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1 Theoretical rheo-physics of silk: Intermolecular associations reduce the critical

» specific work for flow-induced crystallisation

3 Charley Schaefer’® and Tom C. B. McLeish*

4 Department of Physics, University of York, Heslington, York, YO10 5DD,
5 UK

6 (Dated: 18 February 2022)

Silk is a semi-dilute solution of randomly coiled associating polypeptide chains that

crystallise following the stretch-induced disruption, in the strong extensional flow of

extrusion, of the solvation shell around their amino acids. We propose that natu-

ral silk spinning exploits both the exponentially-broad stretch-distribution generated

by associating polymers in extensional flow and the criterion of a critical concen-

tration of sufficiently-stretched chains to nucleate flow-induced crystallisation. To

investigate the specific-energy input needed to reach this criterion in start-up flow,

we have coupled a model for the Brownian dynamics of a bead-spring-type chain,

whose beads represent coarse-grained Gaussian chain segments, to the stochastic,

strain-dependent binding and unbinding of their associations. We have interpreted

the simulations with the aid of analytic calculations on simpler, tractable models with

the same essential physical features. Our simulations indicate that the associations

hamper chain alignment in the initial slow flow, but, on the other hand, facilitate

chain stretching at low specific work at later, high rates. We identify a minimum in

the critical specific work at a strain rate just above the stretch transition (i.e, where

the mean stretch diverges), which we explain in terms of analytical solutions of a two-

state master equation. We further discuss how the silkworm appears to exploit the

chemical tunability of the associations to optimise chain alignment and stretching

in different locations along the spinning duct: this delicate mechanism also high-

lights the potential biomimetic industrial benefits of chemically tunable processing

of synthetic association polymers.

2)Electronic mail: charley.schaefer@york.ac.uk



7 I. INTRODUCTION

s The manufacturing of both natural and artificial polymer-based fibres relies on flow-
o induced crystallisation in non-linear rheological conditions!®. The energy input required by
10 this process may be significantly reduced in natural silk-spinning, though the mechanism by
1 which this efficiency is achieved has been far from clear”. There is evidence, however, that
12 locally-tailored macromolecular interactions are involved®'!: The silk protein, of which
15 the conformation in solution closely resembles a random coil'?, self-assembles in flow in
112 aqueous conditions under energy requirements orders of magnitude lower than its synthetic
15 counterparts’. It has been hypothesised that flow-induced stretching of the chain disrupts a
16 solvation layer and in turn enables crystallisation to commence™ !4, This mechanism was

15-18

17 supported by molecular dynamics simulations , and was employed to induce crystallisa-

18 tion of synthetic poly-ethylene oxide by flow at similarly low energetic requirements as silk,

3

10 however, at much higher molecular weight and/or strain rates'3. The low-energy mecha-

2 nism for natural silk-spinning therefore remains to be identified. Clues may be present in

2 the subtle electrostatically-modified rheo-physics of associating polymers!®28.

2 We previously found, in collaboration with Laity and Holland, that the silk protein ex-
2 hibits calcium bridges that act as intermolecular reversible cross-links®?. Such associations,
20 sometimes referred to as ‘stickers’ that can be in a bound/closed or unbound/open state'?,
25 shift the alignment-to-stretch transition to smaller strain rates by replacing the usual Rouse

1928~ Inspired by these observations, we

2 relaxation dynamics for ‘sticky Rouse’ relaxation
27 envision a mechanism of flow-induced crystallisation where the reversible network is ini-
2 tially equilibrated (in stark contrast to the typical mechanism for the sol-gel transition of
20 associating polymers, where shear flow breaks metastable intramolecular associations, and
w0 facilitates the formation of an intermolecular network®3!). In our case, strong flow stretches

32,33

a1 the ‘bridging’ strands between the stickers®<°°. This stretch in turn aligns the strands at

» the scale of the Kuhn segments (which in water-soluble systems may disrupt the solva-

713) so nucleating crystals as structural elements within (silk) fibres. It will turn

33 tion layer
s out that such a picture contains within it a mechanism for the super-efficiency of natural

35 silk-spinning through a surprisingly strong heterogeneity in the chain stretch distribution.

s While this mechanism seems plausible, it is not evident how this process may be controlled

w and/or optimised by the number of stickers per chain and by their lifetime. Intriguingly,

2



3 however, it has been observed that the Bombyx mori silkworm tunes the sticker lifetime, and
3 hence the (non-)linear rheology, before and during spinning through local chemical control
s variables. Prior to pupation, i.e., when the silkworm is not required to spin a cocoon, the
a silk is stored in the gland at high viscosity using long sticker lifetimes®®. When pupation
22 commences, potassium cations are added to decrease of the sticker lifetime and reduce the
43 viscosity®?.

s We firstly hypothesise, as schematically indicated in Fig. 1, that the decrease of the
s sticker lifetime decreases the specific work needed to align the chains in the direction of the
s flow field well upstream from the spinnerette. The group of Holland also discovered that
a7 the structural features of the silk fibre are significantly enhanced through a gradient in the
» pH along the spinning duct, suggesting an exquisitely controlled local rheology®!. While
w lower pH may induce partial folding of the protein'?, it is also expected to enhance the
so lifetime of the stickers. Crucially, inspired by our previous finding that broad conformational

s distributions emerge due to the stochastic nature of binding and unbinding stickers!®:!!,

we
s2 therefore hypothesise secondly that crystallisation may be initiated by reaching a critical
s3 concentration of highly stretched chain segments. This would require significantly less energy
s« input than for stretching the entire population of chain segments.

ss  To theoretically investigate this hypothesis, we focus our attention on the flow-induced

ss preparation of the conditions for crystallisation (rather than crystallisation itself). We are

s7 in particular interested in the specific critical work

Wi(ts) = /Ots o : kdt, (1)

ss required to induce flow-induced crystallisation after a period time 5 during which the system
s0 is subjected to the (experimentally controllable) transpose of the (local) velocity-gradient
e tensor k = VvT and the (local) stress response . The integral is taken in the (local)
s Lagrangian co-moving frame of a fluid element. In experimental works (see Ref. 35-37
2 and citations therein), the shear rate and duration ¢, render the specific work a control
o3 variable (W ~ o0,,7%ts) that controls the number of nuclei generated in the system. As the
o efficiency to converse the energy input into nucleation events is rather limited (estimated
s ~ 1%37), it is worth investigating how the energy loss may be reduced, e.g., by making use
e of intermolecular associations.

o7 Clearly, the formation of nuclei must be controlled by the underlying molecular con-
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a1 potentials. At this level of computational detail, sticker dissociation may occur following
s attempts to escape the attractive potential through molecular vibrations*®*”. These MD
83 simulations are, however, computationally very demanding, as the dissociation events are
s quite rare. However, because of this rarity of events, the local equilibration of the chains
s enables a much simpler description of the chain dynamics in terms of the fraction of closed

19: In a coarse-grained picture, this sticker lifetime is an

g stickers, p and their lifetime, 7
g7 elementary rather than an emergent timescale. This allows a description of the problem in
ss terms of the dynamics of a single chain in a crowded environment!%114850 an approach sim-
s ilar to the modelling of entangled polymers through slip-link and slip-spring models*>48:51-56
o where the generation and destruction of entanglements are modelled as elementary processes.
o While there is no unique way of formulating a coarse-grained single-chain model®”, all

o variants of bead-spring, slip-link and slip-spring models can be written in the general form
OR;
Czﬁ = Fintra,i + Fthermal,i + Fﬂow,i + Fnetwork,ia (2)

o3 where 7 is a chain segment at position R; that is thermally equilibrated at the relevant
o time scales®®. We will refer to this chain segment as a ‘node’ of an elastic network, which
s may represent a non-sticky segment of a chain (a purely frictional ‘bead’), a segment with
o a reversible association (a ‘sticker’), or it may be an entangled segment (a ‘slip-link’ or a
or ‘slip-spring’). Which of these representations is invoked manifests itself in the definition
o of the friction coefficient, (;, the (friction-dependent) thermal forces, Fipermari, and the
oo network forces, Fietwork,i- For instance, in classes of models where nodes move affinely with
o the flow field, the network force exactly cancels the sum of the (conformation-dependent)
11 intramolecular force and the thermal force, Fietworki = —Fintrai — Fthermari- This ‘rigid-
102 network approximation’ is tacitly invoked in the slip-link model by Hua and Schieber®
103 and in our recently published model for sticky-polymers in a rigid network!®!!. Within
14 Likhtman’s slip-spring model, the slip-spring may diffuse within a potential energy landscape
10s that represents the elastic compliance of the entangled network®. In the present work, we
106 Will account for the compliance experienced by the stickers in a reversible network.

w7 In the following, in Section IT A we present the usual intramolecular, thermal and drag
108 forces that act on single chains. To capture how the stickers modify the intermolecular
0o forces (i.e., the ‘elastic compliance’ of the surrounding network) and the segmental drag,

o we present a non-spatially-explicit multi-chain approach. In Section IIB, we present a



m two-state master equation that generates analytical predictions of the impact of sticker
12 opening and closing on both the steady-state and transient stretch distributions of the chains,
us which enables us to interpret our simulated data in Section III. By first mapping the results
ue in the linear flow regime to the analytic sticky-reptation (SR) model, in Section IIT A we
us discuss how the stochastic nature of sticker opening and closing and the elastic compliance
ue affects the linear rheological data. Then, in Section IIIB we show how a broad steady-
u7 state distribution of chain conformations emerges in strongly non-linear flows of shear and
us extension. By simulating the transient emergence of these distributions in start-up flow in
uo Section IIIC, we show that the stickers initially hamper the collective alignments of the
120 chains in mildly non-linear aligning flows, but facilitates the emergence of stretched outliers.
121 In Section III D we discuss how these outliers may reduce the critical specific work for flow-
122 induced crystallisation. In the discussion and conclusions of Section IV we use our findings to
123 interpret the experimental observations of silk spinning, and argue that the chemical tuning
124 of associations is indeed a promising mechanism to control the flow-induced crystallisation

15 of artificial materials.

e II. MODEL AND THEORY

127z A.  Brownian dynamics of Sticky Polymers in Flow

s In this section we will present a coarse-grained description of associating polymers, where
120 the dynamics of sticker opening and closing will depend on the number of open and closed
130 stickers in a non-spatially-explicit collection of chains. Any linear polymer that consists of
11 N monomers may be discretised using a number of nodes, N,oqes, See Fig. 2. We use the
12 wording ‘node’ to emphasise that the node may not just represent a traditional, frictional
133 bead of a bead-spring model, but may also represent a sticker that can be in an open or
1 closed state, or a slip-link or slip-spring (which, unlike traditional beads, may fluctuate in
135 numbers). Each node i is located at a spatial coordinate R; relative to the centre of mass
136 of the chain. The strand between neighbouring nodes ¢ and 7 4+ 1 has an end-to-end vector

1w Q = R;11 — R, and contains a fraction As; = Ng; /(N +1) of all the monomers in the chain.

