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Abstract

The honeybee olfactory system is a well-established model for understanding functional

mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal

lobe, and then transferred to the mushroom body and lateral horn through dual pathways

termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported

that honeybees can perform elemental learning by associating an odour with a reward signal

even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that

the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computa-

tion within glomeruli in antennal lobes with axons of projection neurons connecting to a

decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent

plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synap-

ses from local neurons to projection neurons decorrelates the projection neurons’ outputs.

The strength of the decorrelations is regulated by global inhibitory feedback within antennal

lobes to the projection neurons. By additionally modelling octopaminergic modification of

synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN

connections, the model can discriminate and generalize olfactory stimuli. Although positive

patterning can be accounted for by the l-ALT model, negative patterning requires further

processing and mushroom body circuits. Thus, our model explains several–but not all–

types of associative olfactory learning and generalization by a few neural layers of odour

processing in the l-ALT. As an outcome of the combination between non-associative and

associative learning, the modelling approach allows us to link changes in structural organi-

zation of honeybees’ antennal lobes with their behavioural performances over the course of

their life.
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Author summary

The honeybee olfactory system offers the opportunity to study different levels of learning

complexity in a small size network. Odour information is transferred from the antennae

to the antennal lobes, and from there to the mushroom bodies and the lateral horn via par-

allel medial and lateral tracts of projection neurons. Although much progress has been

made in understanding olfactory coding in the bee brain, the precise contribution of the

lateral pathway in olfactory learning is still unclear. To understand the computational

mechanisms underpinning the lateral antennal lobe tract, we modelled local computation

and non-associative plasticity within glomeruli in the antennal lobe and the lateral horn

where they were additionally modulated by octopamine to achieve associative learning.

We establish that the connectivity within the antennal lobe (that is shaped by non-associa-

tive plasticity) can also be modified by inhibitory feedback neurons. This makes output

patterns of antennal lobe more separable and sparser. Our modelling indicates that bees,

using the lateral pathway, might learn to solve positive patterning tasks in addition to ele-

mental learning and olfactory generalisation without the contribution of the mushroom

bodies. Yet, the model cannot account for negative patterning, thus indicating that the

mushroom bodies may be required for this discrimination. Our modelling approach

allows us to link changes in structural organization of honeybees’ antennal lobes with

behavioural performance over the course of their life.

Introduction

Olfactory coding and its modification by learning have been extensively studied in the honey-

bee, Apis mellifera, both at the behavioural and neural levels [1–5]. Honeybees are able to dis-

criminate between odours, or mixtures of odours, and generalise from a trained odour to

perceptually similar odours [6–10]. The protocol typically used to study these capacities is the

olfactory conditioning of the proboscis extension reflex (PER) [3,11,12]. The protocol relies on

pairing an odorant as a conditioned stimulus with sucrose solution as a reward signal, i.e. as an

unconditioned stimulus; in this case, the bee learns to associate the conditioned stimulus with

the reward and subsequently responds with proboscis extension to the conditioned stimulus

[13,14]. In certain forms of non-elemental olfactory learning (configural learning), bees are

trained to discriminate single odorants from their mixture; reinforcement assigned to the sin-

gle odours has a different valence compared to that of the odour mixture, so that ambiguity

arises at the level of odour components [6,15,16]. For instance, in negative patterning discrimi-

nation, two individual odours A and B are rewarded while the mixture AB is non-rewarded

(i.e. A+, B+ vs. AB-). During training, each odour component is as often rewarded as non-

rewarded so that discrimination requires learning for instance that A alone is different from A

in the presence of B. Interestingly, honeybees learn to solve negative patterning discrimina-

tions [6] while fruit flies Drosophila melanogaster are unable to learn this task [6,17,18]. How-

ever, the key circuitries underlying this cognitive capacity have only recently started to be

elucidated [5,19].

A honeybee’s antennae contain ~60,000 olfactory receptor neurons that transform chemical

features of the environment into spatiotemporal patterns of neural activity (Fig 1) [20]. Axons

of different types of olfactory receptor neurons extend to a primary olfactory centre, the anten-

nal lobe that contains 165 spherical structures known as glomeruli (Fig 1A) [21,22]. Glomeruli

are sites of synaptic contacts between afferents of olfactory receptors, inhibitory local neurons

(LNs) connecting glomeruli, and excitatory projection neurons (PNs) (~800) conveying the

Spiking neural network of the honeybee olfactory system
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Fig 1. Schematic viewof the honeybee olfactory system. (A) Frontal view ofmorphological connectivity of
olfactory pathways. The antennal lobe is the primary site of olfactory processingwhich receives input from ~60,000
olfactory receptor neurons (ORNs) distributed along the placode sensilla on the antenna. ORNs project to 65
glomeruli that contain 800 excitatory projection neurons (PNs) and 4000 inhibitory local neurons (LNs). Two distinct

Spiking neural network of the honeybee olfactory system
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processed olfactory message to higher-order centres such as mushroom bodies and the lateral

horn. Two types of inhibitory local neurons, heterogeneous and homogeneous, are distin-

guished in the antennal lobe, depending on their arborisation pattern [21–24]. The glomeruli

are laterally interconnected via local neurons or indirectly through projection neurons (Fig 1A

and 1B) [4,22,24]. Most projection neurons convey odour information to higher brain regions

through a dual pathway [25,26]. Projection neurons located in the dorsal region of the anten-

nal lobe form the so-called lateral antennal lobe tract (l-ALT) which extends to the lateral horn

and then further to the mushroom bodies. Projection neurons in the ventral region of the

antennal lobe form the medial antennal lobe tract (m-ALT), which first projects to the mush-

room bodies and then to the lateral horn (for more detail see; [4,27–29]). Interestingly, l-ALT

projection neurons can be found in honeybees and other Hymenoptera but not in Drosophila,

which only has m-ALT projection neurons in its olfactory system [28,30]. Recent studies sug-

gested that different features of odorants might be processed separately by these two parallel

tracts of projection neurons [25,26]. Sucrose reward representation is mediated by a giant

octopaminergic neuron termed the VUMmx1 neuron, whose activity can substitute for real

sucrose in PER olfactory conditioning [31]. Importantly, VUMmx1 contacts the olfactory

circuit at three main regions, the antennal lobes, the mushroom bodies, and the lateral horn,

thus providing multiple, spatially segregated opportunities for odour-sucrose associations.

Although much progress has been made in understanding the physiological properties of pro-

jection neurons belonging to these pathways, the roles of these parallel pathways and their con-

tribution to elemental and non-elemental olfactory learning is still unknown.

Computational models have been developed to understand functions and mechanisms of

these pathways. A recent firing-rate model of the antennal lobe demonstrated that inhibitory

local neurons with a global gain neuron could replicate different coding characteristics of the

l-ALT and m-ALT pathways [32]. It also has been shown that lateral inhibition provided by

local interneurons increases linear separability of odour representations in the antennal lobes,

and improves the linear classifier in odour discrimination [33]. The m-ALT pathway that feeds

into the mushroom bodies is thought to play a central role in olfactory learning and memory.

