UNIVERSITY OF LEEDS

This is a repository copy of A review of tectonic, elastic and visco-elastic models exploring the deformation patterns throughout the eruption of Soufrière Hills volcano on Montserrat, West Indies.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/185017/</u>

Version: Accepted Version

Article:

Neuberg, JW orcid.org/0000-0001-7866-0736, Taisne, B, Burton, M et al. (4 more authors) (2022) A review of tectonic, elastic and visco-elastic models exploring the deformation patterns throughout the eruption of Soufrière Hills volcano on Montserrat, West Indies. Journal of Volcanology and Geothermal Research, 425. 107518. ISSN 0377-0273

https://doi.org/10.1016/j.jvolgeores.2022.107518

© 2022, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ 1 A review of tectonic, elastic and visco-elastic models exploring the deformation

patterns throughout the eruption of Soufrière Hills volcano on Montserrat, West Indies
 3

4 J.W. Neuberg¹, B. Taisne², M. Burton³, G. A. Ryan^{4,5}, E. Calder⁶, N. Fournier⁷, A.S.D.

5 Collinson¹

- 6 ¹ School of Earth and Environment, Leeds University, UK
- ² Earth Observatory of Singapore, Nanyang Technological University, Singapore
- ³ Department of Earth & Environmental Sciences, Manchester University, UK
- 9 ⁴ Montserrat Volcano Observatory, Flemmings, Montserrat, West Indies
- 10 ⁵ Seismic Research Centre, University of West Indies, Saint Augustine, Trinidad & Tobago
- ⁶ School of GeoSciences, University of Edinburgh, UK
- 12 ⁷GNS Science, New Zealand

13 Abstract

14 Since the eruption began in 1995, Soufrière Hills volcano on Montserrat has been 15 characterised by five phases of magma extrusion and corresponding pauses. Despite a lack 16 of eruptive surface activity since 2010, the volcano continues to show signs of unrest in the 17 form of ongoing outgassing, and inflation of the entire island of Montserrat. Using numerical 18 modelling, we compare a set of contrasting deformation models in an attempt to understand 19 the current state of Soufrière Hills volcano, and to gauge its future eruption potential. We 20 apply a suite of deformation models including faults and dykes, and an ellipsoidal source 21 geometry to all phases and pauses covering the entire eruptive history from 1995 through 22 2020. Based on recent petrological evidence suggesting no recent injection of magma from 23 depth after an initial magma intrusion, we test the hypothesis that the ongoing inflation of 24 Montserrat could be explained by a visco-elastic, crustal response to the initial magma

25 intrusion without a renewed pressurisation due to magma injection. In contrast to previous 26 modelling attempts, we focus on conceptual models and compare elastic- with several visco-27 elastic models taking temperature-dependent viscosity models, tectonic components, mass 28 balance, magma compressibility and outgassing data into account. We explore a wide 29 parameter space in a Generalised Maxwell Rheology to explain the observed deformation 30 patterns, and demonstrate that a realistic, depth-dependent distribution of visco-elastic 31 parameters does not allow an interpretation of the deformation signal without any magma 32 influx or further pressurisation. Within the range of large uncertainties attached to the visco-33 elastic model parameters we show that visco-elasticity reduces the degree of ongoing 34 pressurisation or magma influx into a crustal reservoir by a few percent. We conclude that 35 magma influx at a rate of 0.10 to 0.57 m^{3}/s is the most likely explanation of the current 36 deformation pattern and is also in agreement with mass balance considerations and current 37 SO₂ flux observations.

Keywords: Soufrière Hills, GPS, deformation, magma compressibility, Maxwell rheology,
 visco-elastic response

40

41 **1. Introduction**

42 The current eruption of Soufrière Hills volcano (SHV), Montserrat (Fig.1), began in 1995, and 43 has been well documented in the literature (e.g. Kokelaar, 2002; Wadge et al., 2014). The 44 eruption has been characterised by five episodes of lava dome growth punctuated by dome 45 collapses, Vulcanian explosions, outgassing and ash venting (e.g. Edmonds et al., 2001, 46 2002; Watts et al., 2002; Hautmann et al., 2014). As depicted in Fig. 2, pauses of differing 47 duration have separated each phase such that despite lasting more than 25 years, the 48 volcano was only actively extruding for a total of 8.5 years (Wadge et al., 2014). The last 49 extrusive event recorded at the volcano on 11 February 2010, coincided with the partial 50 collapse of the northern section of the dome (Stinton et al., 2014). Since this event, the

- 51 volcano has entered a period of apparent quiescence with an average of 1.2 seismic events
- 52 per day (Stinton et al., 2014). By January 2022, Pause 5 has lasted for 12 years, significantly

Figure 1: Active Soufrière Hills volcano in the south of Montserrat; locations of major faults
(Feuillet et al., 2010) and cGPS stations used in this study.

longer than any other pause, the immediate implication being that it is a pause - not the end
of the eruption. A mean daily SO₂ flux of approximately 200 tonnes/day (Stinton et al., 2020),
recorded until April 2020, and ongoing inflation of the island, continuously monitored by
cGPS (Fig. 2), are indications of ongoing volcanic unrest. Due to the lack of a monitoring
baseline for the background activity of Soufrière Hills, the question remains as to whether

61 these signals indicate potential future extrusive activity, or if the eruption can finally be62 declared over.

63 Throughout the history of the eruption, there have been many attempts to determine the 64 configuration of the SHV plumbing system summarised in Elsworth et al. (2014). Deformation 65 models fall into two broad categories - either vertically-stacked magma reservoirs (Elsworth et al., 2008, 2014; Foroozan et al., 2010, 2011; Hautmann et al., 2010) or single, vertically-66 67 extended sources (Voight et al., 2010). The source geometries range from spheres to 68 prolate or oblate ellipsoids with rotational symmetry, which results for some studies in the 69 necessity for partial or complete omission of certain GPS stations in order to match model 70 output and GPS data (e.g. Hautmann et al., 2010; Foroozan et al., 2011).

Figure 2: Monitoring data for the entire duration of the ongoing eruption at Soufrière Hills
volcano with the number of seismic events per day (top), vertical displacement for HARR
(black) and radial ground motion of MVO1 (red) and NWBL (blue) relative to the dome centre
(middle). SO₂ daily flux (bottom) monitored with different methods: COSPEC (green),

71

scanning DOAS (blue /red), traverse DOAS (white). Despite its prolonged duration, Pause 5

is characterised by ongoing SO₂ outgassing and surface deformation, but limited seismicity.
Adopted from Stinton et al., (2020).

79 In contrast to attempting a detailed, perfect match of deformation data recorded on all 80 stations of the continuous GPS network (cGPS), we employ an entire suite of contrasting, 81 numerical models and focus on their conceptual differences. We aim at answering the critical 82 question whether the eruption is continuing or not. We follow the conceptual models that 83 have been guiding the discussions of the Scientific Advisory Committee on Montserrat 84 Volcanic Activity throughout the eruption. These models range from magma extrusion and 85 reservoir refill, to the influence of tectonic effects, potential contributions of crystallisation to 86 the pressurisation of the system, to the final end-member model of a visco-elastic response to a major intrusion that has actually ceased several years ago. 87

88 We start with a purely elastic model to determine the source geometry of a deformation 89 source which can match the deformation data for Pause 5. In order to explore processes 90 alternative to magma influx explaining the ongoing inflation during Pause 5, we also address 91 the potential contributions of local tectonics such as the WNW- trending Belham Valley fault, 92 part of the Montserrat-Bouillante fault system (Feuillet et al., 2010) which is related to the 93 wider regional tectonics of the Northern Lesser Antilles section of the Caribbean plate with a 94 North-South extension (Wadge et al., 2014). We then adopt the geometry of a central, 95 elliptical source to model the dominant patterns of all eruptive phases and pauses, as well as 96 its anisotropic nature. By considering magma compressibility and extruded volume, we 97 estimate the respective volume changes for all phases and pauses throughout the eruption. 98 In this step, we interpret the iconic saw-tooth pattern in the deformation data (Fig. 1) as 99 erupted and re-charged material, respectively. Given recent petrological evidence (McGee et 100 al., 2019) which suggested that the intrusion of mafic magma had ceased by 2004, we 101 employ a set of visco-elastic models based on a temperature-dependent Maxwell rheology, 102 and test the alternative hypothesis that the observed saw-tooth deformation pattern can be 103 explained without any further magma influx.