6



FIG. 2. The theory in Section II A applies to sticky entangled poymers that are parameterised
using the locations of M nodes. Each node may be a bead (green disk), a sliplink/entanglement
(blue ellipses), a closed sticker (orange disk), or an open sticker (orange circles). All nodes are
assigned a friction (; that depends on the fraction of monomers of the chain, As;, that reside in
each of the M + 1 substrands, see Eq. (3). In general, the number of beads and entanglements may
fluctuate during a simulation. In the present work, we focus on the physics of the stickers and fix

the number of beads and do not include any entanglements.
138 At this level of coarse-graining, the friction of each node is given by

Asifl —|— ASZ'/Q, fOI‘ Z — 1
G = NG § (Asiy + As;)/2, for 1< < Noodes )

A8i71/2 + Asz’, for ¢ = Nrodes

130 with (p the monomeric friction. The assumption that the dangling chain ends are relaxed
1o may be released by explicitly modelling the position of the chain ends and setting As; = 0
wat i =0 and at i = Nyodes™

12 The equilibrium structure of the chain in quiescent conditions is determined by the end-
s to-end distance of the substrands, |Q;| = Ab(As; N)¥/2, where the stretch ratio A obeys the

1 equilibrium distribution

3\2

P(X) = 4mX\? (27/3) % exp <_T> . (4)

us This distribution emerges as a consequence of the intramolecular and thermal forces in

146 Eq. (2)



w7 In order to derive the intramolecular spring forces, we consider the spring force of the

1s entire chain of N monomers with a mean stretch ratio of unity

stran 3ksT'
Erftra 4= LN1/2 kb()‘a /\max)(l - )‘)7 (5)

149 where

) BN = V(- )
) = G DO 1) o

10 approximately captures the anharmonicity of the spring force due to the finite extensibility

151 of the substrand®’. For the substrands ¢ the harmonic spring force is larger than that of the

152 full chain, and the maximum stretch ratio is smaller. This is captured by the renormalisation
12

153 Fintra > Fintrai, N — As; N, and Apax — AS;""Amax = Amaxs. 1Lhe direction of the force
15 exerted by spring i on node i is Q;/|Q;|, while the direction of this force acted upon node

155 1+ 1 is —Q;/|Q;|. Hence, the net intramolecular force exerted on node i is

Fintra,i intra,i—1 ’Q 1’ intra,i |Q|
1— (2

— Fstrand Qi—l Fstrand Qz (7)

The thermal force is given by the equipartition theorem

<Fthermal,i(t>> - 0; (8)
<Ftherma1,i,a (t)Fthermal,i,,B (t,>> = 07 fOI‘Od 7é ﬁ (9)
<Fthermal,i,oc (t)Fthermal,i,ﬁ (t/)> - QkBTCzé(Z, - Z)(S(t, - t)7 fora = 6 (10)

156 with «, 8 = x,y, z the Cartesian coordinates and kgl the thermal energy.
157 The force acted upon the nodes by flow is, provided that our coordinate system moves
158 with the flow field, given by

oR,
ot

159 Where k is the transpose of the velocity-gradient tensor, which in extension and shear is

Faow,i = G = Gk - Ry, (11)

flow

160 given by

2% 0 0 040
1
K=510 =0 ,and k=100 0|, (12)
0 0 —& 000

161 respectively. As the coordinate system moves with the flow field, the spatial quantities of

12 physical interest to calculate are the deformation of the individual substrands

0Q; B
ot a

flow

K- QZ‘, (13)

8



163 using which we recursively obtain the drift of the nodes as

_0Qi
flow at

OR;11
ot

OR;
ot

. (14)

flow

flow
164 The value of the first entry, OR,/0t is adjusted to fix the centre of mass of the chain (this
165 assumes that the centre of mass moves affinely with the flow field).

16 The dynamics of the chain conformation depends on the state of the stickers through the
17 network force, which in turn depends on the dynamics of sticker opening and closing and
168 S0, finally, on the chain conformation itself. In particular, when chain segments are highly
160 stretched, the network forces may cause the stickers to dissociate. To obtain these forces we
o simulate multiple chains and track the collection of open and closed stickers. When sticker
1 ¢ from chain A and sticker j from chain B are closed to form a pair, the friction coefficient,
12 the thermal force, and the network force are modified until the sticker pair opens again. The
173 friction coefficient of both nodes becomes (A + C]B, where ¢ and C]B are given by Eq. (3),
17 and the thermal forces are given by the equipartition theorem Eq. (10) as before, but with

175 this modified friction coefficient. The network forces are now given by

FA — FB

network,i intra,j?

and by FB =FA

network,j intra,i*

(15)

e Hence, the paired stickers ¢ and j have an identical friction coefficient and experience the

i+ FBiay + Flemmays (Where F) =F&

A
17 same net force Fj intra,j thermal,i thermal,j

intra,

). Crucially to forced

s sticker dissociation, the net force that acts on the closed sticker pair is

Fstic = ’FA - FB

intra,i intra,j ‘ )

(16)

19 which we assume, as in other cases of forces temporary unbinding, lowers the activation

180 energy for sticker dissociation as

Eact - EO

act

— (Fc (17)

181 With EO

Wt the activation energy in quiescent conditions and ¢ the typical length scale as-

12 sociated with sticker dissociation!!. We remark that the (apparent) activation energy ob-
13 tained from experiments using the Arrhenius-type equation®* 7, = v~ exp(Fa/ksT), for

184 the sticker lifetime with v an attempt frequency, may be much larger than this activation

9,61

185 energy for dissociation. This is due to fast sticker recombination processes™" or due to the

18 mixing of various mechanisms of sticker opening and closing, such as bondswapping!!:%2.



17 For now, we assume a well-defined pairwise association-dissociation reaction whose equi-
188 librium condition is described by the detailed balance p/(1—p)? = Ky exp(—£oFyic), with Kg
180 the equilibrium constant in the absence of any chain tension. Here, the free energy ¢ Fy;c > 0
10 captures the shift in detailed balance (i.e., the fraction of closed stickers decreases with an
01 increasing chain tension), while ¢Fy;. in Eq. (17) modifies the rate by which the equilibrium
192 is reached. Indeed, in terms of transition state theory, we may write the opening and closing
103 Tates as kopen = v exp([0o Fyic— EL.)/ksT) and keose = v Ko exp(—[(1—0)lo Fyic+EL., ] /ksT),
104 respectively, where ¢ = 04y, and where § € [0, 1] is the so-called Brgnsted-Evans-Polanyi
105 coefficient®®. While its value may be determined using experiments or atomistic simula-
106 tions, we know that € must be larger than zero in order to capture strain-induced sticker
107 dissociation??33. We argue that the rheological physics of a reversible polymer network does
18 NOt necessitate exact knowledge of #: When a sticker opens, it may freely diffuse and find
199 conditions to bind to another sticker that is not subject to the influence of strongly stretched
200 chain segments: association will typically take place in conditions where the activation bar-
o1 rier is equal to that in quiescent conditions. Indeed, in our simulations we find that the

202 mean fraction of open stickers in conditions of strong flow remains similar to the fraction in

203 quiescent conditions, despite noticable acceleration of sticker dissociation.

20 These arguments have enabled us to conveniently set ¢ = ¢, and 6 = 1; the latter avoids
205 the need for on-the-fly calculations of association rates during our simulation. We have
206 implemented the opening and closing of stickers using a kinetic Monte Carlo (kMC; also
200 known as a Discrete Event Simulation) scheme, where after a time interval At a sticker is
208 opened or closed with a probability (1 —exp[—kopenAt]) or (1 — exp[—keciose At]), respectively.
200 In our simulation algorithm, shown in Fig. 3 and discussed in detail in Appendix V A, we
210 take time steps during which the chain conformations are approximately fixed, and for which
au the time-independent (but conformation-dependent) rates of sticker opening and closing are
a2 calculated. The dynamics of the stickers is simulated during the time step using a kMC
213 scheme. This essentially creates and destroys constraints in a similar way as in the slip-link
2 model®, but where the constraints physically represent closed stickers instead of entangle-
25 ments (hence, our approach may be generalised using appropriate kMC algorithms® % to
216 g0 beyond the unentangled chains with pairwise association and dissociation of stickers fo-
217 cussed on in the present work, and also capture entanglements, stickers that dimerise through

218 bondswapping, and stickers that may assemble into larger aggregates). After this step of

10



219 ‘constraint-dynamics’ the Brownian dynamics are solved, the conformations are updated,

20 and the next time step is commenced.

