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ABSTRACT

In this paper, we consider the underdetermined two di-

mensional (2-D) source localization problem for wideband

sources based on a distributed sensor array network, where a

sparse sub-array is placed on each observation platform and

the source number is larger than the sensor number of each

sub-array. The received signals are first decomposed into dif-

ferent frequency bins via discrete Fourier transform (DFT),

followed by the vectorization process to obtain the virtual ar-

ray model with a larger aperture. Then, focusing is applied to

the virtual array instead of the physical array for performance

improvement, and a group sparsity based 2-D localization

method exploiting the difference co-array is proposed, with

increased DOFs for localization. Improved performance is

achieved as demonstrated by computer simulations.

Index Terms— Distributed sensor array networks, group

sparsity, focusing, two-dimensional localization, difference

co-array.

1. INTRODUCTION

Recently, two-dimensional (2-D) localization based on dis-

tributed sensor array networks has received considerable at-

tentions given its wide range of applications in radar, sonar,

and wireless communications [1, 2]. Typically, a localization

task can be achieved by analyzing the signal metrics such as

receive signal strength (RSS) [3], time of arrival (TOA) [4–6],

angle of arrival (AOA) [7, 8], and time difference of arrival

(TDOA) [9, 10]. Compared with the others, the AOA based

method is an attractive candidate since it is available for both

active and passive sensing networks, and no synchronization

is required among the distributed platforms [8].

Direction of arrival (DOA) estimation is an essential part

of AOA based localization, and various high-resolution algo-

rithms have been proposed, such as MUSIC [11], ESPRIT

[12], and their extensions [13]. In the underdetermined case,

the spatial smoothing based MUSIC (SS-MUSIC) [14, 15]

and the compressive sensing (CS) based methods [16–18] can
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be employed to exploit the difference co-array (DCA) con-

cept. For wideband DOA estimation, group sparsity based

methods [19, 20] within the CS framework and the focusing

algorithm [21,22] have been introduced, with the Cramér-Rao

bound derived in [23, 24].

For 2-D localization based on distributed sensor array net-

works with multiple sub-arrays employed in widely separated

spatial positions, the locations of near-field sources (near-field

compared to the entire sensor array network, but still far-

field compared with each sub-array) are usually estimated by

combining all the DOA estimates obtained by each sub-array

[2, 25, 26]. In [27, 28], the maximum likelihood estimator

(MLE) is adopted for localization by minimizing the total

DOA measurement errors among all distributed platforms un-

der the least square sense, with the DOAs estimated at the first

step using traditional methods. For complexity reduction, var-

ious low-complexity iterative methods [29] and closed-form

location estimators [8, 30] are proposed. To further improve

the estimation performance, a general group sparsity based

2-D localization method (GS-Localization) [31] is proposed,

processing the collected information across all the observa-

tion platforms jointly instead of fusing the separately mea-

sured angle results. However, localization for the underdeter-

mined case where the number of sources exceeds the sensor

number of each sub-array is not feasible in the methods men-

tioned above, even if uncorrelated sources are employed.

As indicated in [23], the a priori knowledge of uncorre-

lated sources improves the resolution capacity of the array.

In this paper, we focus on the 2-D source localization prob-

lem for wideband uncorrelated signals based on a distributed

sensor array network, and present a general flexible approach

capable of localizing more sources than the maximum sensor

number of each sunarray with potential frequency and spatial

diversity in one step. After decomposing the received signals

into different frequency bins via discrete Fourier transform

(DFT), the virtual array model corresponding to the DCA

of each sub-array across all frequency bins is obtained by

vectorizing the correlation matrix. Next, the focusing algo-

rithm is applied to the virtual array instead of the physical

array with reduced focusing model error achieved. Then, a

group sparsity based 2-D localization method exploiting the

DCA concept is proposed under the CS framework, referred

to as DCA-GS-Localization, where the information of all sub-



arrays is processed simultaneously to directly localize the po-

sitions of near-field sources, leading to improved estimation

performance. It is noted that the increased DOFs associated

with the a priori knowledge of uncorrelated sources can be

fully exploited, and thus more sources can be localized than

the existing method with the same array network.

2. SIGNAL MODEL

Consider a distributed sensor array network (as shown in Fig.

1(a)) composed of M sparse sub-arrays, each of which con-

tains Lm sensors. There are K mutually uncorrelated sources

impinging on this distributed sensor array network. Here, the

sources standing apart in sufficient distances are near-field

compared to the entire sensor array network, but still far-field

compared to each sub-array (the distances between the subar-

rays and the sources are much larger than the subarray aper-

ture). The locations of the k-th source (k = 1, 2, . . . ,K)

and the m-th sub-array (m = 1, 2, . . . ,M ) are represented by

Tk(xTk
, yTk

) and Um(xm, ym), respectively.

