
This is a repository copy of A sliding window variational outlier-robust Kalman filter based 
on student’s t noise modelling.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/185215/

Version: Accepted Version

Article:

Zhu, F., Huang, Y., Xue, C. et al. (2 more authors) (2022) A sliding window variational 
outlier-robust Kalman filter based on student’s t noise modelling. IEEE Transactions on 
Aerospace and Electronic Systems, 58 (5). pp. 4835-4849. ISSN 0018-9251 

https://doi.org/10.1109/TAES.2022.3164012

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1

A Sliding Window Variational Outlier-Robust

Kalman Filter based on Student’s t Noise Modelling
Fengchi Zhu, Yulong Huang, Member, IEEE, Chao Xue, Lyudmila Mihaylova, Senior Member, IEEE, Jonathon

Chambers, Fellow, IEEE

Abstract—Existing robust state estimation methods are gen-
erally unable to distinguish model uncertainties (state outliers)
from measurement outliers as they only exploit the current
measurement. In this paper, the measurements in a sliding
window are therefore utilized to better distinguish them, and
an adaptive method is embedded, leading to a sliding window
variational outlier-robust Kalman filter based on Student’s t noise
modelling. Target tracking simulations and experiments show
that the tracking accuracy and consistency of the proposed filter
are superior to those of the existing state-of-the-art outlier-robust
methods thanks to the improved ability to identify the outliers
but at a cost of greater computational burden.

Index Terms—Outlier-robust Kalman filter, outlier identi-
fication, sliding window, Student’s t distribution, variational
Bayesian, target tracking

I. INTRODUCTION

A. Background

State estimation is of fundamental importance for many

engineering applications such as navigation [1], target tracking

[2], and power systems [3]. As one of the most common

methods of state estimation, the Kalman filter (KF) can achieve

a minimum mean square error (MMSE) estimate of the state in

a linear state-space model under the assumption of Gaussian

noises [4, pp. 130]. However, in some applications, such as

target tracking, the model uncertainties (state outliers1) and

measurement outliers may be induced by target manoeuvres

and sensor failures, respectively [2]. The outliers lead to

heavier tails in the probability density function (PDF) of the

noise than in the Gaussian PDF, which violates the Gaussian

hypothesis inherent in the conventional KF and thereby results

in poor estimation performance.
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1The model uncertainties would lead to abnormally large state noises, which
are also regarded as a form of outlier in [11], [28]. We call these state outliers
in this paper corresponding to the measurement outliers, as in [16].

B. Relevant works

To tackle simultaneously the state outliers and measurement

outliers, some robust smoothers and filters have been proposed.

The existing robust smoothers can be broadly classified into

optimization-based methods [5]–[6] and Bayesian methods

[7]–[9]. However, the smoothers cannot be carried out online

since the computational burden increases gradually over time.

For the robust filters, some popular approaches, classified

as M-estimation-based KFs, aim to resist outliers by setting

appropriate robust cost functions [10]–[14], such as the Huber-

based KF (HKF) [10] and maximum correntropy KF (MCKF)

[12]. Nevertheless, the ignorance of the randomness inherent in

the state vector limits the estimation accuracy of these methods

[15]. To overcome this shortcoming, robust KFs based on

statistical similarity measure (SSMKFs) have been proposed

in [16]–[17], where the state posterior PDF is calculated by

maximizing the defined statistical similarity measure.

Different from the M-estimation-based KFs and SSMKFs,

many robust filters model the non-Gaussian heavy-tailed noise

with appropriate distributions to achieve robustness. By select-

ing the PDFs of state and measurement noises as heavy-tailed

distributions, the particle filter (PF) [18]–[19] can produce

robust state estimates. Nonetheless, the PF is not suitable for

addressing the case of unknown noise distribution caused by

state and measurement outliers, and it has heavy computational

burden. On the other hand, by approximating the PDFs of

the state and noises as Student’s t, some Student’s t filters

have been proposed [20]–[22]. However, their accuracy is

limited when the noises are slightly or moderately heavy-tailed

distributed [15] or when the fixed scale matrices are improp-

erly set in these filters. Beside the traditional counterparts,

many variational-learning-based robust KFs model the PDFs

of the state or noises as heavy-tailed distributions and learn

the parameters of the heavy tails adaptively. For example, the

robust Student’s t-based KF (RSTKF) proposed in [15] models

the one-step prediction PDF and measurement likelihood PDF

as Student’s t and obtains a Gaussian approximation of the

state posterior PDF by employing the variational Bayesian

(VB) method. Subsequent studies have extended the RSTKF to

the cases of skewed or non-stationary heavy-tailed noises [23]–

[26]. The current robust smoothers and filters against state and

measurement outliers are compared and summarized in detail

in Table I.

The existing M-estimation-based KF [12], SSMKF [16] and

variational-learning-based robust KFs [15], [23]–[26] adjust

the one-step prediction error covariance matrix (PECM) or
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TABLE I: Outlines of different algorithms.

Categories Algorithms Main ideas Advantages Deficiencies (Compared with the proposed SWRKF)

M-estimation-

based KFs

[10]–[14]

HKF [10] Minimizing the Huber function Enable the outliers that occur in partial

dimensions to be tackled [17]

1) A; 2) B; 3) Ignorance of the randomness

inherent in the state vectorMCKF

[12]
Maximizing the correntropy

Student’s t

filters

[20]–[22]

[20]
Student’s t modelling and joint

distribution approximation
Light computational burden 1) A; 2) B;

2) Limited accuracy under slightly or moderately

heavy-tailed noises [15]
[21]

1) Student’s t modelling and joint

distribution approximation

2) Unscented transformation

1) Light computational burden

2) Enable the nonlinear system to be tackled

SSMKFs

[16]–[17]

SSMKF

[16]

Maximizing the statistical

similarity measure
C

1) A; 2) B

[17]
Maximizing the multiple

statistical similarity measure

1) C; 2) Enable the outliers that occur in

partial dimensions to be tackled

Variational-

learning-based

KFs [15],

[23]–[27]

RSTKF

[15]
Student’s t noise modelling

Obtaining the outlier robustness with Student’s

t noise modelling based on variational learning

[23]
Gaussian-Student’s t mixture

distribution noise modelling
Enable the intermittent outliers to be tackled

[24]
Gaussian scale mixture distribu-

tion noise modelling

Enable the heavy-tailed and skewed noises to

be tackled

[25]
Two Gaussian mixture distribu-

tions noise modelling

1) Enable the intermittent outliers to be tackled

2) Enable the covariance matrices in two Gau-

ssian mixture distributions to be estimated

1) A;

2) Limited estimation accuracy of covariance

matrices since the difficulty in distinguishing

the outliers
[26]

Gaussian-Gamma mixture

distribution noise modelling

Enable the covariance matrices in Gaussian-

Gamma mixture distributions to be estimated

SWVAKF

[27]

1) Gaussian noise modelling

2) Noise covariance matrices esti-

mation using a sliding window

Enable the inaccurate slowly time-varying

noise covariance matrices to be estimated

No particular resistance to outliers due to the same

noise covariance matrices in the sliding window

Proposed

SWRKF

1) Student’s t noise modelling

2) Outliers identification using

a sliding window

1) Better outlier identification performance

2) Enable time-varying noise scale matrices to

be estimated adaptively

Relative increase in computational burden

compared with existing outlier-robust filters

Robust

smoothers

[5]–[9]

[5]

1) Student’s t noise modelling

2) Convex composite extension

of the Gauss-Newton method

D

1) Lack of local convergence guarantee

2) Limited to stationary noise because of the fixed

noise parameters

3) Off-line implementation

RGAS

[8]

1) Student’s t noise modelling

2) variational learning
D 1) Limited to stationary noise because of the fixed

noise parameters

2) Off-line implementation
[9]

1) Generalized normal scale mix-

ture distribution noise modelling

2) variational learning

1) D

2) Enable the heavy-tailed and skewed noises

to be tackled

Notations: A: Difficulty in distinguishing state outliers from measurement outliers; B: Sensitive to the nominal noise covariance matrices or noise scale matrices;

C: Use of the randomness inherent in the state vector; D: Better outlier identification performance due to the use of all measurements.

state noise covariance matrix (SNCM) and measurement noise

covariance matrix (MNCM) to resist the state outlier and

measurement outlier, respectively, by using the measurement

at the current step. However, the measurement at the current

step alone does not have enough information to distinguish

between the previous mentioned two sorts of outliers, which

causes the inappropriate adjustment of the PECM or SNCM

and MNCM. To solve this problem, we propose to exploit

multiple measurements in a sliding window to better identify

the two kinds of outliers, which will be explained in detail in

Section II-B and II-C.

