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Abstract: Ultraviolet (UV) colouration is thought to be an important signalling mechanism 
in many bird species, yet broad insights regarding the prevalence of UV plumage 
colouration and the factors promoting its evolution are currently lacking. Here, we develop 
a novel image segmentation pipeline based on deep learning that considerably 
outperforms classical (i.e. non-deep learning) segmentation methods, and use this to 
extract accurate information on whole-body plumage colouration from photographs 
of >24,000 museum specimens covering >4,500 species of passerine birds. Our results 
demonstrate that UV reflectance, particularly as a component of other colours, is 
widespread across the passerine radiation but is strongly phylogenetically conserved. We 
also find clear evidence in support of the role of light environment in promoting the 
evolution of UV plumage colouration, and a weak trend towards higher UV plumage 
reflectance among bird species with ultraviolet rather than violet-sensitive visual systems. 
Overall, our study provides important broad-scale insight into an enigmatic component of 
avian colouration, as well as demonstrating that deep learning has considerable promise 
for allowing new data to be bought to bear on long-standing questions in ecology and 
evolution. 
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Introduction 

The diversity of animal colouration is among the most striking features of life on Earth. 
This diversity arises through selection pressures relating to, for example, signalling (social 
and sexual), camouflage and crypsis, thermoregulation, and parasite defence (Cuthill et 
al. 2017; Caro and Koneru 2021). The role of colouration in signalling is particularly 
complex because effective visual communication depends on both the strength of signal 
and perception of the receiver (Endler 1992). Selection is expected to strongly favour 
adaptations that maximise perception of the signal relative to background noise in the 
signalling environment (Endler 1993b). Fundamentally, visual communication therefore 
depends on the visual sensitivity of the receiver and on the light environment. The light 
environment itself is determined by the available light spectrum resulting from filtered 
solar irradiation. For example, woodland and forest canopy habitats are dominated by 
ambient light rich in blue and UV (Endler 1993a). 

In birds visual signalling is a dominant mode of communication and diurnal birds in 
particular are highly sensitive to colour. However, not all birds perceive colour equally. 
Visual systems in birds can be classified as either violet sensitive (VS) or ultraviolet 
sensitive (UVS; Ödeen and Håstad 2013). The UVS cone affords greater sensitivity to UV 
wavelengths as well as enhanced ability to discriminate between colours. While 
absorption of UV is associated with darker pigments (Nicolaï et al. 2020), UV reflectance 
is thought to be an important signalling mechanism in many bird species (Hausmann et 
al. 2003; Stevens and Cuthill 2007). Despite its importance in signalling, surprisingly little 
is known about the distribution of UV reflectance among bird species and less still on how 
the combined effects of interspecific variation in visual system and light environment 
relates to the prevalence of UV in bird plumage. We predict that the prevalence of UV 
reflectance in bird plumage is higher in bird species that possess UVS visual systems, 
occur in regions with high levels of solar UV irradiance, and occupy primarily wooded or 
forested habitats that generate ambient light conditions favouring the use of UV signals 
for achieving conspicuousness.  

Testing these predictions requires data on UV reflectance spanning species with 
variability in both visual system and light environment. Significant advances in our 
understanding of bird colouration have come from broad-scale studies that are limited to 
the human visual spectrum (i.e. excluding UV) (e.g. Dale et al. 2015), or include UV but 
are either phylogenetically limited or have sparse species sampling (e.g. Stoddard and 
Prum 2011; Maia et al. 2013; Cooney et al. 2019; Miller et al. 2019). However, capturing 
the variation to test our hypotheses requires applications of methods that capture UV 
reflectance across a phylogenetically broad and dense species sampling. Measuring or 
digitising specimens from natural history collections has become a critically important step 
in generating large scale data sets in ecology and evolution (e.g. Cooney et al. 2017; 
Felice and Goswami 2018; Sheard et al. 2020). However, processing of digitised data 
(e.g. specimen photographs) remains a significant and labour-intensive challenge. Deep 
learning offers significant potential in ecology and evolution to unlock vast amounts of 
data (Christin et al. 2019; Lürig et al. 2021). Here, we describe the analysis of a novel 
data set of calibrated images recording both visible and UV reflection and that allows 
objective measurements of colour. To address the processing challenge we test the 
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efficacy of, and subsequently apply, deep learning algorithms to segment specimens and 
extract objective measurements of UV reflectance.  

Segmentation allows measurements of the entire plumage (i.e. colour and pattern) for 
each specimen, facilitating measurement of multiple metrics relevant to our goal of testing 
the drivers of UV reflectance including mean, peak, and presence of UV colouration 
across the entire specimen. Segmentation is commonly used on biomedical images to 
separate focal regions such as cells, organs, and bones (Aljabar et al. 2009; Baiker et al. 
2010; Meijering 2012) and is also beginning to be used more widely on digitised natural 
history datasets (Kumar et al. 2015; Unger et al. 2016). However, to be a truly scalable 
solution for thousands to potentially millions of images, segmentation methods must 
provide reliable output. We assess the performance of several traditional computer vision 
based segmentation methods [thresholding (Kohler 1981), region growing (Adams and 
Bischof 1994), Chan-Vese (Chan and Vese 2001), and graph cut (Boykov and Jolly 2001)] 
and compare them to semantic segmentation using deep neural networks, specifically the 
DeepLabv3+ architecture (Chen et al. 2018) which is from a semantic segmentation 
method family called DeepLab (Chen et al. 2017a; Chen et al. 2017b). The convolutional 
neural network (CNN) is the core deep neural network architecture for feature extraction 
from images (Krizhevsky et al. 2012; He et al. 2016), which takes images as input and 
extracts features using convolutional and pooling layers. Trained CNNs can make 
predictions for tasks such as image classification (Krizhevsky et al. 2012; Szegedy et al. 
2014), pose estimation (Newell et al. 2016; Wei et al. 2016) and semantic segmentation 
(Long et al. 2015; Chen et al. 2017a) using extracted features. 

Here, we assess the performance of deep learning segmentation in comparison to classic 
computer vision methods using photos of bird specimens taken at the Natural History 
Museum, Tring, UK. We then test different methods in order to build a pipeline that can 
segment specimen photos automatically and accurately. We used, evaluated, and 
compared classic and deep learning segmentation methods to segment specimens from 
the background and to remove obstructions (labels, string etc.) that obscure the specimen. 
We then generated estimates of UV signalling in bird plumage for 100’s of thousands of 
images from >4500 bird species using deep learning to (i) map the phylogenetic 
distribution of UV signalling and (ii) test how UV signalling relates to the visual system 
and light environment. 
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Methods 

