
This is a repository copy of Node-feature convolution for graph convolutional networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/185186/

Version: Published Version

Article:

Zhang, L., Song, H., Aletras, N. orcid.org/0000-0003-4285-1965 et al. (1 more author) 
(2022) Node-feature convolution for graph convolutional networks. Pattern Recognition, 
128. 108661. ISSN 0031-3203 

https://doi.org/10.1016/j.patcog.2022.108661

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Pattern Recognition 128 (2022) 108661 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Node-Feature Convolution for Graph Convolutional Networks 

Li Zhang 
a , Heda Song 

b , Nikolaos Aletras a , Haiping Lu 
a , ∗

a Department of Computer Science, The University of Sheffield, 211 Portobello, Sheffield S1 4DP, United Kingdom 
b Department of Computer Science. University of Nottingham. United Kingdom 

a r t i c l e i n f o 

Article history: 

Received 9 July 2020 

Revised 15 March 2021 

Accepted 19 March 2022 

Available online 26 March 2022 

Keywords: 

Graph 

Representation learning 

Graph convolutional networks 

Convolutional neural networks 

a b s t r a c t 

Graph convolutional network (GCN) is an effective neural network model for graph representation learn- 

ing. However, standard GCN suffers from three main limitations: (1) most real-world graphs have no 

regular connectivity and node degrees can range from one to hundreds or thousands, (2) neighboring 

nodes are aggregated with fixed weights, and (3) node features within a node feature vector are con- 

sidered equally important. Several extensions have been proposed to tackle the limitations respectively. 

This paper focuses on tackling all the proposed limitations. Specifically, we propose a new node-feature 

convolutional (NFC) layer for GCN. The NFC layer first constructs a feature map using features selected 

and ordered from a fixed number of neighbors. It then performs a convolution operation on this feature 

map to learn the node representation. In this way, we can learn the usefulness of both individual nodes 

and individual features from a fixed-size neighborhood. Experiments on three benchmark datasets show 

that NFC-GCN consistently outperforms state-of-the-art methods in node classification. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Graphs, such as social, biological and citation networks, are 

ubiquitous data structures capturing interactions between individ- 

ual nodes [1,2] . Nodes in a graph are typically associated with fea- 

ture vectors. For example, in a citation network, nodes represent 

documents, edges represent the citation links between documents, 

and node features represent textual information often as bag-of- 

words, i.e., sparse vectors of weighted word frequencies in a docu- 

ment. 

Graph Convolutional Network (GCN) [3] was recently proposed 

to model graphs using neural networks, with successful applica- 

tions in node classification, link prediction, recommendation [4,5] . 

GCN effectively combines structure information and node features 

in a graph. It represents a node by aggregating the feature vectors 

of all its neighbors, analogous to the receptive field of a convolu- 

tional kernel in Convolutional Neural Networks (CNNs) [6] . 

Nevertheless, the standard GCN has three limitations: (1) the 

number of neighbors typically varies (e.g., from one to hundreds) 

across nodes so sparsely connected nodes have insufficient infor- 

mation while densely connected nodes may have redundant infor- 

∗ Corresponding author at The University of Sheffield, 211 Portobello, Sheffield, S1 

4DP, United Kingdom. 

E-mail addresses: lzhang72@sheffield.ac.uk (L. Zhang), 

Heda.Song@nottingham.ac.uk (H. Song), n.aletras@sheffield.ac.uk (N. Aletras), 

h.lu@sheffield.ac.uk (H. Lu). 

mation; (2) the relevance of individual neighbors of a node is fixed 

(depending on the node degree), lacking the flexibility to char- 

acterize different relationships between nodes; (3) individual fea- 

tures in neighbor feature vectors may have different usefulness but 

this is not modeled. Figure 1 shows an example. The central node 

0 belongs to Class A ( Neural Networks ) and it can be cited (i.e., con- 

nected) by papers from Class B ( Probabilistic Methods ). Node 5 from 

Class B may contain some common features with the central node 

0 from Class A, e.g., neuron , and also some features more unique 

for Class B, e.g., posterior . Thus, the feature neuron should be more 

important than posterior for representing the central node. How- 

ever, these features are equally weighted in existing GCN methods. 

GCN extensions have been proposed to address the mentioned 

limitations: (1) sampling-based methods sample a fixed-size set 

of neighbors or learn an adaptive receptive fields for the given 

node; (2) neighbor weighting-based methods learn to treat differ- 

ent neighbors differently instead of simple aggregation. However, 

the sampling-based methods can not treat different features within 

a feature vector differently and directly weighting all neighbors 

may bring in too much noisy information and further influence the 

result. Besides, weighting each neighbors will be time consuming 

and unnecessary, especially for dense graphs. Existing works did 

not solve all the limitations together. 

In this paper, we propose a novel method called Node-Feature 

Convolution for Graph Convolutional Network (NFC-GCN) to solve 

all the mentioned problems. Our method learns to assign different 

https://doi.org/10.1016/j.patcog.2022.108661 

0031-3203/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 



L. Zhang, H. Song, N. Aletras et al. Pattern Recognition 128 (2022) 108661 

Fig. 1. A six-node subgraph from the Cora dataset [7] . Each node corresponds to 

a machine learning paper, with a bag-of-words feature vector x i ( i = 0 , 1 , 2 , ..., 5 ). 

Nodes 0–3 belong to Class A ( Neural Networks ), and nodes 4–5 belong to Class B 

( Probabilistic Methods ). Individual features in x i are not equally important for repre- 

senting the central node 0. 

weights to individual node features to get a new representation of 

a given node in three steps: (1) we first select a fixed-size set of 

neighbors ( Neighbor Selection ) according to the similarity between 

the feature vectors of the given node and its neighbors to construct 

a fixed-size feature map; (2) subsequently, we introduce a convo- 

lutional layer ( Node-Feature Convolution (NFC) ), to learn a first-level 

representation by assigning different weights to node features; (3) 

finally, we feed the output of the NFC layer to a Standard GCN to 

obtain a second-level node representation. 

Our key contributions are: (1) We propose a new architecture, 

the NFC layer for GCN-based models, to enable end-to-end learning 

of weights for different features within the feature vector by apply- 

ing the CNN; (2) we apply the neighbor selection strategy to only 

select most related neighbors for neighborhood aggregation, which 

alleviates the neighborhood explosion problem, computational bur- 

den and allows for a deeper model; (3) the number of our model’s 

parameters are not related to the dimension of input data, because 

it inherits the advantage of CNN. 

The rest of the paper is organized as follows. We review pre- 

liminaries and related works in Section 2 . Then we present the 

proposed method in Section 3 . Next, we report the experimental 

results in Section 4 . Finally, we conclude this paper in Section 5 . 

2. Preliminaries and Related Works 

2.1. Notations 

We focus on modeling graphs with node features available. We 

consider graphs with a feature vector associated with each node. 

Let G= (V, E, X ) denote an undirected graph with N nodes v i ∈ 

V , edges (v i , v j ) ∈ E , where i, j = 1 , ..., N, an adjacency matrix A ∈ 

R N×N , and a feature matrix X ∈ R N×D containing N D -dimensional 

feature vectors. 

2.2. Graph Representation Learning 

Graph representation leaning methods can be categorized 

into factorization-, random walk- and neural network-based ap- 

proaches [8] . 

1. Factorization-based approaches. Early methods for learning 

node representations mainly focus on matrix factorization ap- 

proaches, such as Locally Linear Embedding (LLE) [9] , Laplacian 

Eigenmaps (LE) [10] , Graph Factorization (GF) and HOPE [11] . 

These methods represent the connections between nodes in the 

form of a matrix and obtain node embeddings by factorizing 

the matrix. 

2. Random walk-based approaches. Random walks over graphs 

have been used to capture the structural relationships between 

nodes. Inspired by Word2Vec, DeepWalk generated random 

paths over a graph, and then applied the SkipGram model to 

maximize the co-occurrence probability of the neighbors con- 

ditioned on a given node embedding [12] . Node2vec [13] ex- 

tended DeepWalk with biased-random walks, while Walklets 

[14] modified the random walk process by skipping over nodes 

in the graph. Diffusion based network embedding [15] records 

all the visited nodes and transforms the single-trace random 

walks into multiple-trace random walks. 