C. Contributions and organization of this paper

In this paper, a sliding window variational outlier-robust

Kalman filter based on Student’s t noise modelling (SWRKF)

is proposed. Compared with the preceding literature, the

contributions of this paper are as follows.

• We propose to utilize the measurements over a period of

time to better distinguish between the state and measure-

ment outliers at previous steps, and implement this idea

using the VB method.

• The sliding window adaptive method for estimating Gaus-

sian covariance matrices [27] is embedded to achieve

more accurate parameters of the Student’s t distributions.

• Target tracking simulations and experiments demonstrate

that the proposed filter has more superior tracking accu-

racy and consistency compared with the existing robust

methods at a cost of greater computational burden.

The rest of this paper is organized as follows. In Section

II, the issues with the existing methods are detailed to better

motivate this paper. In Section III, the SWRKF is derived,

and the outlier suppression mechanism and computational

complexity are analyzed. In Section IV, the target tracking

simulations are carried out to compare the proposed algorithm

with the existing methods from many aspects. In Section V,

two manoeuvring vehicle tracking experiments are performed

to verify the practicality of the proposed algorithm in engi-

neering. Section VI concludes this paper.

Notation: N(·;µ,Σ) denotes the normal distribution with

mean vector µ and covariance matrix Σ; St(·;µ,Σ, ν) denotes

the Student’s t distribution with mean vector µ, scale matrix Σ

and degree of freedom (dof) parameter ν; G(·;α, β) denotes

the Gamma distribution with shape parameter α and rate pa-
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rameter β; IW(·;u,U) denotes the inverse Wishart distribution

with dof parameter u and scale matrix U; zi:j represents the

set made up of the measurements from step i to j; tr(·) and

E[·] denote the trace operation and mathematical expectation

operation, respectively; the superscript (i) represents the i-th
iteration in the variational inference; and ∥ · ∥ denotes the

Euclidean norm.

II. PRELIMINARIES

A. State-space model

Generally, the state estimation problem with outlier interfer-

ence in engineering applications is formulated as the following

discrete-time linear state-space model
{

xk = Fkxk−1 +wk

zk = Hkxk + vk
(1)

where xk ∈ R
n is the state vector to be estimated, zk ∈ R

m

is the measurement vector, Fk and Hk are, respectively, the

state transition and observation matrices, wk and vk are,

respectively, the outlier-contaminated heavy-tailed state and

measurement noises with zero mean and inaccurate nominal

covariance matrix Σw and Σv . It is assumed that the initial s-

tate x0 is a Gaussian vector of mean value x̂0|0 and covariance

matrix P0|0, and x0, wk and vk are mutually independent.

B. Brief review of the existing methods

As a well-known method of state estimation, the conven-

tional KF comprises time update and measurement update as

follows [4].

Time update:

x̂k|k−1 = Fkx̂k−1|k−1 (2)

Pk|k−1 = FkPk−1|k−1F
T
k +Σw (3)

Measurement update:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Σv)

−1 (4)

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1) (5)

Pk|k = (In −KkHk)Pk|k−1 (6)

where x̂k|k−1 and x̂k|k represent the prior and posterior

state estimates, respectively, and Pk|k−1 and Pk|k denote the

PECM and posterior estimation error covariance matrix, re-

spectively, and Kk is the Kalman gain at time step k. It can be

observed from (4)–(6) that the KF achieves a balance between

the prior state estimate and measurement, whose degrees of

trust are described by two significant variables Pk|k−1 and

Σv , respectively. The MMSE estimate can be obtained by the

classical KF if the state noise wk and measurement noise

vk are Gaussian with zero mean and covariance matrices

Σw and Σv , respectively [4, pp. 130]. However, the true

covariance matrix would be much larger than the nominal one

Σw and/or Σv if the state and/or measurement outlier occur,

which results in the PECM Pk|k−1 and/or MNCM Σv used

in (4) and (6) being much less than ideal values and degrades

the performance of the traditional KF. Some existing state-

of-the-art outlier-robust filters for this problem will be briefly

reviewed next.

The existing M-estimation-based KF [10], [12], SSMKF

[16] and variational-learning-based robust KFs [15], [23]–

[26] modify the PECM or SNCM and MNCM to reduce the

effects of state and measurement outliers, respectively. From

[10], [12], [15]–[16] and [23]–[26], we have the following

Proposition.

Proposition 1. In the M-estimation-based KF [10], [12],

SSMKF [16] and variational-learning-based robust KFs [15],

[23]–[26], the modified PECM or SNCM and MNCM are

determined only by Ξk , {x̂k−1|k−1,Pk−1|k−1,Σw,Σv, zk}
beside the state-space model and algorithm parameters.

Proof. Retracing the derivations in [10], [12], [15]–[16] and

[23]–[26], the Proposition can be easily obtained.

Among the five elements of Ξk, only zk is affected by the

state or measurement outliers at step k. According to (1), we

can formulate this effect as follows

zk = HkFkxk−1 +Hkwk + vk

= ẑk|k−1 −HkFkx̃k−1|k−1 +Hkwk + vk (7)

in which the predicted measurement ẑk|k−1 is HkFkx̂k−1|k−1

and the posterior estimation error x̃k−1|k−1 is x̂k−1|k−1 −
xk−1. It can be seen from (7) that the effects of state and

measurement outliers on the measurement zk are similar, i.e.,

both the state outlier (large state noise wk) and measurement

outlier (large measurement noise vk) are likely to cause the

measurement zk to deviate from the predicted measurement

ẑk|k−1. Thus, the information source Ξk for covariance matrix

modification is similarly affected by the two sorts of outliers,

which would inevitably lead to inappropriate modification of

the PECM or SNCM and MNCM.

C. Motivations of this paper

Motivated by this problem, it is our hypothesis that the

state and measurement outliers could be better distinguished

if the measurements over a period of time are used [28]. To

confirm this, a simulation of the well-known one-dimensional

Gaussian random walk model under the interference of outliers

is performed, in which the measurement matrix is set as

unity. The state trajectory and measurements over a period

of time are sketched in Fig. 1, which shows that the states

during steps 200–204 are around −78m, while the state outlier

induced at step 205 pulls the states after that to around −83m,

leading to the “step change” of the states and measurements.

By contrast, the measurement outlier at step 210 only affects

the measurement at the moment, not any states, causing the

measurement at step 210 to be quite different from those

near it, which is referred to as a “pulse change” of the

measurements. In addition to the above cases, when the

state outlier and measurement outlier arise simultaneously,

the superposition of the “step change” and “pulse change”

would be presented in the measurements, as shown at step

213 in Fig. 1(b). Therefore, it is possible to distinguish the

outliers at previous steps based on measurements over a period

of time. According to this idea, we can reduce the state

estimation errors at previous steps, although the state outlier
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Fig. 1: State trajectory and measurements in the one-

dimensional Gaussian random walk model with outliers, where

the states affected by the state outlier and/or measurement

outlier are highlighted.

and measurement outlier at the current step are still difficult

to identify.

The above discussions motivate this work. In this paper, a

sliding window variational outlier-robust Kalman filter based

on Student’s t noise modelling will be derived, in which the

measurements in a sliding window are utilized to identify the

state outliers and measurement outliers in this window.

