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Validation of Agent-Based Passenger
Movement Modeling for Railway Stations
Subject to Social Distancing During the
COVID-19 Pandemic

Sam Hayes1 , John Charlton2 , David Fletcher1 , and Paul Richmond2

Abstract

The COVID-19 pandemic has caused unprecedented difficulties keeping passenger transport running while social distancing
has constrained pedestrian movement. To support railway operation an agent-based simulation validated against UK mainline
railway station CCTV footage has been developed. The simulation quantifies train alighting- and boarding flow times for differ-
ent degrees of distancing, rolling stock types, platform size, and passenger numbers. Real-world social distancing behavior
was represented, including compromises people make on distancing to achieve their goals. Flow times modeled and those
measured from CCTV were within 10%. Relative to a baseline without social distancing, 1-m distancing was predicted to
make only a marginal difference to passenger flow times, primarily because of passenger behavior to compromise on distan-
cing at the rate determining door location. For 2-m social distancing, significantly extended passenger alighting and boarding
flow times were predicted for busier services (i.e., 2.2 to 2.8 times baseline depending on rolling stock type). These increases
in flow time are only predicted to begin when the combined total of boarding and alighting passengers exceeds 10 to 15 per
door. The model has applications in transport systems worldwide in avoiding unmaintainable timetables, and in reducing
incentives for social distancing compromise when distancing forms a component of suppressing virus transmission.
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The global COVID-19 pandemic has caused unprece-

dented issues in keeping passenger transport running

while the necessity of social distancing between passen-

gers has constrained pedestrian movement and stay-at-

home orders have caused abnormal fluctuations in the

number of passengers using the railways. Preliminary

assessment using agent-based modeling (1) indicated that

passenger flow rates at the train doors (the platform–

train interface [PTI]) and at ticket gates would be

restricted leading to longer train dwell times in stations,

or conversely these would be locations with significant

incentives for passengers to compromise on social distan-

cing. Although a reduction in demand and reduced net-

work congestion have allowed some extended dwells in

stations without knock-on impacts during the pandemic,

a return to prepandemic service density would leave little

network capacity to accommodate extended flow times

resulting from social distancing. To support operational

planning to mitigate for these situations research has

been undertaken to refine and validate an agent-based

passenger movement microsimulation tailored to these

highly constrained geometries within railway stations.

The research is of relevance to locations making use of

social distancing, but also for future preparedness, and

to understand the effect of the continuation of distancing

by vulnerable or cautious people even when it is no lon-

ger mandated. Although not viable as a long-term
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measure, a better understanding of social distancing’s

impact on transport operation remains useful as it is

immediately deployable under current or any future air-

borne pandemic conditions. Moreover, the understand-

ing developed has value in understanding ‘‘natural social

distancing,’’ which exists outside the pandemic under all

but the most crowded conditions. The work has been

developed from earlier (prepandemic) modeling of rail-

way passenger flows (2) and has been validated against

passenger observations for a range of station footfall

during the pandemic. The validation was conducted

using closed circuit television (CCTV) observation to

avoid any influence on passenger behavior, and demon-

strated good correlation of predicted and measured flow

times for passengers boarding and alighting at the PTI.

During the period CCTV footage was collected, the pre-

vailing government guidance was the ‘‘1m +’’ rule.

During this time the desired social distancing was 2m;

however, this could be reduced to 1m with other mitiga-

tions in place, for example, face coverings (3). Results

are presented here for a range of passenger loadings to

provide insights into maintaining and recovering urban

transport operations and have been shared with industry

stakeholders through the Railway Safety and Standards

Board (4). They have application, alongside models of

airflow in transport (5) and epidemiological models of

virus transmission (6–11).

Train Dwell and its Relationship to Passenger Flow

The components of time spent by a train, in a station,

are illustrated schematically in Figure 1. For most mod-

ern rolling stock, the doors are centrally controlled such

that they are not released for passenger use until the train

has completely stopped. Doors then take time to open,

and it is only after this that the flow of passengers on or

off the train can take place. Similarly, before departure

the train dispatch process must validate that the doors

are closed, that nothing is trapped, and that the train is

safe to start (12). Train movement may then be depen-

dent on signals, so can begin sometime after the last pas-

senger flow. The model developed represents only the

passenger flow, since this is the element most susceptible

to change through social distancing between passengers.

When conducting validation, it was therefore important

to focus on actual people movement, not on timetables

or other information about the train itself.