Heisenberg’s model [34], which is followed by most computational models of associative learn-

ing, describes how odour information is encoded in the Kenyon cells (the mushroom bodies’

constitutive neurons) and the connections that the m-ALT projection neurons make with

them. Wessnitzer et al. [19] modelled the Drosophila olfactory system from the neural coding

stage in the antennal lobe to the mushroom body extrinsic neurons. Their spiking neural

groups of glomeruli within the antennal lobe (AL) are shown in brown and red spheres specialized for m-PNs and l-
PNs. Glomeruli are laterally interconnected by a set of local inhibitory neurons (blue neurons). Axonal PNs extend
from the antennal lobe to higher processing centres, such as themushroom bodies (MB) and Lateral horn (LH) via
two tracts, themedial antennal lobe tract (m-ALT, brown) and the lateral antennal lobe tract (l-ALT, red). An
octopaminergic neuron (in yellow), VUM-mx1 projects from suboesophageal ganglion (SOG) to three areas of
honeybee brain, AL,MB calyces and LHwhich represents reinforcement signal. Electronmicrograph by Axel
Brockmann [98]; figure design byMarie Guiraud. (B) Themodel network of the honeybee lateral antennal lobe
tract. Themodel uses 36ORNs types (in pink) that are activated by odorants (shown by different shapes; squares,
triangles and stars). OneORN responds tomultiple ligands of odorants with different sensitivities (One ligand can
activatemultiple ORNs). ORNs of the same type (i.e., the same sensitivity to ligands) project to PNs and LNs in the
same glomerulus. Inhibitory LNs interact with PNs and LNs, both in other glomeruli. More specifically, PNs are
disinhibited by the LN-LN connections. Although each glomerulus includes dendrites of several PNs, only one PN
and LN are shown for the 3 glomeruli. PNs send axons into LH for connectionwith a single decision neuron, LHN.
The VUM-mx1 neuronmodulates inhibitory spike timing-dependent plasticity (iSTDP) of LN-LN and PN-LHN
synapses. (C) An artificial odorant stimulus shown as a vector representation. Elements of the vector represent
concentration of 36 different ligands. A single odour wasmodelled by a vector consisting of 2 to 5 active elements
because an odour typically contains 2 to 5 ligands. Here, the concentration of each ligand (log[C]) in the odour
vector was displayed in colours ranging from blue (lowest concentration) to red (highest concentration).

https://doi.org/10.1371/journal.pcbi.1005551.g001
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network can learn both elemental and non-elemental conditioning tasks, similarly to a recent

model of the honeybee mushroom body [5]. Earlier studies produced ambiguous results refer-

ring to the question of whether bees can learn elemental associations without the higher-order

processing provided by the mushroom bodies [35,36]. However, a recent study used selective

pharmacological blocking of mushroom bodies and of sub-areas of these structures, and showed

that in the absence of functional mushroom bodies, bees fail at learning complex (configural)

discrimination but can still learn simple olfactory discrimination [15].

Although computational models have focused on the mushroom bodies in analyses of asso-

ciative olfactory learning, it is usually neglected that both the antennal lobe and the lateral

horns possess the basic circuitry to support olfactory learning (i.e. connectivity between odour

and sucrose pathways) [4,29]. Hence, we here explore the potential olfactory learning capaci-

ties of the l-ALT, i.e. the circuit from olfactory receptor neurons to the lateral horn via the

antennal lobes, using a neural network model.

We first focus on olfactory receptor models and modelled their responses to a panel of

different odorants. The model reproduces realistic patterns of neural activity at the input

level of the antennal lobes. We then implement a non-associative learning rule in the synap-

tic connections of local neurons to projection neurons of the antennal lobe. We show that

exposing the model to different stimuli results in a rearrangement of the initial random

inhibitory lateral connections, which then form a local connectivity pattern within the

antennal lobes. This promotes separation of odour representations in the antennal lobes.

Next, we incorporate VUMmx1 signalling and enrich our model with octopamine-modu-

lated plasticity in the antennal lobes and the lateral horn to model associative olfactory

learning (i.e. learning of odour-sucrose associations). We compare the model output with

behavioural data from different learning paradigms including elemental learning, config-

ural discriminations, and olfactory generalization. We find that the neural circuit of the l-

ALT model accounts for elemental learning and positive patterning discrimination, but not

for negative patterning discrimination. In addition, the model can generalize a learned posi-

tive patterning discrimination to novel stimuli. The inability of our model to solve the nega-

tive patterning confirms the experimental finding that the mushroom bodies are necessary

for some forms of configural learning. The model also supports the asymmetric nature of

generalization between certain pairs of odorants reported for bees.

Results

Characteristics of olfactory receptor neurons

Odours are detected by olfactory receptor neurons, which are located within specialized struc-

tures called sensilla, distributed on the surface of the antennae. Axons of olfactory receptor

neurons constitute the antennal nerve that project to the antennal lobe and provide odour

information to this first olfactory processing centre. Since olfactory receptor neurons have

selective but also overlapping odour-response-profiles [37], an odour may activate more than

one type of olfactory receptor. The odour-response profiles are modelled and described by

using Eq 3 in the Methods Section, which allows generating dose-response curves. Each olfac-

tory receptor neuron exhibits unique response curves, and saturates at a different ligand con-

centration [38]. These diversities are represented by a matrix of receptor affinity (See Method

and S1 Fig) that controls the sensitivity of olfactory receptor neurons to different concentra-

tion levels (S2 Fig) [30,39]. We used a fixed affinity matrix throughout this study.

We simulated spontaneous and evoked spiking activity of 36 types of olfactory receptor

neurons during 1000 ms (Fig 2). The evoked activity was induced by an odour stimulus pre-

sented 250 ms after the onset of this period and which lasted 500 ms (i.e. until 750 ms).

Spiking neural network of the honeybee olfactory system
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Fig 2. Firing rate properties of the stimulated olfactory receptor neurons. A) Simulated spontaneous
and evoked spiking activity of a group of 36 olfactory receptor neuron (ORN) types for 1000 ms. The raster
plot exhibits high spontaneous activity before and after the evoked activity of a stimulus (shown below with
two active ligands) at times 250 ms and 750 ms. Multiple ORN types are activated by a single ligand. B) Firing
rates of 3 different ORNs evoked by the odorant. These exemplary firing rates show a same odour stimulus

Spiking neural network of the honeybee olfactory system
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Simulation continued during further 250 ms to complete the 1000 ms. The olfactory receptor

neurons exhibit high spontaneous activity rate (Fig 2A), which in turn maintains the high

activity of projection neurons in the absence of stimuli. This allows a single projection neuron

to code different odours at different concentrations by increasing or decreasing its firing rate

from the spontaneous rate [38]. Multiple types of olfactory receptor neurons are activated by a

single ligand. Fig 2B shows exemplary firing rates of three olfactory receptor neurons that are

activated by the same input stimulus. The olfactory receptor neurons quickly respond to the

olfactory stimulation and return to baseline activity after removing the stimulus [30]. Increas-

ing odour concentration increases or decreases their responses from baseline level (Fig 2C).

Modelling responses of olfactory receptor neurons in this way reproduces the variable selectiv-

ity and sensitivity of real olfactory receptor neurons with different tuning responses (S3 Fig)

[40].

Non-associative learning in the antennal lobe

The functional units of the antennal lobes are the glomeruli, where different types of neurons

converge and connect to each other. Each glomerulus is made of synaptic contacts between

excitatory afferent axons of olfactory receptor neurons, inhibitory local neurons, and excit-

atory projection neurons conveying the reshaped olfactory message to higher order centres. It

has been shown that non-associative learning (synaptic plasticity in the absence of reward, i.e.

upon odour exposure) changes neural activity in the antennal lobes [41]. Here, we modelled

such non-associative learning by a symmetric inhibitory spike timing-dependent plasticity

(iSTDP) in synaptic connections of local neurons to projection neurons. We then expose the

antennal lobe model to a sequence of random odours in the presence of this iSTDP. Fig 3A

illustrates weight matrices of the synaptic connectivity from 36 local neurons to 36 projection

neurons throughout the simulation. Each matrix column shows the strength of an inhibitory

local neuron connection to projection neurons. The initial randommatrix is reformed to a

structured local connectivity matrix between the glomeruli, which represents local connectiv-

ity within the antennal lobe (see S1 Video) [24,42]. Thus, the inputs to projection neurons are

modified according to the state of activity across the antennal lobe. As a result, the correlation

of projection neurons’ output approaches an uncorrelated diagonal matrix (Fig 3B). This

means that the activity of projection neurons is decorrelated as a result of non-associative

learning by exposing the glomeruli to different stimuli [43]. In order to assess the decorrelation

process of projection neurons, we quantified correlations by reduction of the entropy of pro-

jection neurons’ activity from their independent activity. This Entropy reduction was calcu-

lated by ER ¼ 1

2
logðð2peÞ

36
jSjÞ � 1

2
logðð2peÞ

36
Þ, where |∑| is the determinant of covariance

matrix, ∑, obtained from activities of 36 projection neurons (Fig 3C). In addition, we examined

the contribution of global inhibitory feedback neurons by changing their synaptic strength.

