
This is a repository copy of Feature Extraction to Filter Out Low-Quality Answers from
Social Question Answering Sites.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/185045/

Version: Accepted Version

Article:

Roy, Pradeep Kumar, Ahmad, Zishan, Singh, Jyoti Prakash et al. (1 more author) (2023)
Feature Extraction to Filter Out Low-Quality Answers from Social Question Answering
Sites. IETE Journal of Research. pp. 7933-7944. ISSN 0377-2063

https://doi.org/10.1080/03772063.2022.2048715

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Feature Extraction to Filter Out Low-Quality

Answers from Social Question Answering Sites

ABSTRACT

Social Question Answering sites (SQAs) are online platforms that allow Internet users to ask questions, and obtain answers

from others in the community. SQAs have been marred by the problem of low-quality answers. Worryingly, answer quality on

SQAs have been reported to be following a downward trajectory in recent years. To this end, existing research has

predominantly focused on finding the best answer, or identifying high-quality answers among the available responses.

However, such scholarly efforts have not reduced the volume of low-quality answers on SQAs. Therefore, the goal of this

research is to extract features in order to weed out low-quality answers as soon as they are posted on SQAs. Data from Stack

Exchange was used to carry out the investigation. Informed by the literature, 26 features were extracted. Thereafter, machine

learning algorithms were implemented that could correctly identify 85% to 96% of low-quality answers. The key contribution

of this research is the development of a system to detect subpar answers on the fly at the time of posting. It is intended to be

used as an early warning system that warns users about answer quality at the point of posting.

1. INTRODUCTION
Social Question Answering sites (SQAs) refer to online platforms that allow Internet users to ask questions on

any topic, and obtain answers from others in the community [1–3]. These platforms leverage the wisdom of

crowds [4], and facilitate prompt information seeking among the masses [5–9]. Examples of popular SQAs

include Yahoo! Answers and Stack Exchange, which archive the questions asked and the answers submitted in

response. These archives remain available for browsing among anyone with Internet access.

Despite their obvious advantages, SQAs are marred by the perennial problem of low-quality answers [10]. Existing research

suggests that the problem primarily stems from the lack of adequate gate-keeping [11]. While some users post high quality

answers out of altruism [12] and the motivation to gain recognition in the community [13,14], others could end up posting

subpar answers due to either lack of domain knowledge or the deliberate motivation to abuse the functionality of SQAs

[15,16]. Given the little editorial control, separating high quality answers from those that are subpar is challenging.

More worryingly, answer quality on SQAs have been reported to be following a downward trajectory in recent years [10].

For example, the proportion of low-quality content on Stack Overflow has grown from 4% in 2011 to 16% in 2014 [10].
More recently, [17] revealed that Chinese SQAs such as Baidu Zhidao also attract large volumes of low-quality answers.

Hence, the problem of low-quality answers on SQAs now warrants scholarly attention. The current mechanism that

SQAs employ for answers’ quality control requires human intervention. For any submitted question, the asker has the
option to select an answer as the best answer [18]. Up-votes and down-votes from the online community is also

considered. For example, on SQAs such as Stack Exchange, answers that are down-voted by many can be identified

for deletion by reputed users. The deletion requests are then manually inspected by the site moderators.

This quality control mechanism is problematic for two reasons. One, it is not only slow but also inefficient, especially

given the huge volume of answers posted on SQAs on a daily basis [13,17]. Two, this mechanism can be annoying to

users who find their answers deleted suddenly from the SQA without any warnings. Most prior works in this field have

focused on finding the best answer, or identifying high-quality answers among the available responses [19–22]. While

such efforts are valuable, they have not helped to reduce the volume of low-quality answers on SQAs.

For these reasons, the goal of this research is to weed out low-quality answers as soon as they are posted on SQAs.

Feature engineering is used to achieve this. The key contribution of this research is the development of a system to

detect subpar answers on the fly at the time of posting. It is intended to be used as an early warning system that

warns users about answer quality at the point of posting. This in turn offers them the opportunity to improve their

answers before posting. In this way, the system supports users to post good answers, and prevents attempts to abuse

SQAs. It also obviates the need for human intervention on the part of SQA moderators. The system can not only

improve the quality of the SQA content proactively but also be used by the site moderators to assess the content

quality of the site from time to time. The major contributions are as follows:

1 We proposed a machine learning based automated system to filter out low-quality answers.

2 A limited number of textual and non-textual features are used to build the model ,
and this in turn reduces the overall model complexity.

3 The data imbalance issues were addressed with SMOTE and ADASYN oversampling techniques. The

outcomes on the balanced dataset were found better than that on the imbalanced dataset.

The rest of the paper is organised as follows. In Section 2, the literature review is presented. Section 3

describes the methodology. This is followed by the results in Section 4. In Section 5, the implications

of the proposed work are discussed. Section 6 concludes the article with notes on its limitations.

2. LITERATURE REVIEW

The quality of answers on SQAs can range from excellent to abysmal [15,16,23–25]. A dominant strand of

SQA research focuses on answer quality. For example, John et al. [26] proposed a model identifying factors

that improve answer quality. Three groups of features were considered, namely, textual, social and content

appraisal. Content appraisal features were found to play a major role in predicting high-quality answers.

Lee et al. [27] assigned a score to each voter to capture the level of agreement among those who up-voted or down-voted

answers. This voting score was used as a feature to predict the best answer. These works typically use machine learning-

based classifiers. For example, in a study on Yahoo! Answers [28], features were extracted
frim questions, answers and users. With a dataset of questions having at least five answers, a
classification accuracy of nearly 80% was achieved in predicting the best answers.

Sahu et al. [29] identified a set of tag-based features to find the best answer. Their model achieved an accuracy

of 69%. Tian et al. [21] found that answers posted earlier have a higher chance of being accepted as the best

answer. They extracted 16 different features to find the best answer among the pool of answers and the result

confirmed that contextual features played a major role. Their model achieved an accuracy of 72.27%. Yao et al.