3. Neural network-based approaches. Graph neural networks 

(GNNs) have been introduced in [16] . They consist of an it- 

erative process which propagates the node states until the 

node representation reaches a stable fixed point. More re- 

cently, several improved methods have been proposed. In [17] , 

gated recurrent units were introduced in the propagation step. 

The neural graph fingerprints method [18] further introduced 

a convolution-like propagation rule. PATCHY-SAN [19] selected 

and normalized a fixed-size neighborhood for a given node, 

then CNNs were used to learn the neighborhood structure in- 

formation. Structure Deep Network Embedding (SDNE) [20] ex- 

tended the traditional deep autoencoder to learn from the node 

structure information to get a low-dimensional embedding for 

each node. 

2.3. Graph Convolutional Networks 

The factorization-based, random walk-based and mentioned 

neural network-based methods (such as PATCHY-SAN, SDNE) only 

utilize graph structure (without node features or attributes) to 

learn new node representations. GCN was proposed as an effective 

graph representation learning model that naturally combines struc- 

ture information and node features in the learning process [3] . It 

was derived from conducting graph convolution in the spectral do- 

main [21] . The spectral convolutions on graphs can be defined as 

the multiplication of a signal x ∈ R N with a filter g w parameterized 

by w ∈ R N in the Fourier domain as following: 

g w ⋆ x = U g w (�) U 
T x . (1) 

g w can be seen as a function of eigenvalues of L , and L is defined 

as 

L = I N − D 
− 1 

2 AD 
− 1 

2 = U�U 
T , (2) 

where I N is an identity matrix, D is a diagonal degree matrix 

with D ii = 
∑ 

j A i j . � = diag([ λ0 , ..., λN−1 ]) ∈ R N×N and λ0 , ..., λN−1 

are eigenvalues of L . Eq. (1) incurs expensive computation of 

the Laplacian eigenvectors ( O(N 2 ) ). To circumvent this problem, 

a polynomial function computed recursively from L can be used 

to approximate g w (�) [22] . The Chebyshef polynomial are recur- 

sively defined as T k (x ) = 2 xT k −1 (x ) − T k −2 (x ) , with T 0 (x ) = 1 and 

T 1 (x ) = x . Then a filter can be parameterized as the truncated ex- 

pansion with order K that can be written as: 

g w (�) ≈
K 

∑ 

k =0 

w k T k ( ̃  �) , (3) 

where ˜ � = 2 �/λmax − I N is a diagonal matrix of scaled eigenvalues 

in [-1,1]. The filter operation can be written as: 

g w ⋆ x ≈
K 

∑ 

k =0 

w k T k ( ̃ L ) x , (4) 

where ˜ L = 2 L /λmax − I N . T k ( ̃ L ) can be calculated using the recur- 

rence relation: T k ( ̃ L ) = 2 ̃ L T k −1 ( ̃ L ) − T k −2 ( ̃ L ) , and the entire filter op- 

eration cost is O(KN) . In [3] , GCN simplified Eq. (4) and lim- 

ited K = 1 , and the filter parameter w k was shared over the whole 

graph. 

For signal X ∈ R N×D with D input channels (i.e., a D -dimensional 

feature vector for every node) and D 1 filters, Eq. (4) (the convolved 

2 



L. Zhang, H. Song, N. Aletras et al. Pattern Recognition 128 (2022) 108661 

signal matrix) can be written as: 

H (1) = σ
(

ˆ A X W (0) 
)

, (5) 

where 

ˆ A = ˜ D 
− 1 

2 ̃  A ̃  D 
− 1 

2 

is a normalized adjacency matrix of the undirected graph G with 

added self-connections 

˜ A = A + I N , 

˜ D is defined with its diagonal entries as 

˜ D ii = 

∑ 

j 

˜ A i j , 

W (0) ∈ R D ×D 1 is a trainable input-to-hidden weight matrix, σ (·) 

denotes an activation function such as the ReLU (·) = max (0 , ·) , and 

H (1) ∈ R N×D 1 is the matrix of activation in the first layer. Thus, the 

propagation rule can be written as: 

H (l+1) = σ
(

ˆ A H 
(l) 
W (l) 

)

, (6) 

where W (l) ∈ R D l−1 ×D l is a layer-specific trainable weight matrix 

and H (l) ∈ R N×D l is the matrix of activation in the l-th layer. H (0) = 

X is the node feature matrix. 

A GCN layer ( Eq. (6) ) consists of two steps: (1) aggregating 

the given node and its neighbors’ feature vectors with different 

weights (according to the node degrees): 

ˆ h 
(l) 
i 

= h 
(l) 
i 

+ 

∑ 

j∈N i 

1 
√ 

d i d j 
h 

(l) 
j 

( j ∈ N i ) , (7) 

where d i and d j are the node degrees of node v i and node v j re- 

spectively, and h 
(l) 
i 

, h 
(l) 
j 

are the representations of v i , v j of the l-th 

layer, N i is the neighborhood of v i in the graph; (2) feeding the 

averaged feature vector to a fully-connected neural network. 

GCN has significantly advanced the state-of-the-art in graph 

representation learning but it has three major limitations: 

• Varied neighborhood size. GCN learns a new node represen- 

tation from features of all its neighbors. In real-world graphs, 

the number of neighbors for a given node can range from one 

to hundreds or even thousands. Therefore, some nodes may 

not have sufficient number of neighbors to aggregate informa- 

tion, while some other nodes may have their own features h 
(l) 
i 

being “washed out” due to aggregating information from too 

many neighbors [23] . Moreover, varying number of neighbors 

can lead to neighborhood explosion which subsequently causes 

computational problems, e.g., excessive space (memory) [3] and 

time complexity [24,25] . 
• Fixed neighbor weighting. GCN aggregates neighbors with 

fixed weights inversely proportional to the central node and 

neighbors’ node degrees [5] . Once the graph structure is given, 

the weights are fixed. This weighting strategy does not consider 

node features at all, limiting its ability to effectively capture the 

relationships between nodes. 
• Equal weighting of individual features. GCN does not select 

or weight individual features in a feature vector. As discussed 

in Section 1 ( Fig. 1 ), for a particular node, features from neigh- 

bors of different classes may have different im portance com- 

pared to those from neighbors of the same class. Therefore, 

we hypothesize that we can obtain better node representations 

by weighting features individually within feature vectors and 

across neighbors. 

2.4. GCN Extensions 

Several methods have been proposed to deal with the first two 

limitations above: 

• Sampling-based methods. Instead of considering all neighbors, 

some methods apply sampling strategies to only aggregate a 

part of neighbors. GraphSAGE [24] uniformly sampled a fixed 

number of neighbors and aggregated them with a sum, mean, 

LSTM or maxpooling aggregator as follows: 

ˆ h 
(l) 
i 

≈ h 
(l) 
i 

+ aggregator(h 
(l) 
j 

, j ∈ ˆ N i ) , (8) 

where ˆ N i is the neighborhood generated by a fixed-length ran- 

dom walk, and they can come from a different number of hops, 

or search depth, away from a given node. FastGCN [25] inter- 

preted graph convolutions as integral transforms of embedding 

functions and directly sampled the nodes in each layer inde- 

pendently. It approximated ˆ h 
(l) 
i 

with s i.i.d. samples v 1 , ..., v s as: 

ˆ h 
(l) 
i 

≈
N 

s 

∑ 

v s ∼q (v ) 

ˆ A i j h 
(l) 
s /q (v s ) , (9) 

where the importance distribution for each node v i is q (v i ) ∝ 

‖ A (: , i ) ‖ 2 . JP-networks [26] sampled learned intermediate rep- 

resentations for a given node to get the final node representa- 

tion. Besides sampling strategies, some dropout tricks are pro- 

posed. DropEdge [27] randomly removed a set of edges, and 

Graph DropConnect (GDC) [28] and GeniePath [29] learned the 

connections in a graph, jointly with GNN model parameters. 

These sampling-based methods mainly focus on how to select 

neighbors, but do not treat the selected neighbors differently in 

the latter aggregation step. 
• Neighbor weighting-based methods. In GCN, a central node 

aggregates all neighbors with fixed weights decided by the 

graph structure (node degree). Many algorithms have been pro- 

posed to treat the neighbors differently in neighborhood aggre- 

gation process. Disentangled graph convolutional network (Dis- 

enGCN) [30] proposed a neighborhood routing mechanism to 

identify the factor that may have caused the link from a given 

node to one of its neighbors, and accordingly send the neigh- 

bor to the channel responsible for that factor. Then each chan- 

nel can perform an aggregation independently, which means 

each cluster of neighbors are treated differently in DisenGCN. 