Importantly, we found that the strength of global inhibitory neuron (homogeneous local neu-

ron) regulates the redundancy reduction processing in the antennal lobes (Fig 3C) [32,44].

Thus, the structured lateral inhibition existing in the antennal lobe improves the capacity of

linear detectors in the next layer to extract pattern identity [45].

excites (red) or inhibits (blue) olfactory receptor neurons, and some receptors are insensitive to the odour
(green). ORN responses are dynamic and those sensitive ORNs fire most strongly at the stimuli onset. C)
Mean and standard error (SE) of the firing rates of three different ORNs across 50 trials are plotted as a
function of the ligand concentration which. Blue and red curves show how ligands of an odour suppress and
activate the receptor’s spike rate below and above the spontaneous activity. Error bars = SE.

https://doi.org/10.1371/journal.pcbi.1005551.g002
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Fig 3. Non-associative plasticity in the antennal lobe and the effect of inhibitory feedback on network decorrelation. (A)
Weight matrices of the synaptic connectivity from 36 antennal lobe local neurons to 36 projection neurons (PNs) in the presence of
iSTDP between these connections (From left to right: randomweights before training; weights after 500, 1000 and 2000 stimuli

Spiking neural network of the honeybee olfactory system
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Effect of the homogeneous local inhibitory neuron on odour separation
and sparseness in the antennal lobe

We investigated the separation of odorant representations arising in the antennal lobes as a

consequence of non-associative learning. To study the effect of inhibitory neurons within the

antennal lobe on the output of projection neurons, an angular distance between two vectors,

P1, P2 that display the population activity of projection neurons for two odours was calculated

by d ¼ arccos P1:P2
jP1 jjP2 j

� �

, where ‘.’ indicates the inner product between two vectors P1, P2, and

| x | represents magnitude of the vector x. By measuring the angular distance between the activ-

ities of projection neurons in the antennal lobe for odours A and B, we found that the neural

representation of the two different odours was more separated by exposure to different odor-

ants (Fig 4B). Here, we tracked an angular distance between the population activities of projec-

tion neurons across glomeruli for stimulus A, stimulus B and their mixture AB. (Fig 4B).

Odours A and B activate two different but overlapping sets of glomeruli (neural representa-

tions of odours A and B in the antennal lobes). Given the proposed connectivity between local

and projection neurons, presenting odours A and B together activates some of the projection

neurons within glomeruli corresponding to both odours and activates a new set of projection

neurons that were silent in presenting odours A or B. The new activated projection neurons

constitute the neural response corresponding to the interaction between odours A and B. At

strong activity of the global inhibitory neuron, the lateral inhibitory network pushes activity

down and enhances the inter-glomerular contrast. This arrangement is compatible with

observed data from the honeybee antennal lobes [46,47]. Moreover, strong inhibition across

glomeruli has been reported for odour mixtures [47,48].

To compare the population sparseness within the antennal lobes during the simulation, we

used the Treves-Rolls measures [49] of sparseness index, SI ¼ ð
P

36

j¼1
rj=36Þ

2
=ð
P

36

j¼1
rj
2=36Þ,

where rj is the firing-rate of the jth projection neuron. We then compared the sparseness index

of antennal lobes for an odour mixture AB with those corresponding to stimuli A or B alone.

Fig 4C predicts the role of lateral inhibition in sparse coding, as demonstrated in sensory pro-

cessing of various modalities [50]. This shows that the activity pattern of projection neurons

gets sparser (and the contrast of neural representation is enhanced) when the global inhibitory

neuron becomes stronger. It also indicates that fewer neurons are activated when the olfactory

system experiences more odours, which is more energy efficient [51]. This result predicts that

the sparse representation of odours in different regions of the antennal lobe might be adjusted

by different distributions of inhibitory signals.

Taken together, our assumptions on non-associative plasticity and local inhibition in the

antennal lobe network can reduce the correlation between the responses of projection neurons

and reproduce their tuning responses to different stimuli, both for m-ALT and l-ALT projec-

tion neurons. Since we were interested in the contributions of the l-ALT to different forms of

presentations). Each column of matrices exhibits strength of an inhibitory antennal lobe local neuron connection to different PNs. The
initial connectivity matrix (left) was generated by a randomGaussian distribution,N(0, 10); (see S1 Video). (B) Correlation matrices of
PN outputs before and after the exposure to stimuli. Positive and negative correlations are coloured by red and blue respectively. The
correlation matrices approaches to a diagonal matrix, indicating that PN activity becomes decorrelated over training. Correlation
matrices are calculated from the PNs’ firing rate activated by 64 different stimuli. This comparison shows that correlations between
PNs are reduced over different stimulus presentation. C) The entropy reduction that measures the strength of correlations between
PNs is plotted as a function of the number of presented odour. The entropy reductions of the PNs’ activity of 20 different simulated
bees (different initial conditions and a different set of 2000 stimuli) are plotted as a function of the number of stimuli presentation for
different values of the global inhibitory neuron (GIN) (Black for strong inhibitory feedback and grey for weak inhibitory feedback). Here
low entropy reduction indicates less correlation. The entropy reduces after more odours are presented to the model. Increasing the
inhibitory feedback signal from GIN accelerates decorrelation of PN activity.

https://doi.org/10.1371/journal.pcbi.1005551.g003
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Fig 4. Example of pattern activity of dorsal glomeruli output (response of olfactory projection neurons). A) Different odorants cause
different activation patterns in the dorsal region of the antennal lobes (AL). Each row of matrices exhibits the antennal lobe activity through the non-
associative learning for three different odours (A, B and the odour mixture AB). Matrices show the odour representation of PNs in the dorsal region
of AL containing 36 projection neurons (PNs). They are arranged in a square with 6 × 6 pixels. The colour of elements (i, j) shows a firing rate of
PNi*j. B) Angular distance between PN responses for odour A, odour B, or odour AB are plotted for 50 different simulated bees (mean+- SE). The
structured inhibitory connectivity from antennal lobe local neurons to PNs enhances separation between activity patterns for stimuli in the antennal

Spiking neural network of the honeybee olfactory system
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olfactory learning and generalization, we defined a connectivity matrix between local interneu-

rons and projection neurons with a strong inhibitory component and studied the capacity of

this matrix to account for associative olfactory learning.

Olfactory conditioning task

We tested the performance of our model of the l-ALT pathway in a set of different learning

paradigms. To this end, the network model was enriched with octopamine modulation of syn-

aptic plasticity in the antennal lobe and lateral horn, consistent with octopamine-based signal-

ling of sucrose reward in these regions via the VUMmx1 neuron (Fig 1B, see Introduction).

We first trained the model using a differential conditioning task, an elemental form of

learning in which an odorant A is paired with sucrose reward (CS+) during the stimulus pre-

sentation for 500 ms while another odorant B is delivered without reward (CS-). Bees trained

in this way easily learn the discrimination and extend the proboscis to A and not to B. Since

the lateral horn is thought to be a premotor area [52–54], the strong response of the lateral

horn neuron to odour A would translate into proboscis extension response to this odorant.

Hence, we assumed that the lateral horn neuron (LHN) acts as a decision neuron, showing a

stronger response for CS+ than to CS-. After training, performance of the model is measured

by an average firing rate of the lateral horn neuron obtained from presenting odour A and B

(for 3 times randomly) without reinforcement. Fig 5A provides an example of the differential

conditioning task, and shows that the firing rate of the lateral horn neuron increases after pre-

sentation of the CS+ and tends to decrease after CS- delivery. This figure implies that the maxi-

mum difference between responses of the lateral horn neuron to CS+ and CS- are obtained

after only three presentation of CS+. In order to replicate the learning task for different bees

and different odours, we repeated the simulation, using different initial parameters and differ-

ent odours. The firing rate of lateral horn neuron for the CS+ was significantly higher than

that for the CS- (p-value< 10−6) while there was no difference between them before training

(Fig 5B). This indicates that the model is able to reproduce the elemental discrimination learn-

ing underlying differential olfactory conditioning [3]. Conversely, the model with fixed ran-

dom connectivity between local neurons and projection neurons within the antennal lobe

cannot discriminate between positive and negative conditional stimuli (p-value = 0.29). A

comparison between the results of these models reveals how the proper inhibitory connectivity

between neurons in the antennal lobe can enhance the learning performance of the model.