Factors to be Explored

Prepandemic application of the agent-based model

extended in this research (2) focused on the design of

train interior layouts to maximize boarding and alighting

flows. This was achieved by placing the model within a

genetic algorithm to programmatically explore the search

space of variables (door size, vestibule size, aisle width,

seating configurations) with a cost function defined to

enable optimization of flow time. The step height/gap

between the platform and train was in this case repre-

sented as a region of slow movement rather than a tech-

nical feature, and validation showed good agreement

with observations at a range of stations. Passenger beha-

viors during boarding and alighting are also considered

in research by Zhang et al. (13), in which agents are

given personal characteristics determining their speed of

movement, however, the collective behavior of multiple

passengers, such as the distribution of passengers across

platforms, was not explored. Other factors affecting the

PTI, such as door width, step height, and platform–train

gap have been considered in previous modeling and

experimental studies on passenger flow (14–17).

However, the effect of a change in passenger behavior,

such as the requirement for passengers to socially dis-

tance, was not considered as these studies predate the

pandemic. The assessment of passenger boarding at the

PTI highlights that concentrations of passengers occur

when a train arrives at a platform because of the loca-

tions of the train doors (18, 19). Also conducted prepan-

demic, research has identified that influencing passenger

Figure 1. Typical variation of passenger flow and its relationship
to dwell of the train in the station. For a typical platform dwell
time, A is around 5 to 15 s, and D is around 15 to 30 s. The
components B and C are largely set by timetabling,
notwithstanding any delays resulting from boarding and alighting,
and would be expected to be around 2 to 3min for long-distance
services and around 15 to 30 s for suburban services such as
Merseyrail. Special cases, such as trains at the start of a journey
where boarding may be allowed, for example 10min before
departure, are not considered here.
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behavior during boarding and alighting is a cost-effective

method of improving passenger flow at the PTI (20).

With such a range of variables affecting flow at the PTI,

it was necessary to restrict the scope of those considered

in this research on the impact of social distancing.

Within a train, the scope for distancing is limited and the

enclosed nature of the space makes airflow modeling an

important factor. Station platforms typically offer more

space and greater natural ventilation, making distancing

a relevant method to restrict virus transmission, so our

focus was the station platform including the interaction

of alighting and boarding passengers. Modeling of move-

ment inside the train was restricted to that needed to rep-

resent interactions at the door, that is, the approach of

alighting passengers to the door, transition from alight-

ing to boarding, and movement of boarding passengers

sufficiently inside the train that they did not artificially

block the door for following boarders. Previous work (2)

has identified door size as a crucial factor in determining

passenger flow rate, so two train types with different

door sizes were considered. Variation between agents

was considered only in their social distancing behavior,

whereas mobility (unimpeded speed of movement of

1.3m/s [21]) was uniform across the agents. The effect of

luggage and group travel was not considered here and is

the subject of a separate project.

Modeling Methodology

The movement of pedestrians through a space can be

explored using either macroscopic or microscopic model-

ing. Macroscopic modeling allows for a focus on crowds

and high-density pedestrian groups (22) and tends to be

less computationally expensive. Microscopic modeling of

pedestrian movement is used when the behaviors of each

individual agent are of interest, especially in confined

geometries, allowing for agent heterogeneity and quanti-

fication of the effects of each individual agent (e.g., tra-

versal speed, travel time) on the population (23). For the

identification of passenger behaviors at the PTI, it was

necessary to capture individual behaviors in areas of con-

fined geometry such as at doors and ticket barriers; thus,

microscopic modeling was the preferred modeling

approach in this work.

Within the context of microscopic modeling, there are

a number of potential simulation methods for studying

pedestrian movement. These differ based on the discreti-

zation of space and time and therefore vary in their accu-

racy of resolving spatial interactions such as collisions.

Approaches to microscopic pedestrian modeling include

the following:

� Cellular automaton: Discretization of the modeled

space through which agents move. In this cellular

automaton approach (24), the agents move

between locations of the grid according to speci-

fied modeling criteria, however this approach can

have poor translation to real-world pedestrian

behaviors and fails to represent important spatial

relationships and interactions that result in com-

plex emerging behavior.
� Social forces: Approximation of each agent as a

point particle subject to ‘‘forces’’ resulting from

other agents in the modeled space in a social forces

model. The forces each agent imparts on other

agents are related by the distance between agents;

for example, as people move closer together, a

repulsive force between interacting people occurs,

altering the subsequent pedestrian trajectories.