104 2. Continuous GPS data

105 The cGPS network on Montserrat comprises 14 stations distributed across the island (Fig. 106 1). The data used for our initial analysis of Pause 5 covered a time period of 3 years from 107 August 2012 – July 2015, which presents a sufficiently long time interval after the previous 108 eruptive activity of February 2010, and a short ash-venting episode that occurred in March 109 2012, in order to focus on the underlying deformation trend. The velocity of each station has 110 been calculated relative to the motion of the Caribbean Plate using the GAMIT/GLOBK tool 111 suite (Herring et al., 2010a, 2010b). The plate motion has been defined by a number of 112 stations and the averaged displacements for the 2012 – 2015 period were derived from 113 these velocities.

114 Due to the short durations of Phases 4, 5 and Pause 4, and the requirement for a data 115 coverage of at least one-year for a sufficiently accurate deformation estimate, we omit these 116 stages from the following comparison depicted in Fig. 3. When normalised relative to the 117 station HARR, which is a station with data available for the entire eruptive history, there is a 118 remarkable similarity in relative magnitude of the horizontal, and, to a lesser extent, of the 119 vertical velocities across the stations for all stages of the eruption. The relative horizontal 120 magnitudes are the same, both for the eruptive phases and pauses. With the vertical 121 displacements being inherently noisier than the horizontal components, we assume that the 122 displacement rate can be caused by the same source geometry throughout the eruption 123 since it began in 1995. Furthermore, this highlights the repetitiveness of the source process. 124 for both apparent inflation and deflation, affecting all but the closest stations with the only 125 difference being the overall magnitude of displacement rate.

126 In agreement with the other pauses (e.g. Hautmann et al., 2010; Voight et al., 2010;

Foroozan et al., 2011), the majority of the cGPS stations showed a displacement away from the volcano that increases with distance (Fig. 4 and 5). We assume the region to the south of the volcano would show a similar displacement pattern to that in the north, but due to the limited size of the island, and the location of the volcano in the south, this can be neither corroborated nor invalidated. The three closest cGPS stations to the volcano (HERM, SPRI
and FRGR) deviate from this pattern by recording motion towards it. This is different to the
other pauses in the eruption history and may indicate a deviation of some processes
affecting these proximal stations which will be further discussed below.

The characteristic deformation patterns that guide our modelling approach are the increasing
deflation rates for consecutive phases, in contrast to the decreasing inflation rates for
pauses, and the sharp transitions between pauses and phases as depicted in Fig. 2.

138 3. Numerical Modelling

139 To determine the configuration of sources required to replicate the current displacement 140 pattern on Montserrat, we have created a set of numerical models using Comsol 141 Multiphysics 5.4, which utilises a finite element method. Simple models have been calibrated 142 against analytical solutions (e.g. Mogi, 1958; Okada, 1985, 1992; McTigue, 1987; Del Negro 143 et al., 2009), and have been used to assess the potential contribution of several source 144 types such as a tectonic (strike-slip) versus a volume source (dyke or spherical chamber). 145 Because the study area is small (< 10km) compared to its distance to the subduction zone (> 146 200 km), vertical displacements due to vertical plate motion would be similar (i.e., within the 147 uncertainty on daily positions) at all stations in Montserrat. We therefore assume that 148 observed vertical deformation variations across the network are caused by local, plate-149 internal tectonics or magmatic sources. We have systematically modified the location, size 150 and orientation of each source type to achieve the optimum match to the data. Finally, once 151 the source type has been established, source parameters have been further refined to 152 optimise the match to the data.

The model geometry has been created with a central block with dimensions of 12 km x 18
km x 50 km, embedded in a larger block of lateral extent 300 km x 300 km and depth 50 km.
Into this framework, we have inserted a variety of different source types and configurations.
Volume sources have been modelled using spherical or elliptical geometries whereas

157 tectonic fault movements have been modelled as finite planar surfaces. For spherical and 158 elliptical magmatic sources, we have imposed pressure as boundary conditions; for dykes 159 and faults we have employed displacement. We have modelled the elastic crust as either 160 homogeneous with a Young's modulus of 10 GPa (e.g. Elsworth et al., 2014) and a

161

162 Figure 3: Horizontal and vertical displacement rates for Phases (1-3) and Pauses (1-3, 5) 163 (top) in order of increasing distance from the volcanic edifice. All data are normalised relative 164 to the horizontal displacement at HARR (bottom). A negative horizontal displacement 165 represents motion towards the volcano. Therefore, the displacement direction is generally 166 towards the volcano during phases and away from it during pauses. For the normalised 167 horizontal cGPS data, all stations except HERM are in good agreement indicating an 168 identical source geometry throughout the eruption. The discrepancy with HERM may be due 169 to the proximity to the volcano, and a greater sensitivity to shallow conduit/dome processes. 170 Phase 1 – Pause 3 data adapted from Mattioli et al. (2010) and Foroozan et al. (2011). No

171 data plotted for Phase 4 – 5 due to their limited duration.

172 Poisson's ratio of 0.25, or later in Section 5.4, have employed a depth-dependent model 173 based on seismic tomography (Paulatto, 2011; Paulatto et al., 2019) where correction 174 factors of 0.67 to 0.11 have been applied to account for the difference in elastic behaviour 175 between short-period seismic time scales and long-period, static deformation 176 (Gudmundsson, 1990). For the visco-elastic models we have used the same source geometry and average viscosities in the range between 10¹⁸ and 10¹⁹ Pas, and later 177 178 temperature/depth-dependent viscosity distributions derived from different temperature 179 models according to the Arrhenius approximation. We used roller boundary conditions at the 180 sides, fixed conditions at the bottom, and a free surface at the top. The finite element mesh 181 comprising tetrahedral elements of varying sizes consists of up to 100,000 elements 182 resulting in 4 million degrees of freedom.

183 4. Modelling results

Initially, our modelling attempts have focussed on data from Pause 5, which has the best
data coverage and shows the most consistent long-term trend. After finding the model
geometry that best matches the data set, we have applied the same source type to previous
eruptive phases and pauses.

188 4.1. Effect of topography

189 Previous studies have often assumed a flat surface to their models, stating topography has 190 little effect on the surface displacement pattern for deep sources (e.g. Hautmann et al. 191 2010). Marsden et al. (2019) have demonstrated that, to some extent, this is true for 192 isotropic sources, but it is not applicable for more complex sources. They found a significant 193 difference close to the volcanic edifice, where high dome topography affects both the 194 magnitude of surface displacement and its direction, which may be completely reversed 195 (Marsden et al., 2019). However, regarding the main objective of this study, the influence of 196 topography does not play an important role to find the principle causes behind the ongoing, 197 island-wide inflation.