Inspired by attention mechanisms [31] , Graph Attention Net- 

works (GAT) introduced an attention mechanism to dynamically 

assign weights to different neighbors [32] as: 

ˆ h 
(l) 
i 

= h 
(l) 
i 

+ 

∑ 

j∈N i 

αi j h 
(l) 
j 

, (10) 

where αi j is the learned weights with a shared attention 

mechanism. Although each node is treated differently, all in- 

dividual features in a feature vector share the same weight, 

without considering their individual importance . Masked GCN 

[33] learned a diagonal mask matix that can determine which 

attributes can be propagated to the central node, LA-GCN 

[34] and GNN-Film respectively introduced an auxiliary model 

and feature-wise linear modulations (FiLM) [35] for a feature- 

wise modulation in the neighborhood aggregation process. The 

two methods considered all neighbors, which is not neces- 

sary and directly learning the mask or FiLM need a very huge 

model, especially for graphs with high-dimensional node fea- 

tures. Learnable Graph Convolutional Layer (LGCL) [36] applied 

CNN on the reorganized embeddings (learned from GCN) of the 

central node and its neighbors, rather than the original features. 

The reorganization of node embeddings broke the original cor- 

respondence between node representations. 

To the best of our knowledge, our work is the first one to con- 

sider both neighbor sampling and neighbor reweighting in both 

node and feature level. Our model only selects the fixed-size and 

most related neighbors and this strategy can effectively allevi- 

ate the neighborhood explosion problem and allow for a deeper 

3 



L. Zhang, H. Song, N. Aletras et al. Pattern Recognition 128 (2022) 108661 

Fig. 2. NFC-GCN architecture. NFC-GCN consists of three main steps: (1) Neighbor selection and ordering ; (2) Node-feature convolution operating on node-feature maps to 

obtain a flattened first-level node representation; and (3) GCN: the first-level NFC representation is passed through an L -layer GCN model ( L is a hyperparameter) to learn a 

second-level node representation is passed to a classifier. The figure is best viewed in color/on screen. 

model. Then we apply CNN on the feature map containing features 

from the selected neighbors to learn different weights for different 

features from neighboring nodes. 

3. Proposed NFC-GCN 

Figure 2 shows the proposed NFC-GCN model. The key idea of 

our approach is to design a node-feature convolution layer to learn 

different weights for different features in different neighbors be- 

fore any aggregation. 

3.1. Neighbor Selection and Ordering 

To deal with varying node degrees in a graph, we select the 

most useful neighbors to obtain a feature map with fixed size. 

Nodes can be ordered using common node centrality metrics such 

as node degree, betweenness centrality, eigenvector centrality and 

PageRank. Previous works mainly focus on selecting nodes with- 

out considering node features. In this paper, we perform neighbor 

selection and ordering based on the cosine similarity between the 

central node v i and its neighbors v j : 

sim i j = 
x i · x j 

‖ x i ‖‖ x j ‖ 
, (11) 

where x i ∈ R D and x j ∈ R D are the feature vectors of v i and v j re- 

spectively. By specifying a hyperparameter feature map bandwidth 

n , we select the top n − 1 neighbors with the highest similarity 

with the central node. 

In practice, sparsely connected nodes may have less than n − 1 

neighbors. In this case, we select from the central node and all its 

neighbors based on probabilities proportional to the similarity sim i j 

to get the desired feature map bandwidth n . For each node v i , we 

obtain a local feature map X 
′ 

i ∈ R D ×n 

X 
′ 

i = 
{

x i , { x j ′ , j 
′ ∈ N 

′ 
i } 
}

, (12) 

consisting of the feature vectors of the given node i and its selected 

neighbors j ′ ∈ N ′ i , where N ′ i represents the selected neighbors of 

node v i . This feature map can be seen from two dimensions: (1) 

the first dimension represents D node features, e.g., bag-of-words 

features with a fixed order for citation networks; (2) the second 

dimension represents the n nodes, including the central node and 

the n − 1 selected neighbors. These nodes are ordered according to 

the neighbors’ feature similarity with the central node from high 

to low. 

Selecting a fixed number of neighbors can prevent neighbor- 

hood explosion and central node being “washed out”. According 

to [26] , the influence distribution of v j on v i can show how much 

a change in a neighbor v j affects the final representation of the 

central node v i in the last layer. 

The influence score and distribution definition in [26] states that 

for a graph G= (V, E, X ) , h 
(0) 
i 

is the input feature and h 
(l) 
i 

is the 

learned hidden feature of v i at the l-th layer ( Eq. (6) ). The influ- 

ence score I(i, j) of v i by any v j is the sum of the absolute values 

of the entries of the Jacobian matrix 
∂h (l) 

i 

∂h (0) 
j 

. After O( log | N | ) itera- 

tions of neighborhood aggregation using all neighbors, the repre- 

sentation of each node is “influenced almost equally by any other 

node” [37] . Thus, the final node representation captures mainly the 

global graph, with limited information about individual nodes. Per- 

forming neighbor selection for each GCN layer can alleviate the 

neighborhood explosion. 

3.2. Node-Feature Convolution (NFC) 

As a representation learning method, CNN works on fixed-size 

grids (e.g., images) or sequences (e.g., sentences) to tackle various 

problems such as image classification [2] , machine translation [31] , 

text or sentence classification [38] successfully. The Neighbor Selec- 

tion and Ordering step enables us to apply a convolution operation 

on the node-feature map X 
′ 

i obtained. 

In the citation graph, nodes usually represent documents, edges 

represent the citation links between documents, and node fea- 

tures represent textual information often as bag-of-words. The 0/1- 

valued feature vector of a node corresponds to an ordered word 

list from a dictionary, which is analogous to the ordered words 

in a sentence or document of an NLP task [38] . For example, a 

part of the ordered word list of Cora includes “Machine”, “Markov”, 

“Monte-Carlo”, “Neural”, “Network”, then the local feature pattern 

“11100” could be highly related to the category of “Reinforcement 

Learning” and “10011” could be related to the category of “Neural 

Networks”. The adjacent features in a node feature vector are re- 

4 



L. Zhang, H. Song, N. Aletras et al. Pattern Recognition 128 (2022) 108661 

Fig. 3. Convolution on sentence and node feature map. The node feature corresponds to the word list, and the number of neighbors corresponds to the dimension of each 

word vector. 

lated. Therefore, we can use convolutions to find the potential local 

patterns that indicate a category. 

As shown in Fig. 3 , a fixed-size convolutional kernel scans over 

ordered words to obtain the representation of a sentence. Each 

0/1-valued feature of our citation datasets (e.g. Cora, Citeseer) in- 

dicates the absence/presence of a corresponding word from a dic- 

tionary, which naturally inspires us to use 1-D convolution to scan 

over the feature vector of a node. 

We perform convolution with C filters of size k and stride s on 

the local feature map X 
′ 

i ∈ R D ×n of each node as 

� X i = C on v (X 
′ 

i ) . (13) 

The number of input channels is n . The output � X i is of dimension 

D ′ ×C , where D ′ is determined by k , s , and C, the hyperparameters 

of NFC. Then, we flatten the output as following: 

h 
(0) 
i 

= f latten ( � X i ) , (14) 

which is the first-level node representation. 

3.3. GCN Layers 

Nodes with sparse connectivity (few first-order neighbors) may 

have insufficient information and need higher-order neighbors’ in- 

formation to obtain better representations. Better representation of 

a given node can be obtained by considering L -order neighbors, 

where the best value for L depends on the data. Therefore, we 

pass the NFC representation through L additional GCN layer(s) to 

enable a central node aggregating information from higher-order 

neighbors. An aggregation operator works on the first-level node 

representation ( Eq. (14) ) to learn another new representation of 

node i , as in Eq. (6) . 

After L GCN layers, the final representation h 
(L ) 
i 

will be passed 

to a fully-connected layer with a sof tmax activation function. For 

multi-class classification, the loss function is defined as the cross- 

entropy error over all labeled examples: 

L = −
∑ 

l∈V l 

F 
∑ 

f=1 

Y l f ln h 
(L ) 
l 

, (15) 

where V l is the set of node indices that have labels and F is the 

dimension of output features equaling to the number of classes. 