This method provides a necessary mechanism to

capture spatial interactions but can result in

numerically unstable scenarios within dense

crowds (e.g., unrealistic overlapping of pedestrian

geometries). Reduction of the time step can allevi-

ate such problems at the expense of overall simula-

tion cost.
� Reciprocal velocity obstacle (RVO) models:

Agents steer toward a goal while aiming to avoid

collisions with other agents in the space, achieving

this in a time-discretized simulation at which each

agent reviews its neighbors’ position and velocity

at each time step. Agents aim to predict where

other agents are moving toward and alter their

velocities accordingly. The RVO model can be

extended using the optimal reciprocal collision

avoidance model (25), whereby the agent veloci-

ties are calculated and solved using a linear pro-

gram solver. The approach is both appropriate for

modeling spatial interaction and numerically sta-

ble. This model was adopted in the current work

and described at high level by the pseudo-code

Algorithm 1.

Algorithm 1 Agent movement algorithm

1: for all AgentA2Agents
2: retrieve AgentA positionA and velocityA
3: add element potentialCollisions[] = AgentA
4: for all AgentB2Agents where A6¼ B
5: retrieve AgentB positionB and velocityB
6: distance = | positionA - positionB |
7: if distance\ distancecrtical and trajectoryIntersection

(velocityA, velocityB)
8: add element potentialCollisions[] = AgentB
9: end if
10: end for
11: modifyVelocities(potentialCollisions)
12: end for
13: updatePositions(Agents)

Hayes et al 3



Algorithm 1: For an agent, A, neighboring agents within

a critical distance of A are identified (Line 6) and the

probability of a collision based on the current velocity of

A and its neighbors (Line 4) is calculated (Line 7). For

each neighboring agent to A, the half-plane of valid velo-

cities to avoid collisions between A and its neighbors is

determined (Line 8). The half-plane of valid velocities is

then calculated for every neighboring agent within the

simulation, which is solved using linear programming to

identify the velocity with the minimal acceleration

required to avoid collisions (Line 11). The algorithm is

performed for each agent so that each agent reciprocates

in attempting to avoid each other.

Extensions for Real-World Social Distancing

Initial modeling of social distancing behavior (1, 26) was

refined as observations were undertaken in UK passenger

stations, showing how social distancing was maintained

and the ways in which it was compromised. Each agent

was represented with a core radius of 0.2m, defining the

physical size of the passenger and a social distancing

radius representing the surrounding (intended) social dis-

tancing space. Where no compromise of social distances

occurred, no other agents would enter this outer circle,

but it did not restrict agents passing next to structures

such as boundary walls or the walls of the train. This

region of social distancing between passengers is indi-

cated by a black ‘‘skirt’’ around an agent as can be seen

in Figure 2, which shows a semi-plan view of a three-

coach train in the lower part of the image, adjacent to a

platform with boarding passengers in the upper part of

the image. The modeling and visualization of pedestrian

movements was performed using a custom configuration

of the Steersuite package (2, 27), developed to evaluate

pedestrian behaviors (see additional data accompanying

the paper for the code).

In periods when passengers were instructed by gov-

ernment and transport authorities to maintain social dis-

tancing to reduce disease transmission, observations of

passenger behavior from collected CCTV footage indi-

cated that the actual maintenance of distancing was situ-

ation dependent. Before a train arrived at a platform

social distancing was typically maintained when there

was available space to do so, however, as the train

arrived and during passenger boarding social distancing

was greatly compromised. This was typically not the

result of an individual passenger disregarding distancing,

but a behavior across most passengers. Potentially this

was driven by knowledge of historically limited dwell

times or a desire to reach a ‘‘good’’ location within the

train, but the remote CCTV-based observation con-

ducted could not reveal the underlying reason. No data

(e.g., screenshots of CCTV or passenger-identifying

features) were carried forward from the CCTV to com-

ply with UK General Data Protection Regulations (28).

This behavior was observed even in cases in which there

was plenty of time available for more orderly boarding.

This aspect of compromise on social distancing is

demonstrated by the schematic given in Figure 3.

CCTV observation also highlighted that passengers

did not have full control over distancing, as it is the out-

come of reciprocal interactions with other people.

Passengers can typically control the distancing between

themselves and obstacles in front of them as these are

the potential collisions they can see. However, they have

little knowledge or control over the distancing behind

them. To represent this, we applied the concept of

‘‘vision’’ to the agents. In the case of boarding or alight-

ing a train it was assumed that each agent faced their

nearest door, and they were limited to ‘‘seeing’’ only in a

forward direction. This resulted in people closer to the

door entrance not accounting for the individuals behind

them, and similarly people further from the doors taking

greater responsibility for steering around those closer to

the doors. This capability becomes more valuable when

the agents must make decisions at the transition from

alighting to boarding behavior during the dwell of the

train in the station.