198 **4.2. Basic source models: dyke, fault and their combination**

- 199 Our overall modelling strategy is led by the aim to explore source models alternative to
- 200 previous studies that were based on pressurising deep magma reservoirs. There is
- significant evidence for previous tectonic activity in the vicinity of the island, in particular the

Model Reference	Topo- graphy	Crustal Response	Description Source	Parameter Final/Range	Stations used
Is	У	elastic	expanding sphere	radius 1 [0.5, 2] km depth 6 [1, 10] km expansion 0.25 m	all cGPS
Ι _D	У		expanding dyke	dimension 5 x 1 km expansion 1 m azimuth 263 ⁰ [200 ⁰ ,300 ⁰]	
IF	У		sinistral fault	dimension 5 x 1 km strike-slip 1 m azimuth 293 ⁰ [280 ⁰ ,300 ⁰]	
E _{1E}	У		expanding ellipsoid	0.6 x 0.6 x 2.0 km depth 6 [1, 10] km azimuth 263 ⁰	
E _{2E}	У		two expanding/ contracting ellipsoids	0.6 x 0.6 x 2.0 km depth 6 [1, 10] km azimuth 263 ⁰ 0.3 x 0.3 x 1.0 km depth 0 [0, 3] km azimuth 293 ⁰	
E _{2Ex}	У		two expanding/ contracting ellipsoids with depth extension	0.6 x 0.6 x 2.0 km depth 6 [1, 10] km azimuth 263 ⁰ 0.3 x 0.3 x 1.0 km depth 0 [0, 3] km azimuth 293 ⁰ depth extension 8 [0, 20] km pressure (10, 2.5] MPa/year	
E _{1Ex}	у		expanding single ellipsoid with depth extension	$0.6 \times 0.6 \times 2.0 \text{ km}$ depth 6 [1, 10] km azimuth 263^{0} depth extension 8 [0, 20] km pressure [10,2.5] MPa/year	
V _H	n	visco-elastic Maxwell homogeneous		source as above viscosity [1.8, 12] x10 ¹⁸ Pas Youngs mod [5, 10] GPa	MVO1 TRNT
VZ _{Max}	n	visco-elastic Maxwell depth-dep.		Maxwell rheology: depth-dependent temperature, viscosity, elasticity see Fig. 13/14. E(z) reduced to 11 & 67% pressure/volume see Tab 3	
VZ _{SLS}	n	visco-elastic SLS depth-dep		SLS rheology: depth-dependent temperature, viscosity, elasticity see Fig. 13/14. E(z) reduced to 11 & 67% pressure/volume see Tab 3	

202

204 presence of faults crossing the island, including the Montserrat-Havers Fault, the Belham 205 valley Fault and the Richmond Hill Fault (Fig.1) contributing to the Montserrat-Bouillante 206 Fault System (Feuillet et al., 2010). A regional GPS study by Lopez et al. (2006) indicates a 207 small N-S intraplate extension in the area of the Lesser Antilles where Montserrat lies. The 208 NNW trans-tensional fault system between Montserrat and Guadeloupe is thought to 209 accommodate some of this extension. We approximate this tectonic extension as a NW-SE 210 extension of the exterior northern and southern model boundaries. For example, a NW-SE 211 extension of 10 mm/year at 25 km distance from the Belham Valley, in each direction, would 212 result in an on-island extension of 2.5 mm/year.

Hence, the first set of models comprises strike-slip faults and expanding dykes (Fig. 4) which
are employed individually with a simple sphere for comparison. For each source type, the
depth of the top has been varied at 0.5 km intervals between 1-10 km below sea level
(b.s.l.), for different vertical and horizontal extents, lateral positions and strike directions.

Fig. 4 shows best-fit results for each of the three basic source models. The spherical magma
chamber (Model I_S) has an initial radius of 1 km, centred at 6 km b.s.l. and has been
modelled with a pressure of 4 MPa resulting in a uniform radius increase by 0.25 m. The
initial dyke (Model I_D) and strike-slip (Model I_F) sources both have dimensions of 5 km x 1 km
x 1 m to which we have applied displacement boundary conditions of 0.5 m in each direction.
The dyke depicted in Fig. 4 has been modelled with an orientation of 263° whilst the sinistral
strike-slip motion has been simulated with a fault striking at 293°.

The results of the simple strike-slip sources show a bad match to the data, and using a WNW-trending orientation, parallel to the Belham Valley (Wadge et al., 2014), they only match the stations furthest north. In contrast, the expanding spherical and dyke sources both show a better match. However, unlike the spherical source model, an expanding dyke source (I_D) satisfies both, the non-rotationally symmetric nature of the data, as well as the requirement for an increased horizontal displacement with distance from the volcano. Due to

- 230 the observed surface displacement pattern, characterised by increased horizontal
- 231 displacement

Figure 4: Horizontal (top) and vertical displacement rates (bottom) for basic source models, fitting spherical reservoir, dyke and sinistral strike-slip. The stations are listed in order of increasing horizontal distance from the volcano. High resolution topography is included and the location and orientation of the sources are marked on the maps. For both the horizontal and vertical component of the displacement, the expanding dyke (I_D) shows the closest match to the Pause 5 data. away from the volcano and a north-south trend, we discount rotationally symmetric sources, or their combinations, and sources located at less than 4 km depth. The mismatch with the GPS data in Fig. 4 is evident and results in an absolute data misfit of 28.1 mm for the dyke model I_D , 53.5 mm for the fault model I_F , and 43.2 mm for the spherical model I_S . Hence, we conclude that none of these three source types (I_S , I_D , and I_F) match the deformation data of Pause 5.

247 **4.3. Initial volume models**

248 After disregarding the basic source models (IS, ID, and IF) in the previous section as 249 alternatives to continued magma influx, we return to volume-based sources, however 250 employing now non-rotationally symmetries. We adopt the spherical source centred at 6 km 251 depth and transform it into an expanding ellipsoid by varying the half axes and orientation 252 systematically (Table 1) deriving at a geometry of semi-axes 1 km x 0.3 km x 1 km, volume 253 1.26 km³, centred at 6 km b.s.l. and orientation of 263⁰ (Model E_{1E}). This source model 254 matches the observation of the distal GPS stations better than any rotationally symmetric 255 source (Fig. 5, left). In order to include the data observed on the close GPS stations, a 256 second, shallow deflating ellipsoidal source (Model E_{2E}) of semi-axes 500 m x 150 m x 150 257 m, volume 0.05 km³, centred at sea level and an orientation of 293⁰ (Fig. 5, right). The 258 corresponding data misfits are 26.1 mm and 18.4 mm for models E_{1E} and E_{2E} , respectively. 259 We refer to this set of volume sources as 'Initial Elastic Models' (see Tab.1: E1E, E2E, and 260 E_{1Ex}) and use them to explore in the following sections their compatibility with previous 261 pauses and phases, their potential trade-off with depth, the impact of magma 262 compressibility, and finally the potential impact of a visco-elastic crust in which these volume 263 sources are embedded. All these strands of investigation focus on better quantifying the 264 processes that cause the island – wide inflation of Montserrat or aim to find alternative 265 explanations.

240

Figure 5: Horizontal displacement rates (blue) for the 'Initial Elastic Models' E_{1E} and E_{2E} compared to the Pause 5 data (red). Source geometry (yellow) is projected onto the surface. Left: only deep source is modelled E_{1E} . Right: dual source of deep and shallow ellipsoids are used E_{2E} (see text). Note, the shallow source affects only the stations HERM, SPRI and FRGR close to the volcano.