Sticker dynamics

Initialise :
Set conformation |——»)
Set stickers states| —ip| SetAt;=At
Set t=0 i

]
Update sticker rates ]
association | Set Aty= At, - At, |
dissociation ;
bondswapping | :
T [ Update sticker states | :
Get first event time :
At,

[ Select sticker process | |

no I
B NI

@ Chain dynamics
| Update forces |—|Get displacements |

| done | _._| Set t=t+At |—|Update conformation |

FIG. 3. Flow chart of the algorithm to simulate the conformational dynamics of sticky polymers

and the dynamics of sticker association and dissociation (detailed discussion: see Appendix V A).

21 B, Approximate theory in transient extensional flow: Two-state model

22 The dynamics of sticky polymers is complicated by the fact that a polymer with Z
23 stickers can be in 2% different states, as each individual sticker can be either open or closed.
24 An instructive simple case is a chain with Zg = 2, as the chain is either completely free to
25 relax when either of the stickers is open (state 1), or can only be extended by flow when
26 both stickers are closed (state 0). Hence, we can accurately distinguish between an extension
27 state where the polymer is unable to relax and a relaxation state where the polymer is able
28 to relax. Using this ‘two-state’ description, we previously discovered that stickers give rise
229 t0 enormous stretch fluctuations in extensional flow below the strain rate at which the mean
230 stretch diverges, i.e., below the ‘stretch transition’, which are descibed by the steady-state

231 power-law stretching distribution!©

P(A\) o< N, withrv < 1, and for A > 1. (18)

11



232

233

234

235

236

237

238

239

240

It turned out that this two-state prediction, which is exact for chains with two stickers,
also described the steady-state stretch distribution for chains with multiple stickers. In the
present work, we recapitulate our previous analysis of the steady-state situation and extend
it for transient start-up flow. In all of this analysis we will consider a single relaxation mode
of the polymer at time scales beyond the relaxation time of the surrounding network; hence,
we invoke the rigid-network approximation in this entire section.

The starting point is to consider a chain in two states where the chain is either unable
to retract (state 0) or is free to retract (state 1). The opening rate is kopen and the closing
rate is kcose- The time development of the probability distribution of the stretch ratio is
described by!?

0F, 0

E — —5 [Ef)\Po] _kopenPO + kclosepl7 (19>
OP 0 1—-A
a_tl - _5 {(@\ * TR ) Pl} +k0penp0 — Kelose 1, (20)

with 7g the bare Rouse time of the chain without stickers. In this equation, we have
neglected the high-frequency relaxation modes of the polymer, as well as the (potentially
much slower) relaxation of the surrounding network; the latter is justified in view that the
network rapidly stiffens with an increasing strain. To approximate this equation analytically,
we first make the substitution y = In A, so dF,;/ON = (1/A)0P;/0In )\ = exp(—y)0P;/0y.
Similarly, OAP;/OX = P; + OP;/0y. Inserting this into the governing equations gives

oP, 0P, :

3_t0 - _58_; o (5 + k0pen) Fo + Ketose 1 (21)
oP OP,

S = Eter =) a—yo thiopen o = (Ketose + & + 7 =75 ') P (22)

The non-linear contributions can then be omitted by considering the limit of large stretches
where their contribution to the distribution is exponentially small, i.e., we approximate
e ¥ =~ 0, which is equivalent to A > 1.

In steady state, the left-hand side of the equation is zero and the equations can be cast in
the form dP/dy = A - P, with P = [Py, P,]* and A a constant 2 by 2 matrix. The solution

of this system of first-ordinary differential equations is given by'?

P& = e\, (23)

kcose 3 (¢l
pra = Do € pea (24)

Fopen (¢ — 75 ")

12



21 with ¢ a normalisation constant (its value can in principle be determined by releasing the
22 approximation e & 0), and with the exponent of the power-law distribution given in terms

213 of physical parameters by

kclose ko en 1 p TR 1
=1+ — PR =14 . ———. 25
v (Tgl —£) 15 (I—ém)(1—p) 7 ETy (25)

244 (this is one of the eigenvalues of Eq. (21) and Eq. (22); the other eigenvalue is —1 and
25 is unphysical as a distribution of the form A\~! cannot be normalised.) The value of this
s stretching exponent diverges if the bare stretch transition at érg = 1 is approached from
27 small strain rates. However, because of the physics of the stickers, actual divergence already
28 occurs at lower strain rates: At étg = (1—p), the exponent becomes v = —1 and the stretch
a9 distribution can no longer be normalised. Depending on the sticker lifetime, at smaller
20 strain rates the exponent may reach a value v = —2 if the ‘sticky Weissenberg number’
251 (1 — p)étg reaches unity; here, the mean stretch diverges. While the mean stretch is finite
252 for smaller strain rates, the variance of the stretch diverges for v > —3, which happens if
23 (1 — p)éTr becomes larger than 1/2'0 at which point (considerably slower than the bare
24 stretch transition) we expect a long tail of very high stretched chains to develop in the
255 distribution.

6 This analytic approach can be extended to predict the transient dynamics of the distri-
257 bution in start-up flow. As we will show, the late-stage dynamics in which the tail of the
28 distribution ‘fills up’ is independent of the initial conditions. In those late stages, the dis-
250 tribution reaches a steady state for stretches below a certain ‘front’, A.(t) (above which the
260 distribution function has a value of zero) which shifts to high stretch values over time. The
261 precise number of chains with a certain stretch also depends on the width of this moving
2 front. We assess analytical predictions on the front position and width using the two-state
%3 model using solutions in an early- and late-stage regime, where the time scale is, respec-
264 tively, much shorter and much larger than the sticker lifetime. While the long-time regime
265 will slow down the progression of the front due to sticker opening, in the early-stage regime
26 we will obtain an upper limit of the rate by which the front moves.

%7 In the early-stage regime, we approximate the stretch distribution using a the Dirac-delta
268 distribution (justified by the very wide long-time distribution), P;(t = 0, ) = ¢;0(A — A\.(0))
260 at A.(0), from which it can be easily seen that the distributions shift initially, when pure

20 advection dominates over sticker dynamics, to higher stretches for the closed state, Py(t, A) =

13



a1 cpd(A — Ae(0) exp[et]) and retract to smaller stretches for the open state Py (t,\) = c10(A —
212 A\ (0) exp[— (7" — €)t]). This suggests that the ‘front’, \.(t), of any distribution with finite
23 Py, shifts exponentially in time to higher values through A, (t) = \.(0) exp[ét].

To develop an analytic approximation for the long-time limiting behaviour of the sticky
polymers in start-up flow, we consider some point in time ¢y > 7gg where sufficient stickers
have opened to facilitate chain relaxation, and assume that the stretch distribution has
reached a steady-state for small stretches A < A.(tg), but is empty for larger stretch ratios.
Here, A, (tp) can be thought of as the establishment of the ‘front’ of the stretch distribution at
later times moving to higher stretches. In the following, we will show that the ansatz of this
moving front is indeed a good approximation for the tail of the transient stretch distribution
and that for later times t > t,, further convergence of the stretch distribution takes place in
the range of stretches A\.(fg) < A < A.(t), where the ‘front’ of the distribution shifts to high
stretch values as In[A.(t) /A (to)] o< E(t — tp). Assuming that A\.(ty) > 1, the steady-state
portion of the distribution is negligibly affected by the loss of small-stretch contributions
to the tail of the distribution (see discussion around Eq. (51) in Appendix V B), and for
any time ¢’ > ¢y the A < A\.(¢') portion of the stretch distribution becomes independent of
time beyond ¢ > t'. The constancy of the distribution at A.(¢y) provides a fixed-boundary
condition. Hence, this problem essentially models the dynamical response to a unit step, and
lends itself to an analysis through a Laplace transform to give a solution for the distribution
at each stretch ratio A of the form exp(—s7(A))/s, which is the Laplace transform of a time-
dependent function that becomes non-zero at the time 7(\). The inverse function \(7) is
then the trajectory of the ‘front’ of the distribution. In Appendix V B, we detail the Laplace
transform of Eqgs. (21-22) with the boundary condition in this long-time regime, which as a

solution gives

fM@M@D:C(iig

kclose
Pi(t, A\ (1)) = -
LA 0) = 1

) O/ . (1) /A (t0)] — &) (26)

€

Py(t, N, (27)

2 with v the ‘steady-state stretch exponent’ in Eq. (25) and with

1 1
= (1- . 28
Y (1fm+pwwd 28)

o5 the ‘dynamic stretch exponent’, which controls the growth of the front of the distribution
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276 AS

(29)

Alt) = Au(to) exp (M) |

277 In this equation, Wi = €y and Witk — grn are the (extensional) Weissenberg numbers
28 of the chain without and with stickers, respectively; within the two-state model, 7sg = (1 —
219 D) /kopen, see discussion under Eq. (25). Upon approaching the stretch transition Wi = 1
20 where the mean stretch diverges, v/ &~ 0 indicates ‘critical slowing down’, as the (late-
201 stage) front of the distribution becomes immobile. For chains with strong stickers (1 —
%2 P)Ts > Tg at the strain rate Wi = 1/2 where the variance of the stretch diverges (see
283 discussion under Eq. (25)), we find / ~ 2, which indicates that the late-stage measure
2 of the front is shifted from the early-stage measure for the outliers by a factor 2. We
25 have also checked that the moving front is narrow for small strain rates Wit < 1/2.
26 In Appendix V B, we provide more analytical analysis of the two-state model to estimate

267 the width of the front (relative to its extent) as A.q o \/ pWIWiHR /(1 — Wit - where
26 Aol 2 (O[P(\, 1)/ Paq(X,00)]/0InX)~" /In A, As we show in Appendix V B, typically this

280 width is A.q < 1, and the front of the distribution is narrow even close to the stretch

200 transition.