III. PROPOSED METHOD

The proposed method aims to identify the outliers in a

sliding window and increase the corresponding noise covari-

ance matrices to suppress them based on the VB method.

We first model the heavy-tailed noises and next select the

conjugate prior distribution for the noise parameters. The

proposed method is then derived within the VB framework.

After these derivations, we present the outlier suppression

mechanism and computational complexity analysis.

A. Noise modelling

To tackle the outliers, the heavy-tailed noises are modeled

as Student’s t. Assuming that the statistical characteristics

of noises change slowly, we approximate the Student’s t

distributions of state and measurement noises in the sliding

window [k − L + 1, k] to be the same [27]. Hence, the state

transition distribution and measurement likelihood distribution

at time j ∈ [k − L+ 1, k] are expressed as follows














p(xj |xj−1,Qk) = St(xj ;Fjxj−1,Qk, ω)
=

∫

N(xj ;Fjxj−1,Qk/ξj)G(ξj ;ω/2, ω/2)dξj
p(zj |xj ,Rk) = St(zj ;Hjxj ,Rk, ν)
=

∫

N(zj ;Hjxj ,Rk/λj)G(λj ; ν/2, ν/2)dλj

(8)

where Qk, Rk, ω and ν are common scale matrices and dofs of

state and measurement noises, respectively, and the Student’s t

distributions are written as the Gaussian hierarchical forms by

introducing the auxiliary random variables (ARVs) ξj and λj

since the Bayesian recursive update operations of the Student’s

t distribution are not closed [15].

In order to estimate the unknown noise scale matrices Qk

and Rk based on the VB approach, their conjugate prior

distributions should be chosen. In probability theory, the

inverse Wishart (IW) distribution is the conjugate distribution

of the covariance matrix in a Gaussian distribution with

determinate mean [30]. Furthermore, the scale matrices Qk

and Rk are proportional to the covariance matrices of the

Gaussian distributions in the second and fourth formulas of

(8). Consequently, we select IW distributions as the conjugate

prior distributions of Qk and Rk as follows [15]
{

p(Qk|z1:k−L) = IW(Qk; ŷk|k−L, Ŷk|k−L)

p(Rk|z1:k−L) = IW(Rk; ûk|k−L, Ûk|k−L)
(9)

where ŷk|k−L, ûk|k−L, Ŷk|k−L and Ûk|k−L are the prior

parameters of Qk and Rk, respectively. Different from [27]

and [31], since multiple measurements zk−L+1:k are utilized

at time k, the prior parameters in (9) are spread from the

posterior parameters at time k−L by multiplying L times the

forgetting factor ρ as follows
{

ŷk|k−L = ρLŷk−L|k−L, Ŷk|k−L = ρLŶk−L|k−L

ûk|k−L = ρLûk−L|k−L, Ûk|k−L = ρLÛk−L|k−L

(10)

where ŷk−L|k−L, ûk−L|k−L, Ŷk−L|k−L and Ûk−L|k−L are

the posterior dofs and scale matrices of Qk−L and Rk−L, and

the forgetting factor is recommended to be set within [0.9, 1).
By doing this, we retain the mean of the state noise scale

matrix (SNSM) and measurement noise scale matrix (MNSM)

and increase their uncertainty. The initial scale matrices are

also modeled as IW distributed and their means are set as

the nominal noise covariance matrices to utilize the prior

information of the noises, i.e., [27]
{

p(Q0) = IW(Q0; ŷ0|0, Ŷ0|0), Ŷ0|0 = ŷ0|0Σw

p(R0) = IW(R0; û0|0, Û0|0), Û0|0 = û0|0Σv

(11)

Based on the above model, we calculate the posterior

joint distribution by employing the VB approach in the next

subsection.

Remark 1. In the proposed filter, the prior distributions of

the scale matrices are spread from the previous posterior

distributions, which leads to the form of exponential decay

in the estimated scale matrices in (23). The proposed filter

can adaptively estimate the scale matrices over time, and

the nominal noise covariance matrices Σw and Σv will have

little effect on the estimated scale matrices and modified noise

covariance matrices, as shown in Fig. 8 in the simulation.

Instead, in the existing RSTKF [15], the prior means of the

scale matrices of the Student’s t distributions are set as the

nominal noise covariance matrices at each step, which makes

its performance sensitive to the setting of the nominal noise

covariance matrices. In fact, the existing M-estimation-based

KF [10], [12] and SSMKF [16] also suffer from the same
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problem because the nominal noise covariance matrices Σw

and Σv have persistent and non-decaying effects on their

modified PECM and MNCM.

B. Variational inference

In this subsection, the VB approach is applied to joint-

ly estimate the state vectors, SNSM, MNSM and ARVs

in the sliding window [k − L + 1, k] given measure-

ments until time k. For brevity, we define the set Θk =
{xk−L:k,Qk,Rk, ξk−L+1:k, λk−L+1:k}. In the VB technique,

the variables to be estimated are considered as pairwise inde-

pendent, so that the posterior joint distribution is approximated

as [29]

p(Θk|z1:k) ≈ q(xk−L:k)q(Qk)

q(Rk)q(ξk−L+1:k)q(λk−L+1:k) (12)

in which every component q(θk) is calculated as

log q(θk) = E(Θk−θk) [log p(Θk, z1:k)] + cθk
(13)

where θk denotes an element of the set Θk, and Ex[·]
represents the mathematical expectation operation with respect

to x, and the joint distribution in (13) is expressed as

p(Θk, z1:k) =

k
∏

j=k−L+1

[N(zj ;Hjxj ,Rk/λj)

×G(λj ; ν/2, ν/2)N(xj ;Fjxj−1,Qk/ξj)G(ξj ;ω/2, ω/2)]

× IW(Rk; ûk|k−L, Ûk|k−L)IW(Qk; ŷk|k−L, Ŷk|k−L)

×N(xk−L; x̂k−L|k−L,Pk−L|k−L) (14)

It is observed from (13) that the calculations of each of the

components q(θk) in (12) are mutually coupled. As a result,

the fixed-point iteration is used to obtain their approximate

solutions. That is, the components in (12) are solved iteratively

in turn alternatively, fixing the others while solving one

component. The iterative process is described in detail in

Propositions 2–4.

Proposition 2. Setting θk = xk−L:k in (13), the iterative

posterior distribution of the state trajectory q(i+1)(xk−L:k)
is obtained by running the conventional KF and Kalman

smoother (KS) whose initial distribution, modified state and

measurement noise covariance matrices are given as

{

p(xk−L|z1:k−L) = N(xk−L; x̂k−L|k−L,Pk−L|k−L)

Q̃
(i)
j|k =

{E(i)[Q−1
k

]}−1

E(i)[ξj ]
, R̃

(i)
j|k =

{E(i)[R−1
k

]}−1

E(i)[λj ]

(15)

where j ∈ [k − L+ 1, k].

Proof. See Appendix A.

Proposition 3. Let θk = Qk and θk = Rk in (13) respective-

ly, and their iterative posterior distributions q(i+1)(Qk) and

q(i+1)(Rk) are obtained as IW distributions, i.e.,

{

q(i+1)(Qk) = IW(Qk; ŷ
(i+1)
k|k , Ŷ

(i+1)
k|k )

q(i+1)(Rk) = IW(Rk; û
(i+1)
k|k , Û

(i+1)
k|k )

(16)

in which the parameters are updated by






































ŷ
(i+1)
k|k = ŷk|k−L + L

Ŷ
(i+1)
k|k = Ŷk|k−L +

k
∑

j=k−L+1

A
(i+1)
j E(i)[ξj ]

û
(i+1)
k|k = ûk|k−L + L

Û
(i+1)
k|k = Ûk|k−L +

k
∑

j=k−L+1

B
(i+1)
j E(i)[λj ]

(17)

where the auxiliary matrices A
(i+1)
j and B

(i+1)
j are given by

{

A
(i+1)
j = E(i+1)[(xj − Fjxj−1)(xj − Fjxj−1)

T]

B
(i+1)
j = E(i+1)[(zj −Hjxj)(zj −Hjxj)

T]
(18)

Proof. See Appendix B.

