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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction

The primary objectives in manufacturing industries are to

minimise overall production time, maintain quality and contin-

uously seek efficiencies whilst remaining responsive to an ever

increasing complex set of customer demands. Within all man-

ufacturing methods there is a drive to create parts with tighter

tolerance requirements whilst reducing the time to machine.

This research seeks to reduce part geometric errors and ma-

chining time through Iterative Learning Control (ILC) and tool

deflection compensation by using a virtual model of the ma-

chine tool. The virtual model includes feed drives and a fre-

quency domain surface location error (SLE) model. Using in-

puts of an unmodified part program, modal data from impact

testing and pre-machining workpiece On-Machine Inspection

(OMI) data, the system is able to improve machining perfor-

mance, which is defined as a reduction in form error with no

increase to machining time, by modifying a new part program

designed using an ILC methodology.

∗ Corresponding author.

E-mail address: raward1@sheffield.ac.uk (Rob Ward).

1.1. Tool Deflection and Machine Tool Compensation

For part geometric errors caused by tool deflection during

machining, many solutions have been explored which are gen-

erally split into offline and online methods. Online methods in-

clude the use of integrated force sensors and dynamometers [1]

to predict tool deflection. Offline methods include calculating

tool deflection analytically based upon process force estima-

tion and tool stiffness [2] followed by compensation via fee-

drate and/or toolpath modification to adjust the radial and/or

axial depth of cut as required. Increasing the accuracy of the

offline and online models can be achieved by accurate work-

piece holding and measurements - this can be achieved by ac-

curate process monitoring and in-situ geometric measurements

or OMI.

1.2. Iterative Learning Control

Iterative Learning Control is a control scheme which im-

proves performance by reducing repeated errors in repetitive

processes. Similar to human learning, by repeating the same

action over again, a person is able to learn from the previous

action and update the next action in order to minimise the er-

ror or expressed differently - the actions become increasingly

more accurate. The practical applications of ILC have focused

on industrial control processes and predominately have used the

discrete domain and the lifted system representation [3]. Start-
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Abstract

High speed machining provides high productivity and low machining cycle times. Post machining, there can exist differences between desired

and measured part geometry due to tool deflection induced from higher feedrates. Reducing the feedrate leads to an increase in machining time.

Using predicted drive responses on a virtual CNC with an integrated surface location error model, this research is the first time Iterative Learning

Control (ILC) has been applied to reduce part geometry errors from tool deflection. Validation machining trials demonstrated that the ILC scheme

improved machining performance whilst maintaining machining times when compared to a baseline part program.
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ing from the repetitive motions of robotic arms [4], ILC has

been successfully applied to CNC position control, injection

moulding, welding robots, chemical reactors and many more

repetitive industrial processes. ILC has never been applied to

reduction of form error in machining by tool deflection com-

pensation.

Despite this, Commercial Computer Numerically Controlled

(CNC) machines provide the ideal platform for application of

ILC methodologies due to the nature of the manufacturing pro-

cess. Batch CNC machining fulfils some of the key ILC system

requirements as defined by Arimoto [5] such as each individual

CNC process has the same initial conditions (as the program

is reset each time), the same part is to be machined each time

(therefore both workpiece and material to be removed are the

same) and the CNC machine has measurable outputs via data

acquisition. This provides the motivation for the application of

ILC to CNC machining.

1.3. Cascade Iterative Learning Control

Cascade ILC [6] is formulated as an additional (cascaded)

loop around an existing control architecture (similar to a stan-

dard feedback loop) but in the iteration domain rather than the

time domain. Therefore the new structure uses the output from

the existing system to shape the next input. The new system

is not integrated or embedded into the existing controller and

hence no rewriting of control software or replacement of con-

troller hardware is required. This makes cascade ILC ideally

suited to CNC machining centres where the interpolator and

motion controller are closed architectures. The re-design of the

input reference signal is the main control effort of the cascade

ILC method and this corresponds to an offline modification of

the NC code for CNC machines.

The formulation of the cascade ILC algorithms is as follows:

Yi = GUi,

Ei = Yr − Yi,

Ui+1 = Ui + ΓEi,

(1)

where, Yi, G, and Ui represent the system output, plant model

closed loop transfer function and system input respectively. The

current iteration or trial is denoted by i with the nth iteration i+n.