Specimen imaging 

The images and labels used in this study were taken in the bird collections at the Natural 
History Museum, Tring. All images follow a standardised design as described by Cooney 
et al. (2019). We repeat the main protocols here for convenience. Photos were taken from 
three views (back, belly and side) for each specimen and each view was photographed 
twice, once in the human-visible and once in the ultraviolet (UV) light spectra, enabled by 
using a Nikon 105mm f/4.5 UV Nikkor lens and a modified Nikon D7000 DSLR camera. 
The camera was modified (by Advanced Camera Service, Norfolk; 
http://advancedcameraservices.co.uk/) to allow both human visible and ultraviolet (UV) 
wavelengths of light to be recorded. For each view, pairs of images (human-visible and 
UV) were taken in the human-visible or UV spectrum by using either a Baader UV/IR Cut 
filter / L filter (transmits light in the human visible range 400-680nm) or a Baader U-Venus-
Filter (transmits light in the UV range 320–380 nm). Each image included one specimen 
and a set of five Labsphere Spectralon diffuse reflectance standards (2%, 40%, 60%, 80% 
and 99% reflectance arranged left to right in each image, referred to as Standard 1-5) 
photographed against a non-reflective black background (theatre blackout curtains) under 
controlled lighting conditions (two Bronocolor Pulso G 1600 J lamps with UV filters 
removed and powered by a Broncolor Scoro 1600S Power Pack). Specimens were 
placed with heads on the left and tails on the right in images where possible. Due to 
variation in size and shape of different species (e.g. exceptionally long neck or legs) some 
museum specimens are arranged in non-standard ways (e.g. fold necks to fit specimens 
in the camera). The same camera settings were used for all photographs (1/250 sec, 
f/16.0, ‘Daylight’ white balance, RAW photo format), with the exception that ISO was 100 
for human visible images and 1000 for UV images. Images were saved in RAW format at 
a resolution of 4,948 x 3,280 pixels. The full data set used for deep learning consists of 
122,610 visible-light images consisting of 40,870 specimens from 8,504 species (mean 
sampling of 2.47 male and 2.26 female specimens per species). 

Image segmentation with deep learning 

We used DeepLabv3+ (Chen et al. 2018) to create a segmentation workflow with two 
steps: (i) data preparation, including expert labelling to generate training and model 
evaluation data sets, and image downsampling; and (ii) model training and application.  

Data preparation: We produced data for model training and assessment by manually 
labelling a subset of 5,094 photos representing three views of 1,698 bird species. The 
sample of 1,698 bird species encompass representatives of more than 81% of bird genera 
and 27 bird orders, so the labelled images capture a large extent of the total variation in 
plumage colour, patterns, and bird body shape. Examples of expert labelling are shown 
in Figure 1. We used multiple polygons to capture unconnected areas (Fig. 1b) and nested 
polygons to label non-plumage areas inside plumage areas (e.g. eyes and feet; Fig. 1c). 
Our goal is that segmentation should not include any regions outside the plumage area, 
and it is preferable to segment within the focal area (i.e. to be conservative in the 
estimation of the plumage area) to ensure that the colour space only contains plumage 
colour information. The resulting manual segmentation then contains two classes: 
plumage areas and non-plumage areas. 
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Figure 1. Examples of using polygons to segment plumage areas of specimens. (a) A 
specimen is segmented using a single polygon. (b) A specimen is segmented using 
multiple polygons. (c) A specimen is segmented using nested polygons as the eye is not 
plumage area and is excluded using a nested polygon. 

 

DeepLabv3+ outputs heatmap arrays in which the array resolution is the same as the 
input image and where the number of matrices in the array is equal to the number of pixel 
classes. Here, we have two-pixel classes distinguishing pixels that are either inside or 
outside the segmented area. The output heatmap pixel value (0 to 1) of each channel 
represents the probability that the pixel belongs to the corresponding class. We converted 
coordinates of expert drawn polygons to heatmaps, with the first channel as the non-
plumage area and the second channel as the plumage area. Pixels of the non-plumage 
area were set to 1 for the first channel and 0 for the second channel, and vice versa for 
pixels of the plumage area.  

The DeepLabv3+ architecture is most efficient when run on a GPU but typically requires 
downsampling of input images to avoid memory limitations. We used a 12GB NVIDIA 
GTX 1080Ti GPU and downsampled all 5094 images to 618 x 410 pixels (from 4,948 x 
3,280 pixels) using bilinear interpolation from the OpenCV computer vision library 
(Bradski 2000). This resolution is eight times smaller than the original resolution and is 
the largest resolution that could be trained within memory limitations. 

A common approach used in many studies is to split data into a training set, a validation 
set, and a test set that is used to provide the final benchmark (e.g. methods in solving the 
ImageNet challenge; Krizhevsky et al. 2012; He et al. 2016). Here, we used only training 
and validation sets so that every image from the labelled dataset (covering a wide range 
of extant bird species) has a prediction from the same data partition routine. This allows 
the relationship between bird taxonomy and network performance to be evaluated (i.e. to 
assess whether performance varies among bird clades due to broad differences in size, 
shape and colouration of specimens). We split the 5094 expert labelled images into a 
training set and a validation set with an 80:20 ratio. 

Model training and application: After data splitting, we trained the model with the training 
set (80% of images) under a set of pre-defined network hyperparameters (see below). 
We used five-fold cross-validation to provide an accurate estimate of model performance 
by averaging performance for different partitions (five partitions for five-fold cross-
validation) of training and mutually exclusive validation sets. For each training step, the 
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network generates predictions from input images. The model optimises the loss between 
output heatmaps and ground truth heatmaps (i.e. the expert labelled validation data set) 
by updating its parameters with the gradient of a loss function (Ruder 2016). We used the 
sum of cross-entropy between pixel values of output heatmaps and ground truth 
heatmaps as the loss function (Chen et al. 2017a). To minimise the loss function, we used 
the ADAM optimiser (Kingma and Ba 2014) and the gradient of the loss function to update 
model parameters. We set the initial learning rate to 0.01. Through the training process, 
the learning rate was cosine decayed and restarted at the initial value after reaching zero, 
which increases the likelihood of reaching a better local optimum (Loshchilov and Hutter 
2016). The length of the first period of decay-restart was set to one epoch (defined as 
one pass of the full training set for the network). After each period, the new period is two 
times longer than the previous one (i.e. the second period takes two epochs to decay to 
zero, the third period takes four epochs and so on). We trained the model over 31 epochs 
(i.e. five complete decay-restart periods), after which the optimisation had converged (i.e. 
the loss has stopped decreasing).  

We implemented and trained the network using Python 3 and the deep learning library 
Tensorflow 1.12 (Abadi et al. 2016) on one NVIDIA GTX 1080Ti GPU (12GB GPU 
memory). The code can be found in https://github.com/EchanHe/plumage. To balance 
the memory usage of the GPU and the optimisation at each step (Hinton et al. 2012) we 
divided training images into batches of four images. The model takes one batch per 
training step. 

After the training process, we passed the validation images into the trained network to 
generate validation predictions. We then resized the predicted segmentations to the same 
resolution as the original images (4,948 x 3,280 pixels) and used these resized 
predictions, compared to the ground truth validation set to evaluate model performance 
(see below). 

Additional model testing: In addition to the core pipeline above we also trained and 
validated the models (i) with alternative input resolution, (ii) with alternative input channels 
(human visible and UV), (iii) by applying image augmentation (a method that creates extra 
training images by manipulating the existing training images), (iv) by restricting training 
by image view (back, belly and side), (v) by lowering image quality, and (vi) by adjusting 
the size of the training set, to test if these effected the performance of the DeepLabv3+ 
model. The details of these tests and results can be found in the supplementary material. 
In the main text we focus on the core pipeline outlined above since this proved to be the 
best model configuration in our evaluation tests. 