20 ITI. RESULTS
22 A.  Linear dynamics

203 We have verified the physics of our model in the linear viscoelastic regime by first sim-
20 Ulating non-sticky chains of fixed length but a varying number of beads from M = 4 to 64
205 (the beads are regularly along the backbone of the polymer, so As; = 1/(M + 1) for all 7).
206 Fig. 4 shows that the choice of the number of beads has a negligible influence on the time
207 evolution of the mean-square displacement, MSD, of the centre of mass and is in all cases

208 in agreement with the theoretical prediction
MSD = 6Dt, (30)

200 where the diffusivity, D, is for non-sticky polymers given by the bare Rouse diffusivity

Dy = = 1) (31)

3r?2 TR
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300 Moreover, the inset of Fig. 4 shows that also the end-to-end-distance, R,, is distributed

sa according to the physical equilibrium result of Eq. (4).
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FIG. 4. Mean-square displacement, MSD, of the centre of mass of a non-sticky polymer against
time (main panel) and the time-averaged end-to-end length (R.) distribution (inset). The number
of real monomers per chain is fixed, while the level of coarse-graining is varied through varying the
number of beads, M, per chain. The symbols and solid black curves represent the simulations and

the theory, respectively.

22 For times shorter than the Rouse time of strands between stickers, i.e., for t < 7r(Z;+1)72,
s03 the dynamics of a sticky polymer are governed by the same Rouse diffusion as non-sticky
s0¢ chains, see Fig. 5(a). For later times than that, the motion of the polymer is subdiffusive
s05 until the sticky Rouse time 7gg, which is approximately given by!?

9 12\
TSR = ToZ2 (1 — =+ —2> : (32)
p p

306 Focussing on the crossover from early-stage bare Rouse diffusion to subdiffusive motion, one
307 would expect this crossover to occur at the point in time where the substrands between
s08 stickers have just relaxed, and where further relaxation requires sticker dissociation. Indeed,
300 we find this is the case within the rigid-network approximation. However, for the elastically
s10 compliant network the closed stickers themselves are able to diffuse. The friction experienced
s by the closed sticker depends on the level of deformation of the surrounding network, which
s12 is initially small. As the sticker diffuses further, a larger portion of the surrounding network
a3 is deformed and the contribution of ‘next-neighbour’ stickers starts to contribute to the

su friction. Clearly, the increase of the friction increases rapidly beyond a certain characteristic

16



10° |
™ 10!
& o
- O
BN XS] »
o - °
g 10° <
O S , °
z < ’
-~ > )
1073 | ~ O /
Il 1071
& ,
106 107 107 107 1072 107 10 10t 102 10°
t/TR WTR

FIG. 5. Linear rheology of a sticky chain with Z; = 10, p = 0.9, 75 = 2007r within the rigid-
network approximation (open symbols) and with this approximation released (closed symbols).
(a) Mean-square displacement MSD of the centre of mass against time. (b) Storage, G’, and loss,
G", modulus in units of Gy against the frequency, w, plotted for the chain in (a) as well as for
an non-sticky chain (triangles). There is fair agreement with the analytical sticky-Rouse model
in Eq. (33) (solid curves) for the sticky chain within the rigid-network approximaton an for the
non-sticky chain. For the sticky chain with an elastically compliant network the plateau modulus

decreases to that of the theory with Zs = 4 (dashed curves).

a1s distance. It is unknown what this distance might be, but it is likely to be strongly dependent
s6 on the topology of the network. The plateau value in Fig. 5(a) shows that for our simulations
s17 this happens to occur when the MSD of the centre of mass of chain is approximately 10,

a8 i.e., when the centre of mass of the chain has diffused 3 — 4 times its end-to-end distance.

a0 The elastic compliance not only affects the subdiffusive motion of the chain, but also the
20 sticky Rouse diffusivity Dsg = Dgr7r/7sr at times beyond the sticky Rouse time. While
;21 the analytical expression for the sticky Rouse diffusivity accurately describes our simulations
322 within the rigid-network approximation, we find that it overestimates the diffusivity of chains
223 in an elastically compliant network. We have investigated the consequence of this to the
324 interpretation of linear viscoelastic data, which are often used experimentally to estimate
25 the number of associations per chain, by calculating the dynamic moduli G’ and G” against
26 the frequency w in Fig. 5(b). The data shown includes non-associating unentangled chains
271 (Zs = 0) and the unentangled sticky chains of Fig. 5(a); i.e., chains with Z, = 10 stickers

328 within the rigid-network approximation and with an elastically compliant network. The
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20 simulated data (symbols) were obtained from the relaxation modulus, G(t), through the

f57. To obtain the dynamic moduli G’

s30 multiple-tau-correlator algorithm discussed in Re
s amd G” we have used the finite-element approach from Ref.®®. We have compared the data

2 to the sticky-Rouse model (curves), which is given by

al 2p%t Z 2p%t
G(t) = G(] Z exp (—E) + GO Zexp <_7'5Z32> . (33)
p=Zs+1 p=1

333 In this equation, the first summation captures the high-frequency bare Rouse modes (the
s number of Kuhn segments, N, truncates the highest frequencies), and the second summation
135 captures the sticky Rouse modes. The modulus GGy is proportional to the number density of
33 monomers and to the thermal energy.

s Fig. 5(b) shows dominance of bare Rouse relaxation at high frequencies, where all moduli

s will approach (in principle) the scaling relation G',G" o w'/2.

Discrepancies, such as a
a0 roll-off of G” at high frequencies, emerge due to the finite number of modes/beads that are
s included in the simulations. At decreasing frequencies the moduli of the non-sticky chains
sa (triangles) decrease rapidly, while the moduli of the sticky chains reach a plateau value
;2 that ranges down to w = 1/75. Within the rigid-network approximation (closed circles),
.3 the modulus of the plateau is G'(w) = GpZs in agreement with the sticky-Rouse model in
s Eq. (33) for Z; = 10. However, if the network is elastically compliant (open circles), the
us plateau value decreases and is better described if the theory would be adjusted with an
us apparent number of stickers Z; = 4 (dashed curves). At lower frequencies w < 1/7; the
sz moduli rapidly decrease. In the simulations the moduli decrease much more rapidly than in
us the theory, as also noted earlier in Ref. 50. We find that this terminal relaxation time (we
a0 remind the reader that this relaxation time is for unentangled chains entirely determined

22.24) s even further reduced for the chain

30 by sticker relaxation, i.e., not by sticky reptation
1 in an elastically compliant network. Consequently, the peak of the dynamic modulus G” is
32 much narrower than in the theory. We have estimated that the shape of this peak is best
553 described by Zg = 4 within the rigid-network approximation and Zg; = 3 for the compliant
s network. This clearly indicates that analysis of the dynamic modulus peak in rheological
355 data (which is required when high frequencies are experimentally inaccessible’) provides an
356 Underestimate of the actual number of stickers per chain.

7 'To obtain a wider view of the impact of the elastic compliance on the dynamics of chains

;8 with a various number of stickers and sticker lifetimes, we have calculated the diffusivities

18



10°

rigid network compliant network
10°

[
> P

/AZ//{
g
%»
> >
>
>
»p
wp
PP
» PP

> D> P

Dsr/Dg
| 4
B
>
B>
Dsr/Dr
y >

A
1072 A LN
4 A 102 = \A
A A
—A— 7 =2 A —A Zs=2
3| —A— Zy=5 A —A— 7, =5
10 —a— 7 =10 1073 Ze =10
Zy =20 A Zy =120
0.01 0.1 1 10 100 1000 0.01 0.1 1 10 100 1000
/TR /TR

FIG. 6. Sticky Rouse diffusivity, Dgsgr, against the sticker lifetime, 73 for chains with Zg; =
2,5, 10, 20 stickers with p = 0.9 within a rigid network (a) and a compliant one (b). The symbols
are our simulation results, and the curves represents the sticky Rouse model in Ref.'?. The units

are given in terms of the bare Rouse diffusivity Dr and the bare Rouse time, 7R.

350 of various chains within the rigid-network approximation and with a compliant network
w0 in Fig. 6. Panel (a) shows that the predictions of Ref.! describes our simulations well
31 within the rigid-network approximation for chains with 5, 10, 20 stickers with various sticker
se2 lifetimes, in particular in the regime where the sticky-Rouse diffusivity scales with the sticker
s lifetime as Dgg = Dr7r/Tsr o 1/7:Z2, see Eq. (32). Panel (b) shows that upon releasing the
64 Tigid-network approximation this scaling behaviour persists, but rescaled with a prefactor
365 &2 4. While this scaling regime is reached for the chains with more than 5 stickers (i.e., above
366 the percolation threshold for network formation), this is not the case for the chains with 2
367 stickers. Within the rigid-network approximation, this originates from the fact that at sticker
s lifetimes a plateau is reached where the chains with all stickers open dominate the dynamics.
30 Without the rigid-network approximation, the chains cluster into linear ‘supramolecular’
w0 dimers, trimers, etc. through an exponentially decaying cluster-size distribution®’, which
sn implies a distribution of diffusivities that strongly differs from that predicted by the sticky-
s Rouse model. Hence, while our simulation approach accounts for the elastic compliance
a3 of the percolating network, it also captures the contributions of cluster diffusion near and

sz below the percolation threshold for network formation.
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s B.  Non-Linear Dynamics: Steady State

s Ordinary Gaussian polymer melts and solutions of narrow molecular-weight distribution
7 exhibit broad conformational distributions in shear flow due to dynamic stretching, tumbling
s and recoiling of the chains** 2. In extensional flow, however, such chains do not tumble and
w9 recoil, and their stretch distributions are narrow, see Fig. 7(a). Perhaps surprisingly, by
0 incorporating stickers into the chain these stretch distributions become much wider, see
s1 Fig. 7(b).  This figure shows that the sticky chains exhibit an enormous dispersity in the
s> chain stretch, as well as occasional hairpin conformations (Fig. 7(b)). These are cause by
383 the stochastic binding and unbinding of stickers, where the network forces may occasionally

s act in the opposite direction of the drag forces exerted by flow.
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FIG. 7. Representation of simulated chain conformations in extensional flow for érg = 2 for
non-sticky (a) and sticky (b) polymers. While the variations in stretch are narrow for non-sticky
polymers, these variations are broad for the sticky polymers: when a sticker in a retracting chain
segment binds to a neighbouring chain segment, this may disrupt the neighbouring chain. The

scale bar represents approximately a length 50R,., which is 65% of the fully extended chain.

s Lo go beyond these qualitative observations, we have quantified this phenomenon using
386 steady-state stretch distributions of polymers at various extension and shear rates in Fig. 8.
;7 We have selected non-sticky polymers (Z; = 0), and sticky polymers below (Z; = 2) and
38 above (Zs; = 5) the percolation threshold for network formation: The chains with only 2
380 stickers may only assemble into high-molecular weight chains, while chains with 5 stickers

s0 may branch into percolating networks. We have modelled the physics of the stickers using
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;01 the same description as in our previous work on chains that are pre-aligned in the flow
s field!'. We have summarised the associated parametrisation in the caption of Table I. In
303 extensional flow, above the sticky Weissenberg number, Wity — grn with 7eg the sticky
3¢ Rouse time we expect divergent stretching (albeit that real divergence is obstructed by the
s maximum chain extensibility Apna.x = 75). We have calculated the sticky Rouse time as
ws Tsg = |Dr/Dsr]Tr, with the ratio between the sticky and the bare diffusivity as presented

so7 above in Fig. 6. The relevant results are summarised in Table I.

