chromosome is not a trivial task in this problem. An effective coding scheme is 

devised to endow the chromosome with information about the location of distribution centers, hazmat types, 

and routing schedule. Fig. 10 shows a sample of the encoding procedure. The individual is a two-row 

matrix. The first row stands for the index of nodes, and the second row stands for the hazmat type of the 

corresponding node. The visited nodes of each distribution route are fed into the matrix, and different 

routes are separated by a separation mark (SM). The distribution center in the matrix is opened. Since each 

route has two identical DC nodes (starting and ending) and an SM, the length of matrices may be distinct 

for different numbers of routes. For example, the length of a matrix with two customers served by one 
route is 6: SM-DC-customer 1-customer 2-DC-SM. Alternately, the length of a matrix with two customers 

separately served by two routes is 9: SM-DC1-customer 1-DC1-SM-DC2-customer 2-DC2-SM. 

3 54

1 2

7

6

1311
9

DC

plant

Closed DC

1210
Customer

8

 

Fig. 10 Illustration of coding solution (Individual A, DC 3, 4, 5 are opened with a route respectively) 

Fig. 10 illustrates an example with 2 hazmat types, 2 plants, 4 candidate DCs, and 7 customers. To 

begin with, an SM-1 is generated, and the corresponding index of hazmat type is set as 0, which indicates 

no hazmat type information. The visited nodes of route 1 (3-6-7-3) are filled into row 1, and the 

corresponding type number (1) is filled into row 2. Then, the next SM (-1) is generated, of which the type 

number is determined by the previous distribution route. The nodes and SM of route 2 (4-8-9-10-4-(-1)) are 

filled into row 1, and the type number (2) is filled into row 2. The nodes and SM of route 3 

(4-8-9-10-4-(-1)), and the corresponding type number (2) are processed similarly. 

4.2 Initial solution generation 

We propose a constructive heuristic to generate an initial feasible solution. The initial population is 

generated by randomly assigning customers to the candidate distribution centers with identical hazmat 

types. The distribution center is opened once a customer is assigned, otherwise, it is closed. The customer is 

served only by one distribution route by default, and the delivery order is randomly determined. The 

feasible solution of an individual can be generated according to Section 4.1. This process can guarantee to 

produce a feasible solution in each run. According to the aforementioned coding solution and available 
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nodes in Fig. 10, Individual B is generated (Fig. 11), forming a simple population with Individual A. An 

initial population of any size can be obtained by repeating the above operations several times.  

-1 3 7 6 3 -1 4 10 12 9 8 11 4 -1

0 1 1 1 1 1 2 2 2 2 2 2 2 2  

Fig. 11 Individual B (DC 3,4 are opened, having a route respectively) 

4.3 Crossover 

Offspring A (after crossover)

-1 3 6 8 7 3 -1 4 9 10 13 4 -1 5 12 11 5 -1

0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

-1 3 6 7 8 3 -1 4 9 10 11 4 -1 5 12 13 5 -1

0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

6 7 8

1 1 1

9 10 11 12 13

2 2 2 2 2

-1 3 8 6 7 3 -1 4 10 13 9 12 11 4 -1

0 1 1 1 1 1 1 2 2 2 2 2 2 2 2

Parent A

Parent B

Original customer sequence of A

New customer sequence of A
6 9 10

1 2 2

6 8 7 9 10 13 12 11

1 1 1 2 2 2 2 2

New customer  sequence of A

-1 3 3 -1 4 4 -1 5 5 -1

0 1 1 1 2 2 2 2 2 2

 

Fig. 12 Crossover operator 

Due to the provision of various hazmat types, in the crossover the information exchange should be 

performed separately for each hazmat type. Since each route has two identical DC nodes (starting and 

ending) and an SM, the length of matrices may be distinct for different numbers of routes. Since the 

number of distribution routes may be different among individuals given a number of customers, the 

crossover operation should be used to change the customer order. Taking Fig. 12 as an example, the main 

steps are as follows: 

Step 1: All customers are extracted from an individual to form a customer sequence. 

Step 2: For each hazmat type, retain only half of the customers and remove the remaining ones, and 

reserve the slots left after the removal. 

Step 3: Refill the customers removed before into the slots, according to the order they were arranged in 

another individual. In this way, a complete customer sequence of the next generation can be produced. 

Step 4: Refill the new customer sequence into the individual matrix to produce a new generation. 

As a result, a new population is formed by randomly pairing the individuals, and conducting crossover 

operations according to the above steps. 

4.4 Mutation 

To realize the change of the number of opened distribution centers, the number of routes for each 

distribution center, and the visiting order of each route for each hazmat type in the mutation, in this section 

we propose four mutation procedures. These four mutation methods are independent with respective 
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execution probability. According to these probabilities, each individual will perform mutation operations 

with different means and degrees. A new population can be obtained after each individual performs each 

mutation operation with a given probability. The diagram is shown in Fig. 13. The main steps are described 

as follows: 

-1 3 6 8 7 3 -1 4 9 10 13 4 -1 5 12 11 5 -1

0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

Offspring A (before Mutation 1)

-1 3 8 6 7 3 -1 4 9 10 13 4 -1 5 12 11 5 -1

0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

Offspring A (After  1 / before 2)

-1 3 8 6 7 3 -1 4 9 10 4 -1 5 12 11 13 5 -1

0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

Offspring A (After  2 / before 3)

-1 3 8 6 7 3 -1 4 9 10 12 11 13 4 -1

0 1 1 1 1 1 1 2 2 2 2 2 2 2 2

-1 3 8 6 7 3 -1 4 9 10 12 11 4 -1 4 13 4 -1

0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

Offspring A (after Mutation 4)

Offspring A (After  3 / before 4)

4 DC

1
2

3
4

Individual 
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muation

Mutation 1 Mutation 2 Mutation 3 Mutation 4
Individual 

after 

mutation

Probability 1 Probability 2 Probability 3 Probability 4

 

Fig. 13 Mutation operator 

Mutation 1: Randomly select two customers from a route and exchange their positions.  

Mutation 2: Randomly select a customer from a route and insert it into another route.  

Mutation 3: Randomly delete a route and randomly assign its customers to other routes with the same 

hazmat type.  

Mutation 4: Generate a new route by randomly drawing customers from other routers with the same 

hazmat type. If an original route has no customer after mutation, delete it. 

4.5 Selection improvement and evaluation 

In this section, we propose an improved selection strategy for the NSGA-II algorithm. To this end, we 

first propose a method to create the benchmark hazmat supply network for comparison, and evaluate the 

proposed strategy through instances of different sizes. 

4.5.1 Instance generation method 

The instance generation method includes the parameter settings and the supply network generation, 

while the latter is more critical. The proposed road network generation method can generate nodes and 

links with specific node attributes, hazmat type, and other relevant parameters for links, while satisfying the 

number and density of hazmat plants, candidate DCs, and customers. The main steps are described as 

follows: 

Step 1: Specify the upper and lower bounds of the link length and the total number of nodes. Generate 

a node and a circle centered on this node with an upper bound as its radius. Randomly generate several 

nodes in this circle as the nodes of the second round. Then, draw the union of the circles centered on the 

nodes of the last round, and generate the nodes of the next round in it. Fig. 14 shows the example. 
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Fig. 14 Node generation based on the upper bound 

Step 2: Remove the nodes between which the distance is less than the lower bound. Note that this step 

is not necessarily compulsory. This step can avoid a high concentration of risks caused by the high density 

of nodes and links, whereas the absence of a lower limit enables the simulation of real-life risk 

accumulation such as industrial parks. Fig. 15 shows the example. 

Lower bound

(b) Too-close nodes removal(a) Distance check
 

Fig. 15 Node removal based on the lower bound 

Step 3: Generate a link between two nodes when their distance is not greater than the given upper 

bound. Fig. 16 shows the example. 

Upper bound

(b) Road network after node removal(a) Road network without node removal
 

Fig. 16 Road network generation based on the upper bound 

Suppose there are two hazmat types, three candidate DCs for hazmat type 1, and two candidate DCs for 

hazmat type 2. Choose a node that connects to three nodes as the plant of hazmat type 1, while the three 

nodes are treated as the candidate DCs. Similarly, choose another node that connects to the two nodes as 

the plant of hazmat type 2, while the two nodes are treated as the candidate DCs. The remaining nodes are 

treated as the customers. Randomly assigning the hazmat types to customers completes the road network 
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generation, as illustrated in Fig. 17. Fig. 18 presents the overall solution framework for network generation. 

