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The plethory of operations

in complex topological K-theory

William Mycroft and Sarah Whitehouse

We provide a concrete introduction to the topologised, graded analogue of an

algebraic structure known as a plethory, originally due to Tall and Wraith. Stacey

and Whitehouse showed this structure is present on the cohomology operations

for a suitable generalised cohomology theory. We compute an explicit expres-

sion for the plethory of operations for complex topological K-theory. This is

formulated in terms of a plethory enhanced with structure corresponding to the

looping of operations. In this context we show that the familiar λ-operations

generate all the operations.

1. Introduction

Cohomology operations provide a very powerful piece of structure associated with

a generalised cohomology theory, and over the years they been used to prove many

deep results in algebraic topology. However, despite the ubiquity of cohomol-

ogy operations, there are some challenges in identifying the appropriate algebraic

framework in which to encode the rich structure the operations admit.

Historically, cooperations, the homological analogue of operations, have often

been the objects of interest, and in many cases of interest they encode the same

information. These are amenable to study via the medium of Hopf rings and many

useful results have been proved that way. One may also consider operations from

one theory to another, again with corresponding Hopf rings. For example, under

mild hypotheses, [Hunton 2002] gives a general description of the homology Hopf

ring associated to the completion of a theory with respect to an ideal in the coeffi-

cient ring.

Unfortunately, a Hopf ring contains no algebraic structure which naturally cor-

responds to composition of operations. To address this, Boardman, Johnson and

Wilson [Boardman et al. 1995] introduced the notion of an enriched Hopf ring,

which enhances the structure with an external action encoding the missing in-

formation. Enriched Hopf rings of cooperations have been computed for many
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interesting theories, including complex K-theory [Boardman et al. 1995, Theo-

rem 17.14]. However, this structure can be somewhat cumbersome for performing

computations as the enrichment is not easily expressed in terms of generators and

relations.

An alternative approach proves fruitful. Roughly speaking, operations act non-

linearly on cohomology algebras, and this determines the structure in the same

way that (not necessarily commutative) k-algebras are precisely the objects which

act on k-modules. The relevant abstract algebraic structure was first introduced

in [Tall and Wraith 1970], and subsequently studied by Bergman and Hausknecht

[1996] and by Borger and Wieland [2005], who coined the term plethory. A priori,

cohomology operations do not naturally fit into this framework due to considera-

tions of grading and topologies on the algebraic structures. However, as shown by

Stacey and Whitehouse [2009], in sufficiently nice cases the operations admit the

structure of a graded topologised plethory and this acts on completed cohomology

algebras. Here the completion is with respect to the skeletal filtration, as discussed

in [Boardman 1995, Section 3]. A related approach by Bauer [2014] considers

formal plethories, thus avoiding completion issues. All this should be viewed as

an algebraic shadow of corresponding structure in the world of spectra and there

is current work towards developing a theory of spectral plethories.

Of course, in the case of complex topological K-theory, there is a long tradition

of work with cohomology operations, often formulated in terms of λ-operations or

Adams operations. The ring of symmetric functions provides a basic example of

a plethory whose algebras are λ-rings. Yau [2003] has related the enriched Hopf

ring approach to that of filtered λ-rings, restricting attention to the degree zero

part of complex K-theory. Working with p-adic coefficients, Bousfield’s theory of

p-adic θ-rings [1996] captures the structure, and work of Rezk [2009], again in

a p-complete setting, extends this to exhibit the relevance of plethories to power

operations at higher chromatic heights.

The main aim of this paper is to give a concise full description of the integral op-

erations of complex topological K-theory in plethystic terms. We first give a direct

proof of the application of plethories to cohomology operations which illuminates

exactly where topological issues arise. We then extend our algebraic gadgets to

encode the looping of operations arising in the topological context. Applying our

technical framework to the study of the operations of complex topological K-theory

yields our main result, in particular showing how the λ-operations generate all K-

theory operations.

The main result is Theorem 5.7. This describes the operations as a Z/2-graded

Z-plethory with looping, in terms of the plethory of symmetric functions and the

plethory of set maps from Z to Z.
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This paper is organised as follows. Section 2 covers plethories in a graded and

topologised context. The (completed) plethory structure of set maps from a ring

to itself, such as Set(Z, Z), is discussed here. Section 3 covers the plethory of

operations in ungraded K-theory and looping is discussed in Section 4. The main

result appears in Section 5.

Throughout, rings and algebras are assumed to be (graded) commutative and

unital unless stated otherwise.

2. Topological plethories

We generalise the theory of plethories [Tall and Wraith 1970; Borger and Wieland

2005] to a suitably graded and topologised context. This variant is needed to cap-

ture the structure on cohomology operations. We assume familiarity with [Borger

and Wieland 2005] and our focus is on the differences in the graded, topologised

case.

Fix a commutative monoid Z , typically (Z,+) or (Z/2,+), used for grading.

Let k and k ′ be Z -graded rings. Let Algk be the category of k-algebras and let

CAlgk be the category of filtered k-algebras which are complete Hausdorff under

the filtration topology, meaning that the completion map A→ Â = lim
←−−

A/Fa A is

an isomorphism. Morphisms are continuous k-algebra maps of degree zero. We

write ⊗̂ for the completed tensor product over k. Further details can be found

in [Boardman 1995, Section 6].

Definition 2.1. The category CBiringk,k′ of complete Hausdorff k-k ′-birings is the

category of co-k ′-algebra objects in CAlgk . To be explicit, an object in this category

consists of a Z -graded collection of complete Hausdorff k-algebras B• = (Bn)n∈Z

together with continuous k-algebra maps

1+ : Bn→ Bn ⊗̂ Bn, (coaddition)

ε+ : Bn→ k, (cozero)

σ : Bn→ Bn, (coadditive inverse)

1× : Bn→
∏

i+ j=n

Bi ⊗̂ B j , (comultiplication)

ε× : B0→ k, (counit)

for each n ∈ Z and

γ (κ) : B→ B (co-k ′-linear structure)

for each κ ∈ k ′, satisfying the usual relations for a co-k ′-algebra object [Tall and

Wraith 1970; Boardman 1995].
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We use the above notation for the coalgebraic structure maps of a biring through-

out this paper.