This emphasizes the importance of the structured connectivity that emerges in the antennal

lobe by the non-associative learning in the performance of bees in olfactory learning tasks.

Olfactory generalization

To study whether our model can generalize from a learned odour to novel ones depending on

odorant similarity, we conditioned the model following an absolute conditioning protocol, in

which a single odorant (A) is paired with reward. The response of the lateral horn neuron for

odour A reached a plateau before testing generalization. The model was then tested with two

novel stimuli, one of which (A’) was similar to and the other (A”) different from the odour A.

The distance of LHN responses in firing rate for the odour A and novel stimuli are assumed to

represent the perceived similarity between A and other odours. The model responses in the

tests following conditioning (Fig 6A) resemble the olfactory generalization performances

lobe. C) Average activity sparseness for odour representations in the antennal lobes during the training. The low sparseness index corresponds to
high sparseness population activity.

https://doi.org/10.1371/journal.pcbi.1005551.g004
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found in honeybees [6,9], i.e. responses were higher for the odour A and decreased as a func-

tion of odour similarity. In order to evaluate the impact of odour similarity, we repeated our

simulation but increased the number of test stimuli to six (the CS+ and 5 novel stimuli), with

different levels of physical similarity. We defined physical similarity based on the Euclidean

distance between vectors of 6 odour stimuli (see Method section). Fig 6B shows the similarity

matrix, K, between the six odours. The colour of the element Ki,j denotes the firing rate of the

lateral horn neuron for the jth stimulus when the model was trained to the ith stimulus. The

performance of the model is consistent with experimental observations that showed asymmet-

rical generalization in honeybees [8]; for example, generalization from odour 3 to odour 5 is

not the same as from 5 to 3. Because of the modulated plasticity within the antennal lobe dur-

ing conditioning, the connectivity structure between glomeruli is re-shaped according to the

activity of odour 3 while this structure is different if we train the model with another odour

(odour 5) (S4 Fig). Hence, the activity within the antennal lobe and LHN for odour 3 when the

model was trained with odour 5 is different from the activity of odour 3 when the model was

trained by odour 5. Thus, an asymmetric similarity appears in the generalization matrix.

Non-elemental olfactory learning

We next focused on the capacity of our network to solve non-elemental learning discriminations.

We chose two types of non-elemental learning discrimination, which have been thoroughly inves-

tigated in honeybees, the positive and the negative patterning tasks [6,15,16]. In both tasks, bees

have to discriminate a mixture odour AB from its components (A or B). In positive patterning, the

Fig 5. Model performance in differential olfactory conditioning of the proboscis extension reflex.A) Firing rates of the LHN response to a
rewarded odour A (CS+) and unrewarded odour B (CS-) during three stages of the PER task; pre-training, training, and test. The red and blue points
show responses of the LHN to the CS+ and CS-, respectively. Synaptic strengths between antennal lobe projection neurons to the LHN aremodified
only during the training (white area). Conditioning themodel with CS+ induces increased firing rate in LHN during training. B) Responses of LHN to both
CS+ and CS- before and after the conditioning for two different models, one with the structured connectivity and the other with random connectivity within
the antennal lobe. The red and blue bars represent the LHN activity for CS+ and CS-, respectively. Standard error (SE) bars were calculated from the
LHN’s firing rate for 50 different odours and different initial parameters in the differential conditioning. Bees were able to learn to discriminate significantly
between rewarded stimuli and unrewarded stimuli (p-value < 10−6) while bees with random connectivity between local neurons and projection neurons
cannot distinguish the CS+ (p-value = 0.29).

https://doi.org/10.1371/journal.pcbi.1005551.g005
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odour components are non-rewarded and the compound is rewarded (A-, B-, AB+); in negative

patterning, the components are rewarded and the mixture is not (A+, B+, AB-).

We first focused on positive patterning and paired the mixture odour AB with the rein-

forcement while components A or B were always unrewarded. Although the firing rate of lat-

eral horn neuron for CS-s increased during training, the response of the lateral horn neuron to

the CS+ (the rewarded compound AB) was significantly higher than that to the CS- (the com-

ponents A/B; p-value = 0.003) (Fig 7A). This differentiation shows, therefore, that our model

can achieve a positive patterning discrimination. Focusing on negative patterning yielded,

however, a different result. In this case, the model was unable to differentiate between the

unrewarded odour mixture AB and its components A and B (Fig 7B, p-value = 0.23). Hence,

the model can solve positive but not negative patterning, confirming that both tasks differ in

complexity [6] and might thus involve different neural circuits [15,35].

Discussion

We introduced a spiking neural network model based on the l-ALT to evaluate the contribu-

tion of this particular tract of projection neurons to different forms of experience-dependent

olfactory plasticity in honeybees. We first suggested a model of olfactory receptor neurons that

provides realistic inputs to the antennal lobes (Fig 2). We then implemented non-associative

plasticity rules between local neurons and projection neurons using iSTDP. We showed that

the synaptic changes in the antennal lobe decrease correlations between projection neurons

(Fig 3), thus enhancing olfactory differentiation at the output level of the antennal lobes (Fig

4). We then implemented octopamine–modulated plasticity in two synaptic regions of the

olfactory circuit, the lateral horn and the antennal lobes in order to test for the role of such

Fig 6. Olfactory generalization. A) The lateral horn neuron (LHN) responds to rewarded stimuli (CS) and two novel odorants with different level of the
similarity to the CS (A’ is more similar to A than A”) after training to CS. LHN’s response to the A’ exhibits more perceptually similar to the CS for bees
than to A”. B) The colour matrix shows the olfactory generalization matrix which represents the LHN response to six odours in the tests performed by
bees trained with different CSs. Colour pixels (i,j) indicate the firing rate of LHN for the jth odour when the model was trained by the ith odours. The
results show asymmetric generalization between odours.

https://doi.org/10.1371/journal.pcbi.1005551.g006
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plasticity at the l-ALT level, i.e. upstream the mushroom bodies. In this way, we could focus on

the capacity of our model to predict different classes of olfactory learning of variable complex-

ity, i.e. on the contribution of the l-ALT to these different learning forms. We demonstrated

that the model can achieve simple absolute conditioning and can generalize the learned olfac-

tory information to novel stimuli depending on olfactory similarity with the conditioned stim-

ulus (CS) (Fig 6). In addition, the model, with a few levels of processing, achieved differential

conditioning and positive patterning discrimination (Figs 5 and 7). Yet, the model was unable

to reproduce negative patterning (Fig 7B), thus showing that this non-elemental discrimina-

tion requires additional or separate circuitries (e.g. as provided by the mushroom bodies) and

thus differs from the previous learning tasks. While recent modelling studies [5,19] suggested

that m-ALT, which terminates in mushroom body extrinsic neurons, is sufficient for negative

patterning, the mechanism of the negative patterning learning remains to be investigated.