Plant of type 1

DC of type 1
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DC of type 2

Connects to 2 nodes

Connects to 3 nodes

 

Fig. 17 Illustration of road network generation 
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Fig. 18 Overall solution framework for network generation 

4.5.2 The phenomenon of speeding proliferation 

According to the road network generation method proposed in Section 4.5.1, a road network is 

generated to evaluate the algorithm. Fig. 19 depicts the generated network with three hazmat types, two 

candidate DCs for each hazmat type, and a total of 30 customers. 
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Fig. 19 Road network of the example 
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Fig. 20 The iteration process and Pareto optimal solutions under classic NSGA-II 

Based on the instance generation method, a medium-size road network is generated to evaluate the 

algorithm. The network consists of three hazmat types, two candidate DCs for each hazmat type, and totally 

30 customers. Fig. 20(c) shows the total size (i.e., the total number of individuals) of non-dominated rank 

structures over iterations. 19 rapid proliferation, shaping like the steep slope in the box area of Fig. 20(c), 

takes place among the top-rank individuals. For the first 12 times, each rise of the size is followed by an 

immediate decline, while afterward the top-rank individuals occupy the entire population and fail to recover. 

However, the effective size (i.e., the number of distinct individuals) of the top-rank individuals in Fig. 20(d) 

has no significant change when the top-rank individuals proliferate abruptly. This indicates that a large 

number of top-rank individuals are trivial. In other words, the entire population becomes the replicas of 

only a couple of individuals. Instead of generating more new feasible solutions, the existence of these 

replicates will further increase the size of top-rank solutions over iterations, which does not make sense. 

Motivated by this observation, we term this phenomenon as “speeding proliferation”, a proliferative 

phenomenon that exceeds the normal scale of evolution. 

Fig. 21 shows the mechanism of speeding proliferation. Suppose that the population size is 5. Both the 

parents and the first generation (F1) have an identical non-dominated solution, namely “individual 1”. 

Since individual 1 exists in both the parents and the F1, these individuals will be reserved in the second 

generation (F2) by the selection operator with the elitism strategy, which doubles the number of individual 

1 in the new population. More replicas of individual 1 indicate a greater occurrence probability of itself in 

the next generation due to their self-crossover not being caught by possible mutation, which in turn 

increases the number of individual 1 after the next election. This leads to a vicious circle that intensifies the 

speeding proliferation of individual 1 and destroys the population diversity, ending up with only a couple of 

replicas that occupy the entire population. Due to the limitation of population size, this may also result in 
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the spillover phenomenon where some top-rank individuals cannot be selected, as represented by the 

election process from F2 to F4. 
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Fig. 21 Diagram of speeding proliferation mechanism 

One way to hinder this proliferative process and rapidly normalize the population structure is the 

occurrence of a new individual that can dominate individual 1, which corresponds to the recovery of the 

speeding proliferation in Fig. 20(c). However, the increasing replicas in the population will decrease the 

diversity, narrow the search space, and reduce the occurrence probability of better individuals. Therefore, 

the issue of speeding proliferation will be usually inevitable and unstoppable once the same top-rank 

individuals in the parents and offspring emerge. 

The speeding proliferation is a typical premature phenomenon of the NSGA-II algorithm. The elitism 

selection operator, which combines parents and offspring and sorts them in layers, can preserve the best 

individuals but may exponentially duplicate the local optimal individuals, quickly destroy the diversity, and 

therefore reduce the efficiency and the solution quality. This phenomenon often appears in integer 

programming like the MHND in this research. With a continuous domain and countless feasible solutions, 

the non-integer programming can have infinite solutions, such that the same individual rarely exists 

between the two generations after crossover and mutation. On the contrary, the definition domain of integer 

programming is discrete, and there may be only limited feasible solutions after considering constraints. In 

addition, in the study of real-world problems, the coding, decoding of individuals, and particularly the 

initialization often cannot guarantee the complete coverage of potential solution space. This further reduces 

the total number of feasible solutions and the same individual frequently results, thereby exacerbating the 

speeding proliferation.  

4.5.3 Tackling the issue of speeding proliferation: Cyclic dissimilarity-based elitist selection (CD) 

To address the issue of speeding proliferation, this paper proposes a new generic CD strategy, which is 

an abbreviation of “cyclic dissimilarity-based elitist selection”. The principle of this strategy is that a cyclic 

selection strategy based on dissimilarity is added to the original elitist selection strategy to diversify the 

population to the greatest extent, such that the speeding proliferation is completely avoided, and the 

iterative efficiency and solution quality are improved. 

The main process of CD is described as follows: 
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Step 1: Combine parents with offspring and perform non-dominated sorting. 

Step 2: Extract the individuals that are different from each other from the population, and construct a 

set with the same order as Step 1. 

Step 3: If the size of the set is now smaller than the required population size, duplicate this set and 

arrange it after the previous set. This process is repeated until the required size of the set reaches. 

Step 4: Extract a certain number of individuals ranking in the front from the set in Step 3 to generate 

the next generation. 
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Fig. 22 Diagram of the CD process 

Fig. 22 diagrams the CD process. As we can see, the CD can retain the diversity of the population to a 

great extent even if a number of identical individuals exist in the parent and offspring. Commendably, CD 

not only limits the replicas in the population to prevent speeding proliferation but also enables the 

high-rank individuals to enter the next generation with a greater probability, such that high-quality 

individuals are more likely to generate and better iterative efficiency and solution can be expected. It is 

worth mentioning that CD is more suitable for sophisticated practical problems. For example, in the 

well-known traveling salesman problem (TSP), the optimization can be realized only by visited node 

reordering, and the classical operator can obtain the optimal solution by neighborhood search from a few 

local optimal solutions. In this case, the performance of the CD may be not quite outstanding. However, 

CD takes more effect in complex problems like the MHND where the decision variables include location 

and routing options. Unlike the TSP, there may be some outstanding solutions in the neighborhood of an 

inferior solution, and the global optimization is difficult to achieve only by neighborhood search from a few 

local optimal solutions. 

4.5.4 Algorithmic comparison under different sizes 

In this section, we investigate the merit of the CD strategy by examining its performance in different 

instances. To this end, we implement the traditional selection operator and compare the performance of 

these two versions using the exemplified network in Section 4.5.2, and the results are shown in Fig. 23. 

Figs. 23(a) and (b) show the outcome of the rank structures for the two operators. We can see that the CD is 

effective in preventing speeding proliferation, and enables the size of the top rank to maintain a reasonable 
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and stable growth throughout the whole process, ending up with 52 Pareto optimal solutions and with an 

effective ratio of 1 (Fig. 23(d)).  
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Fig. 23 Comparison between classic selection operator and CD over iterations 

Fig. 23(c) shows the effective number of top-rank individuals of the algorithms over iterations with the 

two operators, and Fig. 23(d) shows the corresponding effective ratios. The effective number refers to the 

number of distinct solutions after leaving repeated ones out in the Pareto solution set, while the effective 

ratio refers to the ratio of the effective number of Pareto solution set to the total size of the set. A larger 

number of Pareto solutions (higher effective ratio) indicate better diversity of solutions. As we can see, the 

effective size under CD continuously increases over iterations. After the 80th iteration, although the size of 

the top rank with classical operator is 200 (Fig. 23(a)), its effective size keeps only approximately 20, and 

the effective ratio drops to below 0.2.  