It is customary [Boardman 1995; Borger and Wieland 2005] to consider the

equivalent formulation of the co-k ′-linear structure given by β(κ) = ε× ◦ γ (κ),

where we set ε×(b) = 0 for b ∈ Bn with n 6= 0. Endowing Algk(B•, k) with the

Z -graded ring structure determined by the other maps above, this yields a map of

Z -graded rings

β : k ′→ Algk(B•, k).

(However, this alternative description is unavailable in the case of non-counital

co-k ′-algebra objects, where we have no ε×.)

A complete Hausdorff k-k ′-biring B is naturally Z -Z -bigraded, with gradings

induced by the gradings on k and k ′. By an element x ∈ B, we mean x ∈ Bn for

some n ∈ Z . For x ∈ Bn , we define the •-degree by deg•(x)= n and the ∗-degree

by deg∗(x)= |x | ∈ Z , the degree of x in the graded k-algebra Bn . We can recover

the ungraded context as the special case Z = 0, the trivial monoid.

We make extensive use of sumless Sweedler notation [Sweedler 1969], writing

1+(x)= x(1)⊗ x(2),

1×(x)= x[1]⊗ x[2].

In the untopologised case, the algebro-geometric viewpoint of k-k ′-birings as

representable functors Algk→ Algk′ turns out to give very useful intuition. This

naturally generalises to the topologised setting via the language of formal schemes.

We only need affine schemes, so we use the following definitions [Strickland 1999],

where we use varieties of algebras in the sense of universal algebra [Bergman

2015].

Definition 2.2. A k-scheme is a covariant representable functor X : Algk → Set.

Given a variety of algebras V , if X has a specified lift to a functor Algk → V ,

we say the lift, often also denoted X , is a V-algebra k-scheme. If A denotes the

representing k-algebra, we write X = Speck(A)= Algk(A, – ).

A formal k-scheme is a functor X : Algk→ Set which is a small filtered colimit

of k-schemes. If X has a specified lift to a functor Algk→ V , we say the lift, often

also denoted X , is a V-algebra formal k-scheme. Given a filtered k-algebra A, we

define the formal k-scheme

Spfk(A)= lim
−−→

a

Algk(A/Fa A, – ).

This construction is functorial, giving a contravariant functor Spfk from filtered

k-algebras to formal k-schemes.
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It is worth noting that Spfk(A) = Spfk( Â), i.e., Spfk( – ) is blind to comple-

tions. Without going into detail, we remark that both k-schemes and formal k-

schemes preserve completeness and Hausdorff properties; see [Stacey and White-

house 2009]. For example, if X : Algk→ Algk′ is a (formal) k ′-algebra k-scheme

then X restricts to a functor CAlgk→ CAlgk′ .

Definition 2.3. A formal k-scheme X is solid if it is isomorphic to Spfk(A) for

some filtered k-algebra A.

Proposition 2.4. The functor Spfk gives an antiequivalence between complete Haus-

dorff k-k ′-birings B and solid formal k ′-algebra k-schemes.

Proof. The functor Spfk is an antiequivalence from CAlgk to the category of solid

formal k-schemes and the result follows by restricting to co-k ′-algebra objects. �

Example 2.5. As in [Borger and Wieland 2005, Example 1.2(1)], k is the initial k-

k ′-biring, with all structure maps given by the identity map of k. The corresponding

functor is the constant functor at the zero ring.

Example 2.6. When Z = Z, the identity functor Algk → Algk can be expressed

as Spfk(I), where

In =

{
k[ιn], n even,

3k[ιn], n odd,

|ιn| = n and each In has the discrete topology. The structure maps are given by

1+(ιn)= 1⊗ ιn + ιn ⊗ 1,

ε+(ιn)= 0,

σ (ιn)=−ιn,

1×(ιn)=
∑

r+s=n

ιr ⊗ ιs,

ε×(ιn)=

{
1, n = 0,

0, otherwise,

and for each κ ∈ k,

β(κ)(ιn)=

{
κ, |κ| = n,

0, otherwise.

A special case of the following example is relevant to our main result.

Example 2.7. The collection of set maps Set(k ′, k) endowed with the topology

arising from the profinite filtration

{
ker(Set(k ′, k)→ Set(k ′a, k)) | k ′a ⊆ k ′, k ′a finite subring

}
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naturally admits the structure of an ungraded complete Hausdorff k-k ′-biring. The

k-algebra structure is induced by the k-algebra structure on k and the co-k ′-algebra

structure is induced by the k ′-algebra structure on k ′.

For example, the coaddition is given by the map

Set(k ′, k)
Set(+,k)
−−−−−→ Set(k ′× k ′, k)∼= Set(k ′, k) ⊗̂Set(k ′, k).

The formal k ′-algebra k-scheme Spfk(Set(k ′, k)) is naturally isomorphic to the

functor of complete orthogonal idempotents given on k-algebras by

COIk′(A)=

{
(xi ) ∈

∏

i∈k′

A

∣∣∣
∑

i

xi = 1, x2
i = xi , xi x j = 0 for i 6= j

}
.

The addition and multiplication are specified by

πl((xi )+ (y j ))=
∑

i+ j=l

xi y j and πl((xi )(y j ))=
∑

i j=l

xi y j ,

where l ∈ k ′ and πl denotes the canonical projection
∏

i∈k′ A→ A to the component

indexed by l. The zero in COIk′(A) is (δi0)i∈k′ and the 1 is (δi1)i∈k′ , where δid is the

Kronecker delta function. The topology is given by the filtration ideals consisting

of sequences containing finitely many nonzero elements. The identification

Spfk(Set(k ′, k))∼= COIk′( – )

is given by the natural isomorphism which sends χd to (δid)i∈k′ , where χd is the

indicator functor on {d} ⊆ k ′.

When A contains no zero divisors, we have COIk′(A)∼=k ′. In fact, Spfk(Set(k ′,k))

is the nearest solid formal k ′-scheme to the constant k ′-algebra scheme A 7→ k ′;

see [Bauer 2014, Section 4].