TABLE I. In our simulations of sticky polymers in non-linear flow conditions we use as parameters
p = 0.9 as the fraction of closed stickers (in quiescent conditions), a sticker lifetime 7, = 107g,
an activation energy F... = 8kpT, and a sticker dissociation length of £ = 1 nm. The maximum
extension ratio of the chain is Apax = 75. The intramolecular forces in Eq. 5 are calculated by
assuming a total number of N = 5525 Kuhn segments, and a Kuhn length of b = 0.4 nm. As we
focus on chains with Zg = 2 and 5 stickers, we here tabulate the ratio between the bare Rouse
and sticky Rouse diffusivities, [Dr/Dsgr], and relaxation times, [tr/7sr]. The diffusivities were

determined in Fig. 6, and the sticky Rouse time is calculated as 7sr = [Dr/Dsr]mR .

Polymer model Dsr/Dr TSR/TR

Zs = 2; (rigid) 0.0949 £ 0.0002 | 10.54 £ 0.02
Zs = 5; (rigid)  [0.02156 £ 0.00004| 46.38 £ 0.09
Zs = 2; (compliant)| 0.4331 £ 0.001 |2.309 £ 0.005

Zs = 5; (compliant)| 0.1050 +0.0002 | 9.52 £ 0.02

w8 Eq. (4) shows that in all cases the equilibrium stretch distribution for zero-flow conditions
10 (black curve) is approached for small strain rates. For non-sticky chains (Z5 = 0), a broad
a0 stretch distribution with a cutoff set by \,.x emerges in shear due to the dynamic stretching,
s01 tumbling and re-collapsing of the chains. In extensional flow, the distribution broadens only
w02 Within a narrow range of strain rates 0.9 < érg < 1.1 around the bare stretch transition,
w3 Wi = érg = 1. Beyond the stretch transition, the stretch distribution is narrow and Gaussian
s0s and approaches A.x With an increasing strain rate. This behaviour qualitatively changes
s05 UpoN incorporating stickers.

ws  Fig. 8 shows that the steady-state stretch distributions in shear are similar to those of the

s07 non-sticky chains, while in extensional flow the distributions of sticky polymers are remark-
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FIG. 8. Simulated steady-state stretch distributions of the end-to-end distance, R., for various
extension (a,c,e) and shear (b,d,f) rates for a linear unentangled, non-sticky (Zs = 0) and sticky
(Zs = 2 and Zs = 5) polymers. For these simulations 7gg ~ 75 = 107 (see Table I for all parameter

values). The black curve represents the contour-length fluctuations in quiescent conditions, given

by Eq. (4).

a8 ably distinct from the non-sticky ones: In contrast to the non-sticky polymers, the sticky
s00 polymers show broad stretch distributions in steady-state extensional flow over a broad range

no of flow rates. We have observed this behaviour previously in simulations where the chains

22



a1 were pre-aligned in the flow-field and where we invoked the rigid-network approximation!®.
a2 Our current simulations show that this phenomenon persists when these approximations are
a3 released, but also show a dynamic coexistence of stretched chains, relaxed coils, and hairpins.
sa Interestingly, there is a qualitative similarity between the distributions of the chains with 2
a5 or b stickers, despite the fact that these are below and above the percolation threshold for
ne network formation, respectively. This indicates that the enormous reduction of the chain
a7 retraction rate due to the stickers does not necessitate network formation: the formation of
ss high-molecular weight assemblies suffices.

sno  We also find that the large fluctuations in stretch below the formal stretch transition
a0 carry over from case of 2 stickers per chain to multiple stickers'!. (The stretch transition is
s21 defined at the condition é7ggr = 1, with the sticky Rouse time obtained from the sticky-Rouse
2 diffusivity of Fig. 6 as 7sg = TR Dsr/Dgr) In particular, we find that for small strain rates and
a3 large stretch ratios A the stretch distribution has a power-law tail (see Eq. (18)) of which the
24 width is set by a é-dependent stretch exponent v (see Section II B). We have determined the
s stretch exponent from the distributions of the chains with 2 and 5 stickers (we discuss the
26 numerical method in Appendix V C) in extensional flow with and without the rigid-network
227 approximation and finite extensibility, and plot these against the strain rate in Fig. 9. As
w28 anticipated, we have been able to map the stretch exponent of the chain with two stickers
20 onto the analytical result in Eq. (25). To achieve that, it has to be taken into account that
0 the open state of the chain can be achieved by opening either of the stickers; hence, 74 in
a1 Eq. (25), which models the simultaneous opening of all stickers, is replaced by 7,/2, and

432 Tesults in

1 p  2TR 2
(1—em)(1—p) v e
s33 For chains with multiple stickers, no such analytic theory is yet available; however, we do

v=-—1-—

(34)

s find a qualitative agreement of the increasing power-law exponent with an increasing strain
435 rate.

16 For the chains with 2 and 5 stickers and with a fraction p = 0.9 of closed stickers, we
s37 also simulated the stretch distributions while including finite extensibility and an elastically
13 compliant network. Finite extensibility implies that there is a cutoff of the power-law tail,
130 which becomes apparent with increasing (less negative) v. Since the fluctuations in A diverge
mo for v > —3, this cutoff has a significant effect on the tail of the stretch distribution upon

s approaching v = —3. Fig. 9 does confirm a broadening power-law stretch distribution for
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FIG. 9. Stretch exponent v of the power-law tail of the stretch distribution P o< A¥ for simulations
of polymers with Zs = 2 (blue symbols) and 5 stickers (red symbols), within the rigid-network
approximation (closed symbols) and using elastic compliance and finite chain extensibility (open
symbols). The solid curve is given by the two-state model in Eq. (34) with 75 = 107g (see Table I
for all physical parameter values). For v > —3 (horizontal line) the fluctuations in stretch diverge;

this leads to a cutoff in the stretch distribution for chains with finite extensibility, see Fig. 8.

a2 the chains in a compliant network, but shifted to higher strain rates, as expected from the

a3 faster sticky-diffusion rates from Fig. 4.

s C. Non-Linear Dynamics: Transients

ws  In our pursuit to understand the flow-induced crystallisation of associating polymers such
us as the silk protein, we are interested in capturing the macroscopically observable stresses in
a7 start-up flow, and to interpret crystallisation rates in terms of the chain conformations that
as underlie these stresses. To address these challenges, in this section we will present the time-
a9 dependent rate-normalised transient shear stress, o,,/7, and extensional stress (o, —0o,,)/¢,

w50 with the stress tensor (in units of energy per molecule) given by

3]{;BT Qa,i Qﬁ,i
OaB = [)2—]\] Z Asi,lks,i Asifl Asifl . (35)
i=1

1 Focussing first on the results for non-sticky chains with a finite extensibility A, = 75 in
s Fig. 10(a,b), we reproduce the well-known qualitative features of their stress transient®”: For

ss3 small Weissenberg numbers, émg < 1, 47r < 1 the polymers are able to relax, while for large

24



454

458

459

460

461

T R = 0.9 TR =16 : e =1 % 1072 i
w 10— e =10 émp = 32 extension ¢ = 0.3 —e—s
— ép =12 Fmr = 10 10! 7 " ETR = 1.2 r—tm |
o | — im=16 47R = 100 Zg = UeTR = 2 ETR = 2.2
= 100 —— g =2 4R = 1000 ETR = 3.2 —e—s
S — imp=4 —— YR = 10000 100 ETR = 5.2 o ]
| - —_— R =8 ~ eTR =T7.1 —@—
iy - 1
%3 77 / o 0 | :
& 9 — 1>
— 10 SO N NAe! B
A >
~ 1072 1 . 8
™ 100 £ — e /T. 1
\‘b B i A ] 10,3 ﬁ{ - 1
6 102 = / v \\:
104 Lol l i l 1
0% 10 1072 107! 10° 10! 10? 107! 10° 10! 10?
t/TR Rc
c) d)
‘ ‘ ; ‘ 102 ‘ .
—— é7,=05 érs =20 - Ty =2 % 1072 r—i—
w108 o S =10 extension 205 —e
~ — éry=2 475 = 100 10! Loz o e = 1.8 b ]
- — ér,=5 475 = 1000 Lg = 0,ETg = 4 iy = 2.6 r—p—s
~ 106 L. —— érs=10 ETs = 3.7 —t—t
o} 100 L steady state =—e— |
| !
3 2x4 !
> 10-! il ] ?*L} 1
@ 18860 & : TY PN
~— ’ ."" ] t 1 ¥ 1t B
. $ fpevteg, 2
F.: l I 1 * Y? R A
1
~ 4 * * |
= 103 A
G l 7 § l *
{
107t 10° 10! 10?
R

FIG. 10. (a,c) Simulated rate-normalised transient extensional and shear stresses averaged over 50
polymers the non-sticky (a) and the sticky (c) case. The sticky polymer exhibits strong flucuations
for ér, = 0.5, which is below the stretch transition (at €75 &~ 1, see Table I). (b,d) Transient stretch
distribution of the end-to-end distance, Re, in extensional flow for the non-sticky (b) and sticky
(d) chain at selected strain rates. The error bars in (d) represent half of the standard error of the

mean. All physical parameter values are given in Table I.

strain rates there is an overshoot in shear flow, which is related to the onset of tumbling
and re-collapsing of stretched chains, and in extensional flow there is a sharp increase in the
extensional stress until a plateau due to the finite extensbility of the chains is reached. Be-
cause of the thermal fluctuations and dispersity in the initial chain conformations, Fig. 10(b)
shows broadening of the stretch distribution at early times. At late times, when all chains
are aligned (at the level of the beads), a sharp peak emerges at high stretches near the

maximum extensibility Apax.