Table 3 Comparison between the classic selection operator and CD 

Instance Operator Effective size Minimum cost Minimum risk CPU time (s) 

2-2-20 
Classic 16.40 1288.45 2677.48 520.6 

CD 23.60 (+44%) 1241.91(-4%) 2567.89 (-4%) 557.5 (+7%) 

3-3-30 
Classic 34.00 2278.18 5147.98 723.9 

CD 41.20 (+21%) 2178.68 (-4%) 5114.64 (-4%) 781.0 (+8%) 

4-4-40 
Classic 20.67 4061.71 4594.03 1164.1 

CD 33.00 (+60%) 3879.30 (-4%) 4479.57 (-2%) 1217.5 (+5%) 

5-5-50 
Classic 21.33 6326.22 9748.94 1725.1 

CD 30.17 (+41%) 5936.93 (-6%) 9651.41 (-1%) 1859.7 (+8%) 

6-6-60 Classic 19.50 6254.16 9549.49 2532.2 
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CD 25.20 (+29%) 5841.23 (-7%) 9169.53 (-4%) 2752.5 (+9%) 

Average improvement 39.08% 5.05% 2.44% -7.21% 

Table 3 shows the comparison under different sizes of instances generated by our instance generation 

method (10 runs for each instance). For example, 3-3-30 refers to the case of 3 hazmat types and 30 

demand points, with 3 candidate DC for each hazmat type. The programs are implemented in Matlab 2019a 

on an Intel(R) Core(TM) i7-6500U CPU @ 2.50 GHz with an 8GB RAM PC. Compared to the classic 

selection operator, the CD can generate a larger number of effective Pareto solutions (39.08% improvement) 

and achieve better solutions in both minimum cost (5.05% improvement) and minimum risk (2.44% 

improvement). In terms of computational time, CD takes slightly more time than the classic algorithm by 

7.21% on average, which is within the acceptable range. Therefore, the CD can obtain better solutions 

without significantly increasing the computational time. 

4.5.5 Algorithmic comparison based on a benchmark function 

To further investigate the generalization of CD in the multi-objective optimization, a standard test 

function for multi-objective optimization, ZDT-1 (Zitzler et al., 2000), is also taken as a benchmark. In the 

genetic algorithm with CD and ZDT-1, simulated binary crossover (SBX) and polynomial mutation (PM) 

are adopted. 

Table 4 Comparative results based on the standard benchmark function 

 Classic CD 

Heredity ratio (%) Effective size CPU time (s) Effective size CPU time (s) 

0 94.4 17.0 94.0 (-0.42%) 17.4 (-2.35%) 

10 86.7 25.4 93.0 (7.27%) 25.8 (-1.57%) 

20 84.7 24.6 90.2 (6.49%) 27.6 (-12.20%) 

30 64.7 25.0 89.3 (38.02%) 25.8 (-3.2%) 

40 55.6 25.6 85.8 (54.32%) 26.4 (-3.13%) 

50 53.1 24.4 83.4 (57.06%) 25.6 (-4.92%) 

60 35.8 25.2 83.7 (133.80%) 26.2 (-3.97%) 

70 32.3 24.6 78.4 (142.73%) 25.8 (-4.88%) 

80 15.0 24.4 77.3 (415.33%) 26.6 (-9.02%) 

Since ZDT-1 is not originally for integer programming, an identical individual rarely exists both in the 

parents and offspring. To conduct a fair comparison, a direct-heredity ratio is arbitrarily set to ensure that a 

certain proportion of individuals can be directly inherited from the parents to the offspring so that the same 

individual phenomenon can be reproduced. To this end, the direct-heredity ratio is set as from 0% to 80%. 

The population size and iteration times are taken as 100. Again, the algorithm is run 10 times for each 

instance. Table 4 shows the effective number of the Pareto optimal solutions set and computational time of 

the two operators. As we can see, as the heredity ratio increases, the effective number of Pareto solutions of 

traditional selection decreases for both operators, which indicates that an increasing number of identical 

individuals come out in the population. Nevertheless, in comparison, the CD achieves a larger number of 

non-dominated solutions at the expense of slightly additional computational time. Specifically, when the 
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heredity ratio is 0, the effective sizes of the two algorithms are almost the same. However, when the 

heredity ratio is higher, the effective size of CD is consistently larger than that of the classic operator and 

the gap becomes larger. This result reinforces the message that our improved algorithm can produce 

better-spread non-dominated solutions with a limited computation burden. 

4.5.6 Algorithmic comparison on the solution quality and optimality gap 

While Sections 4.5.4 and 4.5.5 have verified that the proposed algorithm (NSGA-II-CD) is more 

efficient than its original version (NSGA-II), this section further verifies the effectiveness of the proposed 

algorithm by comparing its solutions with other heuristics in terms of solution quality and optimal gap. In 

addition to NSGA-II and NSGA-II-CD algorithms, the multi-objective simulated annealing (MOSA) and 

multi-objective particle swarm optimization (MOPSO) heuristic algorithms are selected for comparison. 

The mutation operator in NSGA-II is utilized to generate the new solution in MOSA. 

To evaluate the solution quality and optimal gap of different algorithms, the ZDT-1 test function is 

taken as the benchmark bi-objective optimization problem, which has a theoretical non-convex (global 

optimal) Pareto front. Fig. 24 shows the comparison between the solutions and theoretical Pareto fronts of 

the four algorithms under 100 iterations. The algorithmic solution quality is higher (and thus the optimal 

gap is smaller) when the solutions are closer to the theoretical Pareto front. As we can see, NSGA-II based 

algorithms appear to perform better than MOSA and MOPSO. NSGA-II-CD outperforms other algorithms 

since its solutions are closer to the theoretical Pareto front. 
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Fig. 24 Comparison of the optimal results and optimal Pareto fronts of the four algorithms 

To further quantify their solution quality, two performance indicators are adopted to evaluate the 

convergence, universality, and uniformity of the solutions generated by different algorithms: 

(1) Generational Distance (GD) 
GD represents the average of the minimum distance from the optimal solution set obtained by the 

algorithm to the Pareto solution set, which is calculated as: 

 𝐺𝐷(𝑃̂, 𝑃̂∗) = √∑ min𝑥̇∈𝑃̂∗ 𝑑𝑖𝑠(𝑥̇, 𝑦̇)2𝑦̇∈𝑃̂ |𝑃̂|  
(75) 

where 𝑃̂ is the optimal solution set obtained by the algorithm, |𝑃̂| is the solution quantity in the optimal 
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solution set, 𝑃̂∗ is the theoretical Pareto solution set, and 𝑑𝑖𝑠(𝑥̇, 𝑦̇) represents the Euclidean distance 

between solutions 𝑥̇ and 𝑦̇. In our test, 500 solutions are evenly selected on the Pareto front to construct 

the Pareto solution set. A smaller value of the GD indicator indicates the smaller gap between the optimal 

solution and the theoretical Pareto solution set, and thus better convergence of the algorithm and smaller 

optimality gap. 

(2) Hyper Volume (HV) 
HV represents the sum of Euclidean volume (the volume means the area in two-dimensional Euclidean 

space) formed between the optimal solution set and a reference point: 

 𝐻𝑉 = 𝛿(⋃ 𝑥̇𝑝|𝑃̂|𝑝=1 ) (76) 

where 𝛿 is the Lebesgue measure to calculate the volume. The HV indicator can be used to evaluate the 

universality and uniformity of the algorithms. A higher value of HV indicates the better the solutions 

perform in these two aspects. 

We now calculate the two different indicators for each algorithm. To obtain less biased indicators, each 

experiment is repeated by 40 times, and the average value is taken. The results are shown in Fig. 25. As we 

can see, the values of GD are the lowest for the proposed algorithm under different iterations, which 

reinforces the message that the optimality gap of NSGA-II-CD is the smallest. Commendably, the values of 

HV are the highest for the proposed algorithm under different iterations. Therefore, it is concluded that the 

NSGA-II-CD can obtain near-optimal solutions and that with limited computational costs, NSGA-II-CD is 

more applicable to address the proposed bi-objective optimization problem than three others. 
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5 Model application 

5.1 Data setting 

We assess the functionality of the proposed model and algorithm with a real-world case study in 

Guangzhou, which is the capital of Guangzhou Province and has one of the highest population densities in 
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China. The petrochemical industry is one of the pillar industries in Guangdong Province, while 

Guangdong’s ethylene production ranks first in the country. The products produced in the petroleum and 

ethylene refining industry can provide a variety of raw materials for the chemical industry. For example, 

ortho-xylene is one of the raw materials for the production of pesticides, and ethylene plays an important 

role in the petrochemical industry chain. Benzene is an important raw material for fine chemicals. Given 

this fact, we choose these 3 materials in Guangzhou for the case study. Each material involves 1 factory and 

a couple of candidate distribution centers, and there are totally 37 respective industrial enterprises as the 

demand points. The classification of their chemical index in GHS (Globally Harmonized System of 

Classification and Labelling of Chemicals) is presented in Table 5. 

