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Abstract— Due to the high robustness to artifacts,
steady-state visual evoked potential (SSVEP) has been
widely applied to construct high-speed brain-computer
interfaces (BCIs). Thus far, many spatial filtering meth-
ods have been proposed to enhance the target identifica-
tion performance for SSVEP-based BCIs, and task-related
component analysis (TRCA) is among the most effective
ones. In this paper, we further extend TRCA and propose
a new method called Latency Aligning TRCA (LA-TRCA),
which aligns visual latencies on channels to obtain accu-
rate phase information from task-related signals. Based
on the SSVEP wave propagation theory, SSVEP spreads
from posterior occipital areas over the cortex with a fixed
phase velocity. Via estimation of the phase velocity using
phase shifts of channels, the visual latencies on different
channels can be determined for inter-channel alignment.
TRCA is then applied to aligned data epochs for target
recognition. For the validation purpose, the classification
performance comparison between the proposed LA-TRCA
and TRCA-based expansions were performed on two dif-
ferent SSVEP datasets. The experimental results illustrated
that the proposed LA-TRCA method outperformed the other
TRCA-based expansions, which thus demonstrated the
effectiveness of the proposed approach for enhancing the
SSVEP detection performance.

Index Terms— Brain-computer interfaces (BCIs), latency
aligning task-relatedcomponent analysis (LA-TRCA), phase
velocity, steady-state visual evoked potential (SSVEP), wave
propagation.

Manuscript received December 5, 2021; revised March 16, 2022;
accepted March 21, 2022. Date of publication March 24, 2022; date
of current version April 5, 2022. This work was supported in part
by the National Natural Science Foundation of China under Grant
61972302 and Grant 61962019 and in part by the Shaanxi Key Technol-
ogy Research and Development Program under Grant 2021ZDLGY07-
01. (Corresponding authors: Pengfei Yang; Zhi-Qiang Zhang.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by
the Research Ethics Committee of Xidian University.

Jiayang Huang, Pengfei Yang, Bang Xiong, Bo Wan, and Kejia Su
are with the School of Computer Science and Technology, Xidian
University, Xi’an 710071, China (e-mail: jyhuang1@stu.xidian.edu.cn;
pfyang@xidian.edu.cn; bxiong@stu.xidian.edu.cn; wanbo@xidian.
edu.cn; kjsu@stu.xidian.edu.cn).

Zhi-Qiang Zhang is with the School of Electronic and Electrical Engi-
neering, Institute of Robotics, Autonomous Systems and Sensing, Uni-
versity of Leeds, Leeds LS2 9JT, U.K. (e-mail: z.zhang3@leeds.ac.uk).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNSRE.2022.3162029, provided by the authors.

Digital Object Identifier 10.1109/TNSRE.2022.3162029

I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCIs) provide disabled
people a direct communication interface to external

devices via brain activities [1], [2]. EEG-based BCIs [3], such
as steady-state visual evoked potential (SSVEP) [4], P300
potential [5], motor imagery (MI) [6], have widespread use as
a noninvasive paradigm. SSVEP signals, evoked by a repetitive
visual stimulation flickering with a specific frequency, have
been widely explored in the past decades due to their high
signal-to-noise ratios (SNRs) [7] and information transfer rates
(ITRs) [8].