This sharp peak in the stretch distribution is a fingerprint for non-sticky linear polymers
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s2 in extensional flow, and will not be visible for the sticky polymers, as we we will now show
w3 for Zy = 5. We plot the resulting start-up stresses and stretch distributions in Fig. 10(c,d).
e  Qualitatively, we find similar shear and extensional viscosities as in the non-sticky case,
a5 although there is now no distinctive overshoot in shear flow. In extensional flow, the stresses
w6 at long time scales have shifted to higher values because of the contribution by the reversible
a7 cross-links. Further, while non-sticky polymers show strain hardening only for ez > 1,
s the sticky ones also show strain hardening for smaller strain rates éry > 1. For strain
w0 rates smaller than that we identify large fluctuations in the transient extensional stress,
a0 which are caused by temporary exponential stretching of chain segments between closed
m stickers that rapidly retract to a near-relaxed state when the stickers open'?. For strain rates
a2 0.3 < €1y < 0.5 these fluctuations fill up a power-law distribution whose stretch exponent is
a3 depicted in Fig. 9. For higher rates, the finite extensibility causes a truncation of this power
aa law tail.

a5 The dynamics by which the stretch distributions evolve in extensional flow above the
w6 stretch transition (675 = 2) is shown in Fig. 10(d). At early times, the stretch distribution
ar closely resembles the equilibrium distribution of Eq. (4). As time proceeds, a the distribution
a8 broadens exponentially with time as In A oc €t until the steady state is reached after a time
a9 ET X In Apax. This is in qualitative agreement with the predictions of the two-state model

a0 that we derived in Eq. (29) of Section IIB.

1 D.  Critical specific work

2 Now that we have captured how stickers lead to broad stretch distributions, we will
s83 investigate how these distributions affect the critical work for flow-induced crystallisation
s (FIC). The usual predictor for FIC is the ‘Kuhn segment nematic order parameter’, Pk €
ws [0,1]. If Pax — 1 (see e.g. Ref. 3), virtually all chains are aligned at the level of the
ss Kuhn segments, i.e., they are completely extended/stretched in the direction of the flow
se7 field. However, in this case of high chain-heterogeneity we expect this average measure
a8 to be a poor descriptor. We know that the critical nuclei will be dominated by the small
a0 fraction of highly-stretched chains, and that it is the oriented segments in these chains
a0 only that promote crystallisation. To model this extremum-dominated physics, therefore,

s we will assume that FIC may commence when a critical fraction, P, of chain segments
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*
max ?

w2 of some length As* € [0, 1], have stretched beyond a critical stretch ratio LsA where
a3 A5 = AmaxVAs* is the maximum stretch of the chain segment and L € [0, 1] a parameter
s that may be viewed as proxy for chain stretch at the Kuhn length of this extremely stretched
s0s chain fraction. Hence, the criterion for FIC may within our interpretation be formulated as

496

)‘:nax
/ P(Ats)dA > P, (36)
L

sAS

max

a7 where P(.) is the transient stretch distribution function, and ¢, is the time into the process
a8 of startup flow at which the criterion is satisfied. Essentially, this criterion provides a pre-
s90 diction for the time required to form the first nuclei, and, hence the time t; should not be
so0 confused with the fixed time in FIC experiments®>37 during which a different number of
so1 nuclei may form depending on the strain rate. A comparison to those experiments would
se2 require knowledge of the physical relationship between the nucleation rate and the conforma-
so3 tional distribution; here, we have proposed a hypothetical condition that is likely to correlate
se to a fixed nucleation rate. For associating polymers, a natural measure for the length of
s0s flow-crystallisable chain segments is As* = 1/(Z; + 1); in general, however, measures for
s Py, Lg, and As* will have to be determined through experimentation and (atomistic) MD

sor simulations!®18.

s In this section, we will employ simulations with 50 chains of a fixed number of 11 beads
so0 (i.e., with 10 chain segments, giving As* = 1/10), and we will monitor the maximum
s10 stretch among the total of 500 chain segments (i.e., P, = 1/500). The time-evolution of
su the maximum stretch will enable us to screen how various values of Ly require a different
s12 processing time tg and a different input of specific energy. We obtain statistics on this
s13 relationship by averaging our results over 5 simulations with different initialisation ‘seeds’ of
s14 the random-number generator. We will discuss the implications of the criterion in Eq. (36)
s15 by comparing it to a measure of the (mean-field-type) nematic order parameter. At our
s16 level of coarse graining, the highest resolution of nematic chain alignment is captured using
si7 the nematic order parameter P, € [0, 1], which is the largest eigenvalue of the nematic
sis order tensor Py, = (3(uu) — 1)/2, where u is the unit vector tangential to the backbone of
s10 the chain. (we remark that this nematic order parameter is an overestimate of the Kuhn
s20 segment nematic order, i.e., Pos > Pyk) In Fig. 11, we have calculated the critical specific

sz work, W, as given in Eq. (1), needed to achieve values of P, and Lg in the range from 0 to
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s 1 for non-sticky (Z; = 0) and sticky (Zs = 5) chains for various shear and extensional rates.
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FIG. 11. Nematic order parameter, P, and characteristic stretch ratio, Lg, against the specific
work (see main text) for sticky (red) and non-sticky (blue) polymers in shear (left) and extensional
(right) flow. The symbols are obtained from simulations with various strain rates for a chain with

Zs = 5 with an elastically compliant network. All physical parameter values are given in Table I.

s The top panels of this Figure give the nematic order parameter, P,s, and the measure
s for stretch fluctuations, Ly against the critical specific work. For large values of the criti-
s»s cal work, both measures converge, which suggests that both measures can interchangeably
s26 used as predictors for flow-induced crystallisation for non-sticky chains. We notice that
sz the critical work in shear (left) and extensional flow (right) show similar trends well above
s2s the stretch transition (the stretch transition of the bare chain is érg = 1). Just above
s20 this transition the critical work required is relatively large. This implies a monotonically
s3 decreasing critical work with an increasing strain rate, which is due to the suppression of

su energy dissipation by recoiling of the chains (we discuss this in more detail in Fig. 12). This
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s 18 in contrast to the typical behaviour in experiments on non-associating polymers (e.g., the
s33 flow-induced crystallisation of HDPE"), where the critical work increases with an increasing
su strain rate. We argue this discrepancy occurs because we here consider unentangled rather
s35 than entangled chains. Finally, the top panels of Fig. 11 confirm the expected behaviour
s3 where the nematic order parameter (red) is typically larger than the stretching parameter
s3 (blue): with an increasing specific work the chains first align and then stretch.

s This behaviour is crucially altered for the sticky polymers, as shown in the bottom pan-
s3 els of Fig. 11. We find that the alignment of the chains requires more critical work both
s in shear (left) and extensional flow (right), which is due to the fact that the full alignment
s of the chains requires the opening of intermolecular associations. On the other hand, the
s> stretching of chain segments can take place before global chain alignment. (Note that the
s43 stretch transition is é7g &~ 0.1 for this system, see Table I) The stretching parameter (blue)
sas follows a sharp sigmoidal dependence against the critical work, and rapidly outgrows the
s4s alignment parameter (red) This is possible because the stretching parameter provides in-
s46 formation about a fraction P, = 1/500 of chains in the tail of the distribution, while the
se7 alignment parameter provides information about the mean properties. This supports out
sss hypothesis that flow-induced crystallisation may be achieved at a small critical specific work
ss0 by exploiting the stochastic nature of associating polymers.

sso  Given either a Ly or P criterion for critical nucleation, we are interested how the strain
ss1 rate affects how much critical specific work, W, is needed, and at what timescale, t, this
ss> criterion is achieved. To investigate this, we focus on horizontal lines / cross sections of
ss3 Fig. 12 (i.e., at fixed values 0.6 and 0.8 of both Lg and P» ). For the data points along these
ss« lines we plot the critical workk, W, and the timescale, ¢, in Fig. 12. The left panel shows
s that the timescale scales as t, o« Wi™', as one may expect and discuss in more detail below.
ss6 Below the stretch transition this dependence becomes stronger: under these conditions many
ss7 chain stretches are attempted, but fail due to sticker opening and lead to energy dissipation
sss through chain retraction. This crossover between two regimes qualitatively agrees with that
ss0 found in Figure 2 of the work by Holland et al. on silk”; more dedicated research is needed
se0 tO investigate this observation.