PTI: Transition From Alighting to Boarding

Previous observation on mainline UK rail has shown

that, in most cases, passengers wishing to board will wait

on the platform in an orderly manner until most passen-

gers wishing to alight have done so, even if the doors are

wide enough to facilitate bidirectional flow (2). Realistic

representation of this transfer between boarding and

alighting passengers was therefore crucial in the predic-

tion of total flow time. To represent the behavior, an area

of the train vestibule was defined that boarding agents

could ‘‘see’’ from outside the train, taking account of

door size (shown in green in Figure 2). If this area of the

vestibule area was clear, a passenger waiting to board

would begin to board the train, even if there were other

people ‘‘hidden’’ inside the train wishing to alight.

Figure 2. Semiplan view of a three-coach train (front), adjacent
to a platform with boarding passengers (blue), and alighting
passengers (yellow). Vestibule areas are indicated in green.
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However, if the vestibule was not clear of alighting pas-

sengers, boarding passengers would continue to wait on

the platform. This better represented real passenger beha-

vior than if boarders had to wait until all alighting pas-

sengers had left the train. Additional influences on the

passenger flow include variation of unhindered walking

speeds, individual passenger mobility, behavior of pas-

sengers traveling as a group, and the effect on movement

of carrying luggage. Luggage and group behavior are the

subject of ongoing observation to support modeling their

impact on passenger flow, with the research reported here

restricted to the impact of social distancing.

Using output from the model, passenger behaviors

were quantified, the primary metric being the total flow

time for all passengers in the simulation to complete

alighting and boarding. The flow time was calculated

from the time the train doors opened and passengers

began to move, and ended when all boarding passengers

had moved 2m into the train and alighting passengers

had reached a goal location at least two-thirds along the

depth of the platform (i.e., 2 or 4m for the 3- and 6-m

platform widths respectively). The locations of each

agent during the simulations can be visualized to observe

agent trajectories and speeds, and to enable time-

proximity metrics to be calculated. These metrics are the

subject of further development to better understand how

representative of risk they may be.

Modeling Runs Undertaken

To quantify the effect of social distancing on the passen-

ger flow the following cases were investigated:

1. Passengers with no social distancing, representing

prepandemic behavior;

2. Natural distancing between passengers (0.75m);

3. Two levels of passenger social distancing (1 and

2m); and

4. Varying the region over which passenger social

distancing is compromised in the approach to the

train.

Two rolling stock types were considered, which are rep-

resentative of most UK rolling stock that would typically

be allocated to a route according to stopping patterns

and journey length. The stock types used were

1. Suburban: Designed for high people flows at the

doors and shorter journeys, based on British Rail

Class 507/508 rolling stock. These carriages are

20m in length with doors of width 1.3m, located

one-third and two-thirds along the carriage

length.

2. Intercity: Designed for lower people flow at the

doors and longer intervals between stops, based

on British Rail Class 390 rolling stock. These car-

riages are 24m long with doors 0.95m wide,

placed 2 and 22m along the length, close to the

ends of the carriage.

Platform widths of 3 and 6m were considered, encom-

passing those found in a range of UK stations. At each

train door, between 2 and 25 passengers for both board-

ing and alighting were considered. This gave between 4

and 50 agents interacting at each train door. These pas-

senger levels reflected the demand during various times

of the day, for example, peak commuter behavior was

captured by 50 interacting agents per door, and off-peak

travel behavior was captured by four interacting agents

per door. For each parameter set, 10 simulations were

Figure 3. (Not to scale) Plan view schematic of passenger behavior on the platform demonstrating the decreasing distance between
agents as they move toward a suburban train door.
PTI = platform–train interface.
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performed with randomized initial seeding location of

agents on the platform and within the train, and the flow

times were averaged to account for the seeding of indi-

vidual agents in each simulation run.

Validation of the Modeling Predictions

Validation of the agent-based model was performed by

comparing predicted flow times with the measured flow

times observed from CCTV data, summarized in Tables

1–3. Data collection was conducted using preexisting sta-

tion CCTV systems and received clearance under the

remit for their use in ensuring the safety and well-being

of railway customers and employees. No identifying or

personal information relating to passengers or railway

staff was taken into the analysis. Three locations were

used for this: Birmingham New Street, Leeds, and

London Bridge stations. Data from Birmingham New

Street was collected on the 12 October, 2020; Leeds foo-

tage was obtained on 26 September, 2020, and on 12

March and 26 May, 2021; and footage from London

Bridge was obtained on the 4 May, 2021. The CCTV

footage was analyzed by visual inspection, recording the

number of passengers boarding and alighting at the PTI

and the flow time, which started when the first passenger

alighted from the train and ended when the last passen-

ger had boarded. Specific behaviors in relation to the

level of social distancing each passenger attempted to

maintain were not recorded, nor did the modeling

attempt to recreate any specific observed behaviors. The

aim was to model the aggregate behavior of a group of

passengers at the PTI to represent the real-world situa-

tion for passengers attempting to socially distance.