The sensor position set of the m-th sub-array is given as

Sm =
{

~
m
l d, 0 ≤ lm ≤ Lm − 1

}

, (1)

where ~
m
l denotes the position of the l-th sensor in the m-th

sub-array, and d is the unit spacing.

For the m-th sub-array shown in Fig. 1(b), ϕm is the ro-

tation angle, measured between the end-fire direction of the

sub-array and the x-axis. φm,k is the incident angle of the

k-th source measured between the direction of the impinging

signal on the m-th sub-array and the y-axis, expressed as [31]

φm,k = arctan 2(∆xm,k,∆ym,k) ,

=
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), ∆ym,k > 0,

arctan(
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) + π, ∆xm,k ≥ 0,∆ym,k < 0,

arctan(
∆xm,k

∆ym,k
)− π, ∆xm,k < 0,∆ym,k < 0,

+ π/2, ∆xm,k > 0,∆ym,k = 0,

− π/2, ∆xm,k < 0,∆ym,k = 0,

undefined, ∆xm,k = 0,∆ym,k = 0,

(2)

where arctan 2(∆xm,k,∆ym,k) ∈ (−π, π] represents the

four-quadrant inverse tangent of ∆xm,k and ∆ym,k, with

∆xm,k = xTk
− xm, and ∆ym,k = yTk

− ym.

Then, θm,k = φm,k + ϕm,k represents the incident angle

of the k-th source relative to the m-th sub-array.

The discrete source signal vector of the m-th sub-array

is expressed as sm[i] =
[

sm,1[i], . . . , sm,K [i]
]T

, and denote

xm[i] as the Lm×1 column vector consisting of the observed

signals in discrete form. The noise at different sensors are

assumed to be white Gaussian and uncorrelated.

For the wideband case, each received signal is divided

into non-overlapping groups with length L, followed by an
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Fig. 1. The localization geometry of a distributed sensor array

network.

L-point DFT to obtain the output array model at the l-th fre-

quency bin and the p-th group, given by

Xm[l, p] = Am(l,θm)Sm[l, p] +Nm[l, p] , (3)

where Xm[l, p], Sm[l, p], and Nm[l, p] are the DFTs of

xm[i], sm[i], and the noise vector nm[i], respectively, where

l = 0, 1, . . . , L − 1 and p = 1, 2, . . . , P . Am(l,θm) =
[

am(l, θm,1),am(l, θm,2), . . . ,am(l, θm,K)
]

is the Lm × K

steering matrix at fl =
l
L
fs (fs is the sampling frequency),

with its column vector am(l, θm,k) representing the steer-

ing vector corresponding to the k-th source at frequency fl,
expressed as

am(l, θm,k) =
[

e
−j

2π~
m
0 d sin(θm,k)

λf , · · · , e
−j

2π~
m
Lm−1d sin(θm,k)

λf

]T
,

(4)

where λf = c/fl represents the wavelength corresponding to

fl, and c is the wave propagation speed.

3. UNDERDETERMINED 2-D LOCALIZATION

BASED ON THE DIFFERENCE CO-ARRAY

In this section, based on the a priori knowledge of uncorre-

lated sources, the 2-D localization method for wideband near-

field sources exploiting the difference co-array is proposed,

leading to improved performance in terms of both resolution

capacity and estimation accuracy.

3.1. Focusing on the Difference Co-Array

As evaluated in [21], focusing on the virtual array instead of

the physical array improves the DOA estimation performance

for a single linear array. This idea is further extended to the

2-D localization scenario in this subsection.

For the l-th frequency bin, the correlation matrix of the

m-th sub-array is calculated by

RXm
[l] = E

{

Xm[l, p] ·XH
m[l, p]

}

=
∑K

k=1
σ2

m,k[l]am(l, θm,k)a
H
m(l, θm,k) + σ2

m,n̄[l]ILm
,

(5)



where σ2

m,k[l] and σ2
m,n̄[l] are the power of the k-th signal

and the noise received by the m-th sub-array, respectively,

and ILm
is an Lm × Lm identity matrix.

Then, we obtain a virtual array model corresponding to

the difference co-array of the m-th sub-array by vectorizing

RXm
[l], given as

zm[l] = vec {RXm
[l]}

= Ãm(l,θm)s̃m[l] + σ2

m,n̄[l]ĨL2
m
,

(6)

where the equivalent steering matrix of the virtual array

Ãm(l,θm) =
[

ãm(l, θm,1), . . . , ãm(l, θm,K)
]

is composed

of equivalent steering vectors ãm(l, θm,k) = a∗m(l, θm,k) ⊗
am(l, θm,k) with ⊗ as the Kronecker product, and s̃m[l] =
[

σ2
m,1[l], . . . , σ

2
m,K [l]

]T
is the K × 1 equivalent source sig-

nal vector. ĨL2
m

is an L2
m × 1 column vector obtained by

vectorizing ILm
.