Image segmentation with classic computer vision methods 

To test if deep learning outperforms classic computer vision methods on this dataset, we 
also tested the performance of the thresholding, region growing, Chan-Vese, and graph 
cut methods from the OpenCV library (Bradski 2000). A weakness of some of these 
methods is that while they do not require any prior knowledge of the shape of the 
segmentation area, the region growing, Chan-Vese, and graph cut (but not thresholding) 
methods do require spatial information as starting values. These are usually points within 
the focal region. We used points within body region (2D points that are placed on specific 
bird body regions) as initial spatial information. We applied gaussian smoothing, a 
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common pre-processing step to reduce noise for many classic segmentation methods 
(Lee 1983), prior to applying each of the four classic segmentation methods outlined 
below. We applied morphological close (close segmentation holes) and open (remove 
segmentation noises) as a global post-processing step (Haralick et al. 1987).  

Thresholding:  Thresholding segments an image by allocating each pixel to either the 
foreground or the background based on a pre-defined value (Kohler 1981). This value 
can be set either manually or automatically calculated based on image features such as 
the image histogram or entropy (Otsu 1979; Sezgin and Sankur 2004). For thresholding 
we first converted images to greyscale. Along with segmenting the plumage area, 
thresholding will inevitably segment parts of the reflectance standards, as standards 
necessarily span the majority of greyscale values. We therefore reduced the target area 
by selecting the most upper connected component of the image. This is possible because 
the specimen is always placed above the reflectance standards but requires the 
assumption that the segmented plumage area is not connected with other segmented 
parts. We tested whether using the modal pixel value of the image with a positive offset 
of 15 performs better than Otsu’s (1979) method and adaptive thresholding methods. We 
therefore used the modal pixel value to threshold images.  

Region growing: Region growing is a method for segmenting the neighbouring pixels of 
an initial pixel. The classification of each neighbouring pixel depends on its similarity to 
the initial pixel values. Region growing methods iterate the same procedure by examining 
the neighbour pixels of newly segmented pixels until no more pixels can be segmented 
(Adams and Bischof 1994). We tried 150 ranges from different upper (even numbers from 
2 to 30) and lower (even numbers from 2 to 20) boundaries for region growing. We found 
that the best combination is a lower boundary of 6 and an upper boundary of 30 and we 
use these settings for evaluation and comparison to DeepLabv3+. 

Chan-Vese algorithm:  The Chan-Vese algorithm is an active contour model designed to 
detect object outlines that are not defined by a gradient (Chan and Vese 2001) and is a 
development of the ‘snakes’ active contour models (Kass et al. 1988). The model requires 
a starting area within the segmentation area, which we initiated using squares of 20 x 20 
pixels around points placed on the specimen and applied the algorithm for 100 iterations 
(Chan and Vese 2001).  

Graph Cut: The graph cut algorithm (Boykov and Jolly 2001) treats an image as a graph 
where pixels are nodes. Each pixel has edges to its neighbour pixels, and edges to a 
source (foreground) and a sink (background) node. Weights of edges are based on pixel 
intensities and identities (i.e. foreground, background or to be segmented). The minimum 
cut cuts the graph into two subgraphs that have the largest weighted sum (Boykov and 
Jolly 2001). The result is the foreground subgraph defining the segmented object. For the 
graph cut method, we set points placed on the specimen as the foreground. The 
consistent setup for imaging specimens means that specimens would not be placed near 
the top, bottom, left and right boundaries, and would always be placed above the 
reflectance standards. We therefore set pixels within 20 pixels of the top, left and right 
edges and below the standard points as background.  

Segmentation evaluation 
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We used a range of metrics to evaluate the performance of both the deep learning and 
classic computer vision models. These focused on capturing the precision (positive 
predictive value) and recall (sensitivity) of the segmented areas and on assessing the 
reliability of colour information extracted from the segmentations. To assess the 
segmented areas we used the mean intersection over union (mIOU), precision, and recall 
metrics. The mIOU is the average IOU of all classes (e.g. plumage area and non-plumage 
area for the dataset). The IOU of class 𝑖 is: 𝐼𝑂𝑈𝑖 =  𝑝𝑖𝑖𝑝𝑖𝑖 + 𝑝𝑖𝑗 + 𝑝𝑗𝑖, 
where: 𝑝𝑖𝑖 are pixels of class 𝑖 and classified as class 𝑖 (true positive); 𝑝𝑖𝑗 are pixels of 
class 𝑖 but classified as other classes (false negative); and 𝑝𝑗𝑖 are pixels of other classes 
classified as class 𝑖 (false positive). IOU is a straightforward metric to measure the 
segmentation performance by combining aspects of both precision and recall but it can 
be useful to consider precision and recall separately. Precision shows the proportion of 
correct predictions and is a useful test of predictive capability of the model, whereas recall 
measures the segmentation area that the model does not predict and reflects sensitivity 
of the model. We used the following formulas for precision and recall of class 𝑖:  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =  𝑝𝑖𝑖𝑝𝑖𝑖 + 𝑝𝑗𝑖   and   𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =  𝑝𝑖𝑖𝑝𝑖𝑖 + 𝑝𝑖𝑗. 
We used IOU and precision to measure the network performance as they both reflect the 
project-specific goal of minimising the inclusion of non-plumage regions of the image. 
Achieving high recall is less critical but nonetheless important because we do not want 
results with excessively low recall (i.e. that are extremely conservative). Segmentations 
have only two classes (plumage area and non-plumage area) that are mutually exclusive, 
so mean metrics and plumage area metrics are highly correlated. We therefore report 
metrics based on the evaluation of the plumage area only. 

UV data and analysis 

Image processing 

Focusing on passerine species with male and female data, all raw (.NEF) images of 
specimens were linearised and exported as linear TIFF files using DCRAW (Coffin 2016). 
Following established approaches (Troscianko and Stevens 2015; Cooney et al. 2019), 
pixel values were normalised using mean pixel intensity values from the five grey 
standards included in each image in order to control for variation in lighting conditions. 
We then segmented images using the image masks described above to leave only pixel 
values corresponding to the specimen in each image. Importantly, prior to pixel extraction 
each image mask was individually checked by eye and manually refined where necessary 
using bespoke software (https://github.com/EchanHe/PhenoLearn). The final dataset 
consisted of images for 24,442 specimens covering 4,545 passerine species, with an 
average of 2.8 male and 2.6 female specimens per species. 

As individual pixel values can be noisy, and because different specimens were 
represented by different numbers of pixels due to their relative size in the image, we 
downsampled specimen images to a comparable resolution prior to extracting data on UV 
reflectance. To do this, we treated each specimen image as a raster and used the 
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aggregate() function in the R package ‘raster’ (version 3.4-5) (Hijmans 2020) to find the 
smallest aggregation factor in the range 100 to 1 that resulted in at least 500 aggregated 
cells (pixels) being returned. We then randomly sampled 500 observations from this 
aggregated dataset to represent the plumage colouration for a particular specimen view 
in all further analyses. 