In various applications, we frequently encounter non-counital k-k ′-birings, cor-

responding to representable functors from Algk to Alg!k′ , the category of nonunital

k ′-algebras or their topological generalisations. At the level of algebras, it is stan-

dard to remedy the lack of a unit via unitalisation: given a nonunital k-algebra

R, one forms the k-module k⊕ R together with the obvious multiplication. More

generally, if S is unital and R is additionally an S-module then the coproduct of

k-modules S⊕ R is naturally a unital k-algebra with multiplication given by

(s1+ r1)(s2+ r2)= (s1s2+ r1r2+ s1 · r2+ s2 · r1)

and unit 1S + 0R .

This construction has an analogue in the context of algebra schemes. If Speck(B)

is a representable nonunital k ′-algebra scheme, Speck(B ′) is a unital k ′-algebra

scheme, and Speck(B)(A) is naturally a Speck(B ′)(A)-module, then the functor
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Speck(B ′⊗ B) is a unital k ′-algebra scheme given, up to natural isomorphism, on

objects by

A 7→ Speck(B ′)(A)⊕Speck(B)(A).

At the level of the representing objects this translates to a B ′-comodule structure

on B. The comultiplication 1× on B ′⊗ B is given by the image of the identity

map of B ′⊗ B⊗ B ′⊗ B under the composite

Speck(B ′⊗ B⊗ B ′⊗ B)(A)

∼= Speck(B ′⊗ B)(A)×Speck(B ′⊗ B)(A)
µ
−→ Speck(B ′⊗ B)(A),

where µ is the multiplication and A = B ′ ⊗ B ⊗ B ′ ⊗ B. Using this, one can

compute an explicit formula for 1× and similarly for the counit ǫ×. Denoting the

coaction B→ B ′⊗ B by y 7→ y{1}⊗ y{2}, we find the following formulas for the

comultiplication and counit of the k-k ′-biring structure on B ′⊗ B:

1×(x ⊗ y)= x[1]y(2){1}⊗ y(1)[1]y(3){2}⊗ x[2]y(3){1}⊗ y(1)[2]y(2){2},

ε×(x ⊗ y)= ε×(x)ε+(y).

This construction generalises without difficulty to our topologised framework,

replacing schemes with formal schemes and completing tensor products.

Example 2.8. Let B be a non-counital k-k-biring and let A be a k-algebra. The

nonunital k-algebra Spfk(B)(A) naturally admits a Spfk(Set(k, k))(A)-module struc-

ture which, after identifying Spfk(Set(k, k))(A) with COIk(A), is given by

((aλ) ·φ)(b)=
∑

λ

φ(γ (λ)(b))aλ.

Here φ ∈ Spfk(B)(A), λ ∈ k, (aλ) ∈COIk(A), b ∈ B and γ specifies the co-k-linear

structure of B.

This translates to a Set(k, k)-comodule structure on B given by

b 7→
∑

λ

χλ⊗ γ (λ)(b)

and thus, Set(k, k) ⊗̂ B is naturally a k-k-biring with structure maps 1×, ε× deter-

mined by

1×(χd ⊗ b)=
∑

rs=d

χr ⊗ b(1)[1]γ (s)(b(2))⊗χs ⊗ b(1)[2]γ (r)(b(3)),

ε×( f ⊗ b)= ε×( f )ε+(b).

We generalise the composition product ⊙ [Borger and Wieland 2005; Tall and

Wraith 1970], which represents the composition of functors, to the graded topol-

ogised setting in two stages, first adding the grading and then the topology. The
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grading allows us to model operations between graded objects and the topological

setting allows us to consider only the continuous operations.

Just as with the tensor product of algebras, the composition product of a com-

plete Hausdorff biring with a complete Hausdorff algebra is not necessarily com-

plete Hausdorff with respect to the canonical filtration. As with the tensor product,

this is remedied by taking the completion.

Definition 2.9. For a complete Hausdorff k-k ′-biring B and complete Hausdorff

k ′-algebra A, we define the complete Hausdorff composition product ⊙̂ as fol-

lows. First, take the quotient of B ⊙ A by the ideal generated by the relations

b⊙a = 0 whenever deg•(b) 6= |a|. The grading on B⊙ A is specified by |b⊙a| =

deg∗(b)= |b|. Now define B ⊙̂ A to be the complete Hausdorff k-algebra

B ⊙̂ A = lim
←−−
α,β

B

Fβ B
⊙

A

Fα A

together with the canonical filtration where Fα A and Fβ B denote the filtration

ideals on A and B, respectively.

The defining properties of the composition product generalise without difficulty

to the graded topological setting and we have a bifunctor

⊙̂ : CBiringk,k′ ×CAlgk′→ CAlgk .

If B and B ′ are complete Hausdorff birings, the bigrading on the composition

product is defined •-componentwise in the sense that (B ⊙̂ B ′)n = B ⊙̂ B ′n .

Proposition 2.10. Let B be a complete Hausdorff k-k ′-biring. The functor

B ⊙̂ – : CAlgk′→ CAlgk

is left adjoint to Spfk(B) : CAlgk→ CAlgk′ . �

Proposition 2.11. For a complete Hausdorff k-k ′-biring B and complete Haus-

dorff k ′-algebra A, the formal scheme Spfk(B ⊙̂ A) is given by the composition

CAlgk

Spfk(B)
−−−−→ CAlgk′

Spfk′ (A)
−−−−−→ Set.

Hence, ⊙̂ lifts to a functor

CBiringk,k′ ×CBiringk′,k′′→ CBiringk,k′′

and (CBiringk,k, ⊙̂, I) forms a monoidal category. �

Proceeding as in the discrete case, we can now define structure which precisely

models composition of operations.
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Definition 2.12. The category of complete Hausdorff k-plethories CPlethoryk is

the category of monoids in CBiringk,k . Explicitly, a complete Hausdorff k-plethory

is a complete Hausdorff k-k-biring P together with two additional complete Haus-

dorff biring morphisms

◦ : P ⊙̂ P→ P, (composition)

u : I→ P, (identity)

satisfying the usual relations for a monoid.

Example 2.13. The initial complete Hausdorff k-plethory is the complete Haus-

dorff k-k-biring I of Example 2.6 together with the canonical structure maps.