Proposition 4. Using θk = ξk−L+1:k and θk = λk−L+1:k

in (13) respectively, the iterative posterior distributions of

the auxiliary random variables ξk−L+1:k and λk−L+1:k are

updated as the following Gamma distributions
{

q(i+1)(ξj) = G(ξj ; â
(i+1)
j|k , b̂

(i+1)
j|k )

q(i+1)(λj) = G(λj ; ĉ
(i+1)
j|k , d̂

(i+1)
j|k )

(19)

in which the shape parameters and rate parameters are

calculated as


























â
(i+1)
j|k = 0.5(ω + n)

b̂
(i+1)
j|k = 0.5

(

ω + tr(A
(i+1)
j E(i)[Q−1

k ])
)

ĉ
(i+1)
j|k = 0.5(ν +m)

d̂
(i+1)
j|k = 0.5

(

ν + tr(B
(i+1)
j E(i)[R−1

k ])
)

(20)

Proof. See Appendix C.

The expectations used in Propositions 2–4 are computed as


































A
(i+1)
j = (x̂

(i+1)
j|k − Fj x̂

(i+1)
j−1|k)(x̂

(i+1)
j|k − Fj x̂

(i+1)
j−1|k)

T

+FjP
(i+1)
j−1|kF

T
j − [P

(i+1)
j−1,j|k]

TFT
j − FjP

(i+1)
j−1,j|k +P

(i+1)
j|k

B
(i+1)
j = HjP

(i+1)
j|k HT

j + (zj −Hj x̂
(i+1)
j|k )(zj −Hj x̂

(i+1)
j|k )T

E(i)[Q−1
k ] = ŷ

(i)
k|k{Ŷ

(i)
k|k}−1, E(i)[R−1

k ] = û
(i)
k|k{Û

(i)
k|k}−1

E(i)[ξj ] = â
(i)
j|k/b̂

(i)
j|k, E(i)[λj ] = ĉ

(i)
j|k/d̂

(i)
j|k

(21)

in which x̂
(i+1)
j|k and P

(i+1)
j|k represent the smoothing estimate

and the corresponding error covariance matrix at time j in

the (i+1)–th iteration, and P
(i+1)
j−1,j|k represents the smoothing

errors cross-covariance matrix at times j − 1 and j calculated

as [32]

P
(i+1)
j−1,j|k = G

(i+1)
j−1 P

(i+1)
j|k (22)

and G
(i+1)
j−1 is the smoothing gain at time j − 1.

The posterior distributions of the state trajectory and other

variables are updated in turn at each iteration. The implemen-

tation pseudo codes of the proposed filter are displayed in

Table II, where ϵ represent the iteration threshold and Nm

the maximum number of iterations. Prior to the fixed-point

iteration, the initial expectations of SNSM, MNSM and ARVs

should be precisely selected, so that the posterior distributions

would converge with fewer iterations. In this paper, the initial

expectations of SNSM, MNSM and ARVs are set as the
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posterior expectations at the previous time, as shown in steps

1–3 in Table II.

Remark 2. Although a linear state-space model is used for

the derivations in this paper, the proposed SWRKF can be

easily expanded to nonlinear systems by exploiting the existing

analytical and statistical linearization methods, such as the

first order Taylor expansion, unscented transformation and

cubature transformation [33].

Remark 3. The sliding window adaptive method for estimat-

ing Gaussian noise covariance matrices [27] is used in this

paper to estimate the scale matrices of the Student’s t distri-

butions. Despite this, the sliding window variational adaptive

Kalman filter (SWVAKF) [27] and the proposed SWRKF

are different both in terms of design ideas and algorithm

implementations. On one hand, in the design ideas, the existing

SWVAKF aims to address the state estimation problem under

Gaussian noises with unknown and/or slowly time-varying

covariance matrices, while the proposed SWRKF is intended to

tackle the non-Gaussian heavy-tailed noises contaminated by

the outliers. Accordingly, the noises in the sliding window are

modelled as Gaussian with the same covariance matrices in

the SWVAKF instead of Student’s t in this paper. On the other

hand, in the algorithm implementations, the proposed SWRKF

adds the updates of ARVs as compared with the SWVAKF,

which enables the noise covariance matrices in the sliding

window to be adjusted discriminately to counter individual

outliers, as shown on lines 14–16 in Table II and discussed in

Section III-C. Besides, the initial expectations of the ARVs in

the proposed SWRKF are set as the posterior expectations at

the previous time to accelerate convergence as shown on line

3 in Table II, which is not covered in the SWVAKF.

C. Mechanism of outlier suppression

The proposed SWRKF identifies the state outliers and mea-

surement outliers by auxiliary matrices A
(i)
j and B

(i)
j , respec-

tively, whereby the state and measurement noise covariance

matrices Q̃
(i)
j|k and R̃

(i)
j|k are modified accordingly to suppress

the effects of two kinds of outliers. From Proposition 2, the

modified state and measurement noise covariance matrices

Q̃
(i)
j|k and R̃

(i)
j|k are obtained by dividing the estimated SNSMs

{

E(i)[Q−1
k ]

}−1
and

{

E(i)[R−1
k ]

}−1
(simplified to Q̂

(i)
k and

R̂
(i)
k ) by the estimated ARVs E(i)[ξj ] and E(i)[λj ]. Utilizing

(10), (17), (20) and (21), the estimated SNSMs and ARVs are

formulated as


































Q̂
(i)
k =

M
k(i)
k−L+1+ρLM

k−L(i)
k−2L+1+ρ2LM

k−2L(i)
k−3L+1+···

(1+ρL+ρ2L+··· )L

R̂
(i)
k =

N
k(i)
k−L+1+ρLN

k−L(i)
k−2L+1+ρ2LN

k−2L(i)
k−3L+1+···

(1+ρL+ρ2L+··· )L

E(i)[ξj ] =
ω+n

ω+tr
(

A
(i)
j

E(i−1)[Q−1
k

]
)

E(i)[λj ] =
ν+m

ν+tr
(

B
(i)
j

E(i−1)[R−1
k

]
)

(23)

where M
q(i)
p ,

q
∑

j=p

A
(i)
j E(i−1)[ξj ] and N

q(i)
p ,

q
∑

j=p

B
(i)
j E(i−1)[λj ]. It is found from (23) that the estimated

TABLE II: The implementation pseudo codes of the proposed

SWRKF for each step.

Inputs: {x̂j|j ,Pj|j , ŷj|j , Ŷj|j , ûj|j , Ûj|j , zj+1|j ∈ [k − L, k − 1]},

{ξ̂j|k−1, λ̂j|k−1|j ∈ [k − L + 1, k − 1]}, Fk , Hk , ω, ν, ρ, L, m, n,

ϵ, δ, Nm.