Visual modelling 

We used methods developed by Troscianko and Stevens (2015) to generate mapping 
functions to convert sampled specimen RGB pixel values into avian cone-catch values. 
Using tools available in the IMAGEJ Multispectral Image Calibration and Analysis Toolbox 
(version 2.2; http://www.empiricalimaging.com/), we generated mapping functions for 
each photoreceptor using equations containing second-order polynomial terms and three-
way interactions between channels. Note that this approach does not incorporate 
information on camera responses in the UV from the camera’s green channel due to 
typically low sensitivities of the G channel in the UV range (Troscianko and Stevens 
2015). We fit these equations to our data incorporating information on the estimated 
spectral sensitivities of our camera set-up and the irradiance spectrum of our illuminant 
(i.e. flash units), both of which we estimated previously (Cooney et al. 2019). For 
modelling receptor responses, we assumed idealised illumination conditions (Stoddard 
and Prum 2008, 2011) and receptor sensitivities corresponding to an ‘average’ ultraviolet-
sensitive (UVS) avian visual system, extracted from the R package pavo (version 2.6.1) 
(Maia et al. 2019). We used this information to generate mapping functions for each cone 
class, and the resulting models were all characterised by a high degree of mapping 
accuracy (R2 values > 0.99). These mapping functions were used to estimate relative 
cone-catch values (u, s, m, l), which measure the relative contribution of ultraviolet (u), 
shortwave (s), mediumwave (m) and longwave (l) reflectance to plumage colour 
(Stoddard and Prum 2008, 2011). Our previous work has demonstrated that cone catch 
values generated by this photography-based approach are highly correlated (r > 0.92) 
with corresponding values calculated from spectrophotometric measurements (Cooney 
et al. 2019). Finally, as quantifying the colour of patches with very low overall reflectance 
can be problematic (Gomez and Théry 2007), pixels exhibiting a mean normalised 
reflectance value of <1% across all channels were re-cited to the achromatic centre (i.e. 
u = s = m = l = 0.25). 

UV colouration metrics 

We considered three metrics for quantifying differences in UV colouration: two based on 
variation in u values across plumages (Stoddard and Prum 2008) and a third based on 
determining the presence/absence of colours containing peaks of UV reflectance that 
may also stimulate other cone types (e.g. UV-yellow, UV-red) (Hausmann et al. 2003; 
Gomez and Théry 2007). 

First, we calculated the average (mean) and peak (upper quartile mean) u values for each 
image. Values of u provide a tetrachromatic estimate of the ultraviolet contribution to 
plumage colouration (Stoddard and Prum 2008) and whereas mean u values quantify the 
average UV reflectance across whole plumages, peak u values are suitable for capturing 
the UV reflectance of smaller patches of colour. 
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Second, we employed a different approach to inferring the presence of UV colouration 
that involves identifying colours containing a UV peak or a peak encompassing the UV 
range but that may also stimulate other colour cones (Gomez and Théry 2007). This 
approach works by categorising colours as ‘UV colouration’ if reflectance measurements 
satisfy three criteria: (1) u cone sensitivity shows a quantum catch higher than 0.05 
relative to a theoretical maximum 100% white reflectance standard, (2) reflectance over 
300–400 nm exceeds 3% reflectance, and (3) reflectance over 300-400 nm is higher on 
average than the minimal reflectance over the range 400–700 nm (Gomez and Théry 
2007). We applied these criteria to all pixel values in an image and counted the number 
of pixels (out of 500) subsequently categorised as a UV colour. We considered a 
specimen image to have evidence of UV colouration if >5% of pixels were categorised as 
having UV colouration.  

Overall, we note that the first two metrics measure the degree to which plumage 
colouration exclusively stimulates the u cone (i.e. represents ‘pure’ UV colouration), 
whereas the third metric (UV colouration presence/absence) maps the occurrence of 
detectable peaks in UV reflectance that may occur in combination with reflectance at 
other wavelengths (e.g. caused by carotenoid pigmentation). We calculated estimates of 
each metric for each image separately, and then calculated sex-specific, species-level 
values for each view (i.e. body region) as the average of specimen-level values. As side 
view images contained large areas of plumage already captured by back and belly images 
(e.g. Fig. 1), we restricted our analyses to back and belly (i.e. dorsal and ventral) views 
only, to minimise the risk of including the same plumage area twice in our analyses. 

Phylogenetic framework 

To provide a phylogenetic framework for the passerine species included in our analysis 
(n = 4,545), we downloaded 100 trees from the posterior distribution of complete trees 
produced by Jetz et al. (Jetz et al. 2012) from http://www.birdtree.org. These trees were 
then pruned to generate a distribution of trees containing only the focal species set. All of 
our comparative analyses were run over this distribution of 100 trees to incorporate 
phylogenetic uncertainty into our parameter estimates. For plotting purposes, we 
identified a maximum clade credibility (MCC) tree from this posterior distribution of trees 
using the maxCladeCred() function in the R package ‘phangorn’ (version 2.5.5) (Schliep 
2011). 

Predictor variables 

To test the role of factors hypothesised to influence the evolution of UV plumage 
colouration, we collected data for three key variables: ultraviolet-B (UVB) radiation, the 
degree of forest dependency, and species visual system. In total we were able to collect 
data on these variables for 4,527 of the 4,545 species in our dataset. 

Global spatial information on annual mean UVB radiation was extracted from Beckmann 
et al. (Beckmann et al. 2014) at 15 arc-minute resolution. To generate species-level 
values, we intersected this dataset with information on species’ geographic ranges 
provided by BirdLife International (http://www.datazone.birdlife.org). To do this we first 
resolved taxonomic differences between the BirdLife and Jetz et al. datasets as far as 
possible, manually editing (i.e. combining or splitting) range maps for BirdLife taxa where 
necessary. We focused on species’ breeding geographic ranges only (seasonality = 1 or 
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2) and regions where species are known to be native or reintroduced (origin = 1 or 2) and 
extant or probably extant (presence = 1 or 2). We extracted species’ polygon range maps 
onto an equal area grid (Behrmann projection) at 0.5o resolution (~50 km at the equator) 
and then reprojected and resampled the UVB dataset to match the resolution of our range 
data. Species-level UVB values represent averages across their geographic range. 

Forest dependency information was extracted from BirdLife International’s Data Zone 
(http://www.datazone.birdlife.org) and re-coded as a binary variable to facilitate effect size 
comparison. Specifically, species were coded as highly forest dependent (‘medium’ or 
‘high’ dependency) or not (‘low’ dependency or ‘does not usually occur in forest’). In a 
small number of cases (n = 52) we filled gaps in this variable by consulting species’ 
records on http://www.birdsoftheworld.org. 

Finally, we categorised species as having a violet-sensitive (VS) or ultraviolet-sensitive 
(UVS) visual system primarily using the information presented in Ödeen et al. (2011). The 
Ödeen et al. dataset provides approximately family-level resolution on visual system 
variation across passerines, and using this information we coded lineages and their 
constituent species as either VS or UVS based on the available data. Where 
species/clades were not sampled by Ödeen et al., we assumed that the visual system 
was the same as that of closely related lineages and/or the common ancestor. This makes 
sense as evolutionary switches between VS and UVS visual systems appear to be 
relatively rare across passerines (Ödeen et al. 2011) and birds more generally (Ödeen 
and Håstad 2013). However, one exception to this rule appears to be in the Maluridae 
(Australasian fairywrens and allies), where multiple shifts between violet and ultraviolet 
vision have occurred within a single genus (Malurus) (Ödeen et al. 2012). Therefore, for 
this genus we used the information in Ödeen et al. (2012) to recode species as necessary. 