Example 2.14. The complete Hausdorff k-k-biring Set(k, k) together with com-

position of maps and the identity map forms an ungraded complete Hausdorff k-

plethory. We use ι to denote the identity on k and 1 to denote the constant map

k→ k sending κ to 1 for all κ ∈ k.

Example 2.15. As detailed in [Borger and Wieland 2005], in the discrete set-

ting we have a free functor from the category of k-k-birings to the category of

k-plethories, analogous to the tensor algebra construction over a k-module. In the

topological setting, we define T⊙̂(B), the free complete Hausdorff k-plethory over

a complete Hausdorff k-k-biring B, by

T⊙̂(B)=
⊗̂

n≥0

B⊙̂n

together with the obvious identity and composition.

We wish to encode not only the composition of operations, but the actions of

operations on suitable algebras. This leads to a result which proves useful for

calculations.

Definition 2.16. For a complete Hausdorff k-plethory P , we define the category

of complete Hausdorff P-algebras to be the category of algebras over the monad

P ⊙̂ – : CAlgk→ CAlgk . We write r(x) for the image of r ⊙ x under the action

map P ⊙̂ A→ A.

Example 2.17. The degree zero complex K-theory K (X)= [X, Z×BU] of a space

X admits the structure of a Set(Z, Z)-algebra. The action of f ∈ Set(Z, Z) sends

the class of x : X→ Z×BU to the class of the composite

X
x
−→ Z×BU

f×1
−−→ Z×BU.

Proposition 2.18. For a complete Hausdorff k-plethory P , the structure maps are

complete Hausdorff P-algebra maps and so the coalgebraic structure is deter-

mined by the action on complete Hausdorff P-algebras. For example, if r ∈ P
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then r(xy)= r[1](x)r[2](y) for all x, y in any complete Hausdorff P-algebra A if

and only if 1×r = r[1]⊗ r[2].

Proof. See [Tall and Wraith 1970, Section 4] for the discrete case, which gener-

alises without difficulty. �

We can now give a direct proof of a key result of Stacey and Whitehouse [2009,

Corollary 5.4]. The original proof is an application of a very abstract, but more

general result. For a space X , we write Ê∗(X) for the completed E-cohomology

of X with respect to the skeletal filtration.

Theorem 2.19. Let E∗( – ) be a multiplicative cohomology theory. If E∗(En) is a

free E∗-module for each n ∈ Z then E∗(E•) is a complete Hausdorff E∗-plethory.

Moreover, for any space X the completed cohomology Ê∗(X) is naturally an

E∗(E•)-algebra.

Proof. Since each E∗(En) is a free E∗-module, we have suitable Künneth iso-

morphisms and thus the E∗-algebra object structure on (En)n∈Z induces a co-E∗-

algebra structure on the collection of complete Hausdorff E∗-algebras E∗(En).

Thus, E∗(E•) is a complete Hausdorff E∗-E∗-biring. We define a composition

◦ : E∗(E•) ⊙̂ E∗(E•)→ E∗(E•) by r ◦ s = s∗(r) and the unit u : I→ E∗(E•) by

u(ιn) = ιn ∈ E∗(En), the universal class. These maps make E∗(E•) a complete

Hausdorff E∗-plethory by construction. �

As this theory is set up to work with completed cohomology algebras, with re-

spect to the skeletal filtration, we lose some information. In general, the completion

of a cohomology algebra contains strictly less information than the uncompleted

algebra. In forming the completion, we take the quotient by the phantom classes:

those which are zero on any finite subcomplex. In [Bauer 2014], it is shown that we

can avoid this issue by working with the entire prosystem of cohomology algebras.

However in many cases of interest, there are results that preclude the existence of

phantom classes and thus E∗(X)= Ê∗(X).

Our main results relate to integral complex K-theory, so we do not make use of

other completions, such as p-adic completion, or I -adic completion with respect

to an ideal.

We introduce some theory of non-counital birings which will prove useful. For

brevity, we focus on the discrete, ungraded case but remark that these constructions

generalise without difficulty to the topologised, graded setting.

Definition 2.20. We define the non-counital composition product B � A of a non-

counital k-k ′-biring and a nonunital k ′-algebra A to be the free unital k-algebra on

the symbols b � a, for b ∈ B, a ∈ A, quotiented by the relations enforcing that the
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map b 7→ b � a is a k-algebra map together with the relations

b � (a1+ a2)= (b(1) � a1)(b(2) � a2),

b � (a1a2)= (b[1]� a1)(b[2]� a2),

b � (κa)= γ (κ)(b) � a,

b � 0= ε+(b),

for all a, a1, a2 ∈ A, b ∈ B and κ ∈ k ′.

Proposition 2.21. If B is a non-counital k-k ′-biring, then the functor

B � – : Alg!k′→ Algk

is left adjoint to Speck(B) : Algk→ Alg!k′ .

Proof. This is the same argument as in the counital setting. �

For k-k ′-birings B, B ′ and k ′-algebras A, A′ we have natural isomorphisms

B⊙ (A⊗ A′)∼= (B⊙ A)⊗ (B⊙ A′),

(B⊗ B ′)⊙ A ∼= (B⊙ A)⊗ (B ′⊙ A),

k⊙ B ∼= k ∼= B⊙ k ′.

These have analogues in the non-counital setting.

Let R, S be nonunital k-algebras. Recall that the coproduct R ⊠ S is given by

the k-module R⊕ S⊕ (R⊗ S) together with multiplication specified by the product

of r1+ s1+ r ′1⊗ s ′1 and r2+ s2+ r ′2⊗ s ′2 being given by

r1r2+s1s2+r1⊗s2+r2⊗s1+r1r ′2⊗s ′2+r ′1r2⊗s ′1+r ′2⊗s1s ′2+r ′1⊗s ′1s2+r ′1r ′2⊗s ′1s ′2.

Proposition 2.22. Let B be a non-counital k-k ′-biring and A, A′ nonunital k ′-

algebras. We have isomorphisms B �(A⊠ A′)∼= (B � A)⊗(B � A′) and k � A∼= k.