Denote fr as the reference frequency for focusing which

corresponds to the lr-th frequency bin. The rotational signal-

subspace (RSS) focusing matrix of the m-th sub-array is

given by Tm[l] = Vm[l]UH
m[l], where the column vectors in

UH
m[l] and VH

m[l] are the left and right singular vectors of the

matrix Ãm(l,θF )Ã
H
m(lr,θF ), respectively, with θF holding

the angles involved for focusing.

Then, for the m-th sub-array, we have

ym[l] = Tm[l]zm[l]

= Tm[l]Ãm(l,θm)s̃m[l] +Tm[l]σ2

m,n̄[l]ĨL2
m

≈ Ãm(lr,θm)s̃m[l] +Tm[l]σ2

m,n̄[l]ĨL2
m
.

(7)

Assume that there are J frequency bins of interest indexed

by lj , j = 0, 1, . . . , J − 1. The focused virtual array model

is obtained by averaging array models at different frequencies

of interest, expressed as

ȳm =
∑J−1

j=0
ym[l]

= Ãm(lr,θm)p̃m +
∑J−1

j=0
Tm[lj ]σ

2

m,n̄[lj ]ĨL2
m
,

(8)

where the Lm × 1 column vector p̃m =
∑J−1

j=0
s̃m[lj ] is the

equivalent signal vector after focusing. Under the white

Gaussian noise assumption, we have σ2
m,n̄[lj ] = σ2

m,n̄,

∀j = 0, 1, . . . , J − 1.

Denote Tm =
∑J−1

j=0
Tm[lj ]ĨL2

m
, (8) can be rewritten as

ȳm = Ãm(lr,θm)p̃m + σ2

m,n̄Tm. (9)

3.2. 2-D Localization Exploiting the Difference Co-Array

In this subsection, a 2-D localization method under the

CS framework working on the difference co-array with

the focused virtual array model, referred to as DCA-GS-

Localization, is proposed, exploiting the information acquired

by all sub-arrays jointly to form the final localization results.

The incident angles of the same source for different sub-

arrays are distinct, i.e., φm1,k 6= φm2,k for m1 6= m2,

whereas all the sources are still far-field compared to the

sub-array aperture.

Assume that the square shaped area of interest in the

Cartesian coordinate system is divided into KxKy grids,

where Kx and Ky represent the number of grids along

the x-axis and y-axis, respectively. Denote G(xkx
, yky

),
kx = 0, 1, . . . ,Kx − 1 and ky = 0, 1, . . . ,Ky − 1, as the po-

sition of the (kx, ky)-th search grid. Then, its corresponding

incident angle θg,m(kx, ky) is given by

θg,m(kx, ky) = arctan 2(∆xm,kx
,∆ym,ky

) + ϕm , (10)

with ∆xm,kx
= xkx

− xm, and ∆ym,ky
= yky

− ym.

By stacking all potential incident angles, we construct a

KxKy × 1 vector θ̃g,m

θ̃g,m =
[

θg,m(0, 0), θg,m(0, 1), · · · , θg,m(0,Ky − 1),

· · · , θg,m(Kx − 1, 0), · · · , θg,m(Kx − 1,Ky − 1)
]T

.

(11)

Then, for each sub-array, an overcomplete represen-

tation of the equivalent steering matrix is constructed by

Ãg,m(l, θ̃g,m) =
[

ã(l, θg,m(0, 0)), . . . , ã(l, θg,m(Kx −

1,Ky − 1))
]

. The column vector s̃g,m[l] is composed of

KxKy elements, with each element representing a potential

source signal at the corresponding incident angle associated

with the grid position.

The right side of (9) can be represented under the CS

framework, denoted by

b̃m = Ãg,m(l, θ̃g,m)p̃g,m + σ2

m,n̄Tm , (12)

where the search grid employed in Ãg,m(l, θ̃g,m) and p̃g,m

is replaced by θ̃g,m.

Then, column vectors ỹ and b̃ with the size of
∑M

m=1
Lm

2×

1 as well as a KxKy ×M matrix Ũg are generated by

ỹ =
[

ȳT
1 , ȳ

T
2 , . . . , ȳ

T
M

]T
,

b̃ =
[

b̃T
1 , b̃

T
2 , . . . , b̃

T
M

]T
,

Ũg =
[

p̃g,1, p̃g,2, . . . , p̃g,M

]

,

(13)

with row vector ũ
kg
g , 0 ≤ kg ≤ KxKy − 1, as the kg-th row

of the matrix Ũg.