Thus far, many spatial filters have been developed for
target identification [9] for SSVEP-based BCIs. The most
widely used is canonical correlation analysis (CCA) [10],
which seeks a pair of weights to maximize the correlation
between SSVEP signals and sine-cosine reference signals.
Some extended versions of the standard CCA were also
proposed to further improve the performance of SSVEP
detection via optimizing the predefined artificial reference.
For instance, Zhang et al. proposed multiway canonical cor-
relation analysis (Multiway CCA) [11] and L1-regularized
multiway CCA (L1-MCCA) [12], which optimized reference
signals by maximizing the correlation between multi-way
(trial-way, channel-way) data. Zhang et al. also proposed
multi-set CCA (MsetCCA) [13], which optimized reference
signals by extracting common features shared by multiple sets
of EEG data. Apart from artificial reference signals, Bin et al.
proposed individual template CCA (IT-CCA) [14], in which
averaged individual data across trials replaced sine-cosine
signals as reference signals. Furthermore, Wang et al. proposed
extended CCA (eCCA) [15], which incorporated reference
signals with individual templates to construct spatial filters.
Based on the task-related component analysis (TRCA) for
functional neuroimaging [16], Nakanishi et al. introduced it
in SSVEP-based BCIs [17], which extract the task-related
component as a template by maximizing inter-trial covariance
of individual training data. Similarly, Zhang et al. proposed
correlated component analysis (CORCA) [18] to construct
template signals by maximizing inter-subject covariance. Kiran
Kumar and Ramasubba Reddy proposed the sum of squared
correlation (SSCOR) method [19], which maximized the sum
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of squared correlation of inter-session individual data to
construct template signals. All the aforementioned methods
implicitly assumed that the visual latency of all channels
was at 0.14 s. Based on the volume conduction effects of
EEG signals [20], the visual latency of different channels
varies due to their location differences, and thus the template
signals learned from the aforementioned methods would lose
the phase information of SSVEP response.

In order to further improve the accuracy of SSVEP stim-
uli identification, visual latency or phase information was
also considered in some previous methods. For instance,
Pan et al. proposed phase constrained canonical correlation
analysis (p-CCA) [21], in which the SSVEP response phase
was estimated based on the latency estimates obtained by
the linear fitting of SSVEP phase and stimulus frequency.
Zhang et al. proposed a Spectrum and Phase Adaptive CCA
(SPACCA) [22], in which a library of phase-shifting reference
signals was constructed to accommodate the response time
lag. Chabuda et al. proposed the phase synchronized comb
filter [23] to extract the individual template via averaging mul-
tiple delayed versions of the signal. Tanka et al. proposed the
cross-correlation task-related component analysis (xTRCA)
method [24], in which the inter-trial latencies were estimated
by maximizing trial-reproducibility through iterative optimiza-
tion. However, according to the wave propagation theory [25],
[26], the latency should be different for different channels
when SSVEPs propagate from the primary visual cortex to
the whole cortex with wave dynamics.

In this paper, a new method called Latency Aligning TRCA
(LA-TRCA) is proposed to incorporate the TRCA method
with accurate phase information. The visual latency of each
channel corresponding to each stimulus is estimated based on
the phase velocity of SSVEP wave propagation [27], [28]. The
signals from different channels are aligned according to the
latency estimates on different channels. The TRCA method
is then applied to aligned SSVEP data for target recognition.
An SSVEP dataset with 9-channel data stimulated by 12 flick-
ers collected from 10 subjects and the benchmark dataset were
used to evaluate the performance of the LA-TRCA method.
The comparisons of classification performance between the
proposed method and TRCA expansions, i.e., TRCA, CORCA,
SSCOR, and xTRCA, were conducted. The comparison results
indicated that the LA-TRCA method has an improvement over
TRCA-based expansions with different time windows. The
promising results demonstrate the efficiency of the LA-TRCA
method for improving the target recognition performance of
the SSVEP-based BCIs.

The remaining paper is arranged as follows: Section II
introduces the materials and methods. In section III, the
experimental results with discussions are reported. Finally, the
conclusion is presented in the last section.

II. METHODS AND MATERIALS

A. Data Acqusition and Preprocessing

This study designed an offline BCI experiment using an
SSVEP BCI stimulation interface. 10 subjects who participated
in this study (four females and six males, 23 to 27 years

Fig. 1. The interface of the 12-target SSVEP BCI system with frequency
and phase values of all stimuli.

Fig. 2. The 9 electrodes configuration (a) and experimental environment
(b) of EEG recording.

old, averaged 25 years old) have normal or corrected-to-
normal vision and no brain-related diseases. Only two of
them had experience with SSVEP BCIs, while the other eight
participants were naive. Each subject was informed of the
experimental process and protocols and signed the informed
consent before the experiment.