Proof. For any k-algebra X we have isomorphisms

Algk(B � (A⊠ A′), X)∼= Alg!k′(A⊠ A′, Speck(B)(X))

∼= Alg!k′(A, Speck(B)(X))×Alg!k′(A′, Speck(B)(X))

∼= Algk(B � A, X)×Algk(B � A′, X)

∼= Algk((B � A)⊗ (B � A′), X).

As in Example 2.5, k is the initial k-k ′-biring corresponding to the constant functor

at the zero ring and the isomorphism k � A ∼= k is trivial. �

Proposition 2.23. Suppose B is a non-counital k-k ′-biring and a co-B ′-module

where B ′ is a k-k ′-biring. For an augmented k ′-algebra A, we have an isomorphism

(B ′⊗ B)⊙ A ∼= (B ′⊙ A)⊗ (B � IA),

where IA denotes the augmentation ideal of A.
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Proof. For any k-algebra X we have isomorphisms

Algk((B ′⊗ B)⊙ A, X)∼= Algk′(A, Speck(B ′⊗ B)(X))

∼= Algk′(A, Speck(B ′)(X)⊕Speck(B)(X))

∼= Algk′(A, Speck(B ′)(X))×Alg!k′(IA, Speck(B)(X))

∼= Algk(B ′⊙ A, X)×Algk(B � IA, X)

∼= Algk((B ′⊙ A)⊗ (B � IA), X). �

We write �̂ for the non-counital composition product in the completed setting.

3. Ungraded K-theory operations

The study of the operations of ungraded K-theory is a classical subject in algebraic

topology [Atiyah 1967] and it is well known that the degree zero K-cohomology

K (X)= K 0(X) of a space X naturally forms a λ-ring. In this section we exhibit a

concise description of the operations in a plethystic setting.

The classifying space BU of the infinite unitary group is central to the study of

K-theory and admits the structure of a nonunital ring space, with abelian group

structure corresponding to the direct sum of vector bundles, and (nonunital) mul-

tiplication induced by the tensor product. Thus, since K (BU) is free as a Z-

module, K (BU) naturally admits the structure of a non-counital complete Haus-

dorff Z-Z-biring by the ungraded and nonunital analogue of Theorem 2.19.

Theorem 3.1. We have an isomorphism of non-counital complete Hausdorff Z-Z-

birings
K (BU)∼= Z[[λ1ι, λ2ι, . . .]], (3.2)

where ι is represented by the inclusion BU ≃ {0} × BU ⊆ Z× BU. The filtration

ideals are given by the kernels of the projection maps

Z [[λ1ι, λ2ι, . . .]] → Z [[λ1ι, . . . , λnι]],

and the non-counital biring structure is determined by

1+(λkι)=
∑

i+ j=k

λi ι⊗ λ j ι,

1×(λkι)= Pk(λ
1ι⊗ 1, . . . , λkι⊗ 1; 1⊗ λ1ι, . . . , 1⊗ λkι),

where the Pk are the universal polynomials arising in the theory of λ-rings [Yau

2010, Definition 1.10].

Proof. The description of K (BU) as a power series ring in the lambda operations

is well known and the remaining structure follows directly from the theory of λ-

rings. �
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Since Z×BU is the representing space for ungraded K-theory, studying the oper-

ations corresponds to understanding the complete Hausdorff Z-plethory K (Z×BU).

Proposition 3.3. We have an isomorphism of (ungraded) complete Hausdorff Z-

Z-birings,

K (Z×BU)∼= Set(Z, Z) ⊗̂ K (BU),

where the Z-Z-biring structure is specified in Example 2.8.

Proof. By the Künneth theorem, we have an isomorphism of rings. We write

θ : Set(Z, Z) ⊗̂ K (BU)→ K (Z×BU)

for this isomorphism. Since the abelian group structure on Z×BU is given by the

product structure, this is an isomorphism of Hopf algebras. It remains to show that

θ respects the comultiplicative structure. The element χd⊗ x ∈ Set(Z, Z) ⊗̂K (BU)

corresponds to π∗1 χdπ∗2 x under the Künneth isomorphism θ , where π1, π2 denote

the canonical projections. By Proposition 2.18, we can compute the comultipli-

cation by considering the action of π∗1 χdπ∗2 x on general α, β ∈ K (X). Assume

that X is connected and thus has a unique up to homotopy choice of base point.

Denote the map induced by the inclusion of the base point by ε : K (X) → Z.

The case of general X will follow by considering each connected component in-

dividually. For f ∈ Set(Z, Z) and x ∈ K (BU), we have π∗1 f (α) = f (ε(α)) and

π∗2 x(α)= x(α− ε(α)). In K (X),

(π∗1 χdπ∗2 x)(αβ)

= χd(ε(α)ε(β))x[αβ−ε(α)ε(β)]

=
∑

rs=d

χr (ε(α))χs(ε(β))x
[
(α−ε(α)(β−ε(β))+ε(α)(β−ε(β))+ε(β)(α−ε(α))

]

=
∑

rs=d

χr (ε(α))χs(ε(β))π∗2
[
x(1)[1]γ (ε(β))(x(3))

]
(α)π∗2

[
x(1)[2]γ (ε(α))(x(2))

]
(β)

=
∑

rs=d

χr (ε(α))χs(ε(β))π∗2
[
x(1)[1]γ (s)(x(3))

]
(α)π∗2

[
x(1)[2]γ (r)(x(2))

]
(β)

=
∑

rs=d

(
π∗1 χrπ

∗
2

[
x(1)[1]γ (s)(x(3))

])
(α)

(
π∗1 χsπ

∗
2

[
x(1)[2]γ (r)(x(2))

])
(β),

where the fourth equality follows since χi ( j)= δi j , the Kronecker delta. Hence

1×(π∗1 χdπ∗2 x)=
∑

rs=d

π∗1 χrπ
∗
2

[
x(1)[1](γ (s)(x(3)))

]
⊗π∗1 χsπ

∗
2

[
x(1)[2](γ (r)(x(2)))

]
.

Therefore the Künneth isomorphism respects the comultiplication 1×. To see that

the counit is preserved, notice that (π∗1 f π∗2 x)(1)= f (1)x(0)= ε×( f )ε+(x). �
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Recall that for a based space X , the reduced K-theory, which we denote K (X, o),

is the kernel of the augmentation given by the map induced by the inclusion of the

basepoint.