Table 5 GHS classification of each material 

Hazard type Hazard category 

Ortho-xylene  

Flammable liquids 3 

Skin corrosion/irritation 2 

Hazardous to the aquatic environment - short term (acute) Acute 2 

Ethylene  

Flammable gases 1 

Gases under pressure Compressed gas 

Specific target organ - single exposure 3 

Benzene  

Flammable liquids 2 

Skin corrosion/irritation 2 

Serious eye damage/eye irritation 2 

Germ cell mutagenicity 1B 

Carcinogenicity 1A 

Specific target organ -repeated exposure 1 

Aspiration hazard 1 

Hazardous to the aquatic environment -short term (acute) Acute 2 

Hazardous to the aquatic environment -long term (chronic) Chronic 3 

In 2015, the total volume of road transportation of hazmat in China was 300 million tons, with a total of 

196.4 thousand vehicles. Assume that the average vehicle capacity is 10 tons, and then the number of 

vehicle departures is 30 million. In this year, there were 50 accidents about hazmat transportation reported 

in China, thus the probability of hazmat transportation accidents is approximately 1.67 times per million 

departures. Multiplying the probability by the economic loss per capita caused by the corresponding 

hazmat type yields the risk multiplier 𝑟𝑙 of type l. Following Nicolet-Monnier and Gherghe (1995), the 

impacted radius of a hazmat accident is approximated as 0.8 km. On this basis, the attenuation coefficient 



38 

 

𝜏𝑙 can be estimated by Eq. (35), which equals 3.6. 

After communication with chemical engineers, it is confirmed that no reaction exists among the three 

substances in this study, thus the risk supposed coefficients are 0. In fact, most inflammable and explosive 

hazmat will not produce nonlinear superimposed risk even when coexisted. If some special hazmat will 

interact, the superimposed risk can be simply calculated by Eq. (42) and Eq. (57), which will not affect the 

generalization of the framework. 

Table 6 Information of hazardous materials and their plants 

 Ortho-xylene Ethylene Benzene 

Node number (i.e., type number) 𝑙 1 2 3 

Risk coefficient 𝑟𝑙 (RMB/capita) 0.00117 0.00217 0.00254 

Attenuation coefficient 𝜏𝑙 4.70 3.60 2.84 

Plant’s longitude 113.8388 113.1333 113.4210 

Plant’s latitude 23.1420 23.3677 23.4456 

Risk supposed coefficient 𝛿𝑙𝑙′ Ortho-xylene 0 0 0 

Ethylene 0 0 0 

Benzene 0 0 0 

The information of each hazardous material and the corresponding plant are listed in Table 6. The 

information of each candidate distribution center is shown in Table 7. The information of customers (i.e., 

the companies that call for hazardous materials) is shown in Table 8. The other default model parameters 

are provided in Table 9, except where they are the subject of a test. In addition, the peak risk constraints (71) 

are not considered in the base case, which is equivalent to the infinite peak risk limit, whereas the effect of 

peak risk constraint will be investigated in Section 5.2.3. 

Table 7 Information of candidate distribution centers 

ortho-xylene ethylene benzene 

Node number 𝑚  4 5 6 7 8 9 10 

Longitude 113.70 113.66 113.22 113.20 113.17 113.27 113.42 

Latitude 23.11 23.16 23.40 23.34 23.31 23.40 23.38 

Opening cost 𝑐𝑚 (RMB) 2076701 1984053 2194922 2278336 1782026 1806619 2924069 

Service life (year) 15 15 15 15 15 15 15 

Holding cost ℎ𝑚 (RMB/h) 32.20 45.50 40.21 23.15 45.08 23.58 37.62 

Table 8 Information of customers (part 1) 

Node number 𝑛 & Name Long. Lat. Node number 𝑛 & Name Long. Lat. 
agricultural chemical industry 113+ 22+ petrochemical industry-continued 113+ 22+ 

11 Donghong Chemical Plant 0.32 1.17 30 Jinhong Petrochemical Co., Ltd 0.62 1.29 

12 Ruishang Chemical Co., Ltd 0.24 0.98 31 Shengxin Petrochemical Co., Ltd 0.65 1.37 

13 Guangzhou Pesticide Factory 0.32 0.86 32 Senming Petrochemical Co., Ltd 0.45 1.11 

14 Gangzhou Liwan Chemical Plant 0.27 1.20 33 Guanshi Petrochemical Co., Ltd 0.37 0.99 

15 Tongbao Chemical Co., Ltd 0.84 1.15 34 LL Petrochemical-tech Co., Ltd 0.26 1.29 
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16 Jianhong Chemical Co., Ltd 0.39 1.12 35 Kaiguang Petrochemical Co., Ltd 0.50 1.13 

17 Shidai Chemical Co., Ltd 0.41 0.90 Fine chemical industry 113+ 22+ 

18 Litu Chemical Co., Ltd 0.48 1.13 36 Gao Tiya Fine Chemical Co., Ltd 0.27 1.40 

19 Tengfu Chemical Co., Ltd 0.42 1.12 37 Huayu Fine Chemical Co., Ltd 0.50 1.40 

20 Yuli Chemical Co., Ltd 0.47 1.10 38 DeRMB Fine Chemical Co., Ltd 0.57 1.19 

21 Hualong Chemical Co., Ltd 0.47 1.10 39 Xiangying Fine Chemical Co., Ltd 0.42 1.38 

22 Nanchaung Chemical Co., Ltd 0.62 0.87 40 Shengyan Fine Chemical Co., Ltd 0.29 1.26 

23 Xiangpin Chemical Co., Ltd 0.35 1.08 41 Yusong Fine Chemical Co., Ltd 0.24 1.31 

petrochemical industry 113+ 22+ 42 Xulin Fine Chemical Co., Ltd 0.27 1.27 

24 RunJC Petrochemical Co., Ltd 0.50 1.13 43 JinSM Fine Chemical Co., Ltd 0.28 1.25 

25 Yongchao Petrochemical Co., Ltd 0.22 1.40 44 Nuolan Fine Chemical Co., Ltd 0.40 1.37 

26 HuiCY Petrochemical Co., Ltd 0.52 1.09 45 Wangsha Fine Chemical Co., Ltd 0.40 1.37 

27 Hualong Petrochemical Co., Ltd 0.59 0.64 46 Barui Fine Chemical Co., Ltd 0.37 1.31 

28 Yirun Petrochemical Co., Ltd 0.75 1.14 47 Yonghui Fine Chemical Co., Ltd 0.35 1.30 

29 Fuhao Petrochemical Co., Ltd 0.75 1.22 

Table 8 Information of customers (part 2) 

Node number 𝑛 11 12 13 14 15 16 17 18 19 20 𝜇𝑛 (ton/h) 0.12 0.16 0.16 0.13 0.17 0.18 0.18 0.15 0.18 0.17 ℎ𝑛 (RMB/h) 72.80 102.20 78.40 67.20 98.00 86.10 63.00 95.20 68.60 88.90 𝑚𝑤𝑛 (RMB) 12.93 8.48 12.11 9.27 10.70 13.54 12.95 9.61 9.87 9.49 𝑃𝑤𝑛 (h) 24 12 24 12 36 24 12 36 24 12 𝑡𝑤𝑛 (h) 9.77 8.77 15.29 9.20 28.25 20.70 5.35 32.68 21.99 2.19 

Node number 𝑛 21 22 23 24 25 26 27 28 29 30 𝜇𝑛 (ton/h) 0.14 0.08 0.19 0.17 0.19 0.13 0.19 0.13 0.15 0.08 ℎ𝑛 (RMB/h) 58.80 78.40 68.60 69.46 62.76 85.30 63.37 86.52 73.12 73.12 𝑚𝑤𝑛 (RMB) 9.02 9.36 11.29 10.12 8.60 9.31 9.31 13.99 8.86 10.87 𝑃𝑤𝑛 (h) 24 24 36 36 36 12 24 36 36 24 𝑡𝑤𝑛 (h) 17.88 11.02 2.83 28.31 23.05 3.14 20.98 0.89 5.63 9.29 