The current error vector Ei is generated from the difference be-

tween the reference trajectory Yr and current output Yi. The next

input signal Ui+1 is generated from the previous input signal Ui

updated with the current error signal Ei multiplied by a learning

function Γ. In order to generate Ei both Yi and Yr must have the

same dimensions - this is the fixed vector length. The design

of the learning function is analogous to controller gain design

in standard control systems. Cascade ILC is designed using the

previous cycle learning (as opposed to current cycle) as once

the input trajectory has been designed and executed it is gener-

ally closed to changes within real-time processes much like the

operation of CNC machines.

Applying ILC to CNC machining requires a reformulation of

the cascade ILC equations. Equations (1) assume a fixed inter-

val or trial length (in the time domain) which is ILC’s primary

requirement [5]. However, due to the varying machining time

in machining, this research introduces the discrete command

index. The control input in CNC machining is set by the NC

part program and the NC code is made up of a series of discrete

’G01’ cutter location position and feedrate commands. These

discrete commands form the core principle why ILC can be ap-

plied to CNC machining. The number of ’G01’ commands in

the NC code defines the fixed vector length. This is known as

the discrete command index and it is used throughout this re-

search to meet ILC’s fixed length vector requirement. The CNC

cascade ILC update equations become the following:

Ui+1(k) = Ui(k) + Γ(k)Ei(k), (2)

where k is the discrete command index which relates to the

command line number.

2. Virtual CNC Model

The virtual CNC model is made up of a number of sub-

models as shown in Figure 1. The reference trajectory was gen-

erated using a developed axes drive model which is based upon

cubic acceleration profiles. Jerk time constants were calculated

based upon experimental trials on the selected DMG DMU eVo

40 5-axis machining centre fitted with Heidenhain TNC640

controller. The reference trajectory in the time domain is the

input to the feed drive model. The modified part program gen-

erated from the ILC algorithm is created using Matlab which

produces a Heidenhain (.h) part program file.

2.1. Feed Drive Modelling

The architecture of a commercial CNC feed drive is a cas-

caded series of PID loops with a variety of feedforward com-

pensations and structural dynamics filters. For simulation pur-

poses, the linear feed drives can be modelled as second order

transfer functions with time delays as shown in Equation (3).

Gv(s) :=
V(s)

U(s)
=

Kω2
0

s2 + 2ζω0s + ω2
0

e−sTd (3)

Where V(s) and U(s) represent the drive velocity and control in-

put respectively. Using the Matlab System Identification Tool-

box [7], the parameters in response to a 1000 mm/min step input

in velocity results in the following parameters: gain K = 1.09 x

10−4, cutoff frequency ω0 = 95.6 rad/s and damping ratio ζ =

1.0 and time delay Td = 0.0066s . The tool position is calculated

based upon integrating the velocity profile of the toolpath [8].

Within this research the feed drives are modelled for the X and

Y axes only.

2.2. Frequency Response Surface Location Error Model

The SLE is the maximum distance between the milled sur-

face and the desired surface [9]. The milled surface is generated

from the path of the cutting edges rotating at tooth passing fre-

quency and their forced vibrations. The SLE model in this re-

search uses the frequency response method [10]. Using impact

testing to determine the direct tool frequency response func-

tion (FRF), the tool displacement is calculated from the inverse

Fourier transform of the tool displacement in the frequency do-
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δi(k) + (Xcmd,i(k) − R)Xcmd,i+1(k) = Xcmd,i(k) + ΓEi(k)

XOMI(k) + ae(k) δi(k) +

Xcmd,i(k) +

- +

Xre f (k)
R

-

Fig. 1: Virtual CNC Model with Cascaded ILC

main. The subsequent milled surface and thus the SLE is cal-

culated based upon the tool displacement. The model is a func-

tion of the radial depths of cut calculated from the pre-machined

workpiece OMI and the axis positions based upon the feed drive

model responses. The result is a surface location error map cal-

culated along the axial depth of cut. Runout was not included

in the SLE prediction model.

2.3. ILC Form Error Reduction Formulation

The ILC equations 1 can be reformulated for the virtual CNC

model (Figure 1) as follows:

ae(k) = XOMI(k) − (Xcmd,i(k) − R)

δi(k) = f (ae)

Ei(k) = Xre f (k) + (δi(k) + (Xcmd,i(k) − R))

Xcmd,i+1(k) = Xcmd,i(k) + ΓEi(k),

(4)

where ae, R, δi(k) represent the radial depth of cut, tool ra-

dius and surface location error respectively. The frequency re-

sponse surface location error model is represented as f (ae).