Proposition 3.4. We have a map of rings K (BU) �̂ K (BU, o)→ K (BU) deter-

mined by

λi ι ◦ λ j ι= Pi, j (λ
1ι, . . . , λi j ι),

where the Pi, j are the universal polynomials arising in the theory of λ-rings [Yau

2010, Definition 1.10].

Proof. This is immediate from the properties of λ-rings. �

For based spaces X, Y , the cohomological Künneth isomorphism induces an

isomorphism of nonunital rings on reduced cohomology

K (X × Y, o)∼= K (X, o) ⊠̂ K (Y, o).

Recall that the cozero map, which defines the augmentation ideal, on Set(Z, Z)

is given by the evaluation map ε+ : Set(Z, Z)→ Z, with ε+( f )= f (0). We have

an isomorphism

I (Set(Z, Z) ⊗̂ K (BU))∼= I Set(Z, Z) ⊠̂ K (BU, o).

We now define the appropriate composition on Set(Z, Z)⊗̂K (BU) by the follow-

ing sequence of maps, where φR : Set(Z, Z)⊙̂Z→Z and φL :Z �̂ I Set(Z, Z)→Z

denote the canonical isomorphisms:

(Set(Z, Z) ⊗̂ K (BU)) ⊙̂ (Set(Z, Z) ⊗̂ K (BU))

∼=
��

(Set(Z, Z) ⊙̂Set(Z, Z)) ⊗̂ (Set(Z, Z) ⊙̂ K (BU))

⊗̂ (K (BU) �̂ I Set(Z, Z)) ⊗̂ (K (BU) �̂ K (BU, o))

1⊗̂1⊙̂ε+⊗̂ε+�̂1⊗̂1
��

(Set(Z, Z) ⊙̂Set(Z, Z)) ⊗̂ (Set(Z, Z) ⊙̂Z)

⊗̂ (Z �̂ I Set(Z, Z)) ⊗̂ (K (BU) �̂ K (BU, o))

◦⊗̂φR⊗̂φL ⊗̂◦
��

Set(Z, Z) ⊗̂Z ⊗̂Z ⊗̂ K (BU)

∼=
��

Set(Z, Z) ⊗̂ K (BU)
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On the level of elements, for d ∈ Z, g ∈ Set(Z, Z), x, y ∈ K (BU), this reads as

(χd ⊗ x) ◦ (g⊗ y)=
∑

rs=d

χr (ε
+(y))χs ◦ g⊗ γ (s)(x) ◦ (y− ε+y),

with identity given by 1⊗ λ1ι+ ι⊗ 1. Note that composition respects sums on the

left so it is enough to specify it on the above elements.

Theorem 3.5. We have an isomorphism

K (Z×BU)∼= Set(Z, Z) ⊗̂ K (BU)

of ungraded complete Hausdorff Z-plethories.

Proof. By Proposition 3.3, we have an isomorphism of birings and it remains to

check compatibility with composition. Let d ∈ Z, g ∈ Set(Z, Z), x, y ∈ K (BU)

and α ∈ K (X). We have

θ(χd ⊗ x) ◦ θ(g⊗ y)

= (π∗1 χdπ∗2 x) ◦ (π∗1 gπ∗2 y)(α)

= (π∗1 χdπ∗2 x)
(
g(ε(α))y(α− ε(α))

)

= (π∗1 χd)
(
g(ε(α))y(α− ε(α))

)
(π∗2 x)

(
g(ε(α))y(α− ε(α))

)

=
[
χd(g(ε(α))ε+(y))

][
γ (g(ε(α)))(x) ◦ (y− ε+(y))(α− ε(α))

]

=
∑

rs=d

[
χr (ε

+(y))χs(g(ε(α)))
][

γ (g(ε(α)))(x) ◦ (y− ε+(y))(α− ε(α))
]

=
∑

rs=d

[
χr (ε

+(y))χs(g(ε(α)))
][

γ (s)(x) ◦ (y− ε+(y))(α− ε(α))
]

=
∑

rs=d

π∗1
[
χr (ε

+(y))χs ◦ g
]
π∗2

[
γ (s)(x) ◦ (y− ε+(y))

]
(α)

= θ((χd ⊗ x) ◦ (g⊗ y)).

Finally, we note that (π∗1 1π∗2 λ1ι+π∗1 ιπ∗2 1)(α)= α− ε(α)+ ε(α)= α. �

4. Plethories with looping

The standard definition [Boardman 1995] of a (graded) generalised cohomology

theory is a Z-graded collection of well-behaved functors En(–) :Ho→Ab together

with suspension isomorphisms. For a based space X , the corresponding reduced

cohomology groups are denoted En(X, o) and are defined as the kernel of the map

induced by inclusion of the base point, as we already saw in the case of K-theory.

The theory is extended to pairs by defining the cohomology of a pair to be the

reduced cohomology of the quotient space. The suspension isomorphisms can be
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expressed as isomorphisms of abelian groups

6 : En(X)→ En+1(S1× X, o× X)

for all spaces X and all n ∈ Z, or equivalently,

6 : En(X, o)∼= En+1(6X, o)

on reduced cohomology groups, where 6X = S1 ∧ X denotes the reduced suspen-

sion.

The suspension isomorphisms impose additional structure on the algebras over

a plethory of unstable cohomology operations. Since plethories are precisely the

structure which acts on algebras, we will need extra structure to encode this infor-

mation.

Recall that for a based operation r : En( – ) 7→ Em( – ), there is the looped

operation �r : En−1(–) 7→ Em−1(–) defined by the following commutative diagram:

En−1(X)
6

//

�r

��

En(S1× X, o× X)

r

��

Em−1(X)
6

// Em(S1× X, o× X)

Definition 4.1. Let P be a complete Hausdorff k-plethory. We define the augmen-

tation ideal IP, primitives Add(P) and indecomposables Ind(P) by

IP= ker ǫ+,

Add(P)= {x ∈ P |1+(x)= 1⊗ x + x ⊗ 1},

Ind(P)=
IP

(IP)2
.