Initialization:

1. E(0)[Q−1
k

] = ŷk−1|k−1(Ŷk−1|k−1)
−1,

2. E(0)[R−1
k

] = ûk−1|k−1(Ûk−1|k−1)
−1.

for j = k − L + 1 : k − 1

3. E(0)[ξj ] = ξ̂j|k−1,E
(0)[λj ] = λ̂j|k−1 \\ Accelerate the convergence

end for

\\ Enable the scale matrices Qk and Rk to be estimated adaptively

4. Calculate ŷk|k−L, Ŷk|k−L, ûk|k−L and Ûk|k−L using (10)

Iteration:

for i = 0 : Nm − 1

\\ Update q(i+1)(xk−L:k) given q(i+1)(Qk), q(i+1)(Rk),

\\ q(i+1)(ξk−L+1:k) and q(i+1)(λk−L+1:k)

5. x̂
(i+1)

k−L|k−L
= x̂k−L|k−L, P̂

(i+1)

k−L|k−L
= P̂k−L|k−L

for j = k − L + 1 : k

\\ Run the conventional KF with modified SNCM
E(i)[Q

−1
k

]
−1

E(i)[ξj ]
and

\\ MNCM
E(i)[R

−1
k

]
−1

E(i)[λj ]

6. x̂
(i+1)

j|j−1
= Fj x̂

(i+1)

j−1|j−1

7. P
(i+1)

j|j−1
= FjP

(i+1)

j−1|j−1
FT

j +
E(i)[Q

−1
k

]
−1

E(i)[ξj ]

8. K
(i+1)
j

= P
(i+1)

j|j−1
HT

j (HjP
(i+1)

j|j−1
HT

j +
E(i)[R

−1
k

]
−1

E(i)[λj ]
)−1

9. x̂
(i+1)

j|j
= x̂

(i+1)

j|j−1
+ K

(i+1)
j

(zj − Hj x̂
(i+1)

j|j−1
) \\ zk−L+1:k are used

10. P
(i+1)

j|j
= (In − K

(i+1)
j

Hj)P
(i+1)

j|j−1

end for

for j = k : (−1) : k − L + 1

\\ Run the conventional KS with modified SNCM
E(i)[Q

−1
k

]
−1

E(i)[ξj ]

11. G
(i+1)
j−1 = P

(i+1)

j−1|j−1
FT

j [P
(i+1)

j|j−1
]−1

12. x̂
(i+1)

j−1|k
= x̂

(i+1)

j−1|j−1
+ G

(i+1)
j−1 (x̂

(i+1)

j|k
− x̂

(i+1)

j|j−1
)

13. P
(i+1)

j−1|k
= P

(i+1)

j−1|j−1
+ G

(i+1)
j−1 (P

(i+1)

j|k
− P

(i+1)

j|j−1
)[G

(i+1)
j−1 ]T

end for

\\ Update q(i+1)(ξk−L+1:k) and q(i+1)(λk−L+1:k) given

\\ q(i+1)(xk−L:k), which enables the outliers in the sliding window

\\ to be resisted

for j = k : (−1) : k − L + 1

14. Calculate A
(i+1)
j

and B
(i+1)
j

using (21) \\ zk−L+1:k are used

15. Calculate â
(i+1)

j|k
, b̂

(i+1)

j|k
, ĉ

(i+1)

j|k
and d̂

(i+1)

j|k
using (20)

16. Calculate E(i+1)[ξj ] and E(i+1)[λj ] using (21)

end for

\\ Update q(i+1)(Qk) and q(i+1)(Rk) given q(i+1)(xk−L:k)

17. Calculate ŷ
(i+1)

k|k
, Ŷ

(i+1)

k|k
, û

(i+1)

k|k
and Û

(i+1)

k|k
using (17)

18. Calculate E(i+1)[Q−1
k

] and E(i+1)[R−1
k

] using (21).

19. if

∥

∥

∥
x̂
(i+1)

k|k
− x̂

(i)

k|k

∥

∥

∥

/∥

∥

∥
x̂
(i)

k|k

∥

∥

∥
≤ ϵ, terminate iterations, end if

end for

Data saving:

for j = k − L + 2 : k

20. ξ̂j|k = E(i+1)[ξj ], λ̂j|k = E(i+1)[λj ]
end for

21. x̂k|k = x̂
(i+1)

k|k
, Pk|k = P

(i+1)

k|k
, ŷk|k = ŷ

(i+1)

k|k
, Ŷk|k = Ŷ

(i+1)

k|k
,

22. ûk|k = û
(i+1)

k|k
, Ûk|k = Û

(i+1)

k|k
.

Outputs: {x̂j|j ,Pj|j , ŷj|j , Ŷj|j , ûj|j , Ûj|j |j ∈ [k − L + 1, k]},

{ξ̂j|k, λ̂j|k|j ∈ [k − L + 2, k]}

SNSM Q̂
(i)
k is a weighted average of the terms A

(i)
j E(i−1)[ξj ]

in the form of exponential decay, where the terms in the

earlier sliding window have smaller weights. The monomial

A
(i)
j E(i−1)[ξj ] has limited effects on the estimated SNSM

Q̂
(i)
k since Q̂

(i)
k is a weighted average of several terms. So

the auxiliary matrix A
(i)
j mainly affects the estimated ARV

E(i)[ξj ]. A large A
(i)
j would cause small E(i)[ξj ] and finally

result in large Q̃
(i)
j|k, which weakens the effects of the state
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Fig. 2: Two intervals in a Gaussian random walk example,

where the state and measurement noises are produced by (27)

with Σw = 0.1m2, Σv = 1m2, U1 = 500, U2 = 100
and p1 = p2 = 0.9. In (a) and (b), the state outlier and

measurement outlier occur at steps 116 and 130, respectively.

The parameters of different filters are set according to Table IV,

and the forgetting factor and window length of the SWVAKF

are set to be the same as those of SWRKF. The curves labeled

HKF, MCKF and RSTKF denote their posterior filtering

estimates, while the curves labeled SWVAKF and SWRKF

represent their posterior smoothing estimates x̂
(N)
k−L:k|k.

outliers. Likewise, we can deduce that a large B
(i)
j would

lead to small E(i)[λj ] and large R̃
(i)
j|k.

Next, we explain how large A
(i)
j or B

(i)
j is obtained when

the state or measurement outlier occurs in the proposed filter,

respectively. Firstly, it is assumed that the filter runs to step

k and a state outlier occurs at step k − b (0 < b < L). The

state outlier wk−b divides the ground truth and measurements

in the sliding window into two stages (before and after step

k − b, for example, the levels of states and measurements

before and after step 116 are markedly different in the case

in Fig. 2 (a)). Due to the step change of the measurements,

the difference x̂
(i)
k−b|k − Fk−bx̂

(i)
k−b−1|k would be relatively

larger than usual, which results in relatively larger A
(i)
k−b and

Q̃
(i)
k−b|k according to (21) at the i-th iteration. At the i + 1-

th iteration, the Kalman smoothing process in the proposed

method would correct the estimated state trajectory after step

k−b to close to the ground truth xk−b:k. Instead, the estimated

state trajectory before step k− b would be less affected by the

later stage in the Kalman smoothing process because of the

large Q̃
(i)
k−b|k and small smoothing gain G

(i+1)
k−b−1 according to

lines 7 and 11 in Table II. Then, the estimated x̂
(i+1)
k−L:k−b−1

would still be close to the ground truth xk−L:k−b−1. Therefore,

the difference x̂
(i+1)
k−b|k−Fk−bx̂

(i+1)
k−b−1|k would get much larger,

contributing to much larger A
(i+1)
k−b in the i+ 1-th iteration.

Secondly, we consider the case where a measurement outlier

occurs at step k − b, which affects the measurement zk−b

only (see step 130 in Fig. 2 (b) for instance). Although the

state estimate x̂
(i)
k−b|k−b

may be skewed by the measurement

outlier vk−b when the filter runs to step k − b, the Kalman

smoothing process would correct the state estimate x̂
(i)
k−b|k to

be close to the ground truth xk−b when the filter runs to step

k. Hence, the relatively large residual zk−b − Hk−bx̂
(i)
k−b|k

would be obtained, which results in relatively large B
(i)
k−b and

R̃
(i)
k−b|k. In the i + 1-th iteration, the relatively large R̃

(i)
k−b|k

further resists the abnormal measurement zk−b in the Kalman

filtering process and brings about larger residual and larger

B
(i+1)
k−b , which can be confirmed at step 130 in Fig. 2 (b).

In summary, when a state outlier or measurement outlier

occurs at step k − b (0 < b < L), the proposed filter

would get large A
(i)
k−b or B

(i)
k−b and increase the Q̃

(i)
k−b|k or

R̃
(i)
k−b|k to suppress the state or measurement outlier. Since the

outliers before step k are suppressed, the proposed filter can

generate more accurate state estimate and its error covariance

matrix {x̂(i)
k−1|k,P

(i)
k−1|k} at step k − 1 than the filters that

do not identify the outliers before step k, which improves its

estimation accuracy at the current step k.