Non-associative plasticity in the antennal lobes

Young honeybees encounter a rich olfactory environment in the hive [55], which shapes their

olfactory system. It has been shown that such passive olfactory exposure increases the volume

of the honeybee brain, and also leads to structural modification [56]. Accordingly, odour expo-

sures at early ages, in particular if associated with food reward obtained within the hive, mod-

ify sensitivity of the bees, influence performance in behavioural tasks, and make sensory

representations in the antennal lobes significantly different from each other [57–59]. Thus,

early olfactory experiences are likely to have a strong effect on the bee olfactory circuit in adult

life. However, it is unclear which synapses in the antennal lobes are changing, leading to the

observed bee behaviour. Galizia et al. [41] suggested that synapses between antennal lobe local

Fig 7. Non-elemental learning performance. A) Mean and SE of responses of LHN to unrewarded single odorants (A- or B-) and to a rewarded mixture
odours (AB+) during the pre-training (left) and the test (right) of the conditioned PER. Simulated bees learned to discriminate mixture odorant AB from the
single odorants A or B (n = 50, t-test; p-value < 0.003). B) Responses of LHN to rewarded mixture odorants (AB+) versus unrewarded components of the
CS+ (n = 50, t-test; p-value = 0.23). The model was unable to learn the negative patterning tasks.

https://doi.org/10.1371/journal.pcbi.1005551.g007
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neurons and projection neurons change their properties upon odour exposure. To test this

hypothesis, we applied the iSTDP learning rule between inhibitory local neurons and excit-

atory projection neurons. We confirmed that the non-associative plasticity in the antennal

lobes can change the random connectivity between glomeruli and create specific connectivity.

Interestingly, the connectivity created by exposing the model to different odours increases the

separability of odour representations at the antennal lobes output [24,32,33,43]. Moreover, the

strength of the global inhibitory feedback neurons can regulate redundancy reduction and

connectivity in the antennal lobes.

Octopamine-induced plasticity mediates different forms of associative
olfactory learning

Neural activity patterns at the level of the antennal lobes change shortly after learning, or after

a long time after differential conditioning tasks [60–64]. More specifically, Rath et al. recorded

calcium signals after differential conditioning and showed that two-odour response patterns in

the antennal lobe for CS+ and CS- become more separable after a classical conditioning para-

digm [60,61,63]. Further, the strength of calcium signals of the corresponding glomeruli

increased in a conditioning task [61]. In particular, associative learning improved detectability

of the corresponding glomeruli to an odour mixture from background activity [65]. However,

the mechanisms underlying activity changes in antennal lobe activity after the conditioning

task still remain elusive. Antennal lobe activity may be changed by internal sub-circuitry that

were re-shaped via local plasticity rules within antennal lobes; alternatively it may be changed

by feedback signals from the mushroom bodies [66–68]. Octopamine released from VUM-

mx1 in the antennal lobes influences local neuron synapses [31,69,70]. Since octopamine is the

reinforcement signal in the olfactory system of bees, learning-dependent activity in the anten-

nal lobes might be caused by modulated plasticity between antennal lobe local neurons. In this

study, we assumed this type of plasticity between local neurons, and showed a modification of

neural representation in the antennal lobes as observed in experiments.

Impact of plasticity between local neurons on olfactory generalization

After conditioning to the CS, a bee is able to respond to a novel stimulus whose perceived simi-

larity is close to the CS (Fig 7A) [71,72]. It appears that bees generalize odours based on the sim-

ilarity between carbon chain lengths or whether they belong to the same functional group [8].

Our study showed that generalization is not symmetric for several pairs of odours as asymmet-

ric generalization was found for six odours that were randomly selected from the set of odours

(Fig 6). The possible reason for obtaining such asymmetric structure in our model could be

effect of the modulated plasticity between antennal lobe local neurons with the reward. S4 Fig

shows how the initially random connectivity matrix between local neurons changes to specific

connectivity, depending on the two different conditioned stimuli that activate different projec-

tion neurons within glomeruli. This causes different neural representation in the antennal lobes

after training, and yields an asymmetric generalization [8].

The mushroom bodies are dispensable for positive patterning but are
required for negative patterning

Elemental and non-elemental learning are intimately related to classical classification prob-

lems. Theoretically, differential conditioning, positive, and negative patterning are equivalent

to, respectively, OR, AND, and XOR problems in classification theory, with different levels of

complexity. For instance, AND and OR problems can be solved by a single layer ‘perceptron’.

Spiking neural network of the honeybee olfactory system
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It assigns different values to inputs of the network by discovering a linear plane [73]. However,

single-layer perceptrons cannot solve the XOR problem because there are no planes that can

be drawn across the space of inputs to separate the single components from their mixture.

Numerous experimental studies have revealed better discrimination performance for positive

patterning than for negative patterning [74–76]. However, a feed-forward network containing

hidden units (multiple layers) can classify any inputs [77–78]. Thus, the medial pathway con-

taining the Kenyon-cell layer connecting projection neurons and mushroom body extrinsic

may allow bees to learn the negative patterning task [5,19].

Our model successfully solved the positive patterning task (A-, B- vs. AB+), but not the neg-

ative patterning discrimination (A+, B+ vs. AB-). This observation is interesting as it predicts

that the former task could be solved just based on l-ALT circuitry, i.e. without mushroom

body contribution. On the contrary, to solve a negative patterning task, the l-ALT circuitry

would be insufficient and the downstream structure of the mushroom bodies would be

required. This conclusion, however, contrasts partially with recent findings indicating that

mushroom bodies are necessary both for positive and negative patterning discriminations

[15]. Yet, these experiments relied on pharmacological blockade of mushroom bodies via pro-

caine (or PTX in the case of PCT neurons), which supports the notion that these structures are

necessary, but not sufficient for these forms of non-elemental learning. However, our model

predicts that the activities of projection neurons in the case of stimulation with the single

odours A, B and the mixture odour AB (as inputs of the decision neuron) are more separable

when the network has been sufficiently modified by exposure to very different stimuli in the

environment (Fig 4). Consequently, this modified neural network can solve the positive pat-

terning task without participation of mushroom bodies through a linear classifier that also

applies to the differential conditioning task. This indicates that adult honeybees, after extensive

training, might be able to solve the positive patterning task even after blocking their mush-

room bodies. This difference underlines the different associative nature of these two patterning

problems: despite their apparent similar complexity (positive patterning may appear as a mir-

ror-image discrimination with respect to negative patterning and vice versa), both tasks differ

fundamentally in their difficulty. In fact, positive patterning discrimination could be solved

through elemental learning because the associative strength of the non-rewarded components

could be sub-threshold for the response but upon compound presentation they might result in

a supra-threshold associative strength. Such a linear summation would yield higher associative

strength and, therefore, higher responsiveness to the compound. This provides an elemental

account of positive patterning, which is not possible in the case of negative patterning. Indeed,

the negative patterning discrimination task can only be solved if the animal is able to process

the mixture AB in non-linear terms. Otherwise, the sum of the excitatory strengths of the

rewarded components upon compound presentation would always be greater than the strength

of the single components. This difference may explain why fruit flies are able to master a posi-

tive patterning task but not negative patterning discrimination [18].

Fig 4B shows that the angular distance between glomeruli activated by the simultaneous

presentation of odours A and B and those activated by the single odours A and B increases

during non-associative learning. Hence, the number of antennal lobe neurons that fire for AB

is greater than the number of neurons that fire for A and B. Some neurons fire selectively for

the mixture AB but not for A or B. This should make synapses between these neurons (selec-

tive for AB) and the lateral horn neuron reinforced in positive patterning, leading to increased

activity of LHN for the mixture AB. This result indicates that the spiking network acts as a lin-

ear classifier [15]. On the contrary, a specific neural circuitry has been recently identified as

being necessary for negative pattern solving in honeybees [15]. PCT neurons which provide

inhibitory GABAergic feedback to mushroom bodies are required for glomeruli in negative
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patterning [21,22]. These PCT neurons may reduce the activity of projection neurons in ven-

tral region of the antennal lobe (i.e. inputs of m-ALT) for mixture odour AB. Therefore, the

decision neuron in the next layer can discriminate odour components (A+, B+) from the mix-

ture odour (AB-). In summary, our model predicts that, given appropriate experience of differ-

ent odors in their early life, bees with lesions in the mushroom bodies may be able to solve the

non-elemental positive patterning task but that the circuits outside the mushroom bodies are

not sufficient for the negative patterning task.