The additional structure of a plethory induces additional structure on these famil-

iar constructions from Hopf algebra theory as detailed in the ungraded setting

in [Borger and Wieland 2005] and the graded setting in [Mycroft 2017]. These

constructions carry over to the topological context without difficulty.

Definition 4.2. We define a k-plethory with looping to be a complete Hausdorff k-

plethory P equipped with a continuous bidegree (−1,−1) k-module map � : IP→ IP

satisfying the following properties.

(1) � is zero on (IP)2 and takes values in primitives. That is, � factors as

IP
π
−→ Ind(P)→ Add(P)⊆ IP, where π denotes the quotient map.

(2) For r ∈ IP, 1×(�r)= (−1)deg∗(r[1])σ deg•(r[1])r[1]⊗�r[2].

(3) For r, s ∈ IP, �(r ◦ s)=�r ◦�s.

(4) For all n ∈ Z , �(ιn)= ιn−1.
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A map of plethories f : P → P ′ is a map of k-plethories with looping if

� f (r)= f �(r) for all r ∈ P . We denote the category of k-plethories with looping

by �Plethoryk .

Theorem 4.3. Let E∗( – ) be a graded cohomology theory. If E∗(En) is a free

E∗-module for each n ∈ Z, then E∗(E•) is an E∗-plethory with looping.

Proof. Looping of operations is defined for based maps and so gives a map from

IE∗(E•) to IE∗(E•), of bidegree (−1,−1). It suffices to show that it satisfies

properties (1) to (4) of Definition 4.2. For property (1), see [Boardman et al. 1995,

Corollary 2.18]. Properties (3) and (4) are immediate from the definition. For (2),

let x, y ∈ Ê∗(X) for some space X and let π2 : S
1× X→ X denote the canonical

projection. To determine the comultiplication of a looped operation, we consider

the action on products. By definition we have

6(�r)(xy)= r(6(xy))

= r((−1)|x |(π∗2 x)6y)

= r[1](π
∗
2 ((−1)|x |x))r[2](6y)

= π∗2 ((σ |x |r[1])(x))6(�r[2])(y)

=6
(
(−1)deg∗(r[1])(σ |x |r[1])(x)(�r[2])(y)

)

and thus

1×(�r)= (−1)deg∗(r[1])σ deg•(r[1])r[1]⊗�r[2]. �

Definition 4.4. An ideal of a k-plethory with looping is an ideal J of a k-plethory

such that �x ∈ J for all x ∈ J .

It is immediate that if J ⊆ P is an ideal of a k-plethory with looping then the

canonical map P→ P/J is a map of k-plethories with looping.

In many settings, we obtain interesting collections of operations by considering

loopings and composites of a small set of operations.

Definition 4.5. Let P be a complete Hausdorff k-plethory. We define the complete

Hausdorff k-k-biring P� to be the free k-algebra generated by the symbols �0x

for x ∈ P together with �l x for x ∈ IP and l > 0, quotiented by the ideal generated

by the relations

�0(x + y)=�0(x)+�0(y),

�0(xy)= (�0x)(�0 y),

�0(κ)= κ for κ ∈ k,

�l(x + y)=�l(x)+�l(y),

�l(xy)= ε+(x)�l(y)+ ε+(y)�l(x).
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The bigrading is determined by

deg∗(�
k x)= deg∗(x)− k and deg•(�

k x)= deg•(x)− k.

The identification x 7→ �0x ∈ P� yields a canonical k-algebra map P →֒ P�.

The biring structure on P� is given by defining the elements �k x to be primitive

for k > 0, and the canonical map P→ P� to be a monomorphism of k-k-birings

together with the following formulae for k > 0:

1×(�k x)= (−1)k deg∗(x[1])σ k deg•(x[1])x[1]⊗�k x[2],

ε×(�k x)= (−1)k deg∗(x[1])ε×
(
σ k deg•(x[1])x[1]

)
,

βλ(�k x)= (βλ)(x[1])ε
×(�k x[2]).

We define �P , the free k-plethory with looping on P , to be the complete Hausdorff

k-plethory T⊙̂(P�) quotiented by the relations

�k x ◦�k y =�k(x ◦ y), �kιn = ιn−k .

The looping in �P is given by �(�k x)=�k+1x and a map f : P→ P ′ of complete

Hausdorff k-plethories induces a map of k-plethories with looping �P→�P ′ by

f (�k x)=�k f (x). This construction defines a functor

� : CPlethoryk→�Plethoryk .

Proposition 4.6. The forgetful functor U : �Plethoryk → CPlethoryk is right

adjoint to �.

Proof. A map of complete Hausdorff k-plethories f : P→UP ′ defines a map of k-

plethories with looping f̂ :�P→ P ′ by f̂ (�k x)=�k( f (x)). Conversely, a map

of k-plethories with looping �P→ P ′ restricts to a map of complete Hausdorff

k-k-plethories P→UP ′ via the canonical inclusion P→�P . �

5. K-theory operations as a free plethory with looping

We briefly study the K-theory operations of odd source degree. Since complex

K-theory is represented in odd degrees by the infinite unitary group U , this is

tantamount to understanding the Hopf algebra K ∗(U ). We then relate these results

to the λ-operations and show that in a suitable context, the λ-operations generate

all K-theory operations.

Write 3k :U (n)→U
(

n
k

)
⊆U for the exterior power representation of the uni-

tary group and let µk
n ∈ K−1(U (n)) denote the class represented by 3k .

Theorem 5.1 [Atiyah 1967, Theorem 2.7.17]. We have an isomorphism of K ∗-

algebras
K ∗(U (n))∼=3K ∗[µ

1
n, . . . , µ

n
n].
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Moreover, if i :U (n− 1)→U (n) denotes the standard inclusion map then

i∗(µk
n)= µk

n−1+µk−1
n−1.

We remark that the choice of degree for the elements µk
n ∈ K ∗(U (n)) is arbitrary

and we could choose any odd degree. Our selection is motivated by a relation to

the even degree operations: the looping of the λ-operations will be expressible in

terms of the µk
n and we chose the λ-operations to lie in cohomological degree zero.

To understand the relationship between the µk
n and our choice of generators of

K (BU) it proves fruitful to understand the representing maps of the λ-operations.