[22] proposed a system that detected high-quality answers to a posted question using users’ voting behaviours.

Blooma et al. [30] used both social and textual features to predict high quality answers, and achieved an accuracy of

85%. In a similar study, the number of votes obtained by anthe answer was found to be a helpful feature to identify

high-quality answers [31]. Blooma et al. [19] proposed a model to find the best answer to a given question. They

extracted a number of textual and non-textual features and showed that non-textual features such as answerer/asker

answerer/asker authority (defined as the number of best answers provided by the user) and user reputation were not

relevant. Textual features including spelling errors and answer length also had little to do with the prediction of best

answer. However, answer readability was a significant predictor of high-quality answers [32].

However, most of the features mentioned in these works such as [30] and [31] were evaluated manually. This does

not help design an automated system to address the problem of low-quality answers, which remains a pressing

problem. For instance, Srba & Bielikova [10] analyzed the content quality of Stack Overflow covering 2011–2014 and

found a gradual decline. A possible reason for this decline is the presence of users known as “ nNoobs” and “ hHelp

vampires” who are continuously posting low quality and duplicate questions on the website [33]. They also identified

another group of users named “ rReputation cCollectors” who produce answers to those low-quality questions.

Kucuktunc et al. [34] proposed a model for sentiment analysis on Yahoo! Answers. They found the answers posted on

weekends have more positive sentiments as compared with those submitted onto weekdays. Li et al. [35] proposed a multi-

criteria decision-making system to evaluate answer quality. They verified the model with data from five Chinese SQAs.

Factors such as coverage, politeness, and readability were key determinants of high-quality answers. Elalfy et al. [36]

proposed a hybrid model for best answer prediction on Stack Overflow. Their model used question-answer features, answer

content features, and answer-answer features to predict the best answer and achieved a promising accuracy of 88.65%.

Zhang et al. [37] developed a model for developing high-quality answers. With the help of 382 contributors, a survey

report was created for identifying key factors that make high-quality answers. Some of the factors that emerged

include social interaction, community knowledge quality, topic richness, and personalised recommendations.

Palomera et al. [38] used a semi-supervised learning mechanism [39] to get informative content from SQAs, and

achieved accuracies of 84.25% and 74.41% with regards to questions and answers respectively. Fu et al. [40] did a

quality assessment of SQAs with 23 user-identified features and 24 data-centric features. Their analysis confirmed

that the importance of content-based , user-based, and review-based features in predicting the quality of SQA posts,

users and review features played key roles in the decision-making system for the quality of the CQA post.

Tang et al. [41] predicted the response time for the posted query on the CQA platform with the help of the answer’s
interest, activeness on the platform, category of the questions and difficulty level of the question. Chergui et al. [42]

developed a model to get the best suitable answer from the archive using similarity matching between a new

question and the old questionsfor the new post. They used semantic inference with Bayesian inference to handle the

semantic uncertainty. Their model highly correlated with human judgment. This motivated us to find an automated

mechanism to further improve the quality of answers on SQAs. The idea is to come up with an early warning system

that will prompt answerers to improve their answer on the fly if their entry is subpar.

3. RESEARCH METHODOLOGY
This research aims to weed out low-quality answers from SQAs. This is done based on answers’ textual content
[6,19,20,24,26,27,29,32] and votes [27,29,31,32,43] as these have been widely used in the SQA literature on answer quality.

The dataset of Stack Exchange, a popular SQA, containing questions and answers posted from August 2008 to December

2016 was used for this work. It contains several XML files related to different attributes of the post (questions and answers)1.

The dataset for this research is prepared using the information extracted from four files namely:
Post.XML, Users.XML, PostHistory.XML, and Votes.XML. The steps followed are shown in Figure 1.

Figure 1: Flow diagram to weed out low-quality answers from SQAs [Q14]

3.1. Combined Dataset and Preprocessing

The dataset included Stack Exchange content on a variety of topics. This research analyzes answers corresponding to the

top 20 topics in terms of the number of available data points. A classifier was trained for each topic. The variety of topics

ensured the robustness of our classifier. The list of selected topics with their data dimensions is shown in Table 1.

Table 1: The datasets used for this research with their statistics

Sl Dataset name Total Answers High-quality answer Low quality answer % low-quality answer

1 Astronomy 4,526 3,900 626 13.83

2 Biology 13,832 12,387 1,445 10.44

3 Board Games 12,960 11,283 1,677 12.94

4 Buddhism 7,767 6,365 1,402 18.05

5 Chemistry 15,985 14,098 1,887 11.80

6 Chess 5,946 4,989 957 16.09

7 Chinese 8,407 6,693 1,714 20.39

8 Christianity 19,175 14,868 4,307 22.46

9 Economics 3,435 2,874 561 16.33

10 Engineering 2,797 2,421 376 13.44

11 Fitness 12,087 9,597 2,490 20.60

12 German 14,983 13,107 1,876 12.52

13 Health 1,271 1,114 157 12.35

14 History 9,900 8,634 1,266 12.79

15 Islam 8,577 5,652 2,925 34.10

16 Judaism 30,012 26,023 3,989 13.29

17 Linguistic 6,192 5,110 1,082 17.47

18 Mechanics 12,688 10,615 2,073 16.34

19 Philosophy 14,622 10,868 3,754 25.67

20 Programmer 75,838 62,219 13,620 17.96

We filtered the desired fields and saved them in “CSV” files. The complete list of files with their attributes used is shown in
Figure 1. The combined dataset was filtered first, and then it was labelled into two classes, answers with low quality (Class 0)

and answers with high quality (Class 1). Answer quality was determined based on users’ votes. We consider the answers that
fail to obtain votes or obtain negative votes within an average time to get the votes to be of low quality.

NThe newly posted answers or answers which didwere not meet the require ment of attracting d time to get

the user's votes are not considered for this study. However, as a question becomes old, it might not attract a lot

of viewers. Hence answers posted after a certain amount of time may not receive votes despite being of good

quality. Keeping such answers in the training data of the classifier may lead to misclassification. We therefore

use d voting history data to identify such answers. Votes are considered to be a measure of interest in users. It

is assumed that users are interested in the question as long as questions and their answers obtain votes. When

the users stop voting the question or its answers, it indicates that the interest in the question has dropped.