273 Assuming a homogeneous medium, Young's modulus of 10 GPa, and a Poisson's ratio of 274 0.25, a uniform inflation of 10 MPa per year for the deep source and deflation of 5 MPa per 275 year for the shallow source is required to explain the surface deformation. Equivalent volume 276 changes related to inflation and deflation are determined through eq. 1-5 in the next section 277 and expressed as volume change rates by considering a time span of 10 years in Pause 5. 278 Hence, 10 MPa/year and 5 MPa/year correspond to a uniform source volume change rate of 279 0.05 m³/s and 0.003 m³/s for the expanding deep source and contracting shallow source, 280 respectively (Model E_{2E}).

281 4.4 Volume - pressure equivalence

282 Surface deformation due to a magmatic intrusion has been often modelled by a Mogi source

283 (Mogi, 1958) where the intrusion is represented by a small, spherical cavity of radius a,

284 embedded in an elastic half space at depth d. An isotropic stress is applied to the cavity wall

which corresponds to the overpressure P exerted by the intrusion. The deformation at the

stress-free surface is calculated in an iterative approach leading to a point source

approximation (a << d) which is satisfied if a < $\frac{1}{2}$ d.

The corresponding volume change ΔV in the cavity can be approximated for a spherical geometry in an isotropically elastic half space by (McTigue, 1987)

$$\Delta V \approx \pi P a^3 / \mu \tag{1}$$

291 with the shear modulus

292
$$\mu = \frac{E}{2(1+\nu)}$$
, (2)

293 Young's modulus *E*, and Poisson's ratio ν .

For a Poisson's ratio of $v = \frac{1}{4}$ this leads to a relative volume change

$$\frac{\Delta V}{V} = \frac{3}{4\mu} P \tag{3}$$

295 or

$$\frac{\Delta V}{V} = 1.875 \frac{P}{E}.$$
(4)

For geometries used in our models (Models E_{1Ex}, Fig. 6) we have used an equivalent
expression

$$\frac{\Delta V}{V} = k \frac{P}{E},$$
(5)

301 where *k* has been determined by numerical integration over the volumetric strain along the 302 source geometry. For an ellipsoid k = 3.5, and for a depth-extended elliptical source 303 geometry reaching a depth of 12 km and 14 km, k = 4.8 and k = 5, respectively. This allows 304 us to convert pressure changes of different source geometries into equivalent volume 305 changes of incompressible magma in a cavity embedded in an elastic half space as seen in 306 the following section (Fig. 6 and 7).

307

308 Figure 6: Left, source geometry (E_{1Ex}) : elliptical cross section 600m x 2000m; shown for 309 depth range of vertically extended geometry by 5,000 m and 7,000 m, or total depth to 310 11,000 m and 13,000 m. Right: Impact of modelled vertically extended volume to the vertical 311 and horizontal displacement of the Pause 5 data. The stations are listed in order of 312 increasing horizontal distance from the volcano. Model results are illustrated for the initial ellipsoidal model with 10 MPa pressure and a source extended vertically up to 20 km³ with a 313 314 pressure of 3 MPa. The shallow deflating source remains the same for both models (Model 315 E_{2Ex}). Using a large initial volume results in a large relative surface displacement at the more 316 distal stations (MVO1, GERD, NWBL).

317 4.5. Constraints on source volume and model trade-offs

Following the study by Christopher et al. (2015) that points to a larger magma reservoir under Montserrat, we have explored the parameter space by adding to our magmatic source at 6 km depth a deeper root (Model E_{2Ex}). We have increased the volume by extending it vertically through an insertion of additional volume below the upper hemisphere of the elliptical source geometry, as depicted in Fig. 5. This maintains the shape of the top of the
source controlling most of the closer surface deformation, but increases the depth to which
the source can be pressurised, relevant for distal stations.

325

Figure 7: Annual pressure increase (dP, blue) applied to the extended sources as shown in Fig. 6, and resulting volume change (dV, red) against initial volume. The pressure required to match the data converges to 2.5 MPa for sources extended to a volume in excess of 8 km³. All data points (i.e. combinations of pressure increase and initial volume; blue dots) result in a similarly good data match. Increasing the initial volume beyond 8 km³ yields a linear increase in volume change, while the equivalent annual pressure increase remains constant.

When extending the source vertically and reducing the pressure simultaneously we maintain an equally good match to the horizontal, distal GPS data, and an interesting pattern arises (Fig. 7): Once the source is extended vertically to a depth of 14 km and a total initial volume of about 8 km³, the pressure increase required to match the Pause 5 data converges at about 2.5 MPa/year. This indicates a trade-off between source pressure and initial volume of 338 a magma reservoir into which new magma could enter. The bigger this initial volume, the 339 larger is the volume of magma influx, creating the same pressure increase and, 340 consequently, the same deformation field. Hence, the estimate for a corresponding magma 341 influx can vary from 0.14 m³/s for an initial reservoir volume only 1.25 km³ (ellipsoidal 342 geometry in our initial model E_{1E}) to 0.85 m³/s for a reservoir (E_{1Ex}) of about 20 km³ (Fig.7 – 343 right hand axis). Assuming magma accumulation into a larger, initial reservoir as the only 344 source process provides an upper bound of equivalent pressurisation of about 2.5 MPa/year. 345 In general, this attempt to explore the depth – pressure trade-off also demonstrates why 346 many other studies have used vertically extended ellipsoids in their models (Elsworth et al., 347 2014), and confirms the fact that geodetic data are not sensitive to vertical extensions of 348 magma reservoirs.

4.6. Application to previous phases and pauses and impact of magma compressibility

350 Following Fig. 3, there is a remarkable similarity in displacement patterns between all the 351 pauses and phases recorded at SHV. Using the initial model (E_{1E}) defined in 4.3, we go 352 backwards in time and model the deflation during eruptive Phase 3, which can be matched by a depressurisation of about 40 MPa or a corresponding volume change of 17 x 10⁶ m³ at 353 354 the deep source. The modelled volume changes for all phases and pauses until 2017 are 355 summarised in Fig. 8, together with the estimated dense rock equivalent (DRE) volumes 356 according to Wadge et al. (2014). Consequently, we can assume that the general source 357 geometry must have remained stable through time with the GPS network measuring 358 significant variations in magma volume or pressure. Note that there is a large discrepancy 359 between modelled volume change at depth and estimated dense rock equivalent which can 360 be accounted for by introducing a compressible magma at depth.

Figure 8: Cumulative DRE volume erupted (adapted from Wadge et al., 2014) (top) and the
change in total source volume through time relative to the start of the eruption (bottom).
Total source volume change is based on the initial elliptical source volume (Model E_{1E}) of
1.26 km³. The dashed line indicates the trend of eruption onsets for Phases 2, 3 and 5. The
location of the March 2012 ash-venting event is indicated.