Algorithm 1 Pseudocode for the proposed NFC-GCN 

Input: G= (V, E, X ) with N nodes; 

Adjacency matrix A ∈ R N×N ; 

Feature matrix X ∈ R N×D ; 

Labeled nodes V l ; 

Label indicator matrix Y l f ∈ R | V l | ×F ; 

The number of selected neighbors is ( n -1); 

The parameters in the node-feature convolution process: filter 

size k , stride s , the number of filters: C, the convolution oper- 

ation C on v (·) 

Output: Vector representation h 
(L ) 
i 

for each v i ∈ V l do 

if d i > n − 1 then 

choose n − 1 neighbors according to similarity from high 

to low 

else if then 

select (n − 1 − d i ) nodes based on probabilities propor- 

tional to the similarity 

end if 

X ′ i = 
{

x i , x j ′ , j 
′ ∈ N ′ i 

}

n 
� X i = C on v ( X ′ i ) 

h 
(0) 
i 

= f latten ( � X i ) 

for each layer l, l=1,..., L do 

h 
(l) 
i 

= σ (W (l) (h 
(l−1) 
i 

+ 
∑ 

j∈N i 
h 

(l−1) 
j 

)) ;

end for 

end for 

Y l f ∈ R | V l | ×F is a label indicator matrix. Algorithm 1 summarizes 

the general framework of NFC-GCN. 

Figure 4 demonstrates the neighbor selection achieved via dif- 

ferent models (GCN-GCN, NFC-GCN, NFC-NFC). Considering a two- 

layer GCN (i.e., GCN-GCN) in Fig. 4 (b), after the first propagation 

(first GCN layer), each node (e.g., the red node) only contains the 

first-order neighbors’ information (green nodes). After the second 

propagation (second GCN layers), each node aggregates informa- 

tion from all its first-order and second-order neighbors (purple 

nodes). Figure 4 (c) shows NFC with one GCN layer (i.e., NFC-GCN). 

In the first propagation, each node (the red node) only aggre- 

gates information of the top two most similar first-order neighbors 

5 



L. Zhang, H. Song, N. Aletras et al. Pattern Recognition 128 (2022) 108661 

Fig. 4. Comparison with different layers. Take the red node as an example, the red node’s first-order and second-order neighbors are respectively green and purple nodes, 

as shown on the left. After a two-layer GCN, the central node contains information from all first-order neighbors and second-order neighbors as shown in (b) GCN-GCN. 

After one NFC and one GCN layer, each node contains information from all its first-order (directly) and part of its second-order neighbors’ information (indirectly) as in (c) 

NFC-GCN. After two NFC layers ((d) NFC-NFC), the central node only contains the two most similar first-order neighbors and part (less than in NFC-GCN) of second-order 

neighbors’ information. 

Fig. 5. Differences between GCN, GAT, and NFC-GCN. In the aggregation process, 

both GCN and GAT aggregate all the neighbors with different weights. The weights 

β j , for each neighbor related to node degree are fixed in GCN. While α j is learn- 

able in GAT. But all the features in each feature vector share the same weights β j , 

or αi , i, j ∈ (1 , 5) . In contrast, our method performs convolution operation on the 

selected node-feature map to assign different weights (such as a 11 , a 12 , ..., a 33 ) to 

different f eatures in different neighbors. 

(two green nodes with red circles). After the first propagation (NFC 

layer), each green node’s representation also contains information 

from its two most similar neighbors as well (the dash green curve 

in (c) NFC-GCN). After the second GCN layer, the central node’s 

representation contains information from all the first-order neigh- 

bors (green nodes) but only part of (selected) second-order neigh- 

bors (pink nodes). Therefore, NFC-GCN only selects part of the 

neighbors for the central node’s representation learning even after 

adding GCN layers. Compared with NFC-GCN, each node contains 

less information from its first-order and second-order neighbors 

after two NFC layers. Because the central node (red node) aggre- 

gates two green nodes with the red circle, each green node con- 

tains information of its two most related neighbors (pink nodes) 

after the first NFC layer. In the second propagation (after the sec- 

ond NFC layer), the central node still aggregates two first-order 

neighbors who already contain two of their own first-order neigh- 

bors’ (pink nodes) information. Therefore, after two NFC layers, 

each node contains two first-order neighbors and part of second- 

order neighbors information (indirectly). Compared to the stan- 

dard GCN model (GCN-GCN - · · · ), NFC-GCN and NFC-NFC can al- 

leviate the neighborhood explosion (over smoothing problem) and 

help avoid the central node being “washed out” due to aggregating 

too many neighbors. A pure NFC model (NFC-NFC- · · · ) can reduce 

the considered neighbors further. But how much information (the 

number of neighbors) should be considered for the best represen- 

tation learning of a given node has no precise answer. 

3.4. Computational Complexity 

A key part in our method is the NFC-layer, and the filters are 

shared by all nodes in a graph. Therefore, the computation of the 

parameters in the filters can be parallelized across all nodes. The 

computational complexity of a GCN layer as shown in Eq. (6) is 

O(N × D l−1 × D l ) , while an NFC-layer ( Eq. (13) ) is O(N ×C × k ×

n ) . In GCN, the models’ complexity is related to the node feature 

dimension ( W (0) ∈ R D 1 ×D ) and this may lead to many parameters 

in the model if the dimension of the original node feature is high. 

It should be emphasized that the NFC layer inherits the advantage 

of CNN whose parameters are not related to the image size, so 

the complexity of NFC layer is not influenced by the node feature 

( C, k, n are hyperparameters). 

3.5. Differences with other GCN Extensions 

Sampling-based methods. Our method selects the neighbors 

according to their similarities with the central node from high to 

low. While, GraphSAGE [24] and DropEdge [27] select the neigh- 

bors randomly with random work or drop out some edges in a 

graph. FastGCN [25] directly sampled the nodes in each hidden 

layer independently and JP-networks [26] sampled learned inter- 

mediate representations for a given node to get the final node rep- 

resentation. Graph DropConnect (GDC) [28] and GeniePath [29] au- 

tomatically learn the connections in a graph. 

Sampling-based methods. Our method selects the neighbors 

according to their similarities with the central node from high 

to low. In contrast, GraphSAGE [24] and DropEdge [27] select the 

neighbors randomly with random work or drop out some edges in 

a graph. FastGCN [25] directly sampled the nodes in each hidden 

layer independently and JP-networks [26] sampled learned inter- 

mediate representations for a given node to get the final node rep- 

resentation. Graph DropConnect (GDC) [28] and GeniePath [29] au- 

tomatically learn the connections in a graph. 

Neighbor weighting-based methods. In DisenGCN and GAT, all 

the features within a feature vector still shared the same weight. 

In contrast, our method selects part of the neighbors and learns 

to assign different weights to different features in different neigh- 

bors. Masked GCN, LA-GCN and GNN-Film can do a feature-level 

attention, but they consider all neighbors in the learning process, 

6 



L. Zhang, H. Song, N. Aletras et al. Pattern Recognition 128 (2022) 108661 

which may introduce much noisy information. Besides, the com- 

plexity of their models is related to the node feature, which can 

be time-consuming for high-dimension input. Our model only se- 

lects the most related neighbors before aggregation and applies 

CNN in the aggregation. Our model inherits the advantage of CNN 

and its model size is not related to the input data. LGCL used CNN 

after a GCN layer, so it inherited the limitations of GCN as we 

mentioned above. In contrast, our method uses CNNs in the first 

step to extract useful information from raw node features. Besides, 

LGCL constructed the feature map by selecting the k -largest values 

for each feature from all neighbors’ embeddings (learned from one 

GCN layer), which broke the correspondence in the original node 

embedding. In our method, the feature map is constructed from 

the central node and neighbors’ (selected and ordered) raw node 

features. Therefore, the constructed feature map has a consistent 

structure, which is suitable for CNNs to perform on. 

4. Experiments 

In this section, we conduct extensive experiments on three 

real-world benchmark datasets to evaluate our proposed model 

from three main aspects: 1) the node classification performance 

in terms of accuracy and convergence; 2) the effectiveness of NFC 

aggregation; 3) parameter sensitivity. Finally, we analyze the limi- 

tations and advantages of our method. 