Statistical analyses 

To test the relationship between UV colouration metrics and predictor variables across 
species, we used Bayesian phylogenetic mixed models implemented in the R package 
‘MCMCglmm’ (Hadfield 2010; Hadfield and Nakagawa 2010). All models were run over a 
posterior distribution of 100 trees to incorporate phylogenetic uncertainty and posterior 
distributions of parameter estimates associated with different trees were pooled to give 
model estimates that incorporate phylogenetic error (Healy et al. 2014). In all cases, 
models were run for 110,000 iterations (sampled every 25th iteration) with a 10,000 
iteration burn-in. Mean u and peak u were log10-transformed prior to model fitting and all 
variables except UV colour presence/absence were standardised (mean = 0, standard 
deviation = 1) prior to model fitting to facilitate effect size comparison. For continuous 
response variables (mean u and peak u) we used family = “gaussian”, whereas for our 
binary response variable (UV colouration presence/absence) we used family = 
“categorical”. Correspondingly, we used two sets of standard non-informative priors: 
list(R=list(V=1, nu=0.002), G=list(G1=list(V=1, nu=0.002)))] for gaussian models and 
list(R=list(V=1, fix=1), G=list(G1=list(V=1, nu=0.002))) for categorical models. Finally, 
phylogenetic heritability (H2) values (Lynch 1991) were estimated by fitting intercept-only 
models for each variable of interest and then calculating the proportion of the total 
variance explained by phylogenetic effects across the posterior distribution of parameter 
estimates. 
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Results 

Accuracy of deep learning for specimen segmentation 

Across all three views, the DeepLabV3+ model achieved high IOU, precision, and recall 
(Fig. 2 and Table S1). The mean IOU was 93.1% (per view, back: 94.6%; belly: 91.9%; 
side: 92.9%), and 88.8% of the segmentations (4,525 out of 5,094) had IOU higher than 
90%. The lowest IOU is 53.6%. The mean precision was 96.3% (per view, back: 96.8%; 
belly: 95.7%; side: 96.4%) and 97.9% of the segmentations (4,985 out of 5,094) had 
precision higher than 90%. The lowest precision was 70.0%. The mean recall was 96.6% 
(per view, back: 97.6%; belly: 95.8%; side 96.2%). No segmentation had recall lower than 
50%. Less than 0.2% of the results (7 out of 5,094, per view, back: 1; belly: 4; side: 2) 
had recall lower than 75%, and less than 1.8% of the results (89 out of 5,094, per view, 
back: 13; belly: 43; side: 33) had recall lower than 90%. Four out of the worst five 
segmentations were caused by low recalls and all have precision higher than 85%. 

 

 

Figure 2. The performance of predictions (N=5,094) from DeepLabv3+ and tested classic 
methods (thresholding, region growing, Chan-Vese and Graph cut) for (a) IOU, (b) 
Precision, and (c) Recall. 

 

Figure 3 shows the predicted deep learning segmentations on a sample of images. Many 
examples correctly classified eyes and labels as non-plumage area (e.g. Fig. 3a, ii-iv). 
Three out of four (Fig. 3a, vi-viii) of the worst IOU segmentations were caused by low 
recall issues (shown as large green areas in Fig. 3). The two worst recall examples (Fig. 
3c, vii-viii) had many undetected plumage areas, and these images have light black 
backgrounds and long camera distances due to the large size of the specimens. Other 
low recall examples failed to detect complete tails where tails are extremely thin or 
irregular (Fig. 3c, v-vi). Thin tails can also cause low precision as the model misclassifies 
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background surrounding thin tails as plumage area (Fig. 3b, vii). Legs that are placed on 
the top of the plumage area can be hard for the model to exclude (Fig. 3b, v). Fig. 3b, vi, 
also shows an example of misclassifying an irregular beak as the plumage area. 

 

Figure 3. Images of the best, 50th, 75th and 95th percentile (ranked by metrics from high 
to low; from i to iv) and 4 worst predictions (from v to viii) based on a) IOU, b) precision 
and c) recall. The IOU, precision and recall (from left to right) are displayed on the top 
right corner of each image. Blue is correctly predicted by the model (True positive); Red 
is the non-plumage area that has been classified as plumage area by the model (False 
positive); Green is the plumage area that has been classified as non-plumage area (False 
Negative). 

 

Additional model testing: We found that (i) there was a significant effect of input resolution 
on accuracy where low resolution can result in low accuracy (Fig. S1), (ii) the input 
channel using RGB has the highest performance (Fig. S2), (iii) predictions using the 
image augmented training set were worse than predictions using the original training set 
(Fig. S3), (iv) training models individually by view did not increase the accuracy (Fig. S4), 
(v) low-quality datasets caused slightly lower model performance but the degradations 
were small (Fig. S5), and (vi) the size of the training set is positively correlated with the 
model performance but DeepLabv3+ can achieved over 90% IOU, precision and recall 
using just 10% of the original training set (Fig. S6). The full details of these results can be 
found in the supplementary material. 

Deep learning versus computer vision for specimen segmentation 

We compared the results from the DeepLabv3+ model to four classic computer vision 
segmentation methods (thresholding, region growing, Chan-Vese and graph cut). IOU 
varied significantly among segmentation methods (ANOVA: F=3141.3; d.f.=4, 25465; 
p<0.01), as did precision (ANOVA: F=1678.6; d.f.=4, 25465; p<0.01) and recall (ANOVA: 
F=1989.6; d.f.=4, 25465; p<0.01). DeepLab had superior performance for IOU, precision 
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and recall compared to classic methods, combining both the highest mean values and 
lowest variance for each performance metric (Fig. 2). Specifically, DeepLab outperformed 
classic results by at least 23.4% on IOU, 6.4% on precision and 9.5% on recall. Graph 
cut had the best IOU among tested classic methods, while Chan-Vese had the best 
precision and Thresholding had the best recall. Graph cut was the overall best classic 
method in plumage images, while Chan-Vese segmented area conservatively, and 
thresholding tended to segment lots of non-plumage regions. 

The worst examples from classic methods were clearly far worse than those from 
DeepLabv3+. Examples shown in Figure S7 illustrate that dark plumage, high plumage 
colour variability and museum specimen labels can be obstacles for classic methods 
whereas DeepLabv3+ segmented accurately on the same images. 