ss.  The right panel of Fig. 12 shows the critical specific work needed to achieve a certain
se2 degree of alignment, Pag (red), or of stretch fluctuations, Lg (blue), in shear (open symbols)

se3 and extensional flow (closed symbols), against the sticky Weissenberg number. Evidently, a
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FIG. 12. The critical time (left) and the specific critical work (right) against the sticky Weissenberg
number, Wi = ¢rop 479g, for various L and P, ¢ criteria for the critical condition. The open
symbols were calculated in shear and the closed ones in extensional flow. The values are obtained
for a chain with Z3 = 5 with an elastically compliant network. It is useful to interpret the strain
rates in relation to the stretch transition for the sticky chains in extension at Wity = 1, where
the ‘sticky’ Weissenberg number is Wit ~ 10Wi = 10é7R, with Wi the Weissenberg number of
the non-sticky chain. This factor 10 is non-universal and depends on the number and lifetime of
stickers, see Table I for all physical parameter values. The solid curves are given by Eq. (40) for

L; = 0.6 and for Ly = 0.8.

se« high degree of overall alignment / nematic order requires much larger specific work than a
ses small fraction of large stretch fluctuations does, as discussed in Fig. 11. Having in mind our
ses overarching proposition that crystallisation may occur in response to stretch fluctuations,
ss7 we now focus on the measure for Lg. We remark that for the system we studied, the
ses stretch transition in the absence of stickers takes is located at With™ = érgp &~ 10 (because
se0 Tsgr ~ 107R, see Table I). For smaller strain rates, Witiky < 10, we find there is a minimum in
s the specific critical work near the stretch transition Wi ~ 1. Indeed, while large stretches
sn are achieved just below the stretch transition Wit < 1 due to long power-law tails in the
s stretch distribution!?, many of attempt fluctuations are needed before the required stretch
s13 value is achieved. Due to the energy dissipation of such unsuccesful attempts, the specific
s7a critical work increases for decreasing strain rates. Above the minimum, the specific work

sis increases and eventually reaches a plateau.

s We explain the increase of the critical specific work with an increasing strain rate in terms
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s77 of the two-state model that we introduced in the Theory section. We argue that the stress

sis is dominated by the contributions of stretched chains in the closed state,

Oue(t) = c / Py(A\ A ()2, (37)

s with ¢ a constant, assuming that the open chains are in a relaxed state. Here, Py(A,t) is
ss0 the stretch distribution of the closed chains, of which we will discuss the dynamics below.
ss1 We will then calculate the critical specific work as W = fg o.6dt. To calculate W, we first

se2 Will determine tg using the criterion

/\max,i
/ Py(\ t)dA > P, (38)
L

sAmax, i

se3 which, as before, implies a minimum concentration of chains with a stretch ratio of at least
s8¢ A\s = LsAmax,i- Secondly, we will need an expression for the time evolution of the probability
ses density Fy.

sss 10 obtain Py, we will assume that all chains that have (temporarily) opened are suffi-
se7 ciently relaxed compared to the most stretched chains to have a negligible contribution to
sss the overall stress o,,. Therefore, we will only take into account the loss of strongly stretched
s0 chains by opening rate kopen, and ignore the contribution of closing events by rate kgjose. We
so0 will further use the initial condition P(\,0) = §(1— ), with §(.) the Dirac delta distribution
so1 to represent a narrow stretch distribution at time ¢ = 0. The dynamical equation in Eq. (21)
se2 then predicts that the Dirac delta distribution in time shifts to high stretch values along the
503 A axis, as

Po(\t) = 6(In X — er) A=+ Em) (39)
soe with an amplitude that decreases in time due to sticker opening (we present the derivation
s05 in the first two paragraphs of Appendix V B).
ss  Eq. (39) shows that the critical stretch and the critical time are related by ts = In \/¢,
so7 Which is in agreement with our simulated results displayed in Fig. 11. We insert this equation
se¢ into the expression for the critical specific work, W = fots o.-£dt, and find

W(E) = e (1 _ i) e K1 _ _i) I\ — 1} Cfor € émm, (40)

ETs ETs

s00 where €, is the minimum strain rate for which the criterion in Eq. (38) is obeyed. This

s0 function is plotted in Fig. 12(b). It diverges at é7y = 1 (this divergence is not followed
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s1 by the simulation data, because stochastic closing events that generate new bound chain
s02 segments), reaches a minimum, and then monotonically increases towards a plateau value.
03 Physically, this plateau value represents the case where the entire distribution of chains is
s0s stretched to reach the critical stretch value \g. In this case, the concentration of stretched
s0s segments far exceeds the critical concentration, and more energy has been put into the
s06 system then needed. By decreasing the strain rate, an increasing number of stickers are able
s07 t0 open and the stress is relaxed, in turn decreasing the critical specific work to achieve the
s0s critical condition in Eq. (38). This supports our proposition that the stochastic nature of the
s00 binding and unbinding of associations enables to molecularly engineer associating polymers
s10 to undergo flow-induced crystallisation at low energetic costs. In particular, we have shown,
eu using simulations and an approximate theory in Eq. (40) that there is an optimum strain

612 rate at which the critical work for critical stretch is minimised

a3 IV. DISCUSSION AND CONCLUSIONS

s This work has shown that the transient evolution of the chain-stretch distribution of
615 associating ‘sticky’ polymers in shear, and especially extensional, flow possesses an extremely
e16 Tich structure. The theoretical and numerical investigations reported here were driven by
a7 the observation that the silk protein (i) undergoes efficient, chemically tunable, flow-induced
ais crystallisation and (ii) can be modelled as an associating/sticky polymer. Our findings have
s10 implications for the interpretation of silk-spinning data, as well as to the development of
s20 novel associating polymers and the computational modelling tools (we introduced a ‘sticky’
e21 sliplink model, and an analytical two-state master equation which may be transferable to
62 also address the peculiar dynamics of ring polymer in flow?3 ).

e3  Regarding silk rheology, we have theoretically confirmed our hypothesis that the stickers
s2a between chains may reduce the critical specific work to induce flow-induced crystallisation
e2s (FIC) under reasonable assumptions for critical crystallisation criteria. In our approach, we
e2s have adopted the view that FIC may commence when a sufficient concentration of chains is
e2r aligned at the level of the Kuhn segments. However, in contrast to the ensemble-averaged
s2s approach where the Kuhn segmental nematic order parameter is measured as a predictor for

20 FIC, we have assumed that a critical concentration of strongly stretched chain segments in

s30 the tail of the distribution is a sufficient condition for crystallisation. Indeed, by comparing a
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sn1 measure for the stretch fluctuations to the (ensemble-average) nematic order parameter, we
s have found that the stickers hamper initial chain alignment (chain alignment is slowed down
s13 by the need for stickers to dissociate), while segmental stretch is facilated by the closed
s34 stickers. Importantly, our analysis revealed that the incorporation of stickers enables a
s35 significant reduction in the input of specific work needed to achieve large stretch fluctuations,
s3s and consequently, may reduce the energy requirements for FIC.

s Focussing on our finding that chain alignment at low, non-stretching, flow rates requires
s3 less specific work in the absence of stickers (and presumably for low sticker lifetimes) than
630 with stickers, while the stretching of the chains at high rates is helped by long sticker life-
sa0 times, we speculate that control over both the structural aspects of the final material and
sa1 over the specific work needed is possible through time- or position-dependent sticker life-
e22 times. We argue this can be achieved through external chemical control. Indeed, during its
sa3 larval life cycle, the silkworm stably stores its silk solution at a high viscosity, but just prior
sas to silk spinning it lowers the viscosity through an increase of the potassium concentration
ess through a decreasing lifetime of calcium bridges (stickers)®®. This, as we can now interpret
sss as a mechanism to ease chain alignment in flow. Intriguingly, downstream the spinning duct
o7 the acidity increases®*, which we expect to increase the stability and hence the lifetime of
sss the calcium bridges, and hence enhance local chain stretching, see Fig. 1, which may in turn
s disTupts the solvation layer of the protein and induce efficient crystallisation” 31518,

0 While this seems a compelling mechanism for efficient flow-induced crystallisation, it is
es1 not, yet clear how this process may be optimised. The experimental accessibility of these
ss2 and other questions has come in reach owing to recent advances in controlling the content
es3 of metal cations in silk feedstock™. In the case of Bombyz mori silk, we identified a regular
es4 spacing of the negative charges along the backbone of the chain, with strands of approxi-
sss mately 500 uncharged amino acids between; the length of these sticker strands is of the order
es6 of the entanglement molecular weight?. The regularity of the spacing and the coincidental
es7 similarity between the number of stickers and entanglements suggests some degree of evo-
sss lutionary optimisation. The functionality of ordered- versus random co-polymers is of high
sso importance from a synthetic polymer chemistry point of view, and needs to be addressed
s0 Using simulations that include both associations and entanglements.