Remark 4. In the existing M-estimation-based KF [10], [12],

SSMKF [16] and variational-learning-based robust KFs [15],

[23]–[26], the PECM Pk|k−1 or SNCM Qk and MNCM

Rk are adjusted on the basis of Ξk. However, as discussed

in Section II-B, there is not enough information in Ξk to

distinguish the state outlier and measurement outlier, which

causes the difficulty in adjusting the PECM or SNCM and

MNCM correctly at each step (including before step k).

Hence, the state estimate and its error covariance matrix

{x̂(i)
k−1|k−1,P

(i)
k−1|k−1} given by these are less accurate than

{x̂(i)
k−1|k,P

(i)
k−1|k} given by the proposed filter.

Remark 5. The conclusion in this subsection can be confirmed

by Fig. 2, especially the case of the state outlier. In Fig. 2 (a),

at steps 117–122, the existing HKF [10], MCKF [12] and

RSTKF [15] cannot identify the state outlier at step 116. At

the same time, these filters cannot correctly decide whether

to trust the measurement or the model, which results in large

errors after the state outlier. On the contrary, the proposed

filter can identify the state outlier after that and enhance the

SNCM at step 116, which resists the state outlier and decreases

the estimation errors after the state outlier.

Remark 6. As discussed in Remark 3, the noise covariance

matrices in the sliding window are assumed to be the same in

the SWVAKF [27], which leads to its inability to enhance some

covariance matrices larger than others to resist the outliers.

Therefore, the performance of the SWVAKF is easy to degrade

by outliers, as verified in Fig. 2. In Fig. 2(a), the smoothing

estimates of the SWVAKF do not approach the step change

of the state trajectory at step 116, leading to its large errors

after step 116. In Fig. 2(b), the SWVAKF is misled by the

measurement outlier at step 130 and gives a skewed estimate

even 6 steps after the outlier.

D. Computational complexity analysis

The computational complexity in terms of the floating

point operations is analysed for the proposed SWRKF and

existing RSTKF [15]. According to Table II and [15], the
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TABLE III: Computational complexity of the proposed

SWRKF

Steps Computational complexity

1–4 O(m3) +O(n3) + 2m2 + 2n2 + 2

5–10
NL[2O(m3) + 2m2n+ 3mn2 + 3n3 +O(n3)

+m2 + 2mn+ 2n2]

11–13 NL[4n3 +O(n3) + n2]

14–16 NL[m3 +m2n+mn2 + 5n3 +m2 + 2mn+ 3n2 + 6]

17–19 N [L(m2 + n2) +O(m3) +O(n3) +m2 + n2]

computational complexity of the two filters are respectively

SSWRKF = N
{

L
[

m3 + 2O(m3) + 3m2n+ 4mn2 + 12n3

+2O(n3) + 3m2 + 4mn+ 7n2 + 6
]

+O(m3) +O(n3)

+m2 + n2
}

+O(m3) +O(n3) + 2m2 + 2n2 + 2 (24)

SRSTKF = N
[

m3 +O(m3) + 3m2n+ 4mn2 + 2n3

+2O(n3) + 2m2 + 4mn+ 4n2 + 6
]

+ 2n3 +O(n3) + 3n2

(25)

where N and L represent the number of iterations and window

length, respectively, and the computational complexity of the

proposed SWRKF is decomposed as Table III.

It can be found from (24) that the computational complexity

of the proposed SWRKF increases linearly with increasing N
and L. As shown in the simulation later, the proposed SWRKF

exhibits superior estimation performance with small N and L.

Hence, the number of iterations N and the window length

L are, respectively, recommended to be set as 2 and within

[10, 20] to achieve a tradeoff between computational efficiency

and estimation accuracy. In addition, the proposed SWRKF

has greater spatial complexity resulting from the additional

storages of {x̂j|j ,Pj|j , ŷj|j , Ŷj|j , ûj|j , Ûj|j , zj+1|j ∈ [k −
L, k − 1]} and {ξ̂j|k−1, λ̂j|k−1|j ∈ [k − L+ 1, k − 1]}.

IV. SIMULATION STUDY

The merits of the proposed SWRKF are illustrated by the

simulations of manoeuvring target tracking in this section.

The proposed filter will be compared with the typical robust

filters, i.e. HKF [10], MCKF [12], RSTKF [15] and Student’s

t-based PF (STPF) [19] when necessary. We also compare

the proposed filter with the off-line robust Gaussian approx-

imate smoother (RGAS) [8] which is used as a performance

reference. The SSMKF [16] is omitted since the RSTKF is

equivalent to the SSMKF with logarithmic similarity function.

In the simulations of manoeuvring target tracking, we define

the state vector as xk = [xk, yk, ẋk, ẏk]
T, where xk and

yk represent respectively the abscissa and ordinate of the

target and ẋk and ẏk denote the corresponding velocities. The

kinematic and measurement models are described as (1) in

which the state transition and measurement matrices are

Fk =

[

I2 ∆tI2
0 I2

]

, Hk =
[

I2 0
]

(26)

TABLE IV: Parameter Settings for different algorithms

Algorithms Parameter settings

HKF Tuning parameter γ = 1.345

MCKF Kernel size σ = 5

RSTKF
D.f. of Student’s t noises ω = ν = 5

D.f. of IW distributed scale matrices τw = τv = 5

TPF Particle numbers Np = 1000

STPF
D.f. of Student’s t noises ω = ν = 5

Particle numbers Np = 1000

RGAS

D.f. of Student’s t noises ω = ν = 5

Prior parameters of scale matrices t0 = 6, T0 = Σw ,

u0 = 4, U0 = Σv

SWRKF

D.f. of Student’s t noises ω = ν = 5

D.f. of IW distributed scale matrices ŷ0|0 = û0|0 = 5

Window length L = 10

Forgetting factor ρ = 1− e−4

and the outlier-contaminated noises are generated according

to 













wk ∼
{

N(0,Σw) w.p. 0.9
N(0, 100Σw)w.p. 0.1

vk ∼
{

N(0,Σv) w.p. 0.9
N(0, 100Σv) w.p. 0.1

(27)

where ∆t = 1s, the nominal covariance matrices are chosen

as Σw = 0.5

[

T 3

3 I2
T 2

2 I2
T 2

2 I2 T I2

]

and Σv = 100I2m
2, and the

abbreviation w.p. stands for with probability. The initial state

of the target is generated randomly from the normal distribu-

tion with mean x0 = [0, 0, 10, 10]T and covariance matrix

P0 = diag([10000, 10000, 100, 100]) and 5000 subsequent

points are simulated. Besides the methods mentioned above,

the KF with true noise covariance matrices (TKF) and KF

with nominal noise covariance matrices (NKF) and PF with

true Gaussian mixture distribution (TPF) act as references in

the simulation. The parameters of different methods are all

selected according to the recommendations in the literature, as

shown in detail in Table IV. For STPF, the scale matrices are

selected as the nominal covariance matrices, i.e. Σw and Σv .

The maximum numbers of iterations for HKF, MCKF, RSTKF

and RGAS are set as Nm = 50 while that for SWRKF is set

as Nm = 2. Besides, the iteration threshold ϵ = 10−8. The

MATLAB codes of this simulation can be open access from

the link https://www.researchgate.net/profile/Yulong-Huang-4.

The root mean square error (RMSE) and normalized esti-

mation error squared (NEES) [34] are used to evaluate the

estimation accuracy and consistency. The RMSEs and NEESs

of different algorithms computed based on 1000 Monte Carlo

runs are shown in Figs. 3–4, which are smoothed using

a 20-point moving average for convenient comparison. The

corresponding average RMSEs (ARMSEs), average NEESs

(ANEESs) and single step run time are listed in Table V.

The STPF method is omitted here because it diverges in

this scenario. As can be seen from Figs. 3–4 and Table V,

in terms of accuracy and consistency, the NKF performs the

worst and the proposed filter performs the best except for the

off-line smoother RGAS and the unavailable TPF and TKF.