4.1. Experimental Setup 

Datasets. We use three citation network benchmark datasets, 

Cora, Citeseer and PubMed, that have been widely used in previ- 

ous related work. We use the same train/validation/test splits as in 

[25] . Table 1 shows an overview of the datasets. 

• Cora. The Cora dataset contains 2,708 documents (nodes) clas- 

sified into seven classes (i.e., Neural Networks, Rule Learning, 

Probabilistic Methods,..., Reinforcement Learning) and 5,429 ci- 

tation links (edges). We treat the citation links as (undirected) 

edges and construct a binary, symmetric adjacency matrix. Each 

document has a 1,433 dimensional sparse bag-of-word feature 

vector and a class label. 
• Citeseer. The Citeseer dataset contains 3,327 documents classi- 

fied into six classes (i.e., Agents, AI,..., ML) and 4,732 links. Each 

document has a 3,703 dimensional sparse bag-of-word feature 

vector and a class label. 
• PubMed. The PubMed dataset contains 19,717 documents clas- 

sified into three classes (Diabetes Mellitus Type Experimental, 

Diabetes Mellitus Type 1, Diabetes Mellitus Type 1) and 44,338 

links. Each document has a 500 dimensional sparse bag-of- 

word feature vector and a class label. 

Compared methods. We compare NFC-GCN against nine compet- 

ing methods in total. We consider four representative non-GCN 

methods: Locally Linear Embedding (LLE) [9] , Laplacian Eigenmaps 

(LE) [10] , Graph Factorization (GF) [39] and DeepWalk [12] that 

only utilise graph structure in the node representation learning. 

We use the implementation provided by authors of [40] with stan- 

dard settings used in their paper. In order to ensure the baselines 

Table 1 

Overview of the three datasets with standard splits as in the Fast-GCN [25] 

(Val. means Validation). 

Dataset Nodes Edges Features Classes Train/Val./Test 

Cora 2,708 5,429 1,433 7 1,208/500/1,000 

Citeseer 3,327 4,732 3,703 6 1,827/500/1,000 

PubMed 19,717 44,338 500 3 18,217/500/1,000 

have sufficient diversity, we compare against seven state-of-the- 

art models: GCN, 1 two sampling based methods (FastGCN, 2 Graph- 

SAGE 3 ) and four neighbor weighting-based methods (DisenGCN, 4 

GAT, 5 LA-GCN, 6 LGCL 7 ). We all use the publicly available imple- 

mentation and report the mean accuracy of 100 runs with random 

weight initializations. 

• GCN. Graph Convolutional Networks [3] is the standard base- 

line. In our experiments, we use a two-layer GCN model. For 

the key hyperparameters, we swept the number of hidden units 

in the set {16, 32, 64, 128}, L2 regularization { 5 × 10 −3 , 5 ×

10 −4 , 5 × 10 −5 } , dropout rate {0.2, 0.4, 0.6}, learning rate {0.01, 

0.0 01, 0.0 0 01}. We set the max training epoch to 10 0 0 and 

early stopping to 10. 
• Sampling-based methods. We compare our method with Fast- 

GCN [25] and GraphSAGE [24] . We split the train/validation/test 

as [25] , so we use the same hyperparameters as in their pa- 

per. For FastGCN, we use two hidden layers, the batch size is 

256 for Cora, Citeseer and 1024 for PubMed, the sample sizes 

are 40 0, 40 0 and 10 0 for Cora, Citeseer and PubMed, the learn- 

ing rate is 0.001, and dropout is set as zero. For GraphSAGE, 

we apply the mean aggregator (GraphSAGE-mean usually gets 

the best results) and use two layers with neighborhood sample 

sizes 25 (for the first layer) and 10 (for the second), and the 

batch size is the same with FastGCN. 
• Neighbor weighting-based methods . For these methods, we 

swept the common key hyperparameters: hidden units, L2 reg- 

ularization, dropout rate and learning rate, as in GCN. Graph 

attention networks [32] learns to assign different weights to 

different neighbors. In the experiment, we apply two GAT lay- 

ers and the number of attention heads are in the set {2,4,8}. 

Learnable Graph Convolutional Layer (LGCL) [36] performs con- 

volution on the reconstructed node embeddings after one GCN 

layer. K ranges between {8,16,32} for the K-component feature 

vectors and dropout ∈ {0.2, 0.4, 0.6, 0.8 } is applied on both 

input feature vectors and adjacency matrices in LGCN. We ap- 

ply two LGCL layers for Cora and Citeseer, one LGCL layer for 

PubMed and stop the training within 10 0 0 0 epochs. DisenGCN 

[30] can treat different cluster of neighbors differently and we 

set the number of channels ∈ {4,8,16,32}. We apply neural net- 

works as the auxiliary model in LA-GCN [34] with the number 

of layers ∈ {1,2,3}. The max training epoch is set to 10 0 0 for 

DisenGCN and LA-GCN. 

Hyperparameters for NFC-GCN. We swept the common key hy- 

perparameters: hidden units, L2 regularization, dropout rate and 

learning rate, as in GCN. Other key hyperparameters for NFC layer 

are set as: the number of neighbors ∈ {1,2,3,4,5}, the filter size ∈ 

{32, 64, 128}, the number of filters ∈ {8,16,32, 64}, the number of 

stride ∈ {16, 32, 64}. We employ the early stopping strategy based 

on the validation accuracy and train 200 epochs at most. As men- 

tioned earlier, Compared with GCN layer, NFC layer is a more pow- 

erful tool, but it is more time consuming when the number of fil- 

ters or neighbors is high. Considering both accuracy and efficiency, 

we use different combinations: NFC-GCN, NFC-NFC to learn the fi- 

nal node embeddings. Our code are available online. 8 

1 https://github.com/tkipf/gcn . 
2 https://github.com/matenure/FastGCN . 
3 https://github.com/williamleif/GraphSAGE . 
4 https://jianxinma.github.io/disentangle-recsys.html . 
5 https://github.com/PetarV-/GAT . 
6 https://github.com/LiZhang- github/LA- GCN . 
7 https://github.com/HongyangGao/LGCN . 
8 https://github.com/LiZhang- github/NFC- GCN . 

7 



L. Zhang, H. Song, N. Aletras et al. Pattern Recognition 128 (2022) 108661 

Table 2 

Node classification accuracy (mean ± std over 100 runs, Best , 

Second best ) 

Methods Cora Citeseer PubMed 

LLE 30.5 ± 0.02 % 20.5 ± 0.07 % 39.8 ± 0.01 % 

LE 29.6 ± 0.05 % 21.2 ± 0.01% 39.8 ± 0.01 % 

GF 30.7 ± 0.01 % 20.9 ± 0.03 % 39.9 ± 0.01 % 

DeepWalk 55.2 ± 0.08% 44.1 ± 0.05% 77.6 ± 0.03% 

GCN 87.1 ± 0.12% 78.1 ± 0.11% 87.3 ± 0.09% 

Fast-GCN 85.0 ± 0.24% 77.6 ± 0.63% 88.0 ± 0.32% 

GraphSAGE 82.2 ± 0.69% 71.4 ± 0.89% 87.1 ± 0.47% 

GAT 86.9 ± 0.13% 77.7 ± 0.22% 87.2 ± 0.02% 

LGCL 87.7 ± 0.11% 78.8 ± 0.20% 85.1 ± 0.06% 

DisenGCN 87.4 ± 0.17% 77.0 ± 0.30% 87.2 ± 0.02% 

LA-GCN 88.8 ± 0.12 % 78.7 ± 0.33 % 88.9 ± 0.10 % 

NFC-GCN 88.7 ± 0.13% 79.4 ±0.22% 89.7 ± 0.07% 

NFC-NFC 89.6 ±0.14% 78.9 ± 0.24% 90.4 ±0.08% 

4.2. Node Classification and Convergence 

In this section, we compare the node classification accuracy 

with baselines, besides we compare the convergence with three 

mostly related methods: GCN, GAT, and LGCL. 