367 A negative or positive volume change within the source model corresponds directly to 368 extruded or intruded incompressible magma from, or into a reservoir, respectively. However, 369 due to its volatile content, magma is compressible which leads to discrepancies when 370 comparing DRE of extruded material with pressure or volume changes at depth as indicated 371 in Fig. 8. In order to reconcile this discrepancy between apparent volume change at depth 372 derived from modelling the deformation field, and the erupted volume (DRE) during eruptive 373 phases we have to consider the compressibility of magma at depth. The change in volume 374 within the source region $(V_{\rm M})$ can be linked to the estimated DRE volume $(V_{\rm DRE})$ by applying 375 conservation of mass (Segall, 2010)

379
$$\delta V_{\rm M} = \delta V_{\rm DRE} \left(\frac{\rho_{\rm DRE}}{\rho_{\rm M}}\right) \left(\frac{1}{1 + \frac{\beta_{\rm M}}{\beta_{\rm S}}}\right), \tag{6}$$

where the DRE density (ρ_{DRE}) is 2600 kg/m³ (Wadge et al., 2010), while β_s and β_M are the compressibility of source reservoir and magma, respectively (Table 2). The magma source density (ρ_M) has been calculated according to

380
$$\rho_{\rm M} = \left[\frac{n}{\rho_{\rm g}} + (1-n)\left(\frac{x}{\rho_{\rm c}} + \frac{1-x}{\rho_{\rm m}}\right)\right]^{-1}$$
(7)

381 (e.g. Huppert & Woods, 2002; Neuberg & O'Gorman, 2002). All variables have been defined 382 in Table 2. Assuming water as the main volatile phase, we have used Henry's law of solubility to calculate the exsolved water content ($n = N - 4.11 \times 10^{-6} \sqrt{P}$), the gas density 383 384 following the ideal gas law ($\rho_{\rm g} = MP/RT$) with a total volatile content (N) of 4 - 6 wt.% and 385 crystal content (x) of 40% (Huppert & Woods, 2002). Edmonds et al. (2014) consider a 386 larger total volatile content, however, with 6 wt% we take into account the effects of 387 continued outgassing. The compressibility of the source magma (β_M) and magma reservoir 388 (β_c) have been calculated as (e.g. Segall, 2010)

389
$$\beta_{\rm M} = \frac{1}{\rho_{\rm M}} \frac{\partial \rho_{\rm M}}{\partial P}$$
 and $\beta_c = \frac{1}{V_{\rm M}} \frac{\partial V_{\rm M}}{\partial P}$, (8)

respectively, and will be used in the following sections whenever magma at depth is beingcompared with DRE.

392 4.7 Summary of elastic models

Fig. 5 depicts a reasonable match between data and our models E_{1E} and E_{2E} based on a homogeneous, elastic crust below the Montserrat topography. Maintaining the shallow ellipsoidal source (E_{2E}) is needed to force the horizontal displacement of the three close stations to point inwards. The vertical displacements are less well fitted when we use vertically extended sources as those can result in a trade-off between horizontal and vertical displacement. A classic example is the displacement field of a dyke that results in a negative 399 vertical displacement above the dyke which increases with the amount of dyke opening while 400 a positive horizontal displacement prevails in the far field. Dieterich & Decker (1975) have 401 demonstrated that, in order to constrain the source geometry perfectly, both horizontal and 402 vertical components are needed, however this is not the aim of this study. By introducing 403 more model parameters, either by refining the geometry or by introducing a two- or even 404 three-dimensional elastic model the data fit could be further improved. This has been 405 achieved by several previous studies which were all based on an elastic response to magma 406 influx or drainage (e.g. Elsworth et al., 2008; Hautmann et al., 2010; Foroozan et al., 2011). 407 Our attempt to explore the depth – pressure trade-off in Section 4.5 demonstrates why many 408 other studies have used prolate spheroids in their models. A comprehensive summary of 409 previous model attempts, with their different settings and parameters, advantages and 410 shortcomings has been presented in Elsworth et al. (2014). In contrast, we set out to 411 compare different conceptual and contrasting models that explain the ongoing inflation of 412 Montserrat and the eruption potential in the near future, rather than adding another purely 413 elastic model to the collection. First, we considered and then excluded dykes and faults as a 414 tectonic component of deformation. Second, we introduced geometries with non-rotational 415 symmetry, and finally, we move in the following to visco-elastic models (Models V_H, VZ) and 416 focus on the distal stations only. We drop the shallow elliptical source in our considerations 417 as it only affects the closer stations (see Fig. 5), the deformation data of which might be 418 masked by loading effects (Odbert et al., 2015) rather than revealing deep source processes 419 we are interested in. We use in the following the depth-extended ellipsoidal geometry (same 420 as Model E_{1Ex} and depicted in Fig. 6) with an initial volume of about 8 km³.

421 **5. A visco-elastic model for the Montserrat eruption**

In the previous sections we ruled out tectonic sources and dykes as sole deformation
sources and established a source geometry which, applied to volume or pressure changes
can explain the deformation data on Montserrat throughout the course of the eruption. The
choice of an elliptical geometry in contrast to an isotropic, rotational symmetry or a more

realistic, detailed crustal model is not vital compared to the fundamental question whether the volcanic system of Soufrière Hills volcano is further pressurising by continued magma influx or other pressurising mechanisms, or volcanic activity is finally declining, even at depth. So far, the deformation pattern has been interpreted as a magma drainage and extrusion for phases, and renewed magma influx or pressurisation for pauses; in the following we test a hypothesis to re-interpret the inflation pattern during pauses in a fundamentally different way.

433 **5.1. Petrological indications for the end of a magma intrusion**

434 The recent study by McGee and co-authors (2019) has provided a strong suggestion that the 435 magma intrusion below SHV might have ended sometime in 2004 (from Phase 3 onwards), 436 based on a comparison of mafic enclaves and andesitic host rock over the entire period between 1995 and 2010. They used the short-lived isotopes ²¹⁰Pb and ²²⁶Ra in the Uranium 437 438 series decay chain as an indicator for volatile transfer and loss in both the enclaves and the 439 host andesite to reveal significant changes over time. While erupted andesite has been almost entirely in equilibrium or has shown deficits of ²¹⁰Pb indicating continuous volatile loss 440 441 before and throughout the eruption, most of the mafic enclaves have shown an excess of 442 ²¹⁰Pb, interpreted as volatile enrichment that has lasted over a decade. The highest ²¹⁰Pb/²²⁶Ra ratios have been determined from enclaves in Phase 2, decreasing continuously 443 444 afterwards. This pattern has been explained by a cutting off fresh gas influx in the deeper mafic system from Phase 3 onwards. The ²¹⁰Pb excess can be modelled by one single, 445 446 extended intrusion of basaltic magma at depth (carrying fresh gas), probably intruded in 447 1992 coinciding with the occurrence of deep seismicity. Hence, the intrusion might have ended with Phase 2, when the gas influx decreased preventing further build-up of ²¹⁰Pb. 448

449 **5.2. Generalised Maxwell rheology**

450 Visco-elastic models have been employed by several studies (e.g. Del Negro et al., 2009;
451 Gottsmann and Odbert, 2014; Hickey et al., 2016), and a comprehensive overview on

452 rheological models can be found in Head et al. (2019). Based on the petrological 453 considerations in the previous section we have contemplated an alternative explanation for 454 the inflating deformation patterns during pauses as the ongoing response of a viscous crust 455 to an initial intrusion from 1992 through 2003, excluding any additional magma influx 456 afterwards. We use the 'saw-tooth' deformation pattern in the iconic MVO overview plot 457 depicted in Fig. 2 and refer to the behaviour of the distal stations (MVO1 and NWBL) as they 458 are most strongly indicative for the processes of the deeper magmatic system. Striking 459 features that have guided our modelling attempts are the slightly declining steepness of 460 inflation during pauses while the deflation phases show a steepening trend. Furthermore, we 461 have recognised an almost perfect linear behaviour in both phases and pauses that 462 suggests a visco-elastic behaviour represented by a Maxwell rheology illustrated in Fig. 9.

463

464 Figure 9: Three stages of visco-elastic response using Maxwell rheology; system in

465 equilibrium at t = 0, pressure step ΔP at time t_0 , long-term response for $t > t_0$.