By a classical result of Anderson [1983], there are no phantom operations in K-

theory and thus K (BU)∼= lim
←−−

n

K (BU(n)). Let βk
n ∈ K (BU(n), o) be represented by

B3k : BU(n)→ BU ≃ {0}×BU ⊆ Z×BU.

Proposition 5.2. Define λk
n =

∑k
i=0

(
−n

i

)
βk−i

n ∈ K (BU(n), o).

(1) For j = Bi : BU(n)→ BU(n+ 1), we have j∗λk
n+1 = λk

n .

(2) The element λkι ∈ K (BU, o) ∼= lim
←−−

n

K (BU(n), o) corresponds to the inverse

limit of the λk
n ∈ K (BU(n), o).

Proof. The first result follows immediately since j∗βk
n+1 = βk

n +βk−1
n . For the sec-

ond, let X be a compact Hausdorff space, so the representing map for x ∈ K (X, o)

factors via Z×BU(n) for some n. Let x = [ξ ]−n ∈ K (X, o). Now the composition

X
x
−→ Z×BU(n)

Z×λk
n−−−→ Z×BU

represents the virtual bundle

k∑

i=0

(
−n

i

)[
3k−i [ξ ] −

(
n

k− i

)]
=

k∑

i=0

(
−n

i

)
3k−i [ξ ] = (λkι)(x). �

This linear combination of generators allows us to compute K∗(U)=lim
←−−

K∗(U(n))

in a form closely related to our description of K (BU).

Proposition 5.3. Let lk
n =

∑k−1
i=0

(
−n

i

)
µk−i

n ∈ K−1(U (n)) for k ≤ n.

(1) If i :U (n− 1)→U (n) is the inclusion map as above, then i∗(lk
n)= lk

n−1.

(2) We have an isomorphism of K ∗-algebras K ∗(U (n))∼=3K ∗[l
1
n, . . . , ln

n ].

(3) We have an isomorphism of K ∗-algebras K ∗(U )∼=3K ∗[l
1, l2, . . . ], where if

ι :U (n)→U denotes the inclusion then ι∗lk = lk
n .

Proof. This follows directly from Theorem 5.1. �

The following result is now an immediate consequence and the motivation for

the definition of the odd degree operations lk .
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Corollary 5.4. The composition

Set(Z, Z) ⊗̂ K (BU)
θ
−→ K (Z×BU)= K 0(Z×BU)

�
−→ K−1(U )

is determined by f ⊗ λkι 7→ f (0)lk for f ∈ Set(Z, Z).

Proof. Since �(Z×BU)=�({0}×BU), it suffices to consider the restriction of

π∗1 f π∗2 (λkι) to {0}×BU ≃ BU, which is f (0)λkι ∈ K (BU) and so �( f ⊗ λkι)=

f (0)�(λkι). Now, by Proposition 5.2, λkι is represented by the inverse limit of

the maps
k∑

i=0

(
−n

i

)
B3k−i : BU(n)→ BU.

Since �B ≃ 1, we see that �(λkι) is represented by the inverse limit of the maps

k∑

i=0

(
−n

i

)
3k−i :U (n)→U

and hence �(λkι)= lk . �

The remaining piece of structure to understand is the looping of the odd degree

operations.

Definition 5.5. Let Pl ∈ Z[x1, . . . , xl; y1, . . . , yl] denote the universal polynomial

encoding the action of the λ-operation λl on products in a λ-ring [Yau 2010, Defi-

nition 1.10]. We define the left-linearisation, P L
l , of Pl to be the polynomial given

by the sum of the monomials of Pl containing a single xi . Concretely, if we define

|xi | = 1, |y j | = 0, for all i, j , then P L
l is the degree 1 homogeneous part of Pl .

Proposition 5.6. For lk ∈ K−1(U ), we have

�lk = 1⊗ P L
k

(
1,−1, . . . , (−1)k−1; λ1ι, . . . , λkι

)
∈ K−2(Z×BU).

Proof. By Corollary 5.4, �lk =�2(π∗1 f π∗2 λkι) for any f with f (0)= 1. Now let

α ∈ K (X) and denote the degree 2 suspension element by u2 = [ξ1]−1 ∈ K (S2, o),

where ξ1 is the canonical line bundle over S2 ≃ CP1. Then we have

(62�lk)(α)=62�2(π∗1 f π∗2 λkι)(α)

= (π∗1 f π∗2 λkι)(u2×α)

= f (ε(u2)ε(α))λk(u2×α)

= Pk

(
λ1(u2)× 1, . . . , λk(u2)× 1; 1× λ1(α), . . . , 1× λk(α)

)

= u2× P L
k

(
1,−1, . . . , (−1)k−1; λ1(α), . . . , λk(α)

)

=62 P L
k (1,−1, . . . , (−1)k−1; λ1ι, . . . , λkι)(α),

where the penultimate equality follows by λi (u2)= (−1)i−1u2, and (u2)
2 = 0. �



THE PLETHORY OF OPERATIONS IN COMPLEX TOPOLOGICAL K-THEORY 501

We are now in a position to prove our main result.

Theorem 5.7. We have an isomorphism of Z/2-graded Z-plethories with looping,

K ∗(K •)∼=
�(Set(Z, Z) ⊗̂ K (BU))

I
,

where I is the plethystic ideal with looping generated by the relations

�( f ⊗ λpι)= f (0)�(1⊗ λpι),

�2( f ⊗ λpι)= f (0)⊗ P L
p

(
1,−1, . . . , (−1)p−1; λ1ι, . . . , λpι

)
,

for all p ≥ 1.

Proof. From Theorem 3.5 we have seen that we have an isomorphism of complete

Hausdorff Z-plethories

θ : Set(Z, Z) ⊗̂ K (BU)
∼=−→ K 0(K 0)⊆ K ∗(K •).

By Proposition 4.6 this extends to a map of Z-plethories with looping

�(Set(Z, Z) ⊗̂ K (BU))→ K ∗(K •),

which is surjective by Proposition 5.3 and Corollary 5.4. By Corollary 5.4 and

Proposition 5.6 the kernel of this map is precisely I. �
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