• Node classification. Results in classification accuracy are sum- 

marized in Table 2 . For the first four non-GCN methods, they 

do not perform well for they only utilise the structure informa- 

tion. FastGCN and GraphSAGE focus on improving the training 

efficiency, so they have slightly poorer results than GCN. GAT 

and LA-GCN utilize neural networks to learn attention scores 

or masks for a given node’s neighbors. It is time consuming es- 

pecially for Cora and Citeseer with high-dimensional node fea- 

tures. DisenGCN applies neighborhood routing mechanism to 

cluster a given node’s neighbors, which is more suitable for 

dense graphs. While Cora, Citeseer and PubMed are relatively 

sparse and their median node degrees are 4, 3, 3 respectively. 

LGCL can get competitive results on Cora and Citeseer, while it 

does not perform well on PubMed. Two possible reasons are 1) 

it inherits the limitation of GCN and 2) it reorganises the orig- 

inal embedding in the process of constructing feature maps as 

mentioned in Section 3.5 . 

Our models NFC-GCN and NFC-NFC achieved state-of-the-art 

performance across all the datasets. This suggests that apply- 

ing the NFC layer to work on the most related and fixed-size 

neighbors can be beneficial for learning node representation. 

NFC-GCN can aggregate more neighborhood information, and 

it may be more suitable for sparse graph (NFC-GCN gets bet- 

ter result on Citeseer.) NFC-NFC can further alleviate the over- 

smoothing problem and may be more suitable for dense graph. 

Considering efficiency, NFC-GCN is faster. For Cora, Citeseer and 

PubMed, times for each training epoch are 9, 9.4, and 14 sec- 

onds respectively, while they are around 18, 18 and 28 seconds 

in NFC-NFC. We can flexibly combine NFC layer and GCN layer, 

depending on the requirement of downstream tasks. 

In addition, our method achieves better performance in fewer 

training epochs (less than 100 epoch) on all the datasets. How- 

ever, we should note that the training time per epoch for our 

method is more than GCN, GAT, Fast-GCN, possibly due to the 

larger number of parameters in our model. In future, we can 

investigate ways to improve the per-epoch computational effi- 

ciency. 
• Accuracy, loss over training epochs. Figures 6 (a) and 6 (b) 

show how the training accuracy, training loss change with re- 

spect to the number of training epochs. We do not use early 

stopping in our model for a better comparison with GCN, GAT 

and LGCL. Our method achieves a good performance in a few 

training epochs, while GCN, GAT and LGCL need more than 

Table 3 

Node classification accuracy for different aggrega- 

tion methods with five neighbors and only one ag- 

gregation step (i.e., without further GCN layers). 

Aggregation Cora Citeseer PubMed 

GCN 64.8% 74.1% 80.0% 

GAT 64.2% 74.2% 82.2% 

NFC 86.0% 78.9% 89.7% 

Improvement 21.2% 4.8% 7.5% 

a hundred training epochs. Moreover, training accuracy/loss of 

NFC-GCN change in a more stable way with the same opti- 

mization parameters on the same training data as GCN, GAT 

and LGCL. This confirms that the first-level node representation 

learned from the node-feature convolution improves the subse- 

quent classification tasks. 

On the whole, Table 2, Figs. 6 (a) and 6 (b) show that our method 

has a better performance on both node classification accuracy and 

convergence. 

4.3. NFC Aggregation Study 

We further present studies of three different aggregation meth- 

ods: GCN aggregation, GAT aggregation, and NFC aggregation. And 

we also illustrate the effectiveness of CNNs on the ordered node 

features. 

• Effectiveness of NFC aggregation. To show the effectiveness of 

NFC (our key contribution), we compare GCN and GAT aggre- 

gation methods with NFC using a fixed-size set of neighbors. 9 

Then we feed the aggregated representation of each node to 

a classifier directly without adding additional GCN layers. We 

carry out this experiment over all datasets and choose 5 neigh- 

bors for each aggregation methods. The results are summarized 

in Table 3 . Our method increases the testing accuracy greatly 

over GCN/GAT, demonstrating that NFC-based aggregation can 

learn a more effective node representation for subsequent tasks. 

It should also be emphasized that only the NFC can achieve 

competitive performance without additional GCN layers. 

Besides the quantitative evaluation, we also investigate the ef- 

fectiveness of different aggregation methods qualitatively. We 

provide t-SNE [41] visualizations to map the embeddings ob- 

tained from GCN, GAT and NFC aggregation on the Cora dataset 

in 2D space. In Fig. 7 , all the embeddings exhibits discernible 

clustering in the projected 2D space. The GAT visualization is 

poorer than the GCN visualization, which is consistent with the 

results in Table 3 . NFC aggregation obtains the best visualiza- 

tion with nodes clustered into the most compact clusters. 
• NFC on node-feature maps. A further evaluation is conducted 

to illustrate how NFC works on node-feature maps. We feed 

the central node’s feature vector to the classifier directly (Cen), 

which is treated as a baseline. For comparison, we first perform 

a convolutional operation only on the given node’s feature vec- 

tor (one channel) and feed the new representation to the clas- 

sifier (Conv(C)). This is used to illustrate how the convolution 

works on the node feature dimension. Next, we perform a NFC 

operation on the feature map comprised of the given node and 

five neighbors (six channels), and feed the new representation 

to the classifier (Conv(CN)). The experimental results are shown 

in Table 4 . The main finding is that the NFC not only oper- 

ates effectively on the node feature dimension, but also extracts 

9 LGCL uses GCN aggregation over the raw node features while its first layer is 

the same as GCN. 

8 



L. Zhang, H. Song, N. Aletras et al. Pattern Recognition 128 (2022) 108661 

Fig. 6. Comparison of training accuracy and loss with respect to the training epochs. 

Fig. 7. Visualization of the embeddings on the Cora dataset. We map the embeddings learned from GCN, GAT and NFC aggregation to the 2-D space using t-SNE. Node colors 

denote classes. 

Table 4 

The effectiveness of NFC aggregation. Cen: central node (without 

convolution operation); Cov(C): central node with convolution op- 

eration; Cov(CN): node-feature map (containing central node and 

neighbors’ features) with convolution operation. 

Dataset Cen Cov(C) Cov(CN) 

Cora 54.7% 72.9% 86.0% 

Citeseer 69.9% 73.1% 78.9% 

PubMed 80.9% 85.7% 89.7% 

more useful information from different channels in the node- 

feature map. 

This study shows that the advantage of NFC (aggregation as- 

signing different weights to different f eatures for different neigh- 

bors), as shown in Table 3 and Fig. 7 . Besides, applying the convo- 

lution operation on the ordered features and including neighbors 

information can both benefit to the central node’s representation 

learning, as shown in Table 4 . 

4.4. Parameter Sensitivity 

Finally, we examine the parameter sensitivity of our model, in- 

cluding the node bandwidth, model depth and training set size. 

• Node bandwidth. We first study the effect of varying the node 

bandwidth n in the node-feature convolution process. Table 5 

shows the distribution of node degrees over the three datasets. 

The node degree varies from one to 171, which illustrates that 

there is a need to select the neighbors for a given node. The av- 

erage node degree is three or four, and we vary n from two to 

11. The results in Fig. 8 (a) show consistent improvement in ac- 

curacy with increasing n from two to seven. A higher n implies 

Table 5 

Node degree statistics. 

Dataset Highest Lowest Average Median 

Cora 168 1 4.9 4 

Citeseer 99 1 3.7 3 

PubMed 171 1 5.5 3 

more feature diversity, and this can be especially helpful for the 

representation learning of nodes with sparse connectivity and 

features. However, for n greater than seven, performance drops. 

A possible explanation is that aggregating too many neighbors 

has a negative influence (the central node’s own information 

being washed away) on the given node’s representation learn- 

ing. Note that the computation time per training epoch also in- 

creases with n , therefore, there is a trade-off between the clas- 

sification accuracy and computational time when choosing n . 
• Model depth. We study the influence of model depth (num- 

ber of GCN layers) on classification performance in the data 

splits in [3] . We change the GCN layers from one to five and 

the results are summarised in Fig. 9 . Our method is less sen- 

sitive to the number of hidden layers. This indicates that the 

NFC-GCN representation is more robust to model depth. It per- 

forms well even when a higher-order neighborhood is consid- 

ered. Note that the best test accuracy for our method is not 

better than GCN on PubMed. One possible reason is that this 

data splits in [3] have only 60 labeled training nodes that is too 

small for NFC-GCN. Another possible reason is that we did not 

tune NFC-GCN hyperparameters (set as in Section 4.1 ) for dif- 

ferent layers. With further tuning and optimisation, NFC-GCN 

has the potential to get better results in classification accuracy 

for deeper models. 