This study designed a 4 × 3 matrix of visual stimuli, which
is coded by joint frequency and phase modulation (JFPM)
[29] method. The interface was displayed on a 23.6-inch LCD
screen, which has a resolution of 1920- × 1080-pixel and
a refresh rate of 60 Hz. Each flicker was displayed by a
square block of 160- × 160-pixel. The distances between two
adjacent stimuli were 100 pixels and 500 pixels vertically and
horizontally. The frequency ranged from 9.25 Hz to 14.75 Hz
with an interval of 0.5 Hz, and the phase range was from
0π to 1.5π with an interval of 0.5π (Fig. 1) [30], [31]. This
study developed the stimulus program with MATLAB using
the Psychophysics Toolbox Version 3 [32].

The acquisition equipment used for EEG recording is
g.USBamp-Research with 256-Hz sampling rate. According
to the 10-20 standard system, 9 Ag/AgCl electrodes (Pz, PO7,
PO3, POz, PO4, PO8, O1, Oz, and O2) were selected from
the parietal and occipital regions to collect SSVEP signals
(Fig. 2(a)) based on the related studies [17], [30]. The FPz
electrode was the ground channel. The reference channel was
placed on the right ear of the subject. Electrode impedances
were kept below 10 k� during data collection. An event trigger
indicates the beginning of data collection. It is produced by
the stimulus program, which is sent through the parallel port
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Fig. 3. Experimental procedure for EEG signal acquisition.

to the amplifier and computer simultaneously. According to
the event trigger, EEG signals were collected starting from
the trigger, and the stimulation began simultaneously. In this
way, the EEG signals would be synchronized with the visual
stimulation. During the experiment, each subject was asked to
sit in a comfortable position in a dark and silent room at a
distance of 60 cm in front of the LCD screen (Fig. 2(b)).

For each subject, 10-block BCI experiments were comprised
of the whole experiment. In one block experiment, subjects
should gaze at one target for 5 seconds. 12 trials were
completed corresponding to 12 flickers. To start each trial, a
0.5-s red dot cue was shown on the bottom of the target square.
During the 0.5-s cue, each subject was supposed to shift their
gaze to the target in time. Then all flickers started to flash
simultaneously and lasted 5 seconds. During the stimulation,
subjects were asked to avoid eye blinks. Finally, all stimuli
stopped flashing for 0.5 s to be ready for the next trial. Each
trial lasted 6 seconds. To prevent visual fatigue, there was a
one-minute rest between two successive blocks. The 10-block
experiments are repetitive experiments. The experiment time
chart is shown in Fig. 3. Based on the highest harmonic
frequency observed in the collected EEG [33], all data were
filtered by a 6-order Butterworth filter from 8 Hz to 75 Hz.
A notch filter at 50Hz was utilized to eliminate the power-line
noise. After the data acquisition was completed, all the data
processing and analysis were then performed.

Moreover, we also used the benchmark datatset [30] con-
sisting of 64-channel EEG data collected from 35 healthy
subjects (28 naive and 7 experienced subjects) stimulated by
a 40-target BCI speller to verify the efficiency of our method.
The stimulation frequencies were arranged from 8 to 15.8 Hz
with an interval of 0.2 Hz. The phase ranged from 0π to
1.5π with the interval of 0.5π . The collected data were
downsampled to 250 Hz. The EEG data from 9 channels (Pz,
PO5, PO3, POz, PO4, PO6, O1, Oz, and O2) were used for
the evaluation. All data were filtered from 7 Hz to 90 Hz with
a 6-order Butterworth filter.

B. TRCA Method

In SSVEP-based BCIs, task-related components are
extracted by maximizing the trial reproducibility via TRCA
method [17]. Firstly, SSVEPs of the n-th stimulus XXX n ∈
R

Nc×Ns ×Nt , where Nc is the number of channels, Ns repre-
sents the data length of the data epoch in each trial, and Nt

indicates the number of trials for each stimulus, are decom-
posed into Nb sub-band components XXX (b)

n ∈ R
Nc×Ns ×Nt , b =

1, 2, . . . , Nb with filter bank analysis [34]. The subbands of
filter bank are implemented by zero-phase Chebyshev type I
infinite impulse response (IIR) filters. The b-th subband is at
frequency range of [b × 8 Hz, 88 Hz]. For each subband,
there adds 2 Hz bandwidth to both sides of passband. From
the individual calibration data XXX (b)

n , TRCA obtained spatial
filters for the n-th stimulus w

(b)
n ∈ R

Nc . w
(b)
n is calculated as:

w(b)
n = argmax

w

w�Snw

w� Qnw
. (1)