Answers posted after this drop in interest may not receive votes even if they are of high quality.

We check ed the voting history of all answers, and the answers posted after the last vote weare

removed from the dataset. ThereafterAfter removing such answers from the dataset, the answer s

that did not doesn't receive any votes (or receive d net negative votes) wereis classified as a low-

quality answer s (Class 0). The remaining answers weare considered high-quality answers (Class 1).

3.2. Feature Extraction
We extracted a set of textual features that ranged from nouns, verbs and adjectives to readability and wrong (non-

dictionary) words .such as “Noun, Adjective, Verbs, Readability, Wrong words, etc.”, Derived features such as “N

number of answers and, A answer-answer similarity as well as , etc.”, and P personal features such as “overall

reputation, reputation on the same domain, and reputation on a different domain were also extracted., etc.” . The

complete list of features is shown in Table 2 . These were are used to train the machine learning algorithms. After

extracting features from the dataset, we appl iedy machine learning algorithms on the feature vector. In particular,

We applied three classification algorithms were employed: (i) Naive Bayes [44] (ii) Gradient Boosting [45], and (iii)

Random Forest [46]. The detailed results based on these classification techniques are explained in section 4.

 Table 2: List of selected features

 Name of the
Feature feature
Types (Represented as) Explanation

 Number of Nouns
Total number of nouns is counted

(Noun)

 Number of Verbs
Total number of Verb is counted

(Verbs)

 Number of
 Adjective Total number of Adjective is counted

 (Adjective)

 The average entropy of each word in the answer text, indicating the amount of

Entropy (Entropy)
information being produced in the answer is calculated. The formula for entropy is

 given as follow H(X|Y) = ∑p(xi, yj)log p(xi) where p(xi, yj) is the probability of occurrence of a
 i,j p(xi,yj)

 word in the answer text

Textual

 Number of Difficult
 If a word is not present in the a predefined 3 , 000 familiar English word’s dictionary, it

word (Difficult

 is termed as a difficult word. All such words are counted.

word)

 Lex diversity (Lex It is defined as the ratio of total unique words to the total number of words present in

 diversity) the answer.

 Number of single
 letter word Total number of one letter word is counted

 (One_letter)

 Number of words
 having only two Total number of two letter word is counted.

 letters

 Total number of

 two letter word is

 counted

For each answer, Flesch reading ease score is calculated. It is a

Flesh reading ease

 popular measure of

popular reading ease determiner . It gives a score between 0–100, where 0 indicate s d

 score (Flesh_RE)

the poor readability.

 Dale-Chale score By using a set of 3,000 words that American fourth-grade students are familiar with, the

 (Dale_RS) Dale Chale score is calculated for every answer.

 Total number of
After removing the stop words, total number of words is calculated.

words (total_words)

 Set length
The number of unique words present in the answer is termed as set length.

(Set_length)

(Two

 Number of Stop

Total number of stop words is counted. letter)

 words (Stop_words)

 Number of Wrong
 W The w ords that are is not present in E e nchant dictionary is treated as wrong words

word

 and it is counted for every answer.

(Wrong_words)

 Number of Points The number of li tags is counted to count the number of bullet point present in the

 (li_tags) answer.

 Number of Code
The number of code tag is counted to check the number of code snippet present in the

Snippet

 answer.
(Code_tags)

 Number of words

 having more than
Total number of longer letter word is counted two letters

 (Longer_letter_word)

 Number of

 Modifications done
The number of times the answer has been modified is counted on answers

 (Modified)

 Number of answers
 posted over a Total number of answers present on the given question is counted

 question (N_Ans)

Derived Similarity between The average cosine similarity of the answer with the top 3 answers of the question is
new and earlier ∑

i
n

=1 Ai
B

i

calculated using: Similarity =

where Ai and Bi are vectors of answer, n is the

posted top scorer
−−−−−−−− −−−−−−−−

 n2 n2
 √∑i=1 Ai √∑i=1 Bi

 answers (A_A_Sim) number of unique words used in A and B.

 Question-answers
The average cosine similarity of the question with the answer is calculated.

similarity (Q_A_sim)

 The similarity between the topic of the question and the topics of previous answers
 Answerer’s domain given by the answerer is calculated. To obtain the topic of the question, we apply
 and question topic Latent Dirichlet Allocation (LDA) on the question and by setting the number of topics
 similarity as one and the number of words as seven. We append all answers of the answerer and
 (TopicSimilarity) apply LDA to it. After obtaining the topic words of question and answer, we apply

 cosine similarity on them.

 Answerer’s

 reputation on same
Is it calculated using the formula: TopicSimilarity ∗ R where R is the user’s reputation. domain

 (TopicRepSD)

 Answerer’s

 reputation on
It is calculated a (1 − TopicSimilarity)∗R different domain

Personal
(TopicRepDD)

Number of

 accepted answers

 on different
Total number of answers accepted on different domain is counted. domain of the

 answerer

 (AcceptedAnsDD)

 User reputation
The reputation of the answerer is treated as one of the features.

(User_Rep)

3.3. Data Imbalance
For all topics in the dataset, the number of instances in Class 0 wais less than Class 1, as shown in Table 1. We applied three

techniques to resolve the issue of data imbalance. They are (i) Random Under-Sampling[46], (ii) SMOTE (Synthetic Minority

Oversampling) [47], and (iii) ADASYN (Adaptive Synthetic Sampling)[48]. In Random Under-Sampling, we randomly removed

samples from the majority class until the majority class and minority class samples became equal in number. SMOTE is an

oversampling technique where synthetic samples are generated for each minority class sample between the selected sample

and its nearest neighbour. In ADASYN, synthetic samples are generated between the selected sample and its nearest

neighbour, but a density distribution function gives the number of samples generated for each minority class sample. This

density distribution function gives more weight to the samples near the majority and minority class boundaries.