466

471

467 A Maxwell rheology is characterised by a viscous- and an elastic element in series where ε_e

468 and \mathcal{E}_{v} are the elastic and viscous strain responses, respectively, at $t > t_{0}$ to a step-like

469 pressure pulse ΔP at time $t = t_0$. The total strain response is given by adding these

470 components

$$\varepsilon_{\text{total}} = \varepsilon_{\text{e}} + \varepsilon_{\text{v}}$$
, (9)

472 or in terms of pressure

$$\varepsilon_{\text{total}}(t) = \frac{\Delta P}{E} + \frac{\Delta P}{\eta} t,$$
 (10)

473 where *E* is Young's modulus and η the viscosity. Depending on the dimension, direction and 474 the medium considered *E* can be replaced by rigidity (shear modulus) or incompressibility 475 (bulk modulus), and accordingly, η can be either shear or bulk viscosity. Eq. 10 implies an 476 immediate, time-independent elastic response, and a viscous response that is linear in time 477 and continuous as long as the pressure ΔP is applied. In our case the elastic parameter is 478 the shear modulus μ and η the shear viscosity.

480 The Generalised Maxwell model comprises several Maxwell branches and in addition a 481 parallel, purely elastic branch where the elasticity value is partitioned between all branches. 482 In its simplest form the generalised model consists of only one Maxwell- and one elastic 483 branch and is referred to as Standard Linear Solid (SLS) where elasticity is partitioned as μ_1 484 and μ_2 (Fig. 10). This results in strain patterns that react to pressure changes with a delayed 485 response, the characteristic time τ , which is dependent on the choice of viscosity and 486 elasticity partitioning. Hence, the linear time-dependent response of the Maxwell rheology is 487 replaced by

489
$$\varepsilon_{\text{total}}(t) = \frac{\Delta P}{\mu_2} \left(1 - \frac{\mu_1}{\mu_1 + \mu_2} e^{-\frac{t}{\tau}} \right)$$
(11)

495
$$\tau = \eta \frac{\mu_1 + \mu_2}{\mu_1 \, \mu_2} \,. \tag{12}$$

While the partitioning of the elastic modulus between the two branches offers an additional degree of freedom to fit observational data, the two elasticity values lose their original physical meaning. Lin (2020) describes this split of elasticity into two branches by an additional parameter $g = \mu_1/(\mu_1 + \mu_2)$, that varies between 0 and 1, governing the ratio of viscous fluids to solids in a visco-elastic solid, e.g. partial melt to solid rock. As a

- 496 consequence, the choice of μ_1 and μ_2 might be depth/temperature-dependent but is often
- 497 kept constant as $\mu_1 = \mu_2 = 0.5 \mu$ (e.g. Del Negro et al., 2009; Head et al., 2019).

Figure 10: Comparison between Maxwell rheology and SLS with varying elasticity partitioning μ_1 and μ_2 . While the pure Maxwell branch has a linear time dependence here depicted for 10 years (see Eq. 10), the SLS reduces the amplitude and shows a curved trajectory due to the retardation time τ and parameters within (see Eq. 11 and 12). This example is based on Young's modulus E = 10 GPa, pressure step dP = 20 MPa, and viscosity $\eta = 10^{19}$ Pas.

505

Fig. 10 shows the impact of the choice of μ_1 and μ_2 in comparison with the Maxwell rheology; progressive partitioning between μ_1 and μ_2 results in reduced amplitudes of deformation, for high viscosities the SLS converges to a purely elastic system. A higher pressure is necessary in an SLS (compared to a Maxwell rheology) to explain the same deformation.
Hence, Maxwell- and a purely elastic model are endmembers bracketing the range of
pressures to explain the amplitude of a deformation pattern. By considering these
endmembers in realistic visco-elastic parameter distributions we have attempted to gain
insight into upper and lower bounds of magma influx or pressurisation.

Given the intriguingly linear behaviour and the abrupt changes between pauses and phases in the deformation pattern, we start to explore the parameter space with a pure Maxwell rheology (Fig. 9) in a simplified model with homogeneous viscosity η and Young's modulus E, describing the visco-elastic crust surrounding the magma (Model V_h). In this case the linear behaviour during pauses is only dependent on shear viscosity and the residual reservoir

Figure 11: Comparison of the radial deformation at station MVO1 (upper panel, from Fig. 2) with the modelling results (lower panel) for the same station as a visco-elastic response using a Maxwell rheology (Model V_h). Results are shown for a constant Young's modulus of 10 GPa, a constant viscosity of 3.3 x10¹⁸ Pas, and a depressurisation and reservoir volume change equivalent to 100 MPa. Note that in this model a slight change in the deformation gradient in Pause 5 is achieved by a small pressure decrease during the pause.

527 pressure once magma extrusion has stopped while phases are also governed by shear 528 modulus and the decreasing pressure caused by volume loss during the phases. The model 529 setup comprises the vertically extended ellipsoid of Fig. 6 (same as Model E_{1Ex}) embedded 530 in a homogeneous half space. Following this approach we have derived a set of 531 homogeneous models that equally match the deformation pattern (see Fig. 11) using 532 viscosities in the range of $\eta = [1.8 \times 10^{18}, 1.2 \times 10^{19}]$ Pas and a Young's modulus ranging E = 533 [5,10] GPa.

534 According to Eq. 10, the linear trend we have seen in Pause 5 which we have attempted to 535 interpret as a visco-elastic response to an initial magma intrusion rather than as a continued, 536 buoyant magma influx, is only dependent on constant pressure and the viscosity, which in 537 turn is controlled by the crustal temperature distribution. To keep the residual pressure 538 constant during a pause we have assumed the modelled magma intrusion to be connected 539 to a larger, deeper reservoir such that the small volume change due to inflation can be 540 compensated by mass transfer from the reservoir. Magma compressibility plays an 541 additional role in pressure recovery and inflation as discussed by Segall (2016).

In the following we explore the wide range of depth-dependent temperature and resultingviscosities and their influence on the deformation models.

544 5.3. Temperature and viscosity dependence

545 The exact temperature distribution on Montserrat is controlled by several factors such as 546 hydrothermal activity and the accurate location and history of the magma intrusion, which is 547 subject to large uncertainties. These large uncertainties are also reflected in the literature: 548 Manga et al. (2012) measured temperature gradients near the seafloor in the Lesser Antilles 549 and found values between 0.06 K/m, and up to 0.1 K/m in a borehole at the arc crest 550 between Montserrat and Guadeloupe at a water depth of 1200 m and borehole depth of 280 551 m. Geothermal investigations on Montserrat found temperatures of 200°C (473 K) at 2000 552 m depth over a wide area surrounding the volcanic centre (Ryan & Shalev, 2014) leading to

a shallow temperature gradient of 0.1 K/m. Gottsmann and Odbert (2014) implemented in 553 554 their models an island-wide crustal hot zone of 1373 K between 31 km and 27 km depth 555 superimposed to an elevated crustal heat flow modelled by one or two crustal magma 556 reservoirs. Similar to Gottsmann and Odbert (2014), we have implemented a thermal model, 557 based on the source geometry we found in Section 4 for the intrusion, which is underpinned 558 by a deeper magma reservoir between 14 and 20 km depth (e.g. Zellmer et al., 2003). This 559 deeper reservoir does not have any impact on the surface deformation which is controlled by 560 the deep-rooted intrusion modelled by the extended ellipsoid above. We use a temperature 561 of 900 K at 20 km depth, and 1350 K in the deep reservoir and intrusion. This corresponds to 562 thermal gradients of 0.075 K/m above the deep reservoir and 0.03 K/m further away from 563 reservoir and intrusion.