9 



L. Zhang, H. Song, N. Aletras et al. Pattern Recognition 128 (2022) 108661 

Fig. 8. Effect of node bandwidth n on accuracy and time per epoch. 

Fig. 9. Performance comparison on deeper models. On the Cora, Citeseer and 

PubMed datasets, we employ the same experimental setups and increase layers 

of GCN and NFC-GCN to up to five. GCN-NFC has a better overal performance for 

deeper models and its test accuracy is more steady than GCN when we increase the 

number of layers. 

• Training set size. Finally, we compared our method against 

GCN, GAT and LGCL with 5%, 10%,...,60% training size on Cora, 

Citeseer and PubMed. The test and validation sets as well as 

the hyperparameters are the same as described in Section 4.1 . 

The results are shown in Fig. 10 . On the whole, NFC-GCN out- 

performs other methods with a large margin, especially when 

the training size is large. However, the superiority decreases 

when the training set size becomes smaller. Compared with 

GCN, NFC-GCN has more parameters to learn and thus more 

training data, which is typical for deep learning models. 

4.5. Discussion 

NFC-GCN embodies the ideas from GCN and its extensions such 

as sampling-based methods and GAT. NFC-GCN applies convolution 

layer on a fixed-size node-feature map to assign different weights 

to different features in different neighbors. In the following, we 

discuss the limitations and new opportunities for this new archi- 

tecture. 

• Limitations. The main limitation is that NFC-GCN requires 

more training samples and the computation cost for each epoch 

is higher than GCN. Nonetheless, deep learning models are 

known to work well on larger datasets and be computation- 

ally expensive. One future work will aim to improve the perfor- 

mance of our method on the small training datasets and also 

the computational efficiency. 
• Representation learning ability. When we only use one NFC 

layer to learn nodes’ new representations and feed them di- 

rectly to a classifier layer, we can obtain a competitive perfor- 

Fig. 10. Effect of training set size. NFC-GCN outperforms others on the whole and it gets more significant improvement with a larger training set. 

10 



L. Zhang, H. Song, N. Aletras et al. Pattern Recognition 128 (2022) 108661 

mance compared to GCN and its extensions. One potential fu- 

ture direction is to get rid of the GCN layer totally. 
• New architectures and deeper models. The NFC layer can be 

used in conjunction with any of the competing methods (not 

only GCN). In particular, NFC-GCN allows for a deeper model, 

and has the potential to get better classification accuracy with 

well-tuned hyperparameters. Furthermore, deeper models can 

enable other powerful machine learning techniques to be better 

applied to graphs, such as transfer learning. 

5. Conclusion 

In this paper, we proposed a novel model: Node-Feature Con- 

volution for Graph Convolutional Network (NFC-GCN). We con- 

structed a new node-feature convolutional (NFC) layer to work 

on a fixed-size feature map that contains features from selected 

neighbors. NFC can both alleviate neighborhood explosion prob- 

lem and assign different weights to different features from differ- 

ent neighbors in an end-to-end fashion, addressing the main limi- 

tations of existing GCN models. Experimental results showed that 

the proposed NFC-GCN (NFC-NFC) outperforms current compet- 

ing GCNs on three benchmark datasets in node classification. The 

main limitation of NFC is that its computational cost increases with 

the number and size of filters. We also demonstrated that NFC- 

GCN is more robust in deeper architectures compared to existing 

GCNs and has the potential to get better results. In addition, the 

NFC layer can be a plug-in module and integrated with other GCN 

extensions, e.g., FastGCN [25] , jumping knowledge networks [26] , 

GMWW [42] and MixHop [43] , enabling these methods to have a 

feature-level attention. 

Declaration of Competing Interest 

The authors declare that they have no known competing finan- 

cial interests or personal relationships that could have appeared to 

influence the work reported in this paper. 

Acknowledgement 

This work was supported in part by the China Scholarship 

Council (CSC) under Grant 201706080010 and in part by the UK 

Engineering and Physical Sciences Research Council (EPSRC) under 

Grant EP/R014507/1. 

References 

[1] Y. Luo , T. Guan , J. Yu , P. Liu , Y. Yang , Every node counts: Self-ensembling graph 
convolutional networks for semi-supervised learning, Pattern Recognition 106 
(2020) 107451 . 

[2] Y. Yang , Y. Qi , Image super-resolution via channel attention and spatial graph 
convolutional network, Pattern Recognition 112 (2021) 107798 . 

[3] T.N. Kipf , M. Welling , Semi-supervised classification with graph convolutional 
networks, in: Proceedings of the 6th International Conference on Learning 
Representations, 2017, pp. 1–15 . 

[4] M. Schlichtkrull , T.N. Kipf , P. Bloem , R. van den Berg , I. Titov , M. Welling , Mod- 
eling relational data with graph convolutional networks, in: European Seman- 
tic Web Conference, 2018, pp. 593–607 . 

[5] F. Hu , Y. Zhu , S. Wu , W. Huang , L. Wang , T. Tan , Graphair: Graph representation 
learning with neighborhood aggregation and interaction, Pattern Recognition 
112 (2021) 107745 . 

[6] Y. LeCun , L. Bottou , Y. Bengio , P. Haffner , et al. , Gradient-based learning applied 
to document recognition, Proceedings of the IEEE 86 (11) (1998) 2278–2324 . 

[7] A.K. McCallum , K. Nigam , J. Rennie , K. Seymore , Automating the construction 
of internet portals with machine learning, Information Retrieval 3 (2) (20 0 0) 
127–163 . 

[8] W.L. Hamilton , R. Ying , J. Leskovec , Representation learning on graphs: Meth- 
ods and applications, IEEE Data Eng. Bull. 40 (2017) 52–74 . 

[9] S.T. Roweis , L.K. Saul , Nonlinear dimensionality reduction by locally linear em- 
bedding, science 290 (5500) (2000) 2323–2326 . 

[10] M. Belkin , P. Niyogi , Laplacian eigenmaps and spectral techniques for embed- 
ding and clustering, in: Proceedings of the 14th International Conference on 
Neural Information Processing Systems, 2001, pp. 585–591 . 

[11] M. Ou , P. Cui , J. Pei , Z. Zhang , W. Zhu , Asymmetric transitivity preserving graph 
embedding, in: Proceedings of the 22nd ACM SIGKDD international conference 
on Knowledge discovery and data mining, 2016, pp. 1105–1114 . 

[12] B. Perozzi , R. Al-Rfou , S. Skiena , Deepwalk: Online learning of social represen- 
tations, in: Proceedings of the 20th ACM SIGKDD International Conference on 
Knowledge discovery and data mining, 2014, pp. 701–710 . 

[13] A. Grover , J. Leskovec , node2vec: Scalable feature learning for networks, in: 
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge 
discovery and data mining, 2016, pp. 855–864 . 

[14] B. Perozzi , V. Kulkarni , H. Chen , S. Skiena , Don’t walk, skip!: Online learning of 
multi-scale network embeddings, in: Proceedings of the 2017 IEEE/ACM Inter- 
national Conference on Advances in Social Networks Analysis and Mining 2017, 
2017, pp. 258–265 . 

[15] Y. Shi , M. Lei , H. Yang , L. Niu , Diffusion network embedding, Pattern Recogni- 
tion 88 (2019) 518–531 . 

[16] M. Gori , G. Monfardini , F. Scarselli , A new model for learning in graph do- 
mains, Proceedings. 2005 IEEE International Joint Conference on Neural Net- 
works, 2005. 2 (2005) 729–734 . 

[17] Y. Li , D. Tarlow , M. Brockschmidt , R.S. Zemel , Gated graph sequence neural net- 
works, in: Proceedings of the 5th International Conference on Learning Repre- 
sentations, 2016, pp. 1–15 . 

[18] D.K. Duvenaud , D. Maclaurin , J. Iparraguirre , R. Bombarell , T. Hirzel , A. Aspu- 
ru-Guzik , R.P. Adams , Convolutional networks on graphs for learning molecular 
fingerprints, in: Proceedings of the 28th Advances in Neural Information Pro- 
cessing Systems, 2015, pp. 2224–2232 . 