Node number 𝑛 31 32 33 34 35 36 37 38 39 40 𝜇𝑛 (ton/h) 0.17 0.09 0.16 0.15 0.13 0.13 0.13 0.18 0.16 0.15 ℎ𝑛 (RMB /h) 48.74 49.35 60.93 54.84 81.04 59.19 54.67 71.23 41.13 48.15 𝑚𝑤𝑛 (RMB) 9.53 11.71 13.59 10.42 11.77 10.73 13.78 13.39 11.24 12.01 𝑃𝑤𝑛 (h) 12 24 36 12 12 36 36 24 12 36 𝑡𝑤𝑛 (h) 8.62 3.68 7.47 10.23 3.35 0.62 3.13 22.93 0.97 4.74 

Node number 𝑛 41 42 43 44 45 46 47 𝜇𝑛 (ton/h) 0.09 0.13 0.12 0.13 0.18 0.17 0.20 ℎ𝑛 (RMB /h) 60.69 56.18 53.17 45.65 53.17 65.21 70.73 𝑚𝑤𝑛 (RMB) 8.95 13.75 12.02 12.49 10.62 8.52 8.10 𝑃𝑤𝑛 (h) 24 12 24 12 12 36 24 𝑡𝑤𝑛 (h) 15.05 2.76 2.71 7.86 4.37 21.02 0.92 

Table 9 Supplementary information 

Service level 𝛼 0.90 Confidence level 𝛽 0.90 Variation coefficient of 𝐷𝑛  0.1 
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Vehicle capacity 𝑆𝑙 5 ton Vehicle velocity 𝑣𝑒𝑙 30 km/h Fixed transportation cost 𝑢 50 RMB 

DC capacity 𝑆𝑚 50 ton DC ordering cost 𝐹𝑚 500 RMB Customer ordering cost 𝐹𝑛 300 RMB 

Fuel price 𝑐𝑓 6.38RMB/Litre    

To ensure the continuity of highways connecting Guangzhou to the surrounding cities, several roads of 

other cities and the corresponding population density are added onto the network for modeling, including 

Foshan, Zhongshan, Dongguan, Qingyuan, Shaoguan, and Huizhou city. A number of nodes are used to 

describe the road network of the above-mentioned cities, which includes the intersections and turnings. As 

a result, a total of 303 nodes are extracted from the map to describe the intersections and turnings of the 

real road network. Fig. 26 shows the distribution of nodes, restricted area, road network, and the heat map 

of population density in the area of interest. A darker color indicates the higher population density in the 

area. The restricted area in Guangzhou is within S81 Guangzhou Ring Expressway, including Tianhe 

District, Yuexiu District, and Liwan District, which is also the downtown area of Guangzhou. Hazmat 

transportation is prohibited in the area from 7:00 am to 10:00 pm each day. In what follows, a set of 

computational studies are carried out to assess the performance of our model and provide managerial 

implications from the perspective of practitioners.  
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Fig. 26 Transportation network and population distribution representation for Guangzhou city 

5.2 Results and discussion 

5.2.1 Convergence analysis of cost and risk components 

Prior to providing a detailed analysis of the convergence behavior of cost and risk components, we 

introduce some additional concepts. Fig. 27(a) illustrates the solution set in a typical iteration, where the 

light grey area and dark gray area indicate the distribution of the overall populations and the distribution of 

the top-rank set, respectively. The lower bound and upper bound of the area indicates the lowest value and 

highest value in this set, respectively.  
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Fig. 27 Illustration and convergence process with respect to the total cost and risk 

Figs. 27(b) and (c) present the iteration process with respect to the total cost and risk, respectively. It 

can be seen that the minimum cost and maximum total risk of the optimal solution set tend to stabilize after 

the 20th iteration. The minimum total cost is decreased by 44.24% as compared to that of the first iteration 

(607.89 RMB/h). The highest total risk drops to 3933.40 RMB/h, which is 39.73% lower than that of the 

first iteration (5630.25 RMB/h). After the 20th iteration, the minimum total risk continues to decrease, 

whereas the maximum total cost grows in turn, which suggests that the system risk can be further reduced 

at the expense of extra cost. Finally, the minimum total risk drops by 46.04%. 
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Fig. 28 Convergence process with respect to each component 

We now analyze the convergence behavior of each system cost component. In our model, the total cost 

consists of 7 components: 1) the opening cost of DCs; 2) the replenishment cost from plants to DCs; 3) the 
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inventory cost of DCs; 4) the distribution cost from DCs to customers; and 5) the inventory cost of 

customers. The total risk consists of 5 components: 1) the replenishment risk from plants to DCs; 2) the 

inventory risk of DCs; 3) the distribution risk from DCs to customers; and 4) the inventory risk of 

customers. 

Fig. 28 shows the convergence behavior of the aforementioned components. The decrease of the 

minimum total cost (i.e., the lower bound of total cost area) before the 30th iteration comes from the joint 

optimization of the location, replenishment, and distribution. After that, the opening cost, inventory cost 

and risk of distribution centers, replenishment cost, and risk converge to fixed values, and the change of 

total cost and total risk is mainly affected by the change of distribution plan. The changes in inventory cost 

and risk of customers are trivial. The reason is that the inventory level of customers varies linearly in each 

cycle with the minimum value 0 and the maximum value 𝐷𝑛𝑃̃𝑘. Given the unit inventory cost per unit time ℎ𝑛, then the average inventory cost per cycle is ℎ𝑛 𝜇𝑛𝑃̃𝑘 2⁄ , thus the average inventory cost per unit time is ℎ𝑛 𝜇𝑛𝑃̃𝑘 2𝑃̃𝑘⁄ , that is, ℎ𝑛 𝜇𝑛 2⁄ , which is a constant. 

The distribution cost consists of four components: transportation cost (including fixed cost and fuel 

consumption cost), ordering cost of customers, detour cost, and time windows penalty cost. The 

distribution risk consists of two components: transportation risk and detour risk. The convergence behavior 

of these six components is depicted in Fig. 29. 
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Fig. 29 Convergence process of each component with respect to the distribution cost 

As we can see, the transportation cost of distribution and the transportation cost changed by detour 

account for a large proportion of the distribution cost, which may exert a great influence on the 

convergence behavior of total cost. As shown in Figs. 29(a) and (e), the minimum distribution cost 

decreases to its minimum value before the 20th iteration. Afterward, the maximum distribution cost 

generally increases, alongside the decrease of the minimum distribution risk. This suggests that some 

feasible solutions with higher total costs can reduce the system total risk at the expense of extra 
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transportation costs. 

Figs. 29(c) and (f) show the change patterns of detour costs and risks, where the detour cost is caused 

by vehicles entering the restricted area during the forbidden period. Before the 20th iteration, the detour 

cost is relatively high in that a number of hazmat transportation routes go through the restricted area. In this 

range, the minimum detour risk is negative, which indicates the rationality of traffic restriction policy in 

Guangzhou city. Beyond this range, the detour cost and risk converge to 0, which indicates that the optimal 

solutions can avoid the detour cost caused by vehicles entering the restricted area during the forbidden 

period. In other words, the optimal distribution routes do not go through the restricted area. This suggests 

that, in practice, the periodic road closures policy in Guangzhou could be possibly upgraded to a full-time 

prohibition. In this way, urban safety can be ensured without significant impact on the existing hazmat 

logistics system. 

5.2.2 Analysis of Pareto solutions 

Fig. 30 shows the cost and risk composition over all Pareto solutions. As the index of Pareto solutions 

increases, the cost increases while the risk decreases. This suggests that higher risk leads to smaller costs. 