Qn is defined as the sum of auto-covariance of the n-th
stimulus:

Qn =
Nt∑

i, j=1
i �= j

Cov
(
XXX i

n,XXX j
n

)
. (2)

The symmetric matrix Sn represents the sum of
cross-covariance of the n-th stimulus, calculated as:

Sn =
Nt∑
i

Cov
(
XXX i

n,XXX i
n

)
, (3)

where i and j represent the indexes of trials, XXX i
n ∈ RNc×Ns is

the single trial data of n-th stimulus from training data. The
correlation coefficient between the test data X(b) ∈ R

Nc×Ns of
single trial and averaged training trials for n-th visual stimulus

XXX (b)
n ∈ R

Nc×Ns is calculated as:

γ (b)
n = ρ

((
X(b)

)�
w(b)

n ,
(
XXX (b)

n

)�
w(b)

n

)
, (4)

where ρ(s1, s2) is to calculate the Pearson’s correlation coeffi-
cient between two signals s1 and s2 [35]. By integrating all the
correlation coefficients obtained from all subbands, the final
features γn are calculated as:

γn =
Nb∑

b=1

c(b) ·
(
γ (b)

n

)2
, (5)

where the weights for the sub-band component c(b) =
b−1.25 + 0.25 is to maxmize the classification perfor-
mance [34].

The target frequency f̂ with the largest correlation coeffi-
cient is defined as:

f̂ = argmax
n

γn, n = 1, 2, . . . , N f . (6)

C. LA-TRCA Method

The flowchart of the proposed method is illustrated as
Fig. 4. As shown in the figure, given the training data XXX n ∈
R

Nc×Nd ×Nt of n-th stimulus, XXX n was filtered by 9-15 Hz
narrow-band filtering to estimate accurate instantaneous phase.
XXX n = [

x̄1, x̄2, . . . , x̄ Nc

] ∈ R
Nc×Nd is obtained by averaging

narrow-band filtered XXX n across trials, where Nd is the data
length in a trial of continuous EEG data which start at the
stimulus onset corresponding to the event triggers. To begin
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Fig. 4. The flowchart of LA-TRCA method.

with, the response onsets T n = [
t1, t2, . . . , tNc

] ∈ R
Nc

on channels of n-th visual stimulus are determined for the
alignment.

With XXX n containing all-channel signals, the instantaneous
phase ϕc

n of c-th channel are calculated with Hilbert transform
[36]. The Hilbert transform xh(t) is the convolution of the

signal x(t) with the function h(t) = 1

π t
as:

xh(t)= 1

π

∫ ∞

−∞
x(τ )h(t − τ )dτ, t = 1

f s
,

2

f s
, . . . ,

Nd

f s
(7)

where τ is the integration variable, f s is the sampling rate,
and x(t) is the continuous data XXX n . Based on Euler’s formula,
the Hilbert transform is to extract a complex signal from the
real part x(t) as:

X (t) = x(t) + i · xh(t) = Ax(t)e
iϕx (t), (8)

where Ax(t) represents the instantaneous amplititude of signal
x(t). ϕx(t) is the instantaneous phase of x(t), which is
calculated as:

ϕx(t) = arctan
xh(t)

x(t)
. (9)

To define the phase velocity of SSVEP propagation, the
source electrode should be determined. From the topographic
maps shown in Fig. 5, the channel with the maximum SSVEP
response is considered to be the one with minimum latency
delay in this study. For all frequencies, the source channels are
in the occipital sites. Channel POz is the first to respond for
11 out of 12 targets [37]. For consistency, henceforth, channel
POz chooses to be the source electrode. Consistent with the
examplar topology, the source electrodes of all subjects are
selected as channel POz.