Phylogenetic distribution of UV colouration 

Using manually inspected image masks produced by the DeepLabv3+ method, we 
mapped the phylogenetic distribution of UV colouration in passerine birds (Fig. 4). 
Generally, UV reflectance represents a minor proportion of avian plumage colouration, 
with most plumages eliciting relative ultraviolet cone-catch values (u) of <0.25, where 
cone-catch values of 0.25 would be considered the achromatic null (Stoddard and Prum 
2008). Despite this general pattern, the plumages of some species are characterised by 
extremely high levels of ‘pure’ UV colouration, including the Purple Honeycreeper 
(Cyanerpes caeruleus) and the Hooded Mountain Tanager (Buthraupis montana) with 
peak dorsal u values of 0.67 and 0.62, respectively, compared to a maximal value of 0.75. 
Using an alternative metric (UV colouration presence/absence) that accounts for the fact 
that UV reflectance may co-occur with reflectance at other wavelengths (e.g. UV-red), we 
found more extensive evidence for UV colouration across passerines (Fig. 4), albeit with 
a similar pattern of phylogenetic clustering. Indeed, modal phylogenetic heritability (H2) 
estimates for the three UV colouration metrics we consider were all >0.80 (range 0.81 to 
0.93) (Table S2), indicating that UV colouration – or a lack thereof – is phylogenetically 
conserved across passerines, with closely related species typically exhibiting similar 
levels of UV colouration. 
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Figure 4. The phylogenetic distribution of UV colouration in passerine birds. Blue bars 
indicate the relative contribution of ultraviolet reflectance to plumage colouration (as 
measured by u values) of female and male individuals for 4,545 species of passerine 
birds. Purple dots on the end of bars (‘UV colouration’) indicate the occurrence of 
detectable peaks in UV reflectance possibly occurring in combination with other colours 
(e.g. UV-yellow). 
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Correlates of UV colouration 

We find that the degree of UV colouration is significantly predicted by several factors (Fig. 
5, Table S3). Specifically, for average and peak u, we find that values are significantly 
higher in males, on the dorsal side of the bird, and in species inhabiting forests and 
locations with high incident UV radiation. Our models also revealed a notable positive 
association between an ultraviolet sensitive (UVS) visual system and the degree of UV 
colouration, but this effect was statistically non-significant and characterised by a high 
degree of parameter uncertainty (Fig. 5, Table S3). Results based on the UV colouration 
metric were similar to those based on u values, with the exception that UV colouration is 
significantly more likely to be present on the ventral, not dorsal, side of the bird.  

 

 

Figure 5. Predictors of UV colouration in passerine birds. Box plots summarise the 
posterior marginal distributions for all fixed-effects from Bayesian phylogenetic mixed 
models applied over a sample of 100 phylogenetic trees. Box widths represent the 
interquartile range, the median is shown as a vertical line within each box, and whiskers 
denote the 95% credibility interval of the distribution. Asterisks indicate evidence for a 
non-zero effect of the relevant variable. *, P < 0.05; **, P < 0.01; ***, P < 0.001. M, male; 
UVS, ultraviolet sensitive. 
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Discussion 

Our results show that UV reflectance, particularly as a component of other colours, is 
widespread across the passerine radiation. Some clades [e.g. tanagers (family: 
Thraupidae), corvids (family: Corvidae), thrushes (family: Turdidae)] are particularly 
notable for the extent of UV reflectance whereas other have comparatively low incidence 
or prevalence [e.g. larks (family: Alaudidae), ovenbirds and woodcreepers (family: 
Furnaridae)]. The presence of UV in both male and female plumage shows a strong 
phylogenetic signal. We also find strong evidence in support of Endler’s (1993a) 
hypothesis on the role of light environment on colour signal. Specifically, we find that UV 
(whether measured as average, peak, or prevalence as part of composite colours) is a 
more dominant component of plumage reflectance in species that are forest dependent 
and occur in regions with high levels of UVB solar radiation. UV reflectance is also notably 
stronger in males than females and, for mean and peak, on the dorsal, rather than ventral 
side of the body. These latter results in particular support the idea that UV plays an 
important role as a sexual signal. 

Different regions of birds’ body are likely to have different roles along a crypsis to 
conspicuousness spectrum. Dorsal body regions have previously been shown to be more 
conspicuous (e.g. Delhey 2020) than ventral regions. We suggest that UV functions as a 
signal enhancer, increasing the conspicuousness of visual cues, and that the stronger 
signal in males suggests that these are cues that may often play a role in female mate 
choice. The signalling role of UV is implicated in the private channel hypothesis that 
suggests that UV can act as a special signal that is detectable by the intended receiver 
(i.e. conspecifics) but not others (e.g. potential predators; Hausmann et al. 2003; Stevens 
and Cuthill 2007). An important corollary is that the predominant predators of many 
passerine birds are birds of prey that are also sensitive to UV (Stevens and Cuthill 2007). 
Birds of prey possess VS rather than UVS receptors, and are therefore less sensitive to 
UV than passerines (Håstad et al. 2005) suggesting that UV signalling may still be a low 
cost way of enhancing signalling efficiency. Our analyses suggest a weak trend towards 
higher UV plumage reflectance among species with ultraviolet rather than violet-sensitive 
visual systems, in line with results based on visual modelling predicting only weak 
relationships between visual system variation and plumage colouration (Lind and Delhey 
2015; Lind et al. 2017). However, we are necessarily cautious in this interpretation 
because there is wide uncertainty in parameter estimates for the effect of VS/UVS in our 
models. This uncertainty likely stems from the relatively low number of transitions 
between visual systems, and conservatism within clades, in the passerine radiation 
(Ödeen and Håstad 2013). 

Taken together, our analyses reveal the diversity and extent of UV reflectance in 
passerine birds and provide new insight into the factors that underpin the ubiquity of UV 
colours in the avian colour gamut. The data on which these inferences lie rely on efficient 
processing of a vast quantity of raw input. We were able to achieve this using deep 
learning after first testing the suitability for these methods. We show how DeepLabv3+ 
can automatically segment bird plumage areas from other parts across more than 
120,000 images within a few days on a consumer grade GPU and can identify the 
plumage area (precision: 96.3%) and plumage area completeness (recall: 96.6%) reliably. 
Our analysis showed that segmentation using DeepLabv3+ strongly outperformed all 
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classic computer vision methods. Indeed, segmentations from classic methods are 
frequently so poor that they would often be unusable for downstream analyses of colour. 
Of the classic methods, Graph cut had the best average plumage area IOU but was 23.4% 
worse than the average IOU from DeepLabv3+. In contrast to the DeepLab predictions, 
images with dark birds and prominent label tags could not be reliably segmented using 
classic methods. Dark birds were normally under or over segmented, and label tags were 
included as plumage area (e.g. Fig. S7). Besides deficiencies shown in these examples, 
setting starting parameters for classic methods, for example choosing threshold values 
for thresholding and region growing by hand-crafted image features, is a troublesome 
task (Chang and Li 1994; Fan et al. 2001). We suggest that deep learning is likely to be 
of wider value for high throughput processing of very large image datasets and supports 
growing recognition of the potential value of deep learning for many applications in 
biodiversity science (Christin et al. 2019; Lürig et al. 2021).  

Our experimental configurations also allow us to identify limitations and possible ways to 
further improve model performance for deep learning. We found that input image 
resolution had positive effects on performance, as expected and previously reported for 
DeepLabv2 (Chen et al. 2017a). In contrast, image augmentation, using additional 
channels and subsetting models did not improve the performance of the deep learning 
model. The best performance overall was achieved with DeepLabv3+ and an input 
resolution of 618 x 410 pixels. This resolution was the maximum we could achieve with 
available resources but could be increased with a more powerful GPU and we would 
expect that performance can therefore be improved further. Our results are also 
consistent with previous studies showing that the training set size is positively correlated 
to the model performance (Joulin et al. 2015; Hestness et al. 2017). However, small 
training set sizes did not decrease the performance drastically. It is possible to use just 
15% of the original dataset (~600 images) to generate segmentations with 90% IOU on 
1,018 validation images. This is still much more accurate than results using any of the 
classic method segmentation methods. The highly consistent imaging layout in our data 
may reduce the size of training data needed to get an acceptable result from deep 
learning. 