The three machine learning-based classifiers were then used to achieve our objective. The complete

results obtained using the different classifiers are presented and discusses nextin the result section 4.

4. RESULT ANALYSIS

We use precision (PRE), recall (REC) and F1-Score as performance measurement parameters for our system [49].

4.1. Results with Imbalance Dataset 1

Datasets across 20 different topics of Stack Exchange were collected and labelled as low- and high-quality answers

by the techniques presented in section 3.1. Further, we divided the dataset into train and test set s in the ratio of

70:30. Firstly, we present the result s of the “Programmer” dataset (Table 3, Table 4, and Table 5) and then with the

best-identified model, datasets with the other topics are evaluated (Table 6, Table 7, and Table 8) . The detailed

results of all datasets are presented later in Table 9. The system was trained and tested with three classification

algorithms, namely (i) Naïve Bayes (NB) [44], (ii) Gradient Boosting (GB) [45], and (iii) Random Forest (RF) [46]. The

detailed result of the Naive Bayes classifier is presented in Table 3 for the “Programmer” topic dataset.

Table 3: Results on the “Programmer” dataset with NB Classifier

Class PRE REC F1

low quality

 0.21 0.84 0.33 (0)

high quality

 0.90 0.30 0.45 (1)

As can be seen from Table 3, PRE for Class 1 is good (0.90), but for Class 0 is poor (0.21) . REC for Class 1 is low

(0.30) compared to Class 0 (0.84). And the F1 both classes (0.33 for Class 0 and 0.45 for Class 1) are not

satisfactory. Similar results are obtained with the Gradient Boosting classifier too, as seen from Table 4; the

Gradient Boosting classifier is performed slightly better than the Naive Bayes classifier. REC of Class 0 (our

target class) continues to be abysmal (0.08). 2

Table 4: Results on the “Programmer” dataset with GB Classifier

Class

PRE

REC

F1

low quality (0)

0.67 0.08 0.14

high quality (1)

0.83 0.99 0.90

Table 5: Results on the “Programmer” dataset with RF Classifier

Class

PRE

REC

F1

low quality (0)

0.67

0.11

0.19

high quality (1)

0.84

0.99

0.91

With the Random Forest classifier, the performance of the model for Class 0 improved, but still remained far from

satisfactory , as evident from Table 5. Even the Receiver Operating Characteristics (ROC) curve for the Random Forest

classifier, shown in Figure 2 , was very low. The confusion matrix (Figure 3) confirmed that 100 high-quality answers and

1,601 low-quality answers were misclassified. The test sample consist eds of 8,282 high quality and 1,800 low-quality

answers, indicating that the dataset was imbalanced. The imbalanced nature of the dataset made the classifier very good at

detecting high-quality answers compared to low-quality answers. This class imbalance problem is consistent across all the

20 topics of the dataset, as shown in Table 1. Across all topics, total high-quality answers were 232,817 while total low-

quality answers were 48,184, with 17.14% of answers are low quality.

Figure 2: ROC curve with RF classifier for “Programmer” dataset

Figure 3: Confusion Matrix after applying RF Classifier on “Programmer” dataset

4.2. Results with Balanced Dataset
The earlier three classification algorithms were applied again on the dataset balanced using techniques described in

the methodology section. The classification results on the dataset balanced using Random-Under sampling are

reported in Table 6. The Random Forest classifier is found to outperform the other two classification techniques. The

classification results with dataset balanced using SMOTE and ADASYN are shown in Tables7 and 8, respectively. As can

be seen from Tables 6, 7 and 8, the result of Random Forest with data balanced with ADASYN turned out to be the

best so far. The proposed system achieved PRE, REC and F1 value as 0.93, 0.85, and 0.89, respectively, for the

“Programmer” topic as shown in Table 8, and the ROC value was 0.89 as shown in Figure 4.

Figure 4: ROC curve on RF with ADASYN on “Programmer” Topic

Table 6: Results on balanced (with Random Under-sampling) “Programmer” dataset with different classifiers

Classifier Class PRE REC F1

Random Forest 0 0.77 0.76 0.77

 1 0.74 0.75 0.74

Gradient Boosting 0 0.65 0.42 0.51

 1 0.75 0.89 0.81

Naive Bayes 0 0.37 0.85 0.52

 1 0.80 0.29 0.42

Table 7: Results on balanced (with SMOTE) “Programmer” dataset with different classifiers

 Class PRE REC F1

Random Forest
0 0.91 0.74 0.81

1 0.78 0.93 0.85

Gradient Boosting
0 0.81 0.81 0.81

1 0.81 0.80 0.81

Naive Bayes
0 0.55 0.89 0.68

1 0.71 0.26 0.39

Table 8: Results on balanced (with ADASYN) “Programmer” dataset with different classifiers

Classifier Class PRE REC F1

Random Forest
0 0.93 0.85 0.89

1 0.85 0.93 0.89

Gradient Boosting
0 0.69 0.77 0.73

1 0.74 0.65 0.69

 0 0.54 0.88 0.67
Naive Bayes

1 0.66 0.23 0.35

We repeated the experiment with the remaining 19 other datasets and sound similar results. To avoid repetition of

the result, we have further reported only the results of the Random Forest classifier with different datasets. As shown

in Table 9, the lowest ROC value is 0.86 whereas the best ROC value is 0.94. In general, with Science and Engineering

topics, the results are better compared to "Linguistic ", "Fitness ", and "History ". The AUC-ROC curve for the

remaining topics wais also evaluated but are not included for brevity. Nonetheless, the obtained AUC value s for of all

the topics are shown in Table 9.