Compared with the existing HKF, MCKF and RSTKF, the
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Fig. 3: RMSEs of different algorithms.
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Fig. 4: NEESs of different algorithms (The closer the NEES

is to state dimension 4, the better the consistency).

TABLE V: ARMSEs, ANEESs and Single step run time of

different algorithms

Algorithms ARMSEpos (m) ARMSEvel (m/s) ANEES Time (ms)

TKF 9.94 4.83 4.00 0.010

NKF 25.93 7.26 43.38 0.010

TPF 12.70 5.64 5.56 22.277

HKF 22.87 7.17 27.53 0.193

MCKF 19.10 6.77 28.25 0.129

RSTKF 18.18 6.95 22.73 0.271

SWRKF 13.90 5.88 5.24 0.964

RGAS 6.35 2.88 4.34 N/A

proposed filter has smaller (A)RMSE and (A)NEES closer to

the state dimension 4 but heavier computational burden.

To reveal the reason for the superiority of the proposed filter,

we study the ability of each algorithm to identify outliers next.

In this paper, we determine that the noise wk or vk is identified

as an outlier by the robust filter or smoother if the following

inequality holds

∑

i

eigi(Q̃
∗
k − dΣw) > 0 or

∑

i

eigi(R̃
∗
k − dΣv) > 0

(28)

where eigi(A) denotes the i-th eigenvalue of matrix A, and

Noises identified as

outliers by the robust filter

Noises not identified as 

outliers by the robust filter

Outliers noises TP FN

Non-outliers noises FP TN

Fig. 5: Confusion matrix of outliers identification results.

TABLE VI: Precision, recall and F-score of different algo-

rithms (s.o. denotes the state outliers and m.o. the measure-

ment outliers).

Algorithms Outlier type Precision (%) Recall (%) F-score (%)

HKF s.o. 9.99 0.21 0.40

MCKF s.o. 9.54 0.16 0.32

RSTKF s.o. 10.14 22.42 13.96

SWRKF s.o. 10.61 72.91 18.48

RGAS s.o. 14.04 87.27 22.78

HKF m.o. 99.66 29.78 45.81

MCKF m.o. 97.45 44.35 60.92

RSTKF m.o. 97.34 71.03 82.11

SWRKF m.o. 99.89 79.48 88.51

RGAS m.o. 100 79.91 88.82

Q̃∗
k and R̃∗

k denote the modified state and measurement noise

covariance matrices of the HKF [10], MCKF [12], RSTKF

[15], the proposed SWRKF and RGAS [8], and the factor

d = 7. Specially, the modified state and measurement noise

covariance matrices of the proposed filter are defined as

Q̃SWRKF
k = Q̃k|k+b, R̃SWRKF

k = R̃k|k+b (29)

to highlight the effect of the sliding window, where Q̃k|k+b

and R̃k|k+b are defined in (15) and the delay step b is set as

5. As such, all the noises can be classified by four categories

defined in the confusion matrix in Fig. 5 [35], whose numbers

are respectively denoted as TP , FN , FP and TN . The

identification performance is evaluated by precision, recall

and F-score [35], where precision and recall are defined as

P = TP
TP+FP

and R = TP
TP+FN

, respectively, and F-score is

defined as their harmonic mean F = 2·P ·R
P+R

to combine them.

The precision and recall are generally contradictory. Only

when both are high (i.e., F-score is high) the performance of

outlier identification is good. These indexes in the simulation

environment above are displayed in Table VI. It is evident from

Table VI that the RGAS has the largest F-score both in the

aspect of state outliers and measurement outliers, since all the

measurements are utilized to identify the outliers. Except for

the RGAS, the proposed SWRKF has larger precision, recall

and F-score than others, which mainly benefits from its better

mechanism of outlier identification. As discussed in Section

III-C, the better ability to identify the outliers brings about the

superior estimation performance as shown in Figs. 3–4.

To illustrate the effect of the maximum number of iterations

Nm and window length L on the proposed algorithm, some

further simulations are carried out. To this end, we change

Nm and L from 1 to 20. The relationship between ARMSEs
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and the number of iterations for each filter is sketched in Fig.

6. It is observed that the proposed filter performs better than

the existing methods when Nm ≥ 2 and its ARMSE improves

a little as Nm continues to increase. We attribute it to the

appropriate selections of the initial values of scale matrices

and ARVs at the iteration, which makes it converge with

fewer iterations. The ARMSEs for different window length

are sketched in Fig. 7 and one can observe that the proposed

filter outperforms the existing methods when L ≥ 6 and the

ARMSE tends to plateau when L ≥ 8, because the proposed

SWRKF requires sufficient measurements over a period of

time to identify outliers. In this paper, the maximum number

of iterations Nm and window length L are respectively set as 2

and 10 to provide a trade off between the estimation accuracy

and computational burden.

In practical applications, the noise covariance matrices are

often unknown. Therefore, the algorithms are finally tested

with inaccurate nominal noise covariance matrices, which are

set as Σ′
w = αΣw and Σ′

v = βΣv with different values of α
and β. The ARMSEs of different filters are illustrated in Fig.

8. It shows that the estimation accuracy of the existing HKF,

MCKF and RSTKF is obviously worse when α, β ̸= 1. On the

contrary, the proposed filter outperforms the existing methods
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Fig. 8: ARMSEs for inaccurate nominal SNSMs and MNSMs.

in each case and is minimally affected by inaccurate nominal

noise covariance matrices due to the adaptive estimates of the

scale matrices, as discussed in Remark 1.

V. EXPERIMENTAL STUDY

In this section, the proposed SWRKF and the existing NKF,

HKF [10], MCKF [12], RSTKF [15] and RGAS [8] are

verified by two experiments of manoeuvring vehicle tracking.

A. Case 1

The data set of Case 1 is provided by the Udacity course

self-driving car [36], in which an autonomous vehicle is

tracked by the lidar and radar sensors. The kinematics model

of the vehicle is the same as that in the simulation, and the

nominal SNCM is set as Σw = κ

[

T 3

3 I2
T 2

2 I2
T 2

2 I2 T I2

]

, where the

state noise intensity factor κ is set as 0.5. The lidar measures

the position of the vehicle, i.e. zLk = [xk yk]
T, while the

radar provides the range, angle and range rate of the vehicle,

i.e. zRk = [ρk φk ρ̇k]. The measurement models of lidar

and radar are respectively expressed as

zLk =
[

I2 0
]

xk + vL
k (30)

zRk =









√

x2
k + y2k

arctan
(

xk

yk

)

xkẋk+ykẏk√
x2
k
+y2

k









+ vR
k (31)

where the nominal covariance matrices of vL
k and vR

k are

ΣL
v = diag[0.0025, 0.0025]m2 and ΣR

v = diag[0.09m2,
0.05rad2, 0.09m2/s2], respectively. The vehicle is observed

by lidar and radar sensors in turn. The total experiment time

is 61.2s, and the discretization time T = 0.05s. All the

algorithms are expanded to a non-linear system by using the

first order Taylor expansion [33], and their parameters are set

as Table IV.

The ground truth and the estimated trajectories are illus-

trated in Fig. 9. It can be seen from Fig. 9 that the vehicle

undergoes frequent turns, which induces the periodic state
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Fig. 11: Average PEs (APEs) and ANEESs for different

noiminal SNCMs (The closer the ANEESpos is to position

dimension 2, the better the consistency).

outliers in the kinematic model of uniform linear motion (26).

The position errors (PEs, defined in (32)) of these algorithms

are shown in Fig. 10, where the periodic PEs are caused by

the periodic state outliers. In Fig. 10, the RGAS has the best

estimation accuracy due to the use of all measurements. Except

for the outline RGAS, the proposed SWRKF outperforms other

filters in terms of estimation accuracy due to the better ability
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Fig. 12: True trajectory and GPS measurements.

to identify the state outliers.