The train stock was also recorded and grouped into

either suburban or intercity stock types based on the

location of the train doors. For trains with long dwell

times that allow for passenger boarding over a prolonged

period, only the initial passenger transfer was considered

where interaction between boarding and alighting pas-

sengers was observed. To avoid artificially inflating flow

times, individual passengers arriving late after the main

flow period were discounted as arbitrary late arriving

passengers are outside the scope of the modeling.

The comparison between the predicted and measured

passenger flow times for each of the cases given in the

above tables is shown in Figure 4. Good agreement was

observed between the predicted and measured flow times,

with the largest difference occurring in Case 7. For this

case, the larger flow time observed in the CCTV, compared

with the modeling output, was the result of four passengers

alighting with bicycles. Passengers were also alighting from

the adjacent door, so boarding passengers could not bypass

the blockage by choosing to board through an alternate

route, and thus queued at the original door.

The model predictions were not systematically high or

low and the root mean square average gave a variation

between the measured and predicted flow times of

approximately 1.5 s. Considering only the absolute differ-

ences in the flow times, this variation was approximately

3.6 s, and discounting the outlier discussed above, this

variation reduced to 2.4 s. When large numbers of pas-

sengers were boarding, such as in Case 10 in which an

average of 32 passengers boarded per door, the model

predictions maintained good agreement with the real

flow times. The model prediction in this case was approx-

imately 5 s less than the real time, representing only a 6%

variation between the two flow times. Similar variations

were present in the other flow times.

Figure 5 shows the correlation of predicted flow times

with measured flow times. The dashed line indicates an

ideal 1:1 correlation where the model would exactly pre-

dict the measured flow times, and the solid line indicates

the linear fit to the data. The linear fit was assumed to

be of the form y= ax for some constant a. The gradient

(i.e., the constant a) of the linear fit was approximately

1.04 compared with the gradient of 1 in the ideal case

with an R2 value of 0.97, suggesting the linear fitting was

in good agreement with the data. Discounting the out-

lier, the gradient of the line would be approximately

1.03. Since the gradient of the fitted line was greater than

the 1:1 case, this suggests that the model in general

slightly underpredicted the passenger flow time. This was

Table 1. Data From CCTV Observation of Passenger Volumes and Flow Times for Leeds Station, Cases 1 to 8. Each of the Train Dwells
Observed in the CCTV Footage is Labeled With a Case Number, 1 to 8, for Reference in the Text

Case 1 2 3 4 5 6 7 8

Time of day 07:40 08:00 08:25 12:30 12:50 12:57 13:04 13:05
Stock type (S-Suburban, I-Intercity) S I S S S I I I
Boarding passengers per door (max., average, min.) 3, 2, 1 2, 1, 1 3, 2, 1 15, 10, 7 7, 5, 2 4, 1, 1 6, 5, 4 13, 8, 4
Alighting passengers per door (max., average, min.) 12, 7, 2 12, 5, 2 11, 8, 2 17, 10, 5 6, 6, 5 9, 5, 3 6, 5, 4 5, 3, 1
Dwell time (s) 337 349 280 110 449 643 383 304
Flow time (s) 24 22 21 37 37 20 43 44

Note: max. = maximum; min. = minimum.
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most likely the result of not having a complete granular

representation of human behaviors at every time step

during the boarding and alighting processes (e.g., passen-

ger movement speed varies, changes in individual direc-

tions on boarding the train), as well as the neglection of

passenger behaviors with bags or for groups traveling

together. Across all cases considered in the validation of

the model, the mean predicted flow time was 26 s and the

mean measured flow time was 27 s, representing only a

1-s variation between the model flow times and real flow

times. The standard deviation of the flow times was

13.6 s and 14.4 s for the predicted and measured times,

respectively.

Flow Time Predictions and the Effect of

Social Distancing

For each of the train stock types and platform widths

considered, the predicted flow times for the explored lev-

els of social distancing are shown in Figure 6. Typical

flow times for low passenger levels (below 10 passengers

boarding and alighting per door), were approximately

20 s for suburban train stock and 25 s for intercity rail

stock. As passenger levels increased, the flow times were,

as would be expected, predicted to increase, with flow

times just under 40 s for intercity rail stock when there

was a combined total of 50 passengers boarding and

alighting per door. For suburban rail stock, the predicted

flow time for the largest passenger volumes was lower

than intercity rail stock with maximum flow times

around 36 s.