XOMI , Xcmd,i(k), Xre f (k) and Ei(k) denote the precut OMI po-

sition, tool position command, surface reference geometry and

ILC error respectively.

3. Methodology

The machining trials were conducted on the DMU eVo 40

machine tool. TNCremo software [11] was used to transfer files

between a laptop and the TNC640 controller. A 2-fluted 12mm

Sandvik 2P170-1200-NA H10F solid carbide end mill with a

HSK-63A tool holder was used. The tool runout at the tip was

measured as 30µm. The workpieces were 236mm x 30mm x

66mm Aluminium 7075-T6 blocks machined with 3mm and

6mm stepped machined surfaces (see Figure 2). A DMG Mori

60 Optical PowerProbe calibrated with a measured repeatable

accuracy of less than ±0.08µm was used for OMI.

3.1. ILC Simulation

The toolpath was selected as a linear up-milling cut along

the y axis, which due to the workpiece geometry, demonstrates

varying radial immersion (75%, 50% and 25% tool diameter)

along the cut. The simulation is updated with the workpiece pre-

Fig. 2: Workpiece showing stepped surfaces and the radial depths of cut

machining OMI data to reflect the stock geometry. Along with

the pre-cut OMI data the inputs to the virtual CNC (as shown

in Figure 1) are the original part program (for initial conditions

and reference toolpath) and the SLE model requires measured

tool length, tool radius and FRF data from impact testing. The

virtual ILC based model considers the maximum SLE as the

reference and updates the X-axis position (changing the effec-

tive radial depth of cut) in the subsequent part program.

ILC learning gains are traditionally designed in either the

frequency domain or by state space methods, however, the de-

sign in the position domain has yet to be explored. In this par-

ticular case study, to simply prove the application of ILC to ma-

chining, the selection of the ILC learning function was chosen

to be a scalar. From a comparison study, a learning gain Γ of 0.5

was chosen which demonstrates a relatively fast convergence

(within 7 iterations) whilst demonstrating both monotonic con-

vergence and asymptotic stability as shown in Figure 3. Further

research into the design of ILC learning gains in the position

domain is part of the wider remit of this research.

3.2. Experimental Validation

The modified part program was validated by machining tri-

als. The workpiece geometry (x-axis position) was measured

using OMI and used as an input to the virtual CNC system.

The modified part program generated from the ILC algorithm

was conducted on the workpiece. Post machining OMI (in the
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Fig. 3: Propagation of ILC Error through iteration

x-axis direction) was conducted to verify the results. These re-

sults were compared to machining cuts with an unmodified de-

fault part program of a straight line cut (Figure 4). The machin-

ing conditions were as follows: Feedrate 403.4 mm/min, cutting

speed (Vc) 76.01 m/min and axial depth of cut (ap) 8mm.

4. Experimental Results

Using an ILC learning gain of 0.5 there is a clear ILC error

convergence within 7 iterations as shown in Figure 3. The mod-

ified part programs with updated x-axis positions based upon

the converged ILC input commands were conducted. The test

was repeated 3 times for both an unmodified (default) part pro-

gram and modified (ILC) part program. The results showing

total form error (measured position minus reference position)

are shown in Figure 4. The results show a reduction in surface

location error from a reference surface when using the virtual

ILC system. The accuracy in surface generation position with

respect to the reference surface is increased with increasing tool

radial immersion. For 75% radial immersion the mean devia-

tion from reference is 1.37µm when using ILC as compared to

8.41µm for the original toolpath which shows a clear reduction

in maximum SLE. For 50% immersion the deviation from ref-

erence value is 8.76µm and 11.96µm for ILC and default tool-

paths respectively. Finally for the 25% immersion cut the values

are 17.15µm and 17.21µm for ILC and default toolpaths respec-

tively.

5. Conclusions

The main findings of the work are:

• The accuracy of desired surface generation through form

error reduction is improved by using a modified part pro-

gram generated from a virtual CNC model using Iterative

Learning Control.

• The ILC based virtual model shows greater performance

with increasing radial depth of cut.

• Using a scalar ILC learning gain of 0.5 a monotonic con-

vergence and asymptotic stability is demonstrated within

7 iterations.

The utility of ILC has been demonstrated but further research

into the impact and design of learning gains at the discrete com-

Fig. 4: Total form error for ILC and default toolpaths for 25%, 50% and 75%

radial immersion

mand indices will be investigated. In order for the research to be

applicable to industrial applications further research will apply

ILC to 3 and 5 axis geometries.
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