Table 9: Model performance on different topics of Stack Exchange

Topic Class PRE REC F1 AUC

Linguistics
0 0.91 0.86 0.89

1 0.88 0.92 0.90 0.90

Philosophy
0 0.89 0.81 0.85

1 0.83 0.90 0.86 0.86

Economics
0 0.93 0.89 0.91

1 0.90 0.94 0.92 0.92

Engineering
0 0.93 0.91 0.92

1 0.92 0.93 0.93 0.93

Mechanics
0 0.93 0.91 0.92

1 0.91 0.93 0.92 0.92

Board Games
0 0.95 0.92 0.93

1 0.92 0.95 0.93 0.94

Chess
0 0.93 0.89 0.91

1 0.90 0.93 0.92 0.92

Fitness
0 0.90 0.84 0.87

1 0.87 0.92 0.89 0.89

Health
0 0.90 0.86 0.88

1 0.87 0.91 0.89 0.90

History
0 0.94 0.93 0.94

1 0.93 0.94 0.94 0.93

Chinese
0 0.90 0.83 0.86

1 0.85 0.91 0.88 0.87

 0 0.96 0.91 0.93

German

1 0.91 0.96 0.97 0.93

 0 0.89 0.87 0.88
Buddhism

1 0.87 0.90 0.88 0.89

 0 0.90 0.89 0.89
Christianity

1 0.89 0.90 0.91 0.89

 0 0.93 0.91 0.92
Islam

1 0.91 0.93 0.92 0.87

 0 0.96 0.89 0.92
Judaism

1 0.90 0.96 0.93 0.92

 0 1 0.93 0.91 0.92
Astronomy

0.91 0.93 0.92 0.91

 0 0.96 0.92 0.94
Biology

1 0.92 0.96 0.94 0.94

 0 0.95 0.92 0.94
Chemistry

1 0.93 0.95 0.94 0.94

4.3. Feature Importance
We have used a total of 26 different features to achieve our objective. To achieve our objective of “detecting low-

quality answers” on Stack Exchange, we have extracted several textual and non-textual features from the dataset. We

checked the importance of these features on different topics of Stack Exchange. It might be possible that some

features have more impact than others for specific topics. 3

The feature importance graph on the “Programmer” topic is shown in Figure 5. On the “Programmer” topic, the features

answer-answer similarity (A_A_Sim) was the most important. In contrast, the readability-based features such as Dale Chale

score (Dale RS), Flesh reading ease (Flesh RE), and User reputation (User Rep) are less influential. On the "Linguistic" topic,

except answer-answer similarity (A_A_Sim), Flesh reading ease (Flesh RE), and Difficult words weare found to be the most

effective features as shown in Figure 6. Since answers posted on the "Llinguistic " topic are expected to be more readable

and linguistically correct without any special characters or formulas (which are likely to appear in the "Programmer" topic

dataset), all other features have average contributions over the different topics. Overall, T this analysis confirmed that all 26

features contributed to classification performance over the different topics.

Figure 5: Feature importance graph on the “Programmer” topic

Figure 6: Feature importance graph on the “Linguistic” topic

5. DISCUSSION
In this article, we proposed an early warning system for filtering out low-quality answers f rom SQAsor SQA

sites. The system wais trained to detect low-quality answers using a Random Forest classifier. The PRE value

(meaning what fraction of system detected low-quality answers weare really low quality) ranged from, is in the

range of 85% to 96%. So, our system can correctly identify 85% to 96% of low-quality answers. The proposed

system can also find 81% to 96% of low-quality answers from posted answers as indicated by the REC column

of Table 9. The system wais trained and tested across 20 different topics belonging to linguistic, Chinese,

fitness, engineering, etc. The results are largely consistent across the different se varying topics, highlighting the

generalizability of indicating that our system is general enough to be applied to any topic.
The system's performance wais better for Science and Engineering topics such as Engineering, Science, "Programmer

" compared to the likes of "Chinese ", "Linguistic ", and "Fitness ", etc. FThe features such as code snippets (code

tags) and bullet points (li tags) play ed a crucial role in segregating low- and high-quality answers in these

topicssubject categories. SuchThe above features weare mostly present in Science and Engineerinf topics “Science”
topics, but not in topics such as "Linguistic" and "Chinese"linguistic topics such as Chinese, language, etc.

In the present research, we have also raised the issue of data imbalance and adopted appropriate techniques to resolve

itthat. Our system has reported better results compared to similar work [50]. The average PRE of low-quality question

detection obtained by [50] was 0.68 whereas, it is on average around 0.90 in our case. The proposed system uses primarily

textual features of answers, with 20 out of 26 features being textual. Textual features make this system easily adaptable to

other SQA sites such as Quora and Yahoo! Answers., YA, etc.

5.1. Theoretical Contributions
The main contribution of this research is the extraction of effective features to weed out low-quality answers from SQAs,

particularly Stack Exchange. Twenty-six features were extracted from the answer text as well as from user reputation and

post history. Twenty out of those 26 features were extracted from the answer text only. The other six features were extracted

from the user’s reputation and answering behaviour. In an earlier research, Toba et al. [21] used 40 different features on the

YA dataset to report PRE and REC of 0.58 and 0.69, respectively. We experimentally reduced the number of features from 40

to 26 to improve the performance of our system. All features used in our system can be extracted in an automated manner,

which gives an edge over the system proposed by Blooma et al., 2012 [30] where they used manually - tagged features. The

proposed model is therefore easily implementable on other SQAs as the features can be easily computed regardless of the

platform. Our analysis of over 20 different topics reveals that, on average, 17.14% of answers are of low quality, which is in

line with prior research [10].

5.2. Implications for Practice

The proposed system can be best put to use as an early warning system for answers posted on SQA sites. SQA users can be

warned about their answer being low in quality as soon as they finish typing the answer. The users will also get some

suggestions regarding their answers, such as (i) the formatting of the answer, (ii) the readability score of the answer text, (iii)

using bullets to improve the clarity of the answer. This urge to improve the quality of the answer will make the user more

engaged with the SQA site. When put in practice, this system will flag low-quality answers being posted on the site.

However, the system will not disturb the user if their answer does not belong to the low-quality class.