[19] M. Niepert , M. Ahmed , K. Kutzkov , Learning convolutional neural networks 
for graphs, in: Proceedings of the 33rd International Conference on Machine 
Learning, 2016, pp. 2014–2023 . 

[20] D. Wang , P. Cui , W. Zhu , Structural deep network embedding, in: Proceedings 
of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery 
and Data Mining, 2016, pp. 1225–1234 . 

[21] J. Bruna , W. Zaremba , A. Szlam , Y. LeCun , Spectral networks and locally con- 
nected networks on graphs, in: Proceddings of the 3rd International Confer- 
ence on Learning Representations, 2014, pp. 1–15 . 

[22] M. Defferrard , X. Bresson , P. Vandergheynst , Convolutional neural networks on 
graphs with fast localized spectral filtering, in: Proceedings of the 29th Ad- 
vances in Neural Information Processing Systems, 2016, pp. 3844–3852 . 

[23] Q. Li , Z. Han , X. Wu , Deeper insights into graph convolutional networks for 
semi-supervised learning, in: Proceedings of the 32nd AAAI Conference on Ar- 
tificial Intelligence, 2018, pp. 3538–3545 . 

[24] W. Hamilton , Z. Ying , J. Leskovec , Inductive representation learning on large 
graphs, in: Proceedings of the 30th Advances in Neural Information Processing 
Systems, 2017, pp. 1025–1035 . 

[25] J. Chen , T. Ma , C. Xiao , Fastgcn: Fast learning with graph convolutional net- 
works via importance sampling, in: Proceedings of the 7th International Con- 
ference on Learning Representations, 2018, pp. 1–15 . 

[26] K. Xu , C. Li , Y. Tian , T. Sonobe , K.-i. Kawarabayashi , S. Jegelka , Representation 
learning on graphs with jumping knowledge networks, in: Proceedings of the 
35th International Conference on Machine Learning, 2018, pp. 5453–5462 . 

[27] Y. Rong , W. Huang , T. Xu , J. Huang , Dropedge: Towards deep graph convolu- 
tional networks on node classification, in: International Conference on Learn- 
ing Representations, 2020, pp. 1–17 . 

[28] A. Hasanzadeh , E. Hajiramezanali , S. Boluki , M. Zhou , N. Duffield , K. Narayanan , 
X. Qian , Bayesian graph neural networks with adaptive connection sampling, 
in: International Conference on Machine Learning, 2020, pp. 4094–4104 . 

[29] Z. Liu , C. Chen , L. Li , J. Zhou , X. Li , L. Song , Y. Qi , Geniepath: Graph neural net- 
works with adaptive receptive paths, in: Proceedings of the AAAI Conference 
on Artificial Intelligence, 2019, pp. 4 424–4 431 . 

[30] J. Ma , P. Cui , K. Kuang , X. Wang , W. Zhu , Disentangled graph convolutional net- 
works, in: International Conference on Machine Learning, 2019, pp. 4212–4221 . 

[31] D. Bahdanau , K. Cho , Y. Bengio , Neural machine translation by jointly learning 
to align and translate, in: Proceedings of the 4th International Conference on 
Learning Representations, 2015, pp. 1–15 . 

[32] P. Velickovic , G. Cucurull , A. Casanova , A. Romero , P. Lio , Y. Bengio , Graph 
attention networks, in: Proceedings of the 7th International Conference on 
Learning Representations, 2018, pp. 1–12 . 

[33] L. Yang , F. Wu , Y. Wang , J. Gu , Y. Guo , Masked graph convolutional network, 
in: IJCAI, 2019, pp. 4070–4077 . 

[34] L. Zhang , H. Lu , A feature-importance-aware and robust aggregator for gcn, 
in: Proceedings of the 29th ACM International Conference on Information & 
Knowledge Management, 2020, pp. 1813–1822 . 

[35] E. Perez , F. Strub , H. De Vries , V. Dumoulin , A. Courville , Film: Visual reasoning 
with a general conditioning layer, in: Proceedings of the AAAI Conference on 
Artificial Intelligence, 2018, p. 4 424 == 4 431 . 

[36] H. Gao , Z. Wang , S. Ji , Large-scale learnable graph convolutional networks, in: 
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge 
Discovery Data Mining, 2018, pp. 1416–1424 . 

[37] S. Hoory , N. Linial , A. Wigderson , Expander graphs and their applications, Bul- 
letin of the American Mathematical Society 43 (4) (2006) 439–561 . 

[38] Y. Kim , Convolutional neural networks for sentence classification, in: Proceed- 
ings of the 2014 Conference on Empirical Methods in Natural Language Pro- 
cessing, 2014, pp. 1746–1751 . 

[39] A. Ahmed , N. Shervashidze , S.M. Narayanamurthy , V. Josifovski , A.J. Smola , Dis- 
tributed large-scale natural graph factorization, in: Proceedings of the 22th In- 
ternational Conference on World Wide Web, 2013, pp. 37–48 . 

11 



L. Zhang, H. Song, N. Aletras et al. Pattern Recognition 128 (2022) 108661 

[40] P. Goyal , E. Ferrara , Graph embedding techniques, applications, and perfor- 
mance: A survey, Knowledge-Based Systems 151 (2018) 78–94 . 

[41] L.v.d. Maaten , G. Hinton , Visualizing data using t-sne, Journal of machine learn- 
ing research 9 (Nov) (2008) 2579–2605 . 

[42] M. Qu , Y. Bengio , J. Tang , Gmnn: Graph markov neural networks, in: Pro- 
ceedings of the 36th International Conference on Machine Learning, 2019, 
pp. 5241–5250 . 

[43] S. Abu-El-Haija , B. Perozzi , A. Kapoor , H. Harutyunyan , N. Alipourfard , K. Ler- 
man , G.V. Steeg , A. Galstyan , Mixhop: Higher-order graph convolutional archi- 
tectures via sparsified neighborhood mixing, in: Proceedings of the 36th Inter- 
national Conference on Machine Learning, 2019, pp. 21–29 . 

Li Zhang received the B.Sc. degree from Northeast University, China in 2014, and 
M.Sc. degree with distinction from Department of Information Science and Engi- 
neering, Northeast University, China in 2017. She is now ah.D. student in the De- 
partment of Computer Science, University of Sheffield, UK. Her research interests 
are graph representation learning, graph neural networks, and knowledge graph. 

Heda Song received the B.Sc. degree from Northeast University, China in 2013, and 
M.Sc. degree with distinction from Department of Information Science and Engi- 

neering, Northeast University, China in 2017. He is now ah.D. student in the Depart- 
ment of Computer Science, University of Nottingham, UK. His research interests are 
meta-learning and few-shot learning. 

Dr. Nikolaos Aletras is a Senior Lecturer in Natural Language Processing (NLP) in 
the Computer Science Department, University of Sheffield, co-affiliated with the 
Machine Learning (ML) group. His research interests include social media analysis, 
NLP in the legal domain and topic modelling. His work has received wide media 
coverage including the BBC, the Guardian, the Wall Street Journal, the Washington 
Post and the New Scientist. 

Haiping Lu received the B.Eng. and M.Eng. degrees in electrical and electronics en- 
gineering from Nanyang Technological University, Singapore, in 2001 and 2004, re- 
spectively, and the Ph.D. degree in electrical and computer engineering from Uni- 
versity of Toronto, Canada, in 2008. Currently, he is a Senior Lecturer in Machine 
Learning at the Department of Computer Science, University of Sheffield, UK. He re- 
ceived prestigious awards from NIHR, Wellcome Trust, Amazon, AAAI, IEEE, and the 
Alan Turing Institute. 

12 


	Node-Feature Convolution for Graph Convolutional Networks
	1 Introduction
	2 Preliminaries and Related Works
	2.1 Notations
	2.2 Graph Representation Learning
	2.3 Graph Convolutional Networks
	2.4 GCN Extensions

	3 Proposed NFC-GCN
	3.1 Neighbor Selection and Ordering
	3.2 Node-Feature Convolution (NFC)
	3.3 GCN Layers
	3.4 Computational Complexity
	3.5 Differences with other GCN Extensions

	4 Experiments
	4.1 Experimental Setup
	4.2 Node Classification and Convergence
	4.3 NFC Aggregation Study
	4.4 Parameter Sensitivity
	4.5 Discussion

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	References