Compared with no social distancing, the addition of

1-m social distancing between passengers had only a

marginal effect on the predicted flow times. In the 1-m

case, there was no significant trend above and beyond

the variation between the modeling runs for similar

inputs. For each combined total of boarding and alight-

ing passengers under the 1-m social distancing condition,

the predicted flow times varied by only approximately

5% to 10% for an intercity train relative to the case with-

out social distancing. The marginal increases were also

predicted for a ‘‘natural’’ distancing of 0.75m between

passengers. This indicated that (i) 1-m social distancing

was predicted to have little impact on train dwell times

relative to the prepandemic situation, and (ii) the multi-

pliers of the flow times predicted were insensitive to the

exact mix of boarding and alighting passengers, making

this finding robust for real-world application where the

proportion of boarders and alighting passengers will vary

on different services.

Table 2. Data From CCTV Observations of Passenger Volumes and Flow Times for Leeds Station, Cases 9 to 17. Each of the Train
Dwells Observed in the CCTV Footage is Labeled With a Case Number, 9 to 17, for Reference in the Text

Case 9 10 11 12 13 14 15 16 17

Time of day 13:06 13:23 13:50 14:30 14:30 16:57 17:05 17:20 18:25
Stock type (S-Suburban, I-Intercity) I S S S S I I S S
Boarding passengers per door
(max., average, min.)

8, 5, 3 8, 7, 7 7, 3, 1 7, 6, 4 16, 14, 13 9, 7, 5 6, 3, 1 10, 7, 3 4, 2, 2

Alighting passengers per door
(max., average, min.)

5, 3, 0 33, 32, 31 7, 3, 0 12, 8, 4 21, 14, 7 4, 3, 1 0, 0, 0 8, 5, 3 9, 5, 2

Dwell time (s) 323 148 1337 95 95 227 407 225 303
Flow time (s) 31 79 13 34 41 25 13 26 17

Note: max. = maximum; min. = minimum.

Table 3. Data From CCTV Observations of Passenger Volumes and Flow Times for Birmingham New Street and London Bridge Station
Cases. Each of the Train Dwells Observed in the CCTV Footage is Labeled With a Case Number, 18 to 25, for Reference in the Text

Birmingham New Street London Bridge

Case 18 19 20 21 22 23 24 25

Time of day 08:55 09:55 15:00 15:33 16:00 16:40 16:45 16:50
Stock type (S-Suburban, I-Intercity) S S S S S S S S
Boarding passengers per door (max., average, min.) 3, 1, 1 2, 2, 1 15, 7, 0 12, 11, 10 14, 13, 12 6, 4, 2 11, 7, 4 7, 4, 3
Alighting passengers per door (max., average, min.) 13, 4, 6 7, 6, 2 1, 1, 1 3, 2, 1 6, 5, 5 4, 3, 1 2, 1, 1 0, 0, 0
Dwell time (s) 147 158 179 109 136 154 56 99
Flow time (s) 28 15 25 28 24 13 14 9

Note: max. = maximum; min. = minimum.
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For the intercity rolling stock, the flow time increases

were larger for the highest passenger levels, increasing by

as much as 50% compared with the case when distancing

between passengers was 0m. Typical increases in the flow

time were around 20%, however, with larger increases

rare.

The increases in the predicted flow times were typi-

cally independent of the train type, with increases for

suburban rail stock also marginal. At a 6-m wide plat-

form, the longest flow times were approximately 30 s,

and increased by only 2 s with the addition of 1-m social

distancing, as shown in Figure 7. For very busy cases on

3-m wide platforms there were slightly greater flow time

increases at 1-m social distancing than for the 6-m wide

platforms, but for intercity rolling stock the extensions

to flow time were in most cases unlikely to be significant

to network operation. The influence of platform width is

discussed in more depth below.

When the level of social distancing was increased to

2m between passengers, there was a significant increase

in the predicted flow times. Compared with no social dis-

tancing, flow times may increase by up to 2.8 times for

equivalent passenger levels. A passenger flow time exten-

sion to this extent would be expected to compromise oper-

ation to a standard prepandemic timetable. The passenger

levels beyond which flow times extend are dependent on

the rolling stock type and platform width, for example,

the flow times for intercity stock at a 3-m wide platform

began to increase when more than 10 passengers boarded

and alighted per door, whereas the extended flow times

occurred at approximately 17 passengers per door when

the platform width was increased to 6m.