The changes of opening cost, replenishment cost, inventory cost, detour cost, and time windows penalty 

cost are trivial over different solutions, whereas the fuel consumption cost of distribution increases 

dramatically. This is because to reduce the risk, a longer tour is required to pass the densely populated area, 

such that more distribution routes and fuel consumption costs are needed to avoid the excessively long 

distance for an individual vehicle. Correspondingly, the transportation risk reduces considerably as the 

index of Pareto solutions increases. Fig. 31 displays the distribution networks of different types of hazmat 

for solution 48, including the opened distribution centers and transportation routes. Table 10 provides the 

detailed replenishment and distribution schemes of solutions 1, 24, and 48, which includes the optimal 

order cycle for both each distribution center and distribution route (unit: hour) and the corresponding 

vehicle routing. 
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Fig. 30 Cost and risk composition over Pareto solutions 
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Fig. 31 Diagram of the hazmat supply networks of solution 48 

As different Pareto optimal solution represents different risk levels, how the index of the Pareto solution 

affects the fleet size and route lengths deserve some discussion. Fig. 32 presents the number of distribution 

routes, the average route length, and the resulting total route length (the number of distribution routes 

multiplied by the average route length) for different Pareto solutions, where a larger index indicates lower 

risk and higher cost. As the total risk decreases, the number of routes generally increases, and the average 

length of distribution routes decreases. Given this fact, the total route length slowly decreases when the 

number of routes remains unchanged (the grey area), but increases rapidly when the number of routes 

grows (the white area). Therefore, the total route length is mainly dependent on the number of routes. As 

can be seen from Fig. 30(a), the total risk reduces slowly over the Pareto solutions, whereas the number of 

distribution routes and the total length of distribution increases considerably, which also explains the 

increase in distribution costs in a nearly exponential way (Fig. 30(b)). These results suggest that, in practice, 

the total risk can be possibly reduced by partitioning the overall customers into several groups and 

frequently small shipments with multiple routes. However, the authorities need to trade-off the cost and risk, 

in that when the risk management reaches a certain level, a small reduction in risk will result in a 

significant increase in the marginal transportation cost (Fig. 30(b)). 

Table 10 Replenishment and distribution schemes of solutions 1, 24 and 48 

Solution 

No. 
Type 

Opened 

DC No. 

Cycle of 

replenishment 
Distribution routes 

Cycle of 

distribution 

1 

Xylene 5 71.35 5-34-12-35-47-38-33-45-15-42-18-5 38.69 

Ethylene 8 59.70 
8-24-23-39-22-32-26-14-29-43-20-44-40-

11-36- 8 
40.02 

Benzene 10 54.13 
10-41-46-13-16-27-17-31-21-19-28-30-2

5-37-10 
36.16 

24 Xylene 5 71.35 5-38-12-35-47-34-33-45-15-42-18-5 38.69 
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Ethylene 8 59.70 
8-43-44-11-22-32-26-29-14-24- 8 42.07 

8-23-20-40-39-36-8 36.98 

Xylene 10 54.13 
10-37-46-41-31-25-19-21-27-16-17-13-2

8-30-10 
36.16 

48 

Xylene 5 71.35 

5-38-33-47-34-35-12-5 38.33 

5-15-5 37.30 

5-42-45-18-5 40.00 

Ethylene 8 59.70 

8-43-44-22-14-32-29- 8 43.40 

8-26-11- 8 42.32 

8-24-39-8 36.52 

8-23-20-40-36-8 36.87 

Benzene 10 54.13 

10-30-41-37-10 44.72 

10-25-19-21-27-16-17-10 33.70 

10-13-10 35.74 

10-46-31-28-10 35.51 
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Fig. 32 The distribution schemes of Pareto optimal solutions 

5.2.3 Sensitivity analysis 

In this section, sensitivity analysis is conducted to investigate how the system performance changes 

with critical parameters, including peak risk constraint, and the level of service. In what follows, the 

highest/average/lowest total cost/risk indicates the highest/average/lowest value over all Pareto solutions. 

The total cost/risk of a specific Pareto solution is calculated by summing up the site-specific cost/risk. The 

cost composition in each chart represents the average values of respective components over Pareto 

solutions. Note that the risk of the detour is negative, which reduces the total risk. 

5.2.3.1 Impact of risk superposition coefficient 

The multi-class hazmat, which is characterized by the risk superposition coefficient, is a new feature in 

our model and the design of the distribution network. In this section, we analyze the impact of the risk 

superposition coefficient on the distribution network design and compare that without this effect. To this 

end, we introduce the concept of route overlapping ratio, which is defined as the route length overlapping 
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by different types of hazmat divided by the total route length. 
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Fig. 33 Influence of risk superposition coefficient on the system 

To facilitate the analysis, we assume that the risk superposition coefficients of the three types of hazmat 𝛿𝑙𝑙′ are identical. Each experiment is repeated by 5 times. The results are shown in Fig. 33, where the error 

bars indicate the distribution of optimal solutions. As we can see, as the value of the risk superposition 

coefficient increases, the route overlapping ratio generally decreases, and the total risk increases. This is 

because, with the enhancement of interactions between different types of hazmat, the routes for different 

types of hazmat should be distributed as separately as possible to reduce the additional total superimposed 

risk. This suggests that the distribution network should be carefully designed in the provision of multi-class 

hazmat. 

5.2.3.2 Impact of peak risk constraint 

In this study, the peak risk is not allowed to exceed a specific threshold, as shown in constraints (71). 

We now investigate the impact of peak risk constraints on the cost and risk composition, and the results are 

shown in Fig. 34. As shown in Fig. 34(a), with the increase of peak risk constraint, the highest cost of 

Pareto optimal solution drops, while the average cost and the lowest cost decrease slightly, which mainly 

results from the reduction in the fuel consumption cost of distribution. This provides a practical insight that 

to achieve a small expected cost, we should endure a relatively large risk. 
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Fig. 34 Impact of the peak risk constraint on the costs and risks 
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Interestingly, the relationship between the highest total risk and peak risk constraint in Fig. 33(b) 

constitutes a Pareto frontier, which indicates the trade-off between total risk minimization and risk 

equilibration. Specifically, the highest total risk decreases considerably with the increase of peak risk 

constraint. This is because a strict peak risk constraint on each site would redistribute the transportation and 

inventory schemes more evenly over the whole network, which may, in turn, penalize zones with low risk, 

ending up with an increase of total risk. While the peak risk constraint indicates the risk equity, this result 

provides a practical insight that, in the hazmat supply chain management, the authorities should not try to 

find a perfect distribution of risk, and they should make a trade-off the risk equity and total exposed risk. 

5.2.3.3 Impact of the level of service 

The level of service 𝛼 refers to the probability that customers will not be out of stock, which is 

essential to planning the distribution redundancy and safety stock. Fig. 35 shows the impact of the level of 

service on the system costs and risk. As the level of service increases, the average cost and the highest cost 

in Pareto optimal solutions increase substantially. Notably, the average cost and highest cost increase 

dramatically when the level of service grows from 0.95 to 0.99, which mainly results from the increase of 

detour cost.  
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Fig. 35 Impact of the level of service on the costs and risks 

As shown in Fig. 35(b), there is a positive correlation between the level of service and total risk. As the 

level of service increases, the average cost, the highest cost, and the lowest cost in Pareto optimal solutions 

increase considerably. This is because a larger amount of distribution redundancy and safety stock is 

required when the level of service is higher, which results in a higher level of risk. This suggests that, in the 

hazmat supply chain management, the operator should make a trade-off between the risk and the level of 

service.  

 

6 Concluding remarks 

In this paper, we introduce a new multi-class hazmat distribution network design problem with 

inventory and superimposed risk (MHND) in a multi-echelon supply chain. Although their in-transit and 

storage are incompatible, the superimposed risks among different materials stemming from possible 
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chemical reactions once accidents (e.g., leakage, explosion) happen are explicitly considered. The 

long-term cyclic time windows penalty cost with periodic route closures policy are also formulated. A new 

population-based risk definition is proposed to evaluate the risk for the population at any location and any 

time with respect to its multi-class hazmat logistics system. In particular, we introduce risk superposition 

coefficients for multi-class hazmat, which allows for capturing possible superimposed risks (e.g., chemical 

reaction) among different hazmat and accommodates a general system with more than two hazmat types. 