The phase difference �ϕc between c-th channel data xe(t)
and source channel data xs(t) with phases ϕe(t) and ϕs(t)
respectively, is computed as:

�ϕc = arg
(

e j (ϕe(t)−ϕs(t))
)

, (10)

Fig. 5. The topographic maps of power spectrum at the fundamental
frequencies of all stimuli from one subject as example.

where arg is the same operation as Eq. 9, thus getting the
phase differences between all electrodes and source electrode
φn = [

�ϕ1,�ϕ2, . . . ,�ϕNc

] ∈ R
Nc . Given the electrode

location (dx, dy, dz) in Cartesian coordinates, the distance dc

between c-th electrode (dxe, dye, dze) and source electrode
(dxs, dys, dzs) is estimated as:
�dc =

√
(dxe − dxs)2 + (dye − dys)2 + (dze − dzs)2, (11)

then the distances between all electrodes and source electrode
d = [

�d1,�d2, . . . ,�dNc

] ∈ R
Nc are obtained. Phase

velocity vn of n-th stimulus is the phase speed of a wave
propagation and is calculated as:

vn = 1

Nc

Nc∑
c=1

2π f (�dc/�ϕc), (12)

where f is the stimulus frequency.
The latency tn

c on c-th channel at n-th stimulus then can be
estimated with phase velocity vn and the distance �dc as:

tn
c = �dc

vn
, (13)

the latencies of all channels Tn =
[
tn
1 , tn

2 , . . . , tn
Nc

]
∈ R

Nc is
obtained.

With the latencies T n for aligning data on multiple channels,
the training data XXX n are extracted into XXX a

n ∈ R
Nc×Ns ×Nt .
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Fig. 6. Averaged accuracy across subjects of various methods using different time windows on (a) self-collected dataset I and (b) benchmark
dataset. The time window increase from 0.2 s to 1.4 s with a step of 0.2 s. The error bar represents the standard deviation.

With filter bank analysis, the aligned training data XXX a
n is

decomposed into Nb sub-band components as XXX (b)
n , where

b = 1, 2, . . . , Nb . And the spatial filters w
(b)
n ∈ R

Nc for
the n-th stimulus are obtained through TRCA from XXX (b)

n . The
calculation of w

(b)
n is implemented as Eq. 1:

w(b)
n = argmax

w

w�Sa
nw

w� Qa
nw

, (14)

where Sa
n and Qa

n are obtained as Eq. 2 and 3 with XXX a
n .

The single-trial test data Xa ∈ R
Nc×Ns is extracted from X

with T n . Finally, with w
(b)
n , the correlation coefficient between

Xa and averaged training data across trials for n-th visual
stimulus XXX a

n ∈ R
Nc×Ns is calculated as:

γ (b)
n = ρ

((
Xa)�

w(b)
n ,

(
XXX a

n

)�
w(b)

n

)
. (15)

The final features γn are obtained the same as Eq. 6. Finally,
the target stimulus f̂ with the largest correlation γn is obtained
as Eq. 7.

D. Performance Evaluation

This study evaluated the target detection performance of the
LA-TRCA method with the classification accuracy and ITR
estimates. The accuracy of classification is defined as the rate
of the number of correct predictions out of all predictions.
ITR is the amount of communication information per minute,
defined as:

ITR= 60

T
×

[
log2 N f + P×log2 P +(1− P)×log2

(
1 − P

N f −1

)]
,

(16)

where T is the selection time for each target, including gazing
time and 0.5-s gaze-shifting time, N f is the number of stimuli,
and P represents the classification accuracy.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we first evaluated the performance of the
proposed LA-TRCA method on the self-collected SSVEP
dataset and the 40-target benchmark dataset [30]. Extensive
comparisons of classification accuracy and ITR were imple-
mented between the proposed method and many state-of-
the-art SSVEP target recognition methods. The influences of
different parameters such as subject’s experience, the number
of training blocks, and the distances between adjacent stimuli
were also reported. Based on the experimental results, the
discussions of LA-TRCA were presented in the last subsection.