1 We conclude that our modelling approach leaves us well prepared to investigate the ways

ss2 in which the evolution of silk-producing organisms may have exploited the potential optimal
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ss3 strategies for efficient fibre processing. The next piece of physics to add to this account of
s« the rheology of polymers with temporary assocations, not only for modelling silk proteins
s but also general associating polymers, concerns the interaction between entanglements and
ss6 associations in strong flow. We anticipate that this will further enrich the ongoing debate
e67 in polymer physics on the physics of entanglement generation and destruction (i.e., ‘en-

s6s tanglement stripping’) in non-linear rheo-physics, as well as continue the account of how

sso silk-forming organisms point to novel rheo-physics of flow-induced phase-transformations.

s V. APPENDIX
o1 A.  Algorithm

sz Because of the large distribution of chain stretch in the conditions we are interested in,
o3 there is also a large distribution of opening rates; in our previous work we used small time
e steps in which the chain conformation was updated, and each closed pair had a sufficiently
ers small opening probability. Here, we significantly improve this algorithm by enabling much
o6 larger time steps between conformational updates, and during which the stickers may open
77 and close many times, see Fig. 3.

es  In our algorithm, we update the chain conformation using the Brownian dynamics equa-
s70 tion from the previous section using a time span At. Depending on the opening and closing
ss0 Tates, during this time span, At; = At, the sticker configuration may be updated many times
es1 Or not at all according to a kinetic Monte Carlo (kMC) scheme5%. In every kMC step, the

se2 Tate at which any opening or closing event may occur is calculated as W = W, + Wy, with
Wa - kaNopen(Nopen - 1)/27 (41)

s83 the sum of closing rates and
Nclosed/2

Wd = Z kd,q; (42)
q=1

sss the sum of dissociation rates, where kq 4 differs for the different sticker pairs due to dispersity
es5 in chain tension. In these expressions, Nopen and Ngjosea are the number of open and closed
s stickers, respectively; Nopen(Nopen — 1)/2 is the total number of possible associations, and

se7 the index ¢ sums over all Ngjoseq/2 pairs of closed stickers. Using this sum of rates, the time
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sss Aty at which the first opening or closing event occurs is

Aty = _WLT In(u), (43)

seo with u € (0, 1] a uniform random number (our code uses random numbers using the open-
s00 source SEMT library™). If At, exceeds the time span At;, no opening or closing events
o1 occurs. However, if Aty < At; then a second random number € [0, 1] is drawn, and a
602 closing event is selected with probability k,/Wr, and a dissociation event ¢ is selected with
e03 probability kqo/Wr. After updating the configurations of the stickers, the time span is
soa updated to Aty = Aty + Aty. The kMC scheme is terminated when Aty > Atq, following
sos which the chain conformation is updated.

s While in the linear rheological conditions we solve the dynamics using a fixed time step, in
so7 strong flow we implemented an adaptive time step to handle the large and fast fluctuations
s0s in stretch that emerge in some parameter regimes of the system. In every iteration n, the

s00 time step for the next iteration is updated as

4 . tolerance\ "%’
A" = At" [ min — : (44)

Qi error

700 where an error and tolerance are calculated for the change of each end-to-end vector Q;.
71 We defined the error value for each change in Q; as error = |AQ?|/Qmax, With Qmax set by
702 Amax- FOr the tolerance value we use scalar values tol_ and tol; depending on whether |Q?|
703 is smaller or larger than a certain cutoff set by Acutor < Amax. Above the cutoff, we avoid

70« numerical instabilities due to the singularity at A\, by using

)\ «
ks(A > Acutott) = ks(Acutoft) X (>\ ) . (45)
cutoff

705 For continuity of the derivative, a = 4¢%/(3 — 4c? + ¢*), with ¢ = Acusoft/ Amax; for a cutoff
706 Acutoff = 0.9Amax €ven this smooth potential is steep (o & 8), and in practice we use a softer

707 potential (o = 4).

s B.  Asymptotic limits of the two-state model

The two-state master equation in Eqs. (21-22) has analytical solutions for early times
where advection dominates over the sticker dynamics, and for late times where the sticker

dynamics is fast compared to the rate by which the deep tail of the stretch distribution
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fills up. We obtain these analytical solutions in both cases using the Laplace transform of

Egs. (21-22) in the limit of large stretches A > A\, > 1, which is

oP, -

a—y = _<kopen + 15 + S)PO +kclosep1 + P0<Oa y)/S, (46)
0P1 ~ . —1\ p
8_y = +k0penP0 —(kclose +e+s—1R )P1 + Pl(O, y)/s, (47)

w0 where Pi(s,y) = £ {P)(t,y)} is the Laplace transform of P, for i = 0, 1 (hence, we have used
no the standard Laplace transform of the time derivative £ {0P,/dt} = sP,(s,y) — P,(0,y)). We
1 will obtain the early- and late-stage solutions by using different initial conditions P;(0,y) at
7n2 t = 0 and boundary conditions that we will discuss below.
ns  Focussing first on the early-stage limit, we consider a narrow distribution P(X,0) =
7a 0(1 — \,) of chain segments between closed stickers at time ¢ = 0, with J(.) the Dirac
715 delta distribution. For early times, these segments stretch exponentially with time until the
716 stickers open. To inspect how these segments evolve, we insert the initial conditions into
77 Eq. (46), which gives
dP, , -
a—y()\, s) = —(kopen + € + 5)Po(A,s) + co(1 — A), (48)
ns with Py(), s) the Laplace transform of Py(), s). The solution is of the standard form Py o
70 exp(—s7), which after inverse Laplace transform gives Eq. (39) in the main text.
To solve Eqs. (21-22) in the long-time limit, we make the useful approximation that at an
intermediate time ¢t = ¢, the distribution is at steady state for small stretches A < \,, while

the large-stretch tail of the distribution is unoccupied. Hence, at t = t, the distribution is

given by

d .
Py(0,y) = ;Poq@(—y + ys) (49)

c (¢
720 where y, = In A\, and where © is the Heaviside step function. The prefactor

1 ~1

d = (1 + c—e(1+”)y*> > 1, (51)
14+v

721 normalises the distribution. We now set A\, to a large value, so ¢ ~ ¢, and at late times

2 t > t* the filling of the tail of the distribution (for A > \,) occurs with a negligible effect on

723 the distribution at small stretches.
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of which the solution is of the form

ﬁo(s, A) = CBL(S))\”JF(S) + ca(s))\”*(s) (52)
Pi(s,\) = cf ()N 4 7 (s) A, (53)

with v_(s) and v, (s) the eigenvalues given by

1

ET 91— émp)

((25' + Eopen) (1 — 27R) — Erkctose + S(1 — 267R)

j:\/(s + kopen(]- - éTR))2 + 2éTR(S - (1 - éTR>kopen>kclose + (éTchlose)Q)a
(54)

724 and where the coefficients, ¢, follow from the boundary condition at 3 = v,.

»s At late times, i.e., for small s, we have v_(s) & veq — (s/€)V' + (1/2)(s/€)*V", where Ve,

726 is given by Eq. (25), and where

(-t ! (55)
o0 - 1 — Wi 1 — Wisticky ’

77 and
Wisticky

(1 . Wisticky))g’
28 are both positive, provided that the sticky Weissenberg number is sufficiently small,

7o Wit = Wi/(1 — p) < 1'° where Wi = é7y is the Weissenberg number of the chain

V" = 2pWi (56)

730 without stickers.
From the boundary condition, we find that the coefficients must be of the form ¢ oc 1/s.
As the ‘+ solution leads to a non-normalisable solution, however, ¢ = 0, and the solution
is

c —(s/eW —L(s/e)2" s
PO(S,)\):;(/\/)\*>V_ (s/€) 2(/) +O( 3)’ (57)

5 kclose € )
Pi(s,\) = Py(s, \).
1(87 ) kopen (5 _ 7_1;1) 0(87 ) (58)

Finally, after taking the inverse Laplace transform, we have

Po(t, ) = ¢ ( A*A(()))Veq O nA/A. — &) (59)

kclose €

Fopen (¢ — 75 ")

Pi(t,\) = Py(t, ). (60)
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721 Hence, the exponentially extending front of the distribution is located at the stretch ratio

1

A(t) = A (0) exp [(1 - _1wi + - V\lf.sticky> : et — t*)] : (61)

72 We have checked the validity of our interpretation of a narrow moving-front by also
73 calculating the width of this front. To do this, we consider the relaxation function f(t) =
13 P(y,t)/Peq(y) with again y = In A, and P and P, the transient and steady-state stretch
735 distributions, respectively. A narrow front that reaches y at time 7 and reaches a steady

736 state at time 7 + A may be approximated by

0, for t<r
fO)=Q@t—7)/A, for 7<t<t+A (62)

1, for, t>7+A.

737 The Laplace transform of this function is

C{f) = 82%6_57 (1 e (63)

73 We compare this result to the solution of the two-state model in Eq. (54) through a second-

730 order Taylor expansion of the exponential terms

1 1 1 1
E{f}:g<1—(T+§A)s+§(72+§A2+A7)32). (64)
(' /3)Iny (v /62) Iny

720 From the linear term, we find 7 + A/2 = (V//¢)Iny (as expected from Eq. (29)). After
71 substitution into the second term and elimination of this variable, we find the width of the

2 front to be

A =V12y/(v"/é)Iny — (V' /€)2 Iny. (65)

743 The relative width, compared to the location of the front (7 + A/2), is

A !
V4TI (66)

B = 7R VI o

s The relative width calculated in the time-domain also represents the relative width of the

s (logarithmic) stretch distribution:

y(r +4) —y(7)

N =
: y(r+A/2)

(67)
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us Upon approaching the strain rate where the mean stretch diverges, i.e., at Wi = 1,

7 the relative width of the front diverges as A, =~ \/ 24pWiWisticky /(1 — WiStiCky). In this

s equation, the bare Weissenberg number is Wi = Wit® (1 — p)rg /7. Hence, if the sticker
70 lifetime is 7, = 107g and the fraction of closed stickers is p = 0.9 (as in our simulations),
70 then significant broadening of the front only happens very close to the stretch transition:

s Wit > 0.99. This verifies that our approximation of a narrow front is indeed accurate.

2 C.  Power-law regression

3 To determine the sticky Rouse diffusivity, Dsgr, from the mean-square displacement of
74 the centre of mass

InMSD = In(6Dsg) + Int (68)

75 as a function of time ¢, and the stretch exponent, v, from the probability distribution
InP=c+vinA (69)
756 as a function of the stretch ratio, A\, we write both equations in the form
y=a-+bx (70)

757 and perform common linear regression. However, because both power-laws represent asymp-
s totic behaviour for large x, there is also a cutoff value, zcyo, above which they apply. We
750 determine the cutoff by minimising

! S =yl (e, )

: ) )
Ndata+1_Z0_Npar g;

=10 ¢

XQ(a'7 ba ZO) = (71)

760 with respect to a, b and ig (note that x;, = Teutor); 0 18 the uncertainty on the simulated y
761 data. Here, we set b = 1 fixed and the number of free parameters Ny, = 1 for extracting the
762 sticky Rouse diffusivity from the MSD data. To determine the stretch exponent (v) from
763 the stretch distributions we use the same approach, but leave b as a free fitting parameter

764 and set Np,, = 2.
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