This makes our model scalable for multiple types of hazmat, which has significant implications in the realm 

of hazmat logistics. Commendably, we develop a knowledge-based NSGA-II algorithm with cyclic 

dissimilarity-based elitist selection (NSGA-II-CD) to solve the problem to obtain an efficient Pareto 

frontier for minimizing the total cost and minimizing the total risk. A cyclic dissimilarity-based elitist 

selection (CD) operator is devised to address the issue of speeding proliferation, which can produce 

better-spread non-dominated solutions with a limited computation burden. Further test instances were 

conducted to prove the scalability and robustness of the proposed algorithm. 

The proposed model was applied to a metropolitan-wide real-world case study in Guangzhou, China. 

The impact of population density is explicitly considered. The analysis of the cost and risk convergence 

process indicates that it is possible to achieve significant reductions in population exposure while reducing 

the total cost. We thus suggest that, from the perspective of the traffic management sector, the 

time-dependent road closures policy in Guangzhou could be possibly upgraded to a full-time prohibition. In 

addition, we also reveal a couple of new insights that have not been looked at before, which are 

summarized as follows: First and foremost, the transportation risk and inventory risk are highly correlated 

in the hazmat logistics systems. As such, in addition to the transportation risk, it is necessary to examine the 

occupational risk associated with the temporary storage of hazardous materials in distribution centers and 

customer points. Second, there is a positive convex relation between risk minimization and risk 

equilibration. The authorities should not try to find a perfect distribution of risk, and they should make a 

trade-off the risk equity and total exposed risk. Third, there is a positive correlation between the level of 

service and total risk. Therefore, in practice, the agencies should make a trade-off between economic 

viability of the system, exposed risk, and maintaining good service for customers. Fourth, the interactions 

between different types of hazmat may exert great influence on the distribution network design. The route 

overlapping ratio for different types of hazmat will be reduced with greater interactions. 

This paper opens up new research directions. For instance, while this paper primarily focuses on the 

city-wide case study, future research can investigate the multi-class hazmat location inventory routing 

problem over an intermodal transportation network. Another possible extension is to model the correlated 

demand to more accurately represent the demand characteristics. In addition, designing a new 

meta-heuristic to further improve the algorithmic performance may be interesting work. 

 

Appendix A. Derivation of Eqs. (1)-(3) 
As mentioned previously in (A8), in the hazmat supply chain, the customers are assumed to determine 

their optimal order quantity based on the principle of economic order quantity. According to the cyclic 
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inventory theory, the order cycle of each customer 𝑛 on route 𝑘 is its ordering quantity 𝑂̅𝑛 divided by 

consumption rate 𝐷𝑛: 𝑃̅𝑛 = 𝑂̅𝑛𝐷𝑛 = ∑ 𝑂̅𝑛𝑛∈𝑁𝑘∑ 𝐷𝑛𝑛∈𝑁𝑘    , ∀𝑛 ∈ 𝑁𝑘  

where 𝑁𝑘 represents the set of customers on route 𝑘, so that we can abbreviate ∑ 𝑋𝑛,𝑘 ∙𝑛∈𝑁  to ∑ ∙𝑛∈𝑁𝑘 . 
The ordering cost of route 𝑘 per unit time is equal to the total ordering cost divided by the order cycle. ∑ 𝐹𝑛𝑛∈𝑁𝑘𝑃̅𝑛    , ∀𝑛 ∈ 𝑁𝑘  

The inventory holding cost of route 𝑘 is the summation of customers on this route. 

∑ ℎ𝑛𝑂̅𝑛2𝑛∈𝑁𝑘 = ∑ ℎ𝑛𝐷𝑛𝑛∈𝑁𝑘2 𝑃̅𝑛   , ∀𝑛 ∈ 𝑁𝑘  

Therefore, the total inventory cost of this route is the summation of these two parts. Applying the 

first-order condition on the total inventory cost yields the optimal order cycle time that minimizes the total 

inventory cost as  

𝑃̅𝑛 = √ 2∑ 𝐹𝑛𝑛∈𝑁𝑘∑ ℎ𝑛𝐷𝑛𝑛∈𝑁𝑘    , ∀𝑛 ∈ 𝑁𝑘  

As a result, the optimal order quantity for customer 𝑛 should be 𝑂̅𝑛 = 𝑃̅𝑛𝐷𝑛 = 𝐷𝑛 2∑ 𝐹𝑛𝑛∈𝑁𝑘∑ ℎ𝑛𝐷𝑛𝑛∈𝑁𝑘    , ∀𝑛 ∈ 𝑁𝑘  

Due to the demand uncertainty, a reliable replenishment plan from the distribution centers to the 

customers should be made to avoid the shortage. To this end, replenishment redundancy is required to meet 

a certain confidence level.  

Given the independent and identically normal distributed demand, i.e., 𝐷𝑛~𝑁(𝜇𝑛 , 𝜎𝑛2), then we have 

∑ ℎ𝑛𝐷𝑛𝑛∈𝑁𝑘 ~𝑁(∑ ℎ𝑛𝜇𝑛𝑛∈𝑁𝑘 , ∑ ℎ𝑛2𝜎𝑛2𝑛∈𝑁𝑘 )   , ∀𝑛 ∈ 𝑁𝑘  

Since the demand is independently and identically distributed, according to the above formula, the 

replenishment times (the reciprocal of the order cycle) also follow the normal distribution. 1𝑃̅𝑛2 = ∑ ℎ𝑛𝐷𝑛𝑛∈𝑁𝑘2∑ 𝐹𝑛𝑛∈𝑁𝑘 ~𝑁 [∑ ℎ𝑛𝜇𝑛𝑛∈𝑁𝑘2∑ 𝐹𝑛𝑛∈𝑁𝑘 , (∑ ℎ𝑛𝜎𝑛𝑛∈𝑁𝑘2∑ 𝐹𝑛𝑛∈𝑁𝑘 )2]  , ∀𝑛 ∈ 𝑁𝑘  

Taking the expected value as the actual replenishment times, we have that: 1𝑃̃𝑘 = √∑ ℎ𝑛𝜇𝑛𝑛∈𝑁𝑘2∑ 𝐹𝑛𝑛∈𝑁𝑘 ⇒ 𝑃̃𝑘 = √ 2∑ 𝐹𝑛𝑛∈𝑁𝑘∑ ℎ𝑛𝜇𝑛𝑛∈𝑁𝑘  

We now calculate the corresponding delivery quantity. Given the actual cycle time, the optimal order 

quantity of customer n and route k can be calculated as follows: 
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𝑄̅𝑛 = 𝐷𝑛𝑃̃𝑘 = 𝐷𝑛√ 2∑ 𝐹𝑛𝑛∈𝑁𝑘∑ ℎ𝑛𝜇𝑛𝑛∈𝑁𝑘    , ∀𝑛 ∈ 𝑁𝑘 

Since the optimal order quantity 𝑄̅𝑘 = ∑ 𝑄̅𝑛𝑛∈𝑁𝑘  is a linear combination of multiple independent and 

identically distributed random variables, it is a random variable following a normal distribution. 

𝑄̅𝑘~𝑁(𝜇𝑘 , 𝜎𝑘2)   , 𝜇𝑘 = √ 2∑ 𝐹𝑛𝑛∈𝑁𝑘∑ ℎ𝑛𝜇𝑛𝑛∈𝑁𝑘 ∑ 𝜇𝑛𝑛∈𝑁𝑘    , 𝜎𝑘2 = √ 2∑ 𝐹𝑛𝑛∈𝑁𝑘∑ ℎ𝑛𝜇𝑛𝑛∈𝑁𝑘 ∑ 𝜎𝑛2𝑛∈𝑁𝑘  

Assume that the level of service should be higher than a threshold, we have that 𝑃{𝑄̅𝑘 ≤ 𝑄̃𝑘} ≥ 𝛼 

where 𝑃 is the probability and 𝛼 is the confidence level. 