The consistency of imaging in our data may partly explain the quality of performance of 
the deep learning model. The IOU in our best configuration was 93% which is higher than 
DeepLabv3+’s performance (mIOU: 89.0%) on the standard PASCAL VOC 2012 data set 
(Chen et al. 2018). In contrast to the PASCAL dataset, (i) our dataset has only two classes 
(plumage and non-plumage) while the PASCAL dataset has 21 classes (Everingham et 
al. 2015) and (ii) our images consist of few and fixed focal objects (one) under a consistent, 
high resolution imaging setup. In contrast, the PASCAL images are more varied (e.g. 
different objects, backgrounds). While there are specific challenges in removing 
unwanted parts of the images (including eyes and specimen labels), these do not seem 
to significantly impact model performance. These two factors may explain why no 
improvements were observed with image augmentation, additional channels and 
subsetting models, as the model had already been well trained using the highly 
standardised original dataset. Modern pipelines for museum collection digitization 
typically follow similarly consistent standards such as uniform specimen placements, 
background and light environment (Hudson et al. 2015; Unger et al. 2016; Hussein et al. 
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2020) suggesting that such data can be analysed with deep learning. However, high 
standard digitisation is time-consuming. We simulated low-quality images and they did 
not provide excessively inaccurate predictions, and the worst performance was much 
better than classic methods’ results (i.e. Fig. S5). This result, along with promising results 
on low consistent datasets such as PASCAL VOC 2012 (Chen et al. 2018), shows that 
the DeepLab model is likely to be robust on less consistent datasets. 

Here, we have tested and applied deep learning approaches for semantic segmentation 
to reveal the prevalence and predictors of UV plumage colouration across bird species. 
However, deep learning has broader potential applications for image processing including 
species identification and key point placement (e.g. landmarking for geometric 
morphometrics). Some tasks may require larger training sets than we have used. For 
example, DeepLab (Chen et al. 2017a) used a training set size of 1400 images in 
PASCAL VOC 2012 and 2975 images in Cityscapes (Cordts et al. 2016). Tasks like 
classification and pose estimation have used even larger datasets, such as 1.2 million 
training images in ImageNet classification (Deng et al. 2009) and more than 28,000 
images in MPII pose estimation challenge (Andriluka et al. 2014). Such large training sets 
can be generated through citizen science projects, such as the ‘Zen of Dragons’ 
(https://www.zooniverse.org/projects/willkuhn/zen-of-dragons). Regardless of the source 
of training data, all automated methods are likely to be imperfect and, depending on the 
goal of the project, may require expert error checking prior to downstream analysis as we 
used here. Nonetheless, we support the view that deep learning has great promise 
(Christin et al. 2019; Lürig et al. 2021)—particularly in the mobilisation of digitised images 
(both 2D and 3D) from natural history collections—allowing new data to be brought to 
bear on key outstanding questions in ecology and evolution. 
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Supplementary material  

 

Additional model testing 

(i) Effects of input resolution on the performance 

DeepLab has been shown to perform better when using the original input resolution 
compared to resized resolutions (Chen et al. 2017a), in particular downscaled images 
result in lower accuracy for pose estimation and classification (Kim, Kwon Lee, and Mu 
Lee 2016). We compared resolutions that were 8, 10 and 16 times lower than the input 
images (i.e. 618 x 410, 494 x 328 pixels and 309 x 205 pixels) to test whether performance 
degrades at lower resolutions. 

There was a significant effect of input image resolution on IOU (ANOVA: F=1361.0; d.f.=2, 
15279; p<0.01), precision (ANOVA: F=1069.2; d.f.=2, 15279; p<0.01) and recall (ANOVA: 
F=456.3; d.f.=2, 15279; p<0.01) (Fig. S1). The IOU and recall of 618 x 410 pixels and 494 
x 328 pixels were not significantly different from each other, while the rest of the 
accuracies (IOU, precision and recall) were positively related to the input resolution (Fig. 
S1). The image resolution of 618 x 410 pixels had the best overall performance, while the 
309 x 205 pixels had the worst performance. 

(ii) Effects of input channels on the performance 

Previous studies have included non-visible light (e.g. UV and IR) information as the input 
in deep learning tasks, sometimes leading to better performance when compared to using 
only RGB channels (Basu et al. 2015; Potena et al. 2017; Milioto et al. 2018). Our dataset 
includes two sets of images, one filtered to include only human visible (RGB) wavelengths 
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and one to include only UV wavelengths, because bird plumage frequently includes UV 
reflecting regions. All images were taken against a black background made of theatre 
blackout curtains with very low reflectance of the UV light. The specimens should 
therefore reflect more UV light than the background. To test whether the inclusion of UV 
improved network performance, models were trained with (i) images using RGB channels 
only, (ii) images using UV channels only and (iii) images using RGB plus UV channels. 

There was a significant effect of input channels on IOU (ANOVA: F=395.6; d.f.=2, 15279; 
p<0.01), precision (ANOVA: F=184.9; d.f.=2, 15279; p<0.01), and recall (ANOVA: 
F=236.6; d.f.=2,15279; p<0.01) (Fig. S2). RGB was consistently better than UV and 
RGB+UV although the effects tended to be small (evaluation results of UV and UV+RGB 
were <2% worse than RGB) (Fig. S2). 

(iii) Effects of image augmentation on the performance 

Image augmentation is a common technique that increases the size of the training set by 
creating new labelled training images from manipulating the existing images and their 
labels, and has been shown to improve the model performance of DeepLab (Chen et al. 
2017a). We created an augmented training set from the original training set in which 
images and their segmentations were randomly rotated (-15° to -1°, 1° to 15°), translated 
in both x and y axes (100 to 500 pixels), scaled (0.1 to 1.1). We used the augmented 
dataset to train the model with evaluation performed on the original validation set. 

IOU was significantly higher (t[10186]=5.90, p<0.05) for the original dataset (Mean=93.1, 
Standard deviation (SD)=3.24) than the augmented dataset (Mean=92.7, SD=3.35) (Fig. 
S3). We also found a significant difference in the precision (t[10186]=6.63, p<0.05) and 
again the original dataset (Mean=96.3, SD=2.38) outperformed the augmented dataset 
(Mean=96.0, SD=2.56) (Fig. S3). However, there was no significant difference in the 
recall (t[10186]=1.81, p=0.07) (Fig. S3).  

(iv) Effects of subsetting models on the performance 

In our core pipeline, we used one deep learning model on images from all views (all-views 
model), but image variations of different views may introduce difficulties for the network 
to learn. We therefore tested the impact of training and validated separate models for 
each of the three image views (back, belly and side). This reduces the input data for each 
model run to 1,698 images (compared to 5,094 images). 

We found that subsetting models by image view (i.e. back, belly, side) was significantly 
worse than using the all-views model, except for recall on the side view (t[10186]=1.43, 
p=0.15) (Fig. S4). The back view had the largest IOU difference (the all-views model has 
0.7 higher IOU than individual models) and recall difference (recall of the all-views model 
is 0.5 higher), while the side view had the largest precision difference (precision of the all-
views model is 0.4 higher) (Fig. S4). 