The Arrhenius approximation has been widely used to estimate shear viscosity $\eta(T)$ distributions from depth-dependent temperature models (e.g., from basaltic magmas, Del Negro et al., 2009; to silicic compositions, Le Mével et al., 2016)

579

$$\eta = A \ e^{\left(\frac{H}{RT}\right)},\tag{13}$$

567 where A is the Dorn parameter, H is the activation energy, R is the ideal gas constant, and T 568 is temperature in degrees K. Recent visco-elastic studies have employed commonly used 569 values for A and H that are potentially representative of the geochemical composition and 570 subsurface temperature. In contrast, Morales Rivera et al. (2019) have explored the full 571 range of these parameters by applying thermo-mechanical models to the 2010-2011 unrest 572 of Taal volcano, Philippines, investigating how host rocks with distinct viscosity endmembers 573 in the Arrhenius formulation affect the response of the Earth's surface due to magma 574 reservoir pressurization. In their study they used a range of activation energies H between 575 106 kJ/mol to 217 kJ/mol, respectively, equivalent to a silicic and intermediate crust. Using 576 Eq. 13 leads to a range of viscosities spanning several orders of magnitude for the same crustal temperature of 600 K. In the same study the Dorn parameter A is varied between 5 \times 577 10^9 and 2×10^{13} Pas, again for a silicic and intermediate crust, adding another 4 orders of 578

magnitude difference for the same temperature. These examples demonstrate how large theuncertainties in both temperature, and consequently in viscosity are.

582 For the next modelling step we have chosen values for the Dorn parameter A = 10 GPas, 583 and the activation energy H = 120 kJ/mol previously used for Montserrat (e.g. Odbert et al., 584 2015) and derive the viscosity distribution depicted in Fig. 12A. We have estimated a range 585 of potential temperature and corresponding viscosity values by profiling the area that 586 contributes most to the deformation field below the station MVO1. These profiles and the 587 resulting average viscosity values are depicted in Fig. 12B for the distal station MVO1. All 588 profiles converge towards the surface to viscosity values far above the range we employed 589 in our simplified homogeneous model. Therefore, we have tested the endmember models by 590 Morales Rivera et al., (2019) in the Arrhenius formulation Eq. 13 to find the lowest value 591 possible for a corresponding endmember in viscosity. This viscosity distribution (Fig. 12D) is 592 then used to compute the deformation pattern as a response to an initial intrusion without 593 any further pressurisation or magma influx. We refer to this viscosity distribution and Young's 594 modulus profile derived from Paulatto et al. (2019) and reduced to 67% and 11% 595 (Gudmundsson, 1990) as explained in Section 3, as the 'depth-dependent model', VZ_{Max} and 596 VZ_{SLS}, hereafter.

597 **5.4. Visco-elastic response to magma intrusion**

Using the Maxwell rheology introduced in Section 5.2 and the viscosity distribution derived in Section 5.3 we can now model the visco-elastic response to an initial intrusion that is followed by a stepwise depressurisation of a magma reservoir due to extrusion of magma during Phase 2 through Phase 5, using the same pressure steps as employed in the homogeneous model V_H (Fig. 11). We present in Fig. 13 the corresponding radial deformation for GPS station MVO1 for a pure Maxwell rheology (VZ_{Max}), several SLS rheologies (VZ_{SLS}) and a purely elastic model for reference (E_{1Ex}). In contrast to the

606 Figure 12: Temperature – viscosity model VZ_{Max}. A: temperature distribution and contoured 607 viscosity values (Log₁₀). Dashed lines indicate where viscosity profiles have been calculated 608 between the magmatic source at different depths and distal GPS station MVO1. B: Viscosity 609 profiles between MVO1 and magmatic source at 12, 8 and 6 km depth. Viscosity averages 610 over the profiles are indicated. C: Meshed temperature model comprising cone shaped deep 611 reservoir (30 km wide and 6 km high) and superimposed magma intrusion as depicted in Fig. 612 6 left. D: endmember model for lowest possible viscosities which differ from (A) by one to 613 two orders of magnitude.

614 homogeneous model V_H in Fig.11 the deformation during the pauses when the pressure 615 stays constant does show a small inflationary trend for the Maxwell rheology (Fig. 13A) which is in the same order of magnitude as the observation. However, this inflationary trend 616 617 is much smaller than the deflation during magma extrusion resulting in an overall deflation 618 which follows the pressure profile over time, unlike the observed saw-tooth pattern in Fig. 2 619 and 11. In fact, the small inflationary trend is well explained by the dissipation of crustal 620 stress exerted by the initial intrusion. The more realistic depth-dependent model reveals the 621 interaction between regions of different properties. Here elastic energy is stored in layers 622 with high viscosity after the initial pressurisation and then dissipated due to the viscous 623 behaviour of regions with lower viscosity. This behaviour has been previously noted and 624 modelled by other studies (e.g. Yamasaki et al., 2017) and is demonstrated in Fig. 13C 625 depicting the crustal response to a positive pressure step of 20 MPa for Maxwell and SLS 626 rheology over 10 years. Here the homogeneous visco-elastic model $V_{\rm H}$ (Fig. 11) is replaced 627 by the same depth-dependent, visco-elastic model used VZ_{Max} for Fig.13A. Unsurprisingly, the SLS rheology (VZ_{SLS}) follows closely the pressure profile and the purely elastic behaviour 628 629 without any inflation trend during pauses (Fig. 13B).

630 We started from a simplified homogeneous model V_{H} (Fig. 11) where we determined a 631 viscosity-elasticity combination that could explain the 'saw-tooth' pattern observed in Fig. 2. 632 Despite using endmember viscosity profiles as close as possible to the low viscosities of the 633 homogeneous model, the 'saw-tooth' pattern cannot be reproduced by pauses during which 634 the pressure remains constant. Hence, we have to reject the hypothesis that the inflations 635 during pauses, particularly the ongoing inflation that has continued for more than 10 years, 636 can be explained by a delayed crustal response to an initial intrusion without any further 637 magma influx or pressurisation.

638

Figure 13. A: Pattern of radial deformation at MVO1 for depth-dependent visco-elastic model derived in Section 5.3 and Maxwell rheology (VZ_{Max}) using the same depressurisation steps as in the homogeneous model (V_H) in 5.2. B: same for SLS rheology. C: Response of depthdependent model used in A to a positive pressure step of 20 MPa for different rheology models. Note the logarithmic amplitude scale.

Parameter	Description	
Va	Source Volume	m ³ (calculated)
	Volume of erupted material (DBE)	m^3 (Wadge et al. 2010)
	Density of erupted material (DRE)	2600 kg/m ³
	Density of magma	kg/m ³ (calculated)
Р _М		
β	Compressibility of magma	
E	Young's Modulus	1.3 – 12.2 GPa (Paulatto et
		al.,2019; reduced to 11% - 67%)
V	Poisson Ratio	0.25
η	Viscosity	Pas (calculated)
β _s	Compressibility of source reservoir	Pa ⁻¹ (calculated) (Huppert &
		Woods, 2002)
$\boldsymbol{\beta}_{\mathrm{r}}$	Rock bulk modulus	<i>E/3(1-</i> 2v)
n	Exsolved gas content	wt.% (calculated)
N	Total gas content	4 – 8 wt.%
$ ho_{ m g}$	Gas density	kg/m ³ (calculated)
$ ho_{c}$	Crystal density	2600 kg/m ³
$ ho_{ m m}$	Melt density	2300 kg/m ³
x	Crystal content	40 %
М	Molecular mass of water	0.01801528 kg/mol
Р	Pressure	Pa (calculated)
R	Universal Gas content	8.314 J/mol K
Т	Temperature	300 - 1350 K
d <i>T</i> /d <i>z</i>	Thermal Gradient	0.03 – 0.1 K/m
A	Dorn Parameter	5 x10 ⁹ - 10 ¹⁰ Pas
Н	Activation Energy	1.06 x 10 ⁵ - 2.17 x 10 ⁵ J/mol

646 Table 2. Variables used in the compressibility calculations and deformation models.

647 6. Discussion

648 Based on the elastic models of Section 4 we have re-introduced pressurisation during

pauses in the following set of numerical models, and have estimated to what extent such

650 pressurisation can be reduced by visco-elastic rheologies developed in the previous section.