Let 𝑞𝑘 = 𝑄̅𝑘 − 𝑄̃𝑘, then we have E(𝑞𝑘) = E(𝑄̅𝑘) − 𝑄̃𝑘 = 𝑃̃𝑘𝜇𝑘 − 𝑄̃𝑘 D(𝑞𝑘) = D(𝑄̅𝑘) = 𝑃̃𝑘2𝜎𝑘2 

Let 𝜂 = 𝑞𝑘−E(𝑞𝑘)√D(𝑞𝑘) , then 𝜂~𝑁(0,1), and 𝑞𝑘 = 𝑄̅𝑘 − 𝑄̃𝑘 ≤ 0, 𝜂 is equivalent to 

𝜂 = 𝑞𝑘 − E(𝑞𝑘)√D(𝑞𝑘) ≤ E(𝑞𝑘)√D(𝑞𝑘) 
Therefore, the delivery quantity constraint 𝑄̅𝑘 ≤ 𝑄̃𝑘 is equivalent to 𝑃 {𝜂 ≤ −E(𝑞𝑘)√D(𝑞𝑘)} ≥ 𝛼 

The above inequity can be transformed into the following formula √D(𝑞𝑘)𝑧𝛼 +  E(𝑞𝑘) = 𝑃̃𝑘(𝜇𝑘 + 𝜎𝑘𝑧𝛼) − 𝑄̃𝑘 ≤ 0 

where 𝑧𝛼  is the quantile statistics with a confidence level of 𝛼. 𝑄̃𝑘 ≥ 𝑃̃𝑘(𝜇𝑘 + 𝜎𝑘𝑧𝛼) 
As a result, the reliable delivery quantity of route 𝑘 takes the following form: 

𝑄̃𝑘 ≥ 𝑃̃𝑘(𝜇𝑘 + 𝜎𝑘𝑧𝛼) = 2 ∑ 𝐹𝑛𝑛∈𝑁𝑘∑ ℎ𝑛𝜇𝑛𝑛∈𝑁𝑘 ∑ (𝜇𝑛 + 𝜎𝑛𝑧𝛼)𝑛∈𝑁𝑘 = 2∑ 𝑋𝑛,𝑘𝐹𝑛𝑛∈𝑁∑ 𝑋𝑛,𝑘ℎ𝑛𝜇𝑛𝑛∈𝑁 ∑𝑋𝑛,𝑘(𝜇𝑛 + 𝜎𝑛𝑧𝛼)𝑛∈𝑁  

where 𝜇𝑘 = 𝑃̃𝑘 ∑ 𝑋𝑛,𝑘𝑛∈𝑁 𝜇𝑛, 𝑃̃𝑘 = √ 2∑ 𝑋𝑛,𝑘𝐹𝑛𝑛∈𝑁∑ 𝑋𝑛,𝑘ℎ𝑛𝜇𝑛𝑛∈𝑁  

This completes the derivation of Eqs. (1)-(3). 

 

Appendix B. Proof of Proposition 1 

Proof: Let 2𝜋𝑇2 𝑇1 = 𝜔, 2𝜋𝑇2 𝜑1 +𝜑2 = 𝜑, we have: 

lim𝑇→+∞ 1𝑇∑cos [2𝜋𝑇2 (𝑇1𝑡 + 𝜑1) + 𝜑2]𝑇
𝑡=1 = lim𝑇→+∞ 1𝑇∑cos(𝜔𝑡 + 𝜑)𝑇

𝑡=1  

When the order cycle is not an integer multiple of the time window cycle, i.e., 𝜔 ≠ 2𝜅𝜋, 𝜅 ∈ 𝑁+, using 

the integration and difference formula yields:  
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cos𝜔𝑡 sin𝜔2 = 12(sin 2𝑡 + 12 𝜔 − sin2𝑡 − 12 𝜔) 
Let 𝑡 = 1,2,3,… , 𝑇, summing up the above equations yields: 

sin𝜔2∑cos𝜔𝑡𝑇
𝑡=1 = 12(sin2𝑇 + 12 𝜔 − sin𝜔2) = cos 𝑇 + 12 𝜔 sin 𝑇𝜔2  

Dividing both sides by sin𝜔2 , then we have: 

∑cos𝜔𝑡𝑇
𝑡=1 = cos 𝑇 + 12 𝜔 sin𝑇𝜔2sin𝜔2    ,∑sin𝜔𝑡𝑇

𝑡=1 = sin 𝑇 + 12 𝜔 sin𝑇𝜔2sin𝜔2  

Based on the trigonometric function induction formula, the following simplified formula can be 

obtained: 

lim𝑇→+∞ 1𝑇∑cos(𝜔𝑡 + 𝜑)𝑇
𝑡=1 = lim𝑇→+∞ 1𝑇∑(cos 𝜔𝑡 cos 𝜑 − sin𝜔𝑡 sin𝜑)𝑇

𝑡=1  

= lim𝑇→+∞ 1𝑇 sin𝑇𝜔2sin𝜔2 (cos 𝑇 + 12 𝜔 cos 𝜑 − sin𝑇 + 12 𝜔 sin𝜑) = 0   , 𝜔 ≠ 2𝜅𝜋 

On the other hand, when the tolerance 𝑇1 of the independent variable is equal to the integral times of 

the trigonometric function’s period 𝑇2, we have: 

lim𝑇→+∞ 1𝑇∑cos [2𝜋𝑇2 (𝑇1𝑡 + 𝜑1) + 𝜑2]𝑇
𝑡=1 = lim𝑇→+∞ 1𝑇∑cos [2𝜅𝑡𝜋 + (2𝜋𝑇2 𝜑1 +𝜑2)]𝑇

𝑡=1  

= lim𝑇→+∞ 1𝑇∑cos(2𝜋𝑇2 𝜑1 + 𝜑2)𝑇
𝑡=1 = cos(2𝜋𝑇2 𝜑1 + 𝜑2)   , ∃𝜅 ∈ 𝑁+, 𝑇1 = 𝜅𝑇2 

This completes the proof of Proposition 1. 

 

Appendix C. Proof of Corollary 1 

Proof: According to the Fourier theory, any periodic function can be formulated as the sum of several 

trigonometric functions (totally 𝛦) and a constant 𝐴0, and the constant is the mean of the periodic function 

in one period: 

𝑓(𝑡) = 𝐴0 +∑𝐴𝜀 cos(2𝜋𝑇2 𝜀𝑡 + 𝜑𝜀)𝛦
𝜀=1 = 𝐴0 +∑𝐴𝜀 cos( 2𝜋𝑇2 𝜀⁄ 𝑡 + 𝜑𝜀)𝛦

𝜀=1    , 𝐴0 = 1𝑇2∫ 𝑓(𝑡)d𝑡𝑇20  

When 𝑇1 is not equal to the integral times of 𝑇2, it is also not equal to the integral times of 𝑇2 𝜀⁄  that 

is the period of the trigonometric function. 𝑇1 ≠ 𝜅𝑇2   , ∀𝜅 ∈ 𝑁+    ⇒    𝑇1 ≠ 𝜅𝑇2 𝜀⁄    , ∀𝜅, 𝜀 ∈ 𝑁+ 
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Therefore, we have that: 

lim𝑇→+∞ 1𝑇∑𝐴𝜀 cos [2𝜋𝑇2 𝜀(𝑇1𝑡 + 𝜑1) + 𝜑𝜀]𝑇
𝑡=1 = lim𝑇→+∞ 1𝑇∑𝐴𝜀 cos [ 2𝜋𝑇2 𝜀⁄ (𝑇1𝑡 + 𝜑1) + 𝜑𝜀]𝑇

𝑡=1 = 0 

And 

lim𝑇→+∞ 1𝑇∑𝑓(𝑇1𝑡 + 𝜑1)𝑇
𝑡=1 = 𝐴0 + lim𝑇→+∞ 1𝑇∑∑𝐴𝜀 cos(2𝜋𝑇2 𝜀𝑡 + 𝜑𝜀)𝛦

𝜀=1
𝑇
𝑡=1 = 𝐴0 + 0 = 𝐴0 

On the other hand, when 𝑇1 is equal to the integral times of 𝑇2, we have: 

lim𝑇→+∞ 1𝑇∑𝑓(𝑇1𝑡 + 𝜑1)𝑇
𝑡=1 = lim𝑇→+∞ 1𝑇∑𝑓(𝜅𝑇2𝑡 + 𝜑1)𝑇

𝑡=1 = lim𝑇→+∞ 1𝑇∑𝑓(𝜑1)𝑇
𝑡=1 = 𝑓(𝜑1) 

This completes the proof of Corollary 1. 
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