Suburban rail stock also experienced extended flow

times when there was 2-m social distancing between pas-

sengers, particularly for higher passenger loads. For low

passenger numbers (e.g., 10 to 15 combined boarding

and alighting passengers) there was little flow time

change from 2-m social distancing. However, a combined

total of around 20 passengers was predicted to produce a

40% increase in the flow times, which increased further

to approximately 120% compared with the case of no

social distancing for the highest passenger numbers con-

sidered. The effect of platform width for suburban roll-

ing stock was minimal when there was 2m of social

distancing, with the largest predicted flow times around

65 s in both platform width cases.

From the predicted flow times in Figure 6, a plane

was fit to the data according to f (x, y)= ax+ by+ c, to

generalize the effect of each additional passenger on the

overall flow time. In this way, the effects of each passen-

ger could be decomposed into the magnitude of their

impact on the flow time. For the given plane, f , the mag-

nitude of the effect of each passenger is given by a and b

for boarding and alighting, respectively, with a unit of

seconds per passenger. The constant, c, in seconds, repre-

sents the baseline flow time for each of the considered

minimum passenger volumes. The coefficients for each

of the considered cases are given in Table 4, and Figure

Figure 4. Comparison between measured and predicted
passenger flow times for the passenger volumes presented in
Tables 1 to 3 for each of the three mainline stations used for data
collection: (a) Leeds, (b) Birmingham New Street and (c) London
Bridge.

Figure 5. Flow time predictions against measured flow times.
The dashed line indicates the ideal case in which modeling
perfectly predicts real flow times, and the solid line is the linear fit
between simulated and measured data.
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7 shows the fitted plane for the intercity train case with a

6-m wide platform and 1-m social distancing.

For 0- or 1-m social distancing, whether passengers

were boarding or alighting had only a minor effect on the

increase of passenger flow times for each extra passenger,

with the a and b coefficients similar to one another, and

similar also for rolling stock types. Note that this was the

per-passenger change in flow time, and the constant, c,

did vary between rolling stock types. The behavior for 2-

m social distancing was different. In the 2-m case, the

number of boarding passengers was a dominant driver of

the increased flow times compared with alighting passen-

gers, most likely because of the larger social distancing

radius significantly limiting passengers’ ability to move

around the platform without compromise. Inside the

train, social distancing was assumed to drop to zero

owing to limited space, and discrete interactions were not

modeled so significant effects on the flow time from inter-

acted alighting passengers would not be expected in the

results.

The effects of social distancing on flow times observed

were predicted for both platform widths, although on

the wider platform type, the effect on flow times from

the boarding passengers was less pronounced than for

equivalent passenger levels: the wider platform relaxed

the constraint on passenger movement.

Although the boarding and alighting coefficients were

comparable for intercity and suburban trains, intercity

flow times grew from a higher baseline compared with

suburban trains (owing to smaller doors/longer car-

riages), and therefore had a typically longer flow time

overall. This was indicated by the higher values of the

baseline flow time, c, for the minimum passenger levels

and was representative of flow times observed during

Figure 6. Flow times for intercity train stock for varying levels of social distancing (SD) (0, 0.75, 1, and 2m) and either (a) an intercity
train at a 3-m wide platform, (b) an intercity train at a 6-m wide platform, (c) a suburban train at a 3-m wide platform, and (d) a suburban
train at a 6-m wide platform.
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real passenger boarding and alighting. The wider plat-

form type also drove a longer flow time for equivalent

passenger levels. The effect of platform width on the

total passenger flow time was also captured by the para-

meter c. In general, the wider platform type led to a

larger c because of the increased distance traveled by

passengers, however compared with the effect of rolling

stock type or the change in passenger levels, platform

width was a second-order effect.

Conclusions

This paper presents the results of a study on the effect of

differing levels and observances of social distancing on

the passenger flow time for boarding and alighting sub-

urban and intercity railway vehicles characteristic of lines

in the UK. Predictions were made with agent-based

simulations generated using an optimal reciprocal colli-

sion avoidance algorithm. Social distancing was imple-

mented such that agents aimed to maintain distance to

other agents but without affecting their ability to pass

close to platform walls or train bodies. Comparison was

made with real-world passenger flow times obtained from

observations using CCTV footage and this successfully

demonstrated the validity of the simulation outputs for

three different UK station locations (Leeds, Birmingham

New Street, London Bridge). The validation work

encompassed a range of passenger numbers boarding and

alighting trains, over a range of times throughout the

day, on different rolling stock types. The predicted flow

times obtained from the agent-based model showed good

agreement, indicating that it predicted passenger behavior

at the platform–train interface well. Variation between

the predicted and the measured flow time was less than

10%. Crucial to achieving this high level of agreement

was representing real-world social distancing in the

model, that is, the locations and times at which people

typically try to maintain distance, and the situations in

which people compromise on distancing to achieve their

goals. Observations in the three stations studied showed

consistent social distancing compromise at the time of

Figure 7. Fitted plane to the predicted flow time data for an
intercity train at a 6-m wide platform, when there is an intended
level of social distancing of 1m.