There are users called “R reputation cCollectors” [13] on Stack Exchange who posting a huge number of low-

quality answers to gain reputation points [10]. Our early warning system can warn themsuch ‘Reputation
Collectors about the subpar quality of their answer s while posting. These ‘R reputation cCollectors can then

modify their answers to meet the desired quality standard because doing so will also increase their chances of

obtaining votes. Since ‘Reputation C they usuallyollectors post a huge volume of answers, this strategy can

potentially turn r“Reputation cCollectors” from athe weakness of SQAs to a strength.

From the site moderators' point of view, the current system can be used as a tool to detect low-quality answers

from time to time. This system can also be used to find users who continuously post low-quality answers so

that action can be taken against them. The proposed system could be adapted to flag sends a notification to

the site’s moderators when if a user goes ahead with posting low-quality answers posts the same answer even

after being warned. This makes the job of site moderators a’ bit easier because they will be having the list of

low-quality answers (along with the corresponding answerers) as soon as they are posted.

6. CONCLUSION
The current research highlights the issue of low-quality content on SQA sites such as Stack Exchange and presents a

machine learning based solution for that. We have also raised the issue of data imbalance prevailing in SQA sites.

Various data balancing techniques were used to balance our dataset. The ADASYN data balancing technique was

found to be the best. Twenty-six features were extracted to train our classifier. The system showed good results

across a variety of topics on Stack Exchange, highlighting its generalizability. Though our proposed system

can be used to detect low-quality answers, it is unable to exactly specify what factors make

the quality of the answer low.

Future work can be focused on building a dynamic suggestion system that can find the weaknesses in an answer and

pinpoint the user about their mistakes. This will warn users that their answer is of low quality and inform them what is

making their answer subpar. The other limitation of the proposed system is that it was tested with different topical data

from Stack Exchange only. There are other SQAs with distinctive functionalities that have not been explored. Moreover, the

current system uses only syntactic textual features. The use of semantic textual features along with some expert answers as

a baseline may be explored to improve it further. Some deep learning-based systems with advanced word representation

schemes such as Word2Vec and, Glove may also be exploited. By utilising a combination of

rule-based techniques, statistical approaches, and error analysis approaches, an advanced model can

hopefully be developed in the future to better weed out the low-quality answers from SQA s.

Note

1 https://archive.org/details/stackexchae[accessed online in January, 2017.

References

1 G. Blanco, R. Prez-Lpez, F. Fdez-Riverola, and A. M. G. Loureno, “Understanding the social
evolution of the java community in stack overflow: A 10-year study of developer interactions,”
Future Gener. Comput. Syst., Vol. 105, pp. 446–454, 2020. doi:10.1016/j.future.2019.12.021

2 J. Herrera, D. Parra, and B. Poblete, “Social QA in non-CQA platforms,” Future Gener.
Comput. Syst., Vol. 105, pp. 631–649, 2020. doi:10.1016/j.future.2019.12.023

3 J. Yin, W. X. Zhao, and X. M. Li, “Type-aware question answering over knowledge base with attention-based tree-

structured neural networks,” J. Comput. Sci. Technol., Vol. 32, pp. 805–813, 2017. doi:10.1007/s11390-017-1761-8

4 J. Surowiecki, M. P. Silverman, et al., “The wisdom of crowds,” Am. J. Phys.,
Vol. 75, pp. 190–192, 2007. doi:10.1119/1.2423042

5 A. Y. Chua, and S. Banerjee, “So fast so good: An analysis of answer quality and answer speed in community
question-answering sites,” J. Am. Soc. Inf. Sci. Technol., Vol. 64, pp. 2058–2068, 2013. doi:10.1002/asi.22902

6 A. Y. Chua, and S. Banerjee, “Measuring the effectiveness of answers in yahoo!
answers,” Online Inf. Rev., Vol. 39, pp. 104–118, 2015. doi:10.1108/OIR-10-2014-0232

7 V. Kitzie, and C. Shah, “Faster, better, or both? looking at both sides of online question-answering coin,” Proceedings of

the American Society for Information Science and Technology, Vol. 48, pp. 1–4, 2011. doi:10.1002/meet.2011.14504801180

8 L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann, “Design lessons from the fastest Q&A site in the

west,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2011, pp. 2857–2866. ACM

9 T.-L. Wong, “Answering reachability queries on incrementally updated graphs by hierarchical
labeling schema,” J. Comput. Sci. Technol., Vol. 31, pp. 381–399, 2016. doi:10.1007/s11390-016-1633-7

10 I. Srba, and M. Bielikova, “Why is stack overflow failing? preserving sustainability in
community question answering,” IEEE Softw., Vol. 33, pp. 80–89, 2016b. doi:10.1109/MS.2016.34

11 Y. Zhang, D. Lo, X. Xia, and J.-L. Sun, “Multi-factor duplicate question detection in stack

overflow,” J. Comput. Sci. Technol., Vol. 30, pp. 981–997, 2015. doi:10.1007/s11390-015-1576-4

12 B. Yang, and S. Manandhar, “Tag-based expert recommendation in community question answering,” in Advances in

Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference on, 2014, pp. 960–963. IEEE.

13 P. K. Roy, J. P. Singh, A. M. Baabdullah, H. Kizgin, and N. P. Rana, “Identifying reputation
collectors in community question answering (CQA) sites: exploring the dark side of social media,”
Int. J. Inf. Manage., Vol. 42, pp. 25–35, 2018b. doi:10.1016/j.ijinfomgt.2018.05.003

14 X. Wang, C. Huang, L. Yao, B. Benatallah, and M. Dong, “A survey on expert recommendation in community

question answering,” J. Comput. Sci. Technol., Vol. 33, pp. 625–653, 2018. doi:10.1007/s11390-018-1845-0

https://archive.org/details/stackexchae%5Baccessed

15 R. Ren, H. Duan, W. Liu, and J. Liu, “Aunet: An unsupervised method for answer reliability evaluation
in community QA systems,” in Asia-Pacific Web (APWeb) and Web-Age Information Management

(WAIM) Joint International Conference on Web and Big Data, 2018, pp. 281–292. Springer.