Assumptions of the model, and suggested experiments

There are substantial differences in the anatomy of the olfactory information processing sys-

tem among different insect orders. Although the m-ALT is common to insects as diverse such

as Orthopterans, Dipterans and Hymenoptera, the l-ALT is unique in the olfactory system of

the latter [28]. Hence, it is possible that hymenopterans employ a different strategy for odour

coding compared to other insects, thus enabling different olfactory learning abilities. Although

it is important to understand the mechanism of the role of l-ALT as well as m-ALT in olfactory

learning, our study focused on the l-ALT and its utility for olfactory learning. In modelling the

l-ALT, we used only the anatomical and physiological evidence available for honeybees. One

exception is the model of odour receptors, for which we used the neural properties of odour

receptors of Drosophila, assuming that there are no significant differences between honeybees

and fruit flies at the level of the peripheral odour encoding. Future studies must explore how

the m-ALT and l-ALT interact during olfactory learning. Moreover, the learning performances

of honeybees must be examined upon a specific lesion or blockade of the l-ALT, in particular

this interface is performed at different places, i.e. before or after the lateral horn.

Many studies suggest that projection neurons might employ temporal coding for odour

representation in antennal lobes where the temporal delay between odour onset and spiking

activity of projection neurons might complement rate-based coding in the olfactory system

[25,79–81]. We did not investigate such temporal coding in the proposed network because the

available studies reported their results by Ca2+ imaging with low temporal resolution. More-

over, latency coding was observed mostly in the responses of projection neuron belonging to

the m-ALT, and reports of latency coding in projection neurons of the l-ALT are rare [81–82].

This might indicate that temporal coding is not as prevalent in the l-ALT as in the m-ALT.

However, studying the spatial and temporal coding in the dual olfactory system of honeybees

will be an attractive topic for future studies. Note that our result suggests temporal information

of spikes may be used by means of iSTDP for better odour separation in antennal lobes (Fig 4).

Our modelling predicts that non-associative learning changes the connectivity in the anten-

nal lobes (Fig 3). Along with associative learning, our model further predicts that synaptic plas-

ticity between local neurons and projection neurons in the antennal lobe may explain the

individual difference in bee’s performance for the olfactory learning during their life (Fig 5).

Behavioural and neurobiological investigations are needed to examine this prediction. We may

compare learning performance of two groups of bees, one that explores different odours freely

and another whose access to odours is limited in the early stages of their adult lives. We expect

to find differences in the bees’ odour learning performance between the two groups in later life,

and differently structured connectivity within the antennal lobes. Furthermore, one might dis-

cover distinct patterns of synaptic complexes within the antennal lobe for two groups of bees.

In a natural environment, bees can detect some odour plumes immediately [83–84]. How-

ever, the activity of projections neurons in the ventral regions of the antennal lobe is delayed

relative those projection neurons in the l-ALT [25]. Moreover, mushroom body extrinsic neu-

rons encode the value of the stimulus approximately 20 ms after the representation of odours in
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the lateral horn [81]. This evidence indicates that information transmission in the m-ALT is

slower than the processing through the l-ALT. Thus, it could be more efficient for the olfactory

system to recognise the identity of the odour stimuli by using rapid processing in the l-ALT.

Moreover, concentrations of odour stimuli are evaluated by honeybees [38] although they are

less important than identity coding. Hence, it could be proposed that m-ALT has a principal

function in encoding odour concentrations. Schmuker et al. [32] suggested that strong lateral

inhibition is useful for odour discrimination whereas gain-modulation by means of weak feed-

back inhibition is suitable for concentration discrimination. Moreover, it has been reported that

responses of antennal lobe projection neurons in the l-ALT to weak odour concentrations are

stronger than responses of antennal lobe projection neurons in the m-ALT [50]. Hence we

expect to find stronger inhibition in the l-ALT as a gain control mechanism. Our results showed

that strong inhibition in the dorsal region of the antennal lobe increased the performance of the

model in odour discrimination through l-ALT. Further neurobiological studies are needed to

investigate the impact of different levels of inhibition in dorsal and ventral regions of the anten-

nal lobe for the coding of odour concentration and identity.

Comparison with previous computational models

Computational models with different levels of complexities are critical to understand the bee

olfactory system because a model can integrate biological evidence to link the function of neu-

ral networks to behaviour. Over the last decade, several models have been established to

describe the characteristics of insect olfactory system from olfactory receptors to the mush-

room bodies [5,19,34,44,85]. Many of the models focused on the role of antennal lobe net-

works in separating odour representations [32,44]. These studies showed that antennal lobe

local neurons and their connectivity with projection neurons can improve performance of the

classifiers that receive outputs from the antennal lobes [33]. A recent study also explored how

synchrony between projection neurons can represent mixture odours differentially in the

antennal lobes. Moreover, different coding strategies in the antennal lobe for odour identity

and intensity were explained by the interaction of antennal lobe local neurons with a gain con-

trol neuron using a firing rate model [32,43]. Here, we reproduced similar results using a more

realistic spiking neural network model, and additionally suggested how the specific connectiv-

ity between glomeruli emerges based on non-associative learning and different types of local

neurons in the antennal lobe. Moreover, the current spiking-network model can be extended

to investigate further questions in olfactory learning, for example, the effect of temporal sepa-

ration between stimulus and reward presentation on learning performance [86–87].

Computational studies on the role of higher brain areas in insect cognition are scarce, and

have mostly focused on mushroom bodies. For instance, Wessnitzer et al. developed a spiking

model for Drosophila olfactory learning [19]. Their model followed Heisenberg’s approach

[34], which considers the mushroom bodies as a main centre for associative olfactory learning.

A recent study by using a binary network of the medial olfactory pathway examined the capac-

ity of the mush room bodies in the different types of learning [5]. This study showed that

reward-depending modification of synapses between Kenyon cells and the extrinsic output

neurons of the mushroom bodies and the high sparseness of Kenyon cells allow the learning of

complex discriminations such as the negative patterning, but the mushroom bodies are not

necessary for elemental learning [15,35]. Hence, here we provided a minimal spiking neural

network model of the l-ALT capable of reproducing some types of the learning without mush-

room-boy requirement. A comparison between our model and others models of the medial

olfactory pathway [5,19] suggests that an additional layer of processing with high sparse

response might be essential for solving the negative patterning task.
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Methods

Network topology

The model architecture of the honeybee lateral antennal lobe tract is shown in Fig 1B. Olfac-

tory receptor neurons are activated by simulated odorant stimuli (see Odorant stimulus sec-

tion) [30]. The olfactory receptor neurons then project to 36 glomeruli in the dorsal region of

the antennal lobe, which is the primary site of olfactory processing in the l-ALT [28,35]. In

each glomerulus, one projection neuron and one local neuron receive input from a single

olfactory receptor neuron [88–89]. The glomeruli are laterally interconnected by the local neu-

rons and projection neurons [90]. A local neuron in a glomerulus inhibits local neurons in the

other glomeruli. The projection neuron in each glomerulus sends the excitatory signal to ran-

domly selected local neurons in the other glomeruli. One global inhibitory neuron receives

inputs from all projection neurons and sends a feedback signal to them. All projection neurons

project to a neuron in the lateral horn called the lateral horn neuron (LHN) [29], which is the

output of the present model. Finally, a VUM-mx1 neuron (shown in Fig 1B in yellow) makes

reward-modulated connections with all the antennal lobe local neurons and the LHN [31]. We

describe odorant stimuli and the function of each neuron in detail in the next subsections.

Odorant stimulus

Odour molecules activate the initial stage of olfactory processing by producing nerve impulses

in the olfactory receptor neurons. Odours contain a complex mixture of chemical compounds

(i.e., ligands); therefore each odour is specified using a high-dimensional space of ligands

[30,91]. An odour consists of a few ligands in this space of various concentrations. In this

study, we present an odour in a vector of 36 elements L = (l1, l2,. . ., l36). Each element’s value

exhibits the concentration of a particular ligand of the odorant. Because an odour typically

contains 2 to 5 ligands [30], we randomly choose 2 to 5 elements, and assign the concentration

values while unselected elements are fixed at zero (Fig 1C). The odour concentration ranges

from minimum 10−7 to a maximum of 1 indicating the proportion of dilution. These patterns

are used for the inputs to olfactory receptor neurons. This model captures some of the variabil-

ity of the odour stimuli in the environment.