Table 4. Coefficients for Each of the Fitted Planes f x, yð Þ= ax+ by+ c for Each of the Considered Modeled Cases. Boarding, Alighting,
and Baseline Correspond to the Coefficients a, b, and c Respectively

Platform width (m) Intended social distancing (m) Coefficient Suburban Intercity

3 0 Boarding 0.49 0.37
Alighting 0.33 0.33
Baseline 12.4 20.0

1 Boarding 0.53 0.44
Alighting 0.38 0.36
Baseline 11.0 18.8

2 Boarding 1.45 2.78
Alighting 1.30 1.37
Baseline 3.24 4.47

6 0 Boarding 0.40 0.39
Alighting 0.35 0.40
Baseline 12.6 19.0

1 Boarding 0.39 0.44
Alighting 0.43 0.33
Baseline 12.5 18.9

2 Boarding 1.18 1.67
Alighting 1.33 1.42
Baseline 5.95 6.30

10 Transportation Research Record 00(0)



train boarding and particularly when approaching the

train doors, even for services in which there was no time

pressure to complete boarding. This may be the result of

long-term learned behavior that the alighting and board-

ing process is a time-critical stage in using a train.

Relative to models of a baseline condition without

social distancing, the modeling indicated that 1-m social

distancing made only a very marginal difference to pas-

senger flow times for the cases considered (3- and 6-m

wide platforms, intercity and suburban rolling stock

types). This indicated that mandated or informal use of

1-m social distancing is unlikely to have significant

impact on rail network operation (primarily because of

passenger behavior to compromise on distancing at the

rate determining door location).

With 2-m social distancing, it was found that signifi-

cantly extended passenger alighting and boarding flow

times could develop but only for busier services. Intercity

style rolling stock (smaller doors at the ends of the car-

riages) were predicted to need up to 2.8 times the normal

passenger flow time, whereas suburban rolling stock

(wider doors located one-third and two-thirds along the

carriage) needed up to 2.2 times the baseline case without

social distancing. The exact passenger loading at which

flow times began to extend was dependent on the rolling

stock and platform size, but a general conclusion can be

reached from the modeling predictions that significant

increases in flow time only affected 2-m social distancing

cases when the combined total of boarding and alighting

passengers exceeded 10 to 15 per door. This knowledge

may be used in preparedness for mandated application

of social distancing, or to account for the effect of conti-

nuation of distancing by vulnerable or cautious people

even when it is no longer mandated. This could help

avoid the introduction of timetables, which are unlikely

to be maintainable, and to reduce incentives for people

to compromise on social distancing.

The modeling presented here was developed for a spe-

cific case of social distancing applied during the pan-

demic, however, has wider applicability to situations with

‘‘natural distancing’’ between people, as well as applic-

ability to wider transport issues. In the future, as we tran-

sition to a postpandemic world, there may still be those

who exhibit a degree of distancing from other passengers,

for which the models developed here will be relevant.

Also, for existing infrastructure, the model described here

could inform changes to management of people flows,

for example, one-way systems or allowable dwell times

timetabled into the network. For new infrastructure, the

model has applicability to overall improvement of pas-

senger flows in the design stage as well as reduction in the

effect of pinch-points (e.g., ticket barriers).

Future iterations of the model will take advantage of

the massively improved computational speeds afforded

by implementation using a FLAME GPU version (29).

The current work considered individual travelers without

luggage, although the CCTV observation provided evi-

dence of the increased time of boarding when, for exam-

ple, passengers needed to load or unload bicycles from

the train. Thus, to further the applicability of the model-

ing output, future work will implement passengers travel-

ing with luggage, and groups traveling together.

Further extensions of the presented model will examine

platform management strategies to reduce overcrowding,

targeting existing physical infrastructure, as well as investi-

gating how different passengers behave with knowledge of

train dwell times, that is, passengers boarding immediately

or waiting on the platform until just before departure.
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