16 M. A. Suryanto, E. P. Lim, A. Sun, and R. H. Chiang, “Quality-aware collaborative
question answering: methods and evaluation,” in Proceedings of the Second ACM
International Conference on web Search and Data Mining, 2009, pp. 142–151. ACM.

17 X. He, L. Wang, W. Zhang, and P. Zhang, “Research on the quality prediction of online
Chinese question answering community answers based on comments,” in Proceedings of the
2nd International Conference on Big Data Technologies, 2019, pp. 114–120.

18 B. Qu, G. Cong, C. Li, A. Sun, and H. Chen, “An evaluation of classification models for question
topic categorization,” J. Am. Soc. Inf. Sci. Technol., Vol. 63, pp. 889–903, 2012. doi:10.1002/asi.22611

19 M. J. Blooma, A. Y. Chua, and D. H.-L. Goh, “A predictive framework for retrieving the best answer,”
in Proceedings of the 2008 ACM Symposium on Applied Computing, 2008, pp. 1107–1111. ACM

20 C. Chen, K. Wu, V. Srinivasan, and R. K. Bharadwaj, “The best answers? think twice: identifying commercial
campaigns in the CQA forums,” J. Comput. Sci. Technol., Vol. 30, pp. 810–828, 2015. doi:10.1007/s11390-015-1562-x

21 H. Toba, Z.-Y. Ming, M. Adriani, and T.-S. Chua, “Discovering high quality answers in community question answering

archives using a hierarchy of classifiers,” Inf. Sci. (Ny), Vol. 261, pp. 101–115, 2014. doi:10.1016/j.ins.2013.10.030

22 Y. Yao, H. Tong, T. Xie, L. Akoglu, F. Xu, and J. Lu, “Detecting high quality posts in community
question answering sites,” Inf. Sci. (Ny), Vol. 302, pp. 70–82, 2015. doi:10.1016/j.ins.2014.12.038

23 E. Agichtein, C. Castillo, D. Donato, A. Gionis, and G. Mishne, “Finding high quality content in social media,”
in Proceedings of the 2008 International Conference on web Search and Data Mining, 2008, pp. 183–194. ACM

24 M. J. Blooma, A. Y.-K. Chua, and D. H.-L. Goh, “Selection of the best answer in CQA services,” in Information

Technology: New Generations (ITNG), 2010 Seventh International Conference, 2010, pp. 534–539. IEEE

25 L. Xu, J. Xiang, Y. Wang, and F. Ni, “Data-driven approach for quality evaluation on

knowledge sharing platform,” arXiv Preprint ArXiv:1903.00384, 1–6, 2019.[Q5]
26 B. M. John, A. Y.-K. Chua, and D. H.-L. Goh, “What makes a high-quality user-generated

answer?,” IEEE Internet Comput., Vol. 15, pp. 66–71, 2011. doi:10.1109/MIC.2011.23

27 C. T. Lee, E. M. Rodrigues, G. Kazai, N. Milic-Frayling, and A. Ignjatovic, “Model for voter scoring and best

answer selection in community Q&A services. In Web Intelligence and intelligent agent technologies, 2009. WI-

IAT’09,” in IEEE/WIC/ACM International Joint Conferences on, 2009, pp. 116–123. IEEE volume 1.

28 C. Shah, and J. Pomerantz, “Evaluating and predicting answer quality in community QA,” in Proceedings of the 33rd

International ACM SIGIR Conference on Research and Development in Information Retrieval, 2010, pp. 411–418. ACM.

29 T. P. Sahu, N. K. Nagwani, and S. Verma, “Selecting best answer: An empirical analysis on community

question answering sites,” IEEE. Access., Vol. 4, pp. 4797–4808, 2016. doi:10.1109/ACCESS.2016.2600622

30 M. J. Blooma, D. Hoe-LianGoh, and A. Yeow-Kuan Chua, “Predictors of high-quality

answers,” Online Inf. Rev., Vol. 36, pp. 383–400, 2012. doi:10.1108/14684521211241413

31 J. Lou, Y. Fang, K. H. Lim, and J. Z. Peng, “Contributing high quantity and quality knowledge to
online CQA communities,” J. Am. Soc. Inf. Sci. Technol., Vol. 64, pp. 356–371, 2013. doi:10.1002/asi.22750

32 P. K. Roy, Z. Ahmad, J. P. Singh, M. A. A. Alryalat, N. P. Rana, and Y. K. Dwivedi, “Finding
and ranking high quality answers in community question answering sites,” Global Journal of

Flexible Systems Management, Vol. 19, pp. 53–68, 2018a. doi:10.1007/s40171-017-0172-6

33 D. Hoogeveen, A. Bennett, Y. Li, K. M. Verspoor, and T. Baldwin, “Detecting mis-flagged duplicate questions in

community question answering archives,” in Tvwelfth International AAAI Conference on
Web and Social Media, 2018, pp. 112–120.

34 O. Kucuktunc, B. B. Cambazoglu, I. Weber, and H. Ferhatosmanoglu, “A large-scale sentiment analysis for yahoo!

answers,” in Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, 2012, pp. 633–642.

35 M. Li, Y. Li, Q. Peng, and J. Wang, “A hybrid MCDM model combining DANP with TODIM to evaluate the information

quality of community question answering in a two-dimensional linguistic environment,”
Expert Syst., Vol. 38, no. 2, pp. e12619, 2021.