(v) Quality of the training data 

In our case, specimen images were taken in a highly consistent manner by controlling the 
placement of the specimen, light environment and background (Hudson et al. 2015). 
However, not all image datasets are likely to be so consistent due to practical limits (e.g. 
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inadequate lighting). We tested whether greater variability in data quality could limit 
performance by generating artificial lower quality datasets. To do this, we applied a series 
of image manipulations in which (i) images were rotated (angles between -45° to 45°), 
translated (-500 to 500 pixels on x and y axes) and scaled (scale ratio from 0.8 to 1.2), (ii) 
50% of images were randomly horizontally flipped, (iii) images were given new contrast 
and brightness (α from 0.5 to 2 and β from -50 to 50) using brightness and contrast 
adjustment functions in OpenCV (Bradski 2000; Bradski and Kaehler 2008), and (iv) a 
combination of manipulations from (i), (ii) and (iii). We applied these operations to both 
training images and validation images (in contrast to image augmentation outlined above 
where we did not manipulate the validation set).  

Low-quality datasets had a significant negative effect on the IOU (ANOVA: F=205.3; 
d.f.=4.0, 25465; p<0.01), precision (ANOVA: F=132.8; d.f.=4.0, 25465; p<0.01) and recall 
(ANOVA: F=88.0; d.f.=4.0, 25465; p<0.01) (Fig. S5). The original dataset produced more 
accurate results than low-quality datasets (Fig. S5a). The 4th dataset (the combination of 
translation, rotation, scale, horizontal flip and manipulations of brightness and contrast) 
had the worst performance and examples of its predictions are shown in Figure S8). The 
4th dataset was 1.9%, 1.2% and 0.9% worse than the original dataset on IOU, precision 
and recall (Fig. S5b). 

(vi) Training dataset size 

 

We manually labelled 5,094 images for this study. However, the number of labelled 
images may be limited by time and resources for other projects and studies. Here, we 
investigated the impact on deep learning accuracy using smaller training sets. Previous 
studies suggest that larger training set sizes may improve the performances of deep 
learning models (Joulin et al. 2015; Hestness et al. 2017). We used a subset of 1,018 
images (20% of the dataset) as the only validation set for every result in this section. The 
training set (4,076 images) was randomly sampled five times for one proportion selected 
from 15 proportions (1%, every 5% from 5% to 50% and every 10% from 50% to 90%). 

We found that model performance was positively related to the training set size following 
an approximately logarithmic pattern (Fig. S6). At least 10% of the dataset was required 
to attain IOU higher than 90%, at least 5% of the dataset to get precision and recall higher 
than 90%, and 15% of the dataset for precision and recall higher than 95%. With 100% 
of the dataset used for training, the model achieved 93.3% for IOU, 96.3% for precision 
and 96.8% for recall (Fig. S6). 
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Figure S1. (a) Boxplots of the performances (IOU, precision and recall) of predictions 
(N=5,094) of tested input resolutions (618 x 410, 494 x 328 pixels and 309 x 205 pixels). 
(b) Plots of Tukey’s test (95% family-wise confidence level) on whether metric (IOU, 
precision and recall) differences among tested resolutions are significantly different (blue: 
significance; grey: no significance) from 0 (red dotted lines). 
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Figure S2. (a) Boxplots of the performances (IOU, precision and recall) of predictions 
(N=5,094) of tested input channels (RGB, UV and RGB+UV). (b) Plots of Tukey’s test 
(95% family-wise confidence level) on whether metric (IOU, precision and recall) 
differences among tested channels are significantly different (blue: significance; grey: no 
significance) from 0 (red dotted lines). 
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Figure S3. Boxplots of the performances (IOU, precision and recall) of predictions 
(N=5,094) between using the original training sets and image augmented training sets. 
Significant symbols are t-test results (ns: p > 0.05; *: p <= 0.05; **: p <= 0.01; ***: p <= 
0.001; ****: p <= 0.0001). 
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Figure S4. Boxplots of the performances (IOU, precision and recall) of predictions 
(N=5,094) between using one model and three separate models. Significant symbols are 
t-test results (ns: p > 0.05; *: p <= 0.05; **: p <= 0.01; ***: p <= 0.001; ****: p <= 0.0001). 
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Figure S5. (a) Boxplots of the performances (IOU, precision and recall) of predictions 
(N=5,094) using the original dataset and low-quality datasets. Dataset (i) rotated (angles 
between -45 to 45), translated (-500 to 500 pixels on x and y axes) and scaled (scale ratio 
from 0.8 to 1.2) images; Dataset (ii) horizontal flip 50% images randomly; Dataset (iii) 
images with random contrast and brightness; Dataset (iv) the combination of (i), (ii) and 
(iii). (b) Plots of Tukey’s test (95% family-wise confidence level) on whether metric (IOU, 
precision and recall) differences among tested datasets are significantly different (blue: 
significance; grey: no significance) from 0 (red dotted lines). 
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Figure S6. The performances (IOU, precision and recall) of the same validation set 
(N=1,018) using 15 proportions (1%, every 5% from 5% to 50% and every 10% from 50% 
to 90%) of the original training set. 
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Figure S7.  Examples of poorly segmented results from classic methods as well as deep 
learning predictions of the corresponding images. (a) Thresholding; (b) Region growing; 
(c) Chan-Vese; (d) Graph cut. Yellow is the segmentation from classic methods. Deep 
learning results are represented in blue, red and green as defined in Fig. 3. 
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Figure S8. Examples of predictions using Dataset (iv) of the low-quality datasets. 
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Supplementary Tables 

 

 MEAN SD MIN MAX 

IOU OVERALL (N=5094) 93.1 3.2 53.6 98.5 

BACK (N=1698) 94.6 2.8 67.6 98.5 

BELLY (N=1698) 91.9 3.4 53.6 97.2 

SIDE (N=1698) 92.9 2.9 58.3 97.2 

PRECISION OVERALL (N=5094) 96.3 2.4 70.1 99.9 

BACK (N=1698) 96.8 2.5 70.2 99.9 

BELLY (N=1698) 95.7 2.5 70.1 99.8 

SIDE (N=1698) 96.4 2.0 70.9 99.9 

RECALL OVERALL (N=5094) 96.6 2.5 53.6 99.9 

BACK (N=1698) 97.6 2.0 72.0 99.9 

BELLY (N=1698) 95.8 2.7 53.6 99.6 

SIDE (N=1698) 96.2 2.4 58.3 99.4 

 

Table S1. IOU, precision and recall of predictions from the DeepLabV3+ model 
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Table S2. Phylogenetic heritability (H2) estimates for UV colouration metrics across 
passerine birds (n = 4,545). All models were run over 100 posterior phylogenetic trees. 
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Table S3. Bayesian phylogenetic mixed model results for the effect of predictor variables 
on plumage UV reflectance in passerine species (n = 4,527). All variables were 
standardised (mean = 0, sd = 1) prior to model fitting. M, male; UVS, ultraviolet sensitive. 
*, P < 0.05; **, P < 0.01; ***, P < 0.001. All models were run over 100 posterior 
phylogenetic trees. 
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