Olfactory receptor neurons

Since the responses of olfactory receptor neurons (ORNs) are highly dynamic (i.e., their spike

rates peak quickly and then relax to a tonic level of activity), we simulated responses pattern of

ORNs to a large set of odorants by employing the adaptive exponential integrate-and-fire

model (AdEx) [92]. By combining the AdEx model with the self-organizing model of receptors

[90], we introduce a novel spiking neuron model that can generate the dynamic firing patterns

of the olfactory receptor neurons. We constructed 360 olfactory receptor neurons composed

of 36 different types (10 olfactory receptor neurons for each type). In this model, dynamics of

sub-threshold membrane potential vi(t) of the ith olfactory receptor neuron (i = 1, . . ., 360) is

described by the following two differential equations:

CORN dviðtÞ

dt
¼ �gL vi tð Þ � ELð Þ þ gLDTexp

viðtÞ � VT

DT

� �

� wi tð Þ þ Ii þ �i tð Þ; ð1Þ

tw

dwiðtÞ

dt
¼ a vi tð Þ � ELð Þ � wi tð Þ; ð2Þ

where wi(t) is an adaptation variable, CORN is membrane capacitance and gL and EL are leaked
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conductance and leak reversal potential, respectively. ΔT (slope factor) is a time-scale of the

adaptive threshold, and a (adaptation coupling parameter) and τw (adaptation time con-

stant) are parameters for the adaptive membrane dynamics. The membrane potential vi is

reset to v0 if it exceeds the threshold, VT. Moreover, the adaptation variable, wi, is changed

by an amount b (wi! wi + b). Here, the input to the model neuron is denoted as Ii, which is

computed from odour stimuli by using the self-organizing model of olfactory receptors.

The details are described below. Finally, we added a Gaussian noise �i(t)* N(0, σ) to add

randomness in the spiking activity of the olfactory receptor neurons. We set these parame-

ters so that the model approximates characteristics of the olfactory receptor neurons [30,94]

(See S1 Table for parameter values used in the simulation).

The input to the ith olfactory receptor neurons, Ii, is calculated, following the model pro-

posed in [93] as follows. First, the response Ii,j of the ith olfactory receptor neurons to ligand

concentration, lj, of a stimulus L = (l1, l2,. . ., l36) is computed as:

Ii;j ¼
1

1þ ðK j
i ljÞ

�m
j

i

; ð3Þ

where K j
i is the binding affinity of the ith olfactory receptor neurons to lj. The parametermj

i

denotes the molecular Hill equivalent, which represents a width of the effective concentration

range encoded in the response of each olfactory receptor neuron with respect to the ligand lj.

The input to the ith neuron, Ii, is calculated as an average of the responses Ii,j to all ligands (lj)

within the input stimuli L. The binding characteristic of the ith olfactory receptor neuron is

thus specified by its affinity vectors, K ¼ ðK1

i ; K
2

i ; . . . ;K
36

i Þ andM ¼ ðm1

i ; m
2

i ; . . . ;m
36

i Þ (see

S1 Fig). Here the vectors K andM exhibit the degree of sensitivity and selectivity of receptors to

the stimulus. These vectors are generated randomly for 36 different types of olfactory receptor

neurons as proposed in [19]. Although olfactory receptor neurons have high affinity for few

ligands, most individual olfactory receptor neuron types respond to multiple ligands. The recep-

tor responses saturate if concentrations of the active ligands are significantly high [30,95]. To

realise the diverse selectivity and sensitivity of real olfactory receptor neurons, we assume that

each olfactory receptor neuron exhibits a gradient of affinity to ligands while each olfactory

receptor neuron possess a unique preferred ligand defined by the highest affinity.

Antennal lobe model

In this study, we construct 36 types of olfactory receptor neurons (10 olfactory receptor neu-

rons for each type, 360 in total) that converge onto 36 glomeruli in the antennal lobes. Further,

we use a single projection neuron and antennal lobe local neuron for each glomerulus for sim-

plicity. Since olfactory receptor neurons possessing similar response profiles to a ligand con-

verge onto the same glomeruli, one projection neuron and one antennal lobe local neuron in

each glomerulus receive an input from a single type of olfactory receptor neurons. This con-

struction establishes the one-receptor for the one-glomerulus hypothesis for bee antennal

lobes [89]. A local neuron in a glomerulus projects inhibitory connections to projection neu-

rons in the other glomeruli. The same local neuron inhibits local neurons in the other glomer-

uli. We let the projection neuron in each glomerulus send weak excitatory signal to randomly

selected local neurons in the other glomeruli (not shown in Fig 1) as is reported in [4]. Finally,

the projection neurons in the antennal lobes send an excitatory signal to the higher-order cen-

tre of the brain. The activation of projection neurons causes global inhibitory feedback to

themselves through a single global inhibitory neuron (GIN; a homogeneous local neuron) that

receives inputs from all projection neurons.
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In what follows, we explain in detail the spiking neuron models for these neurons. The

subthreshold membrane potential of projection neurons (uPNi ) and local neurons (uLNi ) are

described by the standard conductance-based leaky integrate-and-fire model. The membrane

potential of projection neurons is given by:

t
PN
m

duPNi ðtÞ

dt
¼ �uPNi tð Þ þ RPNIPNi tð Þ; ð4Þ

where RPN and tPNm are resistance and membrane time constant of projection neurons respec-

tively (see S2 Table for parameters). The input current IPNi ðtÞ represents synaptic inputs from

olfactory receptor neurons, antennal lobe local neurons and a global inhibitory neuron as well

as external noise. This input is written as

IPNi ðtÞ ¼
PN

j¼1

P

f c
ORN!PN
i;j gEi ðt � tORNj ÞðVPN

E � uPNi ðtÞÞ þ
PM

j¼1

P

f c
LN!PN
i;j g Ii ðt � tLNj ÞðVPN

I

� uPNi ðtÞÞ þ
P

f c
gLN!PN
i;j g Ii ðt � tf ÞðVPN

gI � uPNi ðtÞÞ þ InðtÞ; ð5Þ

where N = 360 andM = 36 are the number olfactory receptor neurons and antennal lobe local

neurons respectively. A positive scalar value cORN!PN
i;j specifies the strength of a synaptic input

from the jth olfactory receptor neurons to the ith PN. Similarly, cLN!PN
i;j and cgLN!PN

i;j represent a

synaptic weight of the jth LN to the ith PN, and a synaptic weight of GIN to PNs. Here we assume

that each input spike (tfj ; f: = olfactory receptor neuron, LN or GIN) cause conductance changes

given by gEi ðtÞ ¼ e
�ðt�t

f

j
Þ=tE ðt � t

f
j Þ for olfactory receptor neuron, and g

I
i ðtÞ ¼ e

�ðt�t
f

j
Þ=tI ðt � t

f
j Þ

for local neurons and GIN. We use synaptic time constants τE = 5ms for projection neurons and

τI = 10ms for local neurons and τI = 20ms for the GIN. To implement randomness in the activity

in the antennal lobes, we add independent Gaussian noise �i(t)*N(0,σ) to the membrane poten-

tial of the projection neurons.