Based on the generated grids, the entries in each row vec-

tor Ũg share the same two-dimensional support since they are

associated with the same location G(xkx
, yky

), where kg =
kxKy + ky . Then, a (KxKy + 1) × 1 column vector ũ◦

g is

constructed by applying ℓ2 norm to ũ
kg
g and the noise terms

across all the sub-arrays, given by

ũ◦

g =
[

‖ũ0

g‖2, ‖ũ
1

g‖2, · · · , ‖ũ
KxKy−1

g ‖2, σ
2

n̄

]

, (14)



where σ2
n̄ = ‖[σ2

1,n̄, σ
2
2,n̄, . . . , σ

2
M,n̄]‖2 is also considered as

an unknown variable to be estimated.

Due to the shared 2-D support, the locations of the sources

can be estimated jointly, and the proposed group sparsity

based 2-D localization method exploiting the difference co-

array concept (DCA-GS-Localization) can be formulated as

min
ũ◦

g

‖ũ◦

g‖1

subject to ‖ỹ − b̃‖2≤ ε ,
(15)

where ε is the allowable error bound. The first KxKy ele-

ments in ũ◦

g are the corresponding localization results over

the KxKy search grids, which are finally translated into the

2-D source positions in the Cartesian coordinate system.

Remark 1: The DCA-GS-Localization method is pro-

posed for underdetermined source localization from the per-

spective of virtual array aperture extension by adopting the

a priori knowledge of uncorrelated sources. By forming a

larger difference co-array and performing focusing on the co-

array, increased estimation performance and DOFs (exceed-

ing the sensor number in each sub-array) can be achieved.

4. SIMULATION RESULTS

Consider a distributed sensor array network with M = 6
sub-arrays located at positions U1(0,−30), U2(25, 10),
U3(−25, 30), U4(−25, 0), U5(0, 30), and U6(25,−25), with

rotation angles being 0◦, 110◦, −135◦, −90◦, 180◦, and 45◦,

respectively. Each sub-array has Lm = 4 sensors with po-

sitions given by Sm = {0, 1, 4, 6}d, ∀m = 1, 2, . . . , 6. The

normalized frequency of interest ranges from 0.75π to π with

the center frequency fr = 0.875π chosen as the reference.

The unit spacing d = λr/2, where λr represents the wave-

length corresponding to fr. The number of DFT points is

L = 64. There are K = 5 targets at positions T1(−10,−13),
T2(−3,−3), T3(13, 11), T4(9,−9), and T5(−13, 0), and

the square area of interest in the Cartesian coordinate sys-

tem is represented by (x, y), with −20 ≤ x ≤ 20 m and

20 ≤ y ≤ 20 m.

For the first set of simulations, the input signal-to-noise

ratio (SNR) is fixed at 0 dB, and the number of snapshots for

each frequency bin is 500. A large step size of 1 m is utilized

for localization, and the localization results obtained by dif-

ferent methods are displayed in Fig. 2, where the results of

the existing GS-Localization [31] is shown in Fig. 2(a), while

the results obtained by the proposed DCA-GS-Localization is

given in Fig. 2(b). Clearly, the existing method has failed,

while the proposed one has successfully identified the five

sources with only four sensors at each sub-array.

Then, the root mean square error (RMSE) results with re-

spect to the input SNR and the number of snapshots are pro-

vided in Fig. 3(a) (500 snapshots) and Fig. 3(b) (0 dB SNR),

respectively, where each point is an averaged result via Monte

carlo simulations of 200 trials and a small step size of 0.05 m

(a) Results by GS-Localization. (b) Results by the proposed DCA-GS-

Localization.

Fig. 2. Localization results obtained by different methods.

(a) RMSE versus input SNR. (b) RMSE versus the number of snap-

shots.

Fig. 3. RMSE results of different methods.

is adopted. Here, the MLE refers to the commonly used AOA-

fusion method with AOAs estimated by applying SS-MUSIC

to the focused virtual array model (9) for each sub-array. It

is obvious that a better performance has been achieved by the

proposed DCA-GS-Localization than the MLE since MLE is

sensitive to the accuracy of individual AOA estimation re-

sults.

5. CONCLUSION

The underdetermined 2-D localization problem for wideband

uncorrelated sources based on a distributed sensor array net-

work was studied, where the number of sources exceeds the

sensor number of each sub-array. The virtual array model

at each frequency bin was obtained by vectorizing the corre-

sponding subband correlation matrix after DFT decomposi-

tion, followed by focusing on the difference co-array instead

of the physical array as a pre-processing step. Under the CS

framework, the group sparsity based 2-D localization method

exploiting the difference co-array (DCA-GS-Localization)

was proposed, exploiting the a priori knowledge of uncor-

related sources. It has been shown by simulations that the

proposed DCA-GS-Localization is capable of resolving more

sources than the number of physical sensors of each sub-

array, while the existing one fails. It has also shown by

simulations that a better performance can be achieved by

DCA-GS-Localization compared with the MLE.
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