A. Target Detection Performance

The stimuli frequency classification performance compari-
son was conducted between the proposed LA-TRCA method
and TRCA, CORCA, SSCOR, and xTRCA. The classification
accuracy and ITRs were calculated by leave-one-out cross-
validation to evaluate the recognition performance of these
algorithms. Figure 6 illustrates the averaged classification
accuracy across all subjects in the two datasets with different
time windows. As we can see from the figure, the proposed
LA-TRCA method can in general achieve the highest accuracy
with different data lengths at all time windows with both
datasets compared to the state-of-art methods. To reveal the
significant difference in the classification accuracy between
LA-TRCA and other methods, we further carried out a pair-
wise analysis between the proposed method and each compar-
ison method on these two datasets. The multiple comparison
results in terms of SSVEP recognition accuracy with different
time windows are presented in Table I. It is obvious that with
a time window smaller than 0.8 s, LA-TRCA outperformed
TRCA, CORCA, and SSCOR by a significant margin, which
proved the effectiveness of the latency-aligning operation for
extracting phase information. With a time window exceed-
ing 1.0 s, except CORCA, none of these differences were
statistically significant, since accuracies for different methods
gradually increased to 100%.
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TABLE I
THE SIGNIFICANT DIFFERENCE ON CLASSIFICATION ACCURACY BETWEEN LA-TRCA AND OTHER STATE-OF-ART METHODS OBTAINED BY

ONE-WAY REPEATED MEASURES ANOVAs

Fig. 7. Averaged ITRs across subjects of various methods using different time windows on (a) self-collected dataset I and (b) benchmark dataset.
The time window increased from 0.2 s to 1.4 s with a step of 0.2 s. The error bar represents the standard deviation.

In addition to the classification performance analysis,
we further explored the ITRs across all subjects in the two
datasets with different time windows, as shown in the Fig. 7.
The tendency of ITRs is consistent with accuracies that the
proposed LA-TRCA method can in general achieve the highest
ITRs among different methods. With the collected 12-target
dataset, LA-TRCA obtained the highest ITRs at 0.8-s time
window as 127.63±29.96 bits/min. While for the benchmark
dataset with 40 targets, LA-TRCA obtained the highest ITRs
with 0.6-s data as 200.77±75.55 bits/min.

B. The Influence of Parameters on Performance

In order to further evaluate the performance of the proposed
approach, we explored the impact of the subject’s experience,
the number of training blocks, and the distances between
neighboring targets on the SSVEP recognition accuracies.

1) The Subject’s Experience: The two datasets consist of
data collected from naive and experienced subjects, and
it is unclear how their experience will affect the SSVEP
classification accuracy. Therefore, we performed a study to
investigate the effect of subjects’ experience on target detec-
tion performance. Fig. 8 illustrates the classification accuracy
distributions of two kinds of subjects via violin plots. The
subjects are divided into naive or experienced groups: 8 vs.
2 for the self-collected dataset and 28 vs. 7 for the benchmark
dataset. As we can see from the figure, although the accuracy
distributions of experienced subjects were slightly more con-
centrated to a higher median value, for both groups of subjects,
all five methods obtained satisfactory results.

TABLE II
THE VERTICAL AND HORIZONTAL SPACINGS BETWEEN NEIGHBORING

STIMULI OF DIFFERENT STIMULATION SETTINGS

2) The Number of Training Blocks: In the LA-TRCA method,
the template signals were constructed with individual training
data, the target identification performance also depends on
the number of training blocks. Figure 9 presents the aver-
aged classification accuracies across subjects obtained with
different numbers of training blocks (Nt ). As shown in both
figures, the averaged accuracies of all five methods gradually
increased with the number of training blocks. And LA-TRCA
consistently outperformed other TRCA-based methods on both
datasets with sufficient training blocks (Nt ≥ 3). As a result,
the best target detection performance of LA-TRCA can be
achieved by using 9-block data for training with the collected
dataset, while 5 blocks with the benchmark dataset.

3) The Distance Between Neighboring Stimuli: In the stim-
ulation interface, the different distances between adjacent
targets may have different interference on target identification.
We have conducted the 3 different stimulation interface set-
tings as 4 × 3, 3 × 4, and 2 × 6 matrices. The details of the
stimulation interface settings were listed in Table II. The iden-
tification accuracies of three stimulation interfaces at the time
window of 1.5 s have been given in Fig. 10. As we can see
from the figure, it is obvious that the 4 × 3 and 3 × 4 matrices



HUANG et al.: LATENCY ALIGNING TASK-RELATED COMPONENT ANALYSIS USING WAVE PROPAGATION 857

Fig. 8. Classification accuracy distributions of two groups of subjects with (a) the self-collected dataset I at 0.8 s and (b) the benchmark dataset
at 0.6 s. The top and bottom sides of the violin represent the maximum and minimum. The vertical and horizontal lines represent the range of
accuracies without outliners and the median value respectively. The width of the violin refers to the probability density estimate.