Similarly, local neurons are modelled by a conductance-based leaky integrate-and-fire

model as:

t
LN
m

duLNi ðtÞ

dt
¼ �uLNi tð Þ þ RLNILNi tð Þ; ð6Þ

where

ILNi ðtÞ ¼
PN

j¼1

P

f c
ORN!LN
i;j gEi ðt � tORNj ÞðVLN

E � uLNi ðtÞÞ þ
PM

j¼1

P

f c
PN!LN
i;j gEi ðt � tPNj ÞðVLN

E

� uLNi ðtÞÞ þ
PM

j¼1

P

f c
LN!LN
i;j gIi ðt � tLNj ÞðVLN

E � uLNi ðtÞÞ þ �iðtÞ ð7Þ

Here, cORN!LN
i;j determines synaptic strength from the jth olfactory receptor neurons to the

ith local neuron. We assume random sparse connectivity from projection neurons to local

neurons cPN!LN
i;j and LNs to LNs cLN!LN

i;j (see S2 Table for parameters). The synaptic strengths

from olfactory receptor neurons to local and projection neurons were adjusted so that the

average activities of downstream local neurons to a stimulus become 40 Hz higher than the

spontaneous spike rates [90]. In the subsequent method sections, we enrich the model by

introducing non-associative and associative learning in the antennal lobe and lateral horn.

There, the synaptic connections from local neurons to projection neurons are modified

according to inhibitory spike-timing dependent plasticity (STDP) whereas the synaptic

strength from LNs to LNs is modulated by octopamine during a learning procedure. We

describe the details below.
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Non-associative learning in the antennal lobes

Recent studies revealed that non-associative plasticity modifies neural activities in the antennal

lobes: neural representation of mixture odours is changed after bees are preferentially exposed

to one component of the mixture without reward [95]. Further, the organization of the anten-

nal lobes and honeybee’s behavioural performances in learning tasks changes during the first

week of their life apparently due to exposure to new stimuli [41]. The inhibitory synapses in

the antennal lobes can be shaped by inhibitory spike-timing dependent plasticity (iSTDP) [96].

Here, we model non-associative learning by a symmetric iSTDP between presynaptic antennal

lobe local neurons and postsynaptic projection neurons with a decay time constant τiSTDP. In

the symmetric iSTDP, both temporal ordering of pre- or postsynaptic spikes potentiate the

connectivity, and the synaptic strength of jth inhibitory local neurons onto ith projection neu-

rons (cLN!PN
i;j ) is updated as follows. When we have a presynaptic event at time tLNj of the j local

neuron, the synaptic change is given by

DcLN!PN
i;j ¼ ZðxPNi � aÞ; ð8Þ

where xPNi ¼
P

f e
�ðtPN

i; f
�tLN

j
Þ=tiSTDP . Here, tPNi;f exhibits the time of the fth postsynaptic spiking of ith

projection neuron that appears before the presynaptic event (tPNi;f < tLNj ). η is the learning rate.
We added the depression factor α = 2 ρ0 τiSTDP (ρ0 is a constant) to control the target rate for

the postsynaptic projection neuron [96]. When we have a postsynaptic event at tPNi of the ith

projection neuron, the synaptic change is given by

DcLN!PN
i;j ¼ Z xLNj ; ð9Þ

where xLNj ¼
P

f e
�
tLN
j;f

�tPN
i

tiSTDP . Here, tLNj;f exhibits the time of the fth presynaptic spiking of jth local

neuron that appears before the postsynaptic event (tLNj;f < tPNi ).

We assumed a random Gaussian connectivity matrix (Fig 2B) from LNs to PNs as an initial

connectivity. This connectivity matrix is then modified according to the above procedure (Eqs

8 and 9) until it converges to stable synaptic strengths.

Associative learning in the lateral horn

A population of projection neurons (l-PNs) transfer the olfactory signals to the lateral horn

through the l-ATP. Further, the VUM-mx1 neuron releases octopamine in the antennal lobes,

lateral horn and mushroom bodies [31]. Octopamine modulates synaptic changing for anten-

nal lobe local neurons and the decision neuron (LHN) in the lateral horn [61,69], which is

thought to underlie the reinforcement learning during appetitive conditioning. The spiking

neuron model of LHN is described by the standard leaky integrate-and-fire model (see Eq 4

and S2 Table). In this study, we assume that all projection neurons convey their information to

the single decision neuron (LHN) in the lateral horn. Synaptic strengths from the projection

neurons to the LHN (cPN!LHN
1;j ) are modified based on the STDP rule:

STDP Dtð Þ ¼
Aþe

�
Dt

tþ if Dt > 0;

A�e

Dt

t� if Dt < 0;

ð10Þ

8

>

>

>

>

<

>

>

>

>

:

where Δt = tpost − tpre indicates the difference of spike times of presynaptic projection neuron

(tpre) and postsynaptic LHN (tpost). A+ and τ+ is the magnitude and time constant of the STDP
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function for synaptic potentiation whereas A− and τ− are constants for synaptic depression

(see S3 Table for parameters). This STDP learning rule is modulated by octopamine release.

The strengths of synapses are limited based on their capacity in changing. Here the effect of

the octopamine is modelled as follows:

DcPN!LHN
1;j ¼ fdðtÞSTDPðDtÞ; ð11Þ

where fdðtÞ ¼ 1 if t < treward; otherwise 1þ d eðt�trewardÞ=td is the eligibility trace function which

modulates the STDP function after the reward signal at time treward. Here, d is the octopamine

concentration and τd, which increases or decreases the sensitivity of plasticity to delayed

rewards. This equation is a simplified plasticity rule of modulated STDP suggested as a distal

reward protocol [97].

Supporting information

S1 Fig. Parameters of the response curve of the olfactory receptor neuron model. A and B)

left and right matrices show the molecular Hill equivalent and binding affinity for different

olfactory receptor neuron (ORN) types, respectively. Index of ORNs is arranged in the vertical

dimension. C) The probability distribution of the binding affinity for one ORN that repre-

sented in a row of the matrix B. Many of ORNs have high affinity for only a few ligands.

(TIF)

S2 Fig. Examples of selectivity and sensitivity of olfactory receptor neurons. A) Firing rates

of olfactory receptor neuron (ORNs) across 50 trials as a function of ligand concentration

(solid line is mean, shaded area is standard error (SE)). The red curve indicates that this ORN

is selective to Odour A. Here the slopes of curves show the degree of ORN sensitivity: A slope

with greater value denotes higher sensitivity. B) The same presentation as in panel A for differ-

ent ORN type. C) The Odour A and B used in the top panels are represented in two colour vec-

tors.

(TIF)

S3 Fig. Tuning response of 36 different olfactory receptor neuron types. A) Each histogram

illustrates the firings rate of an olfactory receptor neuron (ORN) type activated by 100 random

odours shown in panel B. The odours on the horizontal axis are sorted according to the firing

rate while the higher firing rate is located closer to the centre. The red line indicates the sponta-

neous rate for each ORN. B) Rows in the coloured matrix represents 100 vectors of simulated

odours.

(TIF)

S4 Fig. Effect of associative learning in the dorsal region of the antennal lobe.Weight

matrices of the synaptic connectivity between 36 local neurons (LNs) in the presence of modu-

lated STDP are reformed in these connections (From left to right: random weights before

training; weights after training to odour 3 and to odour 5). After conditioning, different

response patterns were induced in the antennal lobes by odours 3 and 5.

(TIF)

S1 Table. Parameters for firing patterns of olfactory receptor neurons.

(DOCX)

S2 Table. Parameters for firing patterns of projection neuron (PN), local neuron (LN) and

lateral horn neuron (LHN).

(DOCX)

Spiking neural network of the honeybee olfactory system

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005551 June 22, 2017 23 / 29

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005551.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005551.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005551.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005551.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005551.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005551.s006
https://doi.org/10.1371/journal.pcbi.1005551


S3 Table. Parameters of the spike timing-dependent plasticity rule.

(DOCX)

S1 Video. Dynamic neural plasticity within the antennal lobe. The video shows how synap-

tic connectivity from 36 local neurons to 36 projection neurons within the antennal lobe varies

with time. Thirty-six glomeruli are represented by nodes (arranged around a ring) whose

numbers indicate the index of glomerulus in the model. Thickness of lines represents the

strength of synaptic connectivity between local neurons and projection neurons. The initial

connectivity values (first frame) were generated by a by a random Gaussian distribution. The

connectivity between glomeruli are smoothly changed in presence of iSTDP between these

connections by exposure to 1000 random odours shown on the right side of the video (see

main text and Fig 3A).
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