36 D. Elalfy, W. Gad, and R. Ismail, “A hybrid model to predict best answers in question answering
communities,” Egyptian Informatics Journal, Vol. 19, no. 1, pp. 21–31, 2018. doi:10.1016/j.eij.2017.06.002

37 Y. Zhang, M. Zhang, N. Luo, Y. Wang, and T. Niu, “Understanding the formation mechanism of

high-quality knowledge in social question and answer communities: A knowledge co-creation

perspective,” Int. J. Inf. Manage., Vol. 48, pp. 72–84, 2019. doi:10.1016/j.ijinfomgt.2019.01.022

38 D. Palomera, and A. Figueroa, “Leveraging linguistic traits and semi-supervised
learning to single out informational content across how-to community question-
answering archives,” Inf. Sci. (Ny), Vol. 381, pp. 20–32, 2017. doi:10.1016/j.ins.2016.11.006

39 J. E. Van Engelen, and H. H. Hoos, “A survey on semi-supervised learning,” Mach. Learn., 1–68, 2019.[Q6]

40 H. Fu, and S. Oh, “Quality assessment of answers with user-identified criteria and data-driven features

in social Q&A,” Inf. Process. Manag., Vol. 56, no. 1, pp. 14–28, 2019. doi:10.1016/j.ipm.2018.08.007

41 A. Tang, P. Ren, and Z. Sun, “Multi-feature based question–answerer model matching for predicting

response time in CQA,” Knowl. Based. Syst., Vol. 182, pp. 104794, 2019. doi:10.1016/j.knosys.2019.06.002

42 O. Chergui, A. Begdouri, and D. Groux-Leclet, “Integrating a Bayesian semantic
similarity approach into CBR for knowledge reuse in community question answering,”
Knowl. Based. Syst., Vol. 185, pp. 104919, 2019. doi:10.1016/j.knosys.2019.104919

43 Q. Tian, P. Zhang, and B. Li, “Towards predicting the best answers in community-based
question-answering services,” in ICWSM, 2013, pp. 725–728.

44 I. Rish, “An empirical study of the naive Bayes classifier,” in IJCAI 2001 Workshop on
Empirical Methods in Artificial Intelligence, 2001, pp. 41–46. IBM volume 3.

45 J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Ann. Stat., 1189–1232, 2001.[Q7]

46 L. Breiman, “Random forests,” Mach. Learn., Vol. 45, pp. 5–32, 2001. doi:10.1023/A:1010933404324

47 N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic minority
over-sampling technique,” J. Artif. Intell. Res., Vol. 16, pp. 321–357, 2002. doi:10.1613/jair.953

48 H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive synthetic sampling approach for
imbalanced learning,” in 2008 IEEE International Joint Conference on Neural Networks (IEEE
World Congress on Computational Intelligence), 2008, pp. 1322–1328. IEEE.

49 J. Davis, and M. Goadrich, “The relationship between precision-recall and roc curves,” in Proceedings of
the 23rd International Conference on Machine Learning ICML ‘06, 2006, pp. 233–240. ACM

50 L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, and D. Fullerton, “Improving low quality stack overflow post
detection,” in Software Maintenance and Evolution (ICSME), 2014 IEEE International Conference on, 2014, pp. 541–544. IEEE.

51 X.-Q. Bao, and Y.-F. Wu, “A tensor neural network with layer wise pre-training: Towards effective answer

retrieval,” J. Comput. Sci. Technol., Vol. 31, pp. 1151–1160, 2016[Q8]. doi:10.1007/s11390-016-1689-4

52 M. Debruyne, S. Höppner, and S. Serneels, “Outlyingness: which variables contribute
most?,” Stat. Comput., Vol. 29, pp. 707–723, 2019[Q9]. doi:10.1007/s11222-018-9831-5
53 M. Khabsa, A. Elmagarmid, I. Ilyas, H. Hammady, and M. Ouzzani, “Learning to identify
relevant studies for systematic reviews using random forest and external information,” Mach.

Learn., Vol. 102, no. 3, pp. 465–482, 2016[Q10]. doi:10.1007/s10994-015-5535-7

54 H. Langseth, and T. D. Nielsen, “Classification using hierarchical naive Bayes models,”
Mach. Learn., Vol. 63, no. 2, pp. 135–159, 2006[Q11]. doi:10.1007/s10994-006-6136-2
55 T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of words and phrases
and their compositionality,” in Advances in Neural Information Processing Systems, 2013, pp. 3111–3119[Q12].

55 C. R. Stephens, H. F. Huerta, and A. R. Linares, “When is the Naive Bayes approximation not
so naive?,” Mach. Learn., Vol. 107, no. 2, pp. 397–441, 2018[Q13]. doi:10.1007/s10994-017-5658-0

Pradeep Kumar Roy is currently an Assistant Professor with the Department of Computer Science and Engineering, Indian

Institute of Information Technology (IIIT), Surat. He received his Ph.D. in Computer Science and Engineering from the

National Institute of Technology Patna, in 2018. His area of specialisation straddles across question answering, text mining

and information retrieval, and wireless sensor networks. He has published articles in different Journals, including IJIM,

Neural Processing Letters, Neural Computing and Applications, Future Generation Computer Systems, and others. He has

also published the conference proceedings in various international conferences. E-mail: pkroynitp@gmail.com

Zishan Ahmad received his B.Tech. degree in Computer Science and Engineering in 2013. He received M.Tech. in

Information Technology from National Institute of Technology Patna in 2017. Currently he is working as a PhD

Research Scholar in the department of Computer Science and Engineering, Indian Institute of Technology (IIT), Patna.

His current research area is in text mining and data analytics, social analytics. E-mail: zishan.itpg@nitp.ac.in

Jyoti Prakash Singh is an assistant professor in the department of Computer science and Engineering in

National Institute of Technology Patna. He has co-authored seven books in the area of C programming, Data

Structures, Operating systems and Ad Hoc Networks. Apart from this, he has around 25 international journal

publications and more than 40 international conference proceedings. His research interests include text mining,

deep learning, social network and information security. He is associate Editor of International Journal of

Electronic Government Research (IJEGR). Corresponding author. E-mail: jyotip.singh@gmail.com

Snehasish Banerjee is a Lecturer at the York Management School in the University of York. He holds a

PhD from Nanyang Technological University. His area of specialisation straddles across information

science and digital marketing. His works have appeared in outlets such as Computers in Human

Behaviour, Internet Research, Journal of the Association for Information Science and Technology, Online

Information Review, and Tourism Management. E-mail: snehasish.banerjee@york.ac.uk