PEk =
√

(xk − x̂k)2 + (yk − ŷk)2 (32)

To verify the adaptive ability of the proposed SWRKF to

estimate the scale matrices, we test the compared methods

with different nominal SNCMs in Fig. 11, in which the state

noise intensity factor κ is set as {0.05, 0.5, 5, 50}. Note that the

reference value of the ANEES for the position dimensions is

2. It can be observed from Fig. 11 that the existing NKF, HKF,

MCKF and RSTKF can be overconfident or overconservative

if the parameter κ is set too small or too large. The value

of κ has great influence on the accuracy and consistency of

the existing NKF, HKF, MCKF and RSTKF. On the contrary,

the performance of the proposed SWRKF is better when the

accuracy and consistency are considered together and less

sensitive to κ on account of the adaptive estimation of the

SNSM.

B. Case 2

In this subsection, we carry out a manoeuvring vehicle

tracking experiment with real world data. A real vehicle

is equipped with an inertial measurement unit (IMU) and

two GPS receivers. One non-differential GPS receiver pro-

vides the measurements for the tracking. In addition, high-

precision real-time kinematic GPS information is integrated

with IMU information by a NovAtel synchronized position

attitude navigation (SPAN) position system, which provides

the reference position of the vehicle. Note that the reference

position information is compressed in time to synchronize

with the GPS measurement information whose frequency is

1Hz. The whole trajectory runs for 3177m with an average

speed of 4.3m/s. Furthermore, the state space model, nominal

MNCM and the parameter settings of different algorithms

are consistent with the simulation, and the nominal SNCM

is the same as Case 1. We plot the true trajectory and GPS

measurements in Fig. 12 to obtain an intuitive sense of the

distribution of outliers.

It is clear from Fig. 12 that the vehicle makes several

turns during the experiment, especially in the early part of
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TABLE VII: APEs within different intervals.

Intervals NKF HKF MCKF RSTKF SWRKF RGAS

Spot 1 [88, 111] 5.08 5.08 5.09 6.06 2.14 1.08

Spot 2 [402, 419] 7.31 7.28 7.34 7.60 6.54 2.45

Spot 3 [489, 522] 6.91 6.91 6.94 7.60 3.84 2.80

Entirety [0, 738] 3.80 3.80 3.81 4.29 2.34 1.65

the trajectory, which gives rise to the state outliers in the

kinematic model of uniform linear motion. Besides, it can

be seen from the zoomed graph that the GPS measurement

outliers are distributed around the true trajectory, which may

be induced by the vehicle being occasionally obscured by trees

or buildings. Next, we mark three typical spots with ellipses

in Fig. 12 to make detailed explanations. At spots 1 and 3,

the vehicle is experiencing diversions, which will induce state

outliers. Nonetheless, the measurement quality is satisfactory.

The performance of the proposed SWRKF is second only to

the RGAS, which cannot be executed online. We attribute

this performance to its excellent ability to identify the state

outliers caused by the diversion accurately and rapidly when

the measurements are accurate. The proposed filter thereby

increases the corresponding SNCMs to facilitate the turn of

the estimated trajectory, as shown in spots 1 and 3 in Fig. 12.

However, the other algorithms take a long time to re-track the

true trajectory but are left behind again in the next diversion,

which results in their poor tracking performance.

At spot 2, the vehicle suffers from severe measurement

outliers and slight state outliers, where the former are indicated

by the significant deviation of the measurement curve from

the real trajectory with drastic fluctuations. In this case, both

the model predictions and measurements are not reliable.

As a consequence, even the RGAS shows an unsatisfying

performance which rationalizes the poor performance of other

algorithms. Nevertheless, the proposed algorithm still tracks

the true trajectory rapidly in a short time once the measure-

ments become normal. The APEs at the three spots are listed in

Table VII, which shows the same results as the above analyses.

The PE curves and APEs of all algorithms over the entire
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Fig. 14: APEs and ANEESs for different nominal SNCMs.

interval are shown in Fig. 13 and Table VII, respectively.

It can be seen from Fig. 13 and Table VII that the RGAS

certainly has the best estimation accuracy. Besides, the pro-

posed SWRKF has the second best estimation accuracy among

all compared algorithms, which verifies the superiority of the

proposed SWRKF as compared with the existing cutting-edge

outlier-robust filters.

In the experiment, the setting of the nominal SNCM usually

depends on engineering experience. So we test the dependence

of the algorithms performance on the factor κ in Fig. 14.

As shown in Fig. 14, due to the adaptive estimation of the

SNSM, the proposed SWRKF has better estimation accuracy

and consistency than the existing outlier-robust filters in each

case. However, the performance of the existing NKF, HKF,

MCKF and RSTKF are greatly dependent on the selection of

κ, which demonstrates the benefits of adaptive behavior in

the proposed SWRKF. Note that the RGAS even has worse

consistency than the proposed SWRKF when κ is set as 0.05

or 0.5. This is because the assumption of stationary noise in

the RGAS does not hold in the scenario of this experiment

where the noise statistics are time-varying due to turns and

continuous GPS block, as shown in Fig. 12. The proposed

SWRKF, by contrast, is better suited to this scenario since it

is able to estimate the time-varying SNSM by the use of the

sliding window method.

VI. CONCLUSIONS

In this paper, a novel SWRKF was developed. By modeling

the state and measurement noises in a sliding window as

Student’s t distributed with random scale matrices, the states

were jointly estimated with the scale matrices and ARVs

in the sliding window using the VB method. The proposed

SWRKF was validated by the simulations and experiments of

manoeuvring target tracking, which show that the proposed

SWRKF enjoys better estimation accuracy and consistency

in response to state and measurement outliers on account

of the superior performance of outlier identification but has

higher computational complexity than the existing outlier-

robust algorithms.
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APPENDICES

A. Proof of Proposition 2

Using θk = xk−L:k and (14) in (13), the iterative loga-

rithmic posterior distribution log q(i+1)(xk−L:k) is formulated

as

log q(i+1)(xk−L:k) = −0.5(xk−L − x̂k−L|k−L)
TP−1

k−L|k−L

× (xk−L − x̂k−L|k−L) +

k
∑

j=k−L+1

[

−0.5E(i)[λj ]

× (zj −Hjxj)
TE(i)[R−1

k ](zj −Hjxj)− 0.5E(i)[ξj ]

× (xj − Fjxj−1)
TE(i)[Q−1

k ](xj − Fjxj−1)
]

+ cxk−L:k

(33)

Taking exponents on both sides of (33) and utilizing the

Gaussian PDF yield

q(i+1)(xk−L:k) ∝ N(xk−L; x̂k−L|k−L,Pk−L|k−L)

×
k
∏

j=k−L+1

[

N(zj ;Hjxj , R̃
(i)
j|k)N(xj ;Fjxj−1, Q̃

(i)
j|k)

]

(34)

Hence, Proposition 2 is confirmed.

B. Proof of Proposition 3

Employing (14) in (13) and setting θk = Qk, we have

log q(i+1)(Qk) = −0.5(ŷk|k−L + 2n+ 3) log |Qk|−

0.5tr









k
∑

j=k−L+1

A
(i+1)
j E(i)[ξj ] + Ŷk|k−L



Q−1
k



+ cQk

(35)

Likewise, one can get log q(i+1)(Rk) by setting θk = Rk.

According to the IW PDF, Proposition 3 can be easily justified.

C. Proof of Proposition 4

Utilizing θk = ξk−L+1:k and (14) in (13), the iterative PDF

of ξk−L+1:k can be expressed as

log q(i+1)(ξk−L+1:k) =
k

∑

j=k−L+1

{

[0.5(n+ ω)− 1] log ξj

−0.5
[

ω + tr(A
(i+1)
j E(i)[Qk])

]

ξj

}

+ cξj−L+1:k
(36)

According to (36), the marginal PDF of ξj is formulated as

q(i+1)(ξj) = G(ξj ; â
(i+1)
j|k , b̂

(i+1)
j|k ) (37)

Similarly, the marginal PDF of λj can be updated as

Gamma. Therefore, Proposition 4 is verified.
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