Fig. 9. Averaged classification accuracies across subjects of the
self-collected dataset I (a) and the benchmark dataset (b) with different
numbers of training blocks (Nt).Here the time windows were set to 0.8 s
and 0.6 s respectively for the two datasets, where highest ITRs were
achieved. The vertical error bars represent standard deviations.

obtained the similar result on accuracies with all methods, but
the accuraies of the 2 × 6 matrix were significantly lower than
the other two interface settings by approximately 20%. This
is probably due to insufficient horizontal distance between
neighboring stimuli, resulting weak SSVEP amplitude of the
target stimulus [38]. Therefore, in our experiment settings, the
minimal distance between adjacent stimulus flickers was set
to at least 100 pixels to avoid this.

Fig. 10. The comparison of averaged classification accuracies using
1.5-s SSVEPs with different stimulation settings as 4 × 3, 3 × 4, and
2 × 6 matrix.

C. Discussions

1) Correlation Coefficient Discriminability: In this study,
we aligned inter-channel latencies using the SSVEP wave
propagation theory for accurate phase information. The exper-
imental results have demonstrated that LA-TRCA could
effectively extract task-related signals with accurate phase
information. With accurate phase information, a more dis-
criminative correlation coefficient would be obtained for tar-
get identification. To intuitively illustrate the contribution on
phase information, we randomly choose 11.25 Hz as the
exemplar stimuli frequency. Figure 11 shows the correlations
coefficients between 0.5-s SSVEPs at 11.25 Hz and template
signals corresponding to all stimuli. As the graph shows, with
TRCA and xTRCA, certain non-target stimuli obtained similar
correlation coefficients as the target frequency, increasing
the false rate. By contrast, LA-TRCA with accurate phase
information achieved a significant difference in feature values
between target and non-target stimuli, which leads to correct
target recognition.

2) Computational Cost of the LA-TRCA Method: The above
experimental results were implemented using Matlab 2020b
on a Lenovo PC with the Intel(R) Xeon(R) Silver 4116 CPU
@ 2.10GHz, 32 GB RAM, and 64-bit Windows 10 OS.
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Fig. 11. Averaged feature value as correlation coefficients γ for 0.5-s
SSVEPs at 11.25 Hz from the collected dataset across subjects. The
error bars represent standard deviations. The dotted line represents the
target stimulus frequency.

For the spatial filter training, it took up to 0.84 s for the
self-collected dataset and 2.32 s for the benchmark dataset.
Once the latency is determined and the spatial filter is trained,
the averaged recognition time per time window for performing
the proposed method on the two datasets were 0.07 s and
0.43 s, respectively. We would like to point out that although
LA-TRCA has a more complicated training process than the
TRCA method for latency aligning, and the training time is a
bit long, it won’t affect the computational speed of the target
detection. We could always determine the latency and train the
spatial filter offline before we move on to real-time SSVEP
recognition.

3) Bottlenecks and Future Work: Despite promising results
that have been achieved by the proposed LA-TRCA method,
there is still room for improvements. First, the target detection
performance can be further enhanced with time windows
smaller than 0.5 s. The spatial filter can suppress certain
noise by strengthening the SSVEP task-related components,
but the SSVEP signal still includes a significant amount of
spontaneous signals. In the future, different time filters [39]
will be explored to improve the target detection performance
for short time windows by further suppressing the spontaneous
signals. In addition, our proposed method would require
latency estimation and spatial filter training for each subject.
It is time-consuming and also requires a large amount of
training data. In the future, transfer learning approaches [40],
[41] will be used to estimate the latency and spatial filter using
less training data.

IV. CONCLUSION

In this study, a new method LA-TRCA was proposed to
enhance the target detection performance of SSVEP-based
BCIs. In LA-TRCA, accurate phase information can be
obtained from task-related signals by inter-channel aligning
and spatial filter training. The experimental results based on
two different datasets support the improvement of LA-TRCA
on target detection performance compared to state-of-art meth-
ods, which indicates the promising potentials for applications
in real-life scenarios.
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