- Using purely elastic behaviour, SLS and the Maxwell rheology we have attempted to find
- endmembers of pressurisation values, for which we discuss potential physical processes
- that explain the observations in Pause 5.

654

Figure 14: Radial displacement at station MVO1 for indicated rheology and Young's modulus. E 11% and E 67% refer to the revised seismic velocity depth profile of Paulatto et al. (2019) reduced to 11% and 67%, respectively, as explained in Section 3. In all cases the same pressure history has been applied. A: purely elastic cases, B: SLS with equally shared shear modulus $\mu_1 = \mu_2$, C: Maxell rheology. Note the different scales in A, B and C.

661 6.1 Final numerical deformation models

662 The modelling results displayed in Fig. 14 have been obtained by applying the same 663 pressure values and history as depicted in panel A, hence, resulting in different radial 664 displacements according to the choice of rheological model. By scaling these radial 665 displacements to the observations throughout the eruptive history we have determined the 666 time line and values for pressurisation and depressurisation that correspond to the 667 observations. We drop the extreme case in panel C (Fig. 14) for a Maxwell rheology 668 combined with an elasticity value reduced to 11% as the overall temporal pattern does not fit 669 the observations. All pressure differences throughout the eruption are listed in Table 3. 670 Focussing on Pause 5 we obtain pressurisations dP/dt ranging from 0.1 MPa/year to 6 671 MPa/year for Maxwell (VZ_{Max}) and purely elastic case (E_{1Ex}), respectively.

Phase/Pause	Estimated DRE (10 ⁶ m ³) (Wadge et al, 2014)	Pressure (M Elastic <i>E</i> redu 11%	e change Pa) models iced to 67%	Pressur (N SLS r <i>E</i> red 11%	e change IPa) models uced to 67%	Pressure change (MPa) Maxwell model <i>E</i> reduced to 67%
1	331	-1	-8	-1	-5	-0.1
1		1	8	1	5	0.1
2	336	-9	-57	-7	-37	-0.7
2		5	30	4	20	0.3
3	282	-8	-46	-5	-30	-0.6
3		4	20	2	13	0.3
4	39	-2	-8	-1	-5	-0.1
4		2	10	1	7	0.1
5	74	-4	-24	-2	-16	-0.3
5		10	61	6	-39	0.8
d <i>P</i> /dt		1	6	1	4	0.1
dV/dt [m ³ /year]		3.5 >	k 10 ⁶	4.2	x 10 ⁶	18 x 10 ⁶
d <i>V</i> /d <i>t</i> [m ³ /s]		0.11		0.13		0.57

672

673 Table 3. Pressure changes for different models that explain the deformation patterns at

674 MVO1 for all phases and pauses. The last three rows show the corresponding pressurisation

675 rates and volumetric strain changes during Pause 5.

The corresponding volume changes are determined by the volumetric strain integral over the

intrusion (geometry Fig. 7) during inflation and result in 0.11 m³/s to 0.57 m³/s or 3.5×10^6

 m^{3} /year to $18 \times 10^{6} m^{3}$ /year for the elastic and Maxwell case, respectively. As expected, the

679 corresponding values for the SLS rheology are closer to the elastic case (Table 3).

680

681 6.2 Mass balance for compressible magmas

According to Wadge et al. (2014), Phase 3 involved the extrusion of 282 x10⁶ m³ DRE

(Table 3). This is a factor of about 10 times larger than the volume change derived for an

elastic model E_{1Ex} and twice the volume for a visco-elastic Maxwell model VZ_{Max}. However,

this can be accounted for by the effect of magma compressibility at reservoir pressures.

Using Equations (6) through (8) in Section 4.6 we estimate the equivalent, depth dependent

687 volume changes for compressible magma with a 40% crystallinity and volatile content of 4 –

688 6 wt.%; in Fig. 15 results for Phase 3 and Phase 5 are compared.

689

Phase/Pause	Estimated DRE (10 ⁶ m ³)	Volume change (10 ⁶ m ³)	Volume change (10 ⁶ m ³)	
		Elastic model	SLS	Maxwell
1	331	-5	-5	-13
1		5	5	22
2	336	-33	-39	-190
2		18	20	69
3	282	-27	-31	-122
3		12	13	25
4	39	-5	-5	-8
4		6	7	15
5	74	-13	-15	-29
(10 years) 5		35	42	180

690

691 Table 4. Deep source volume change from our elastic (E_{1Ex}) and visco-elastic models (VZ_{Max}

and VZ_{SLS}) compared to estimated DRE volumes (± 50%) from Wadge et al. (2014). Model

693 parameters correspond to those used in Fig. 14.

694

The modelled volumes for Maxwell and the elastic case are the output of the volumetric

696 strain integral over the entire depth range displayed as horizontal lines while the DRE

697 equivalent volumes corrected for compressibility due to 4 – 6 wt.% H₂O content are given as

698 depth-dependent. This shows that four times more material was erupted during Phase 3

699 compared to Phase 5. The elastic model underestimates the volume change at reservoir

level for Phase 3 while the visco-elastic model appears to slightly overestimate the volume
change at reservoir level for Phase 5. This could point to a decrease of volatile content in the
remaining magma during the years between 2006 (Phase 3) and 2010 (Phase 5) causing a

703

704 Figure 15: Comparison between the estimated DRE volume and the modelled source 705 volume change during Phases 3 and 5 for an elastic model (dashed black line) and a visco-706 elastic Maxwell model (solid black line). These volume changes are based on the modelled 707 GPS data listed in Table 2 integrated over the depth range between 5 and 13 km. Dotted 708 lines are corresponding, depth-dependent volumes corrected for magma compressibility for 709 different initial gas contents (4 - 6 wt.%) and a crystallinity of 40%. Note the step for 4 wt.% 710 due to the solubility limit at about 260 MPa. Uncertainty on DRE (grey) and corresponding 711 compressible magma volume (pink) are based on the DRE estimation of ±50% (Wadge et 712 al., 2014). The depth scale indicated assumes lithostatic pressure with a rock density of 2600 kg/m³. 713

decrease in compressibility. Alternatively, this could also be interpreted as a continued influx
of magma during extrusion for Phase 5. However, both elastic and visco-elastic models
match in general the estimated DRE volumes once compressibility is taken into account and

suggest that the models brace the realistic set of parameters that explain the deformationpattern throughout the eruption.

719 The apparent volume changes obtained through our numerical models need to be translated 720 into DRE volumes according to eq. 6 in section 4.6 to reflect the actual mass of magma 721 intruded into the reservoir. The factors $\rho_{\text{DRE}}/\rho_{\text{m}}$ and $(1 + \beta_{\text{m}}/\beta_{\text{c}})^{-1}$ in Eq. 6 represent the effects 722 of compressibility of magma and reservoir, respectively. Hence, using the volumes for Phase 723 5 in Table 3 and the apparent volume change rates in Table 2, we obtain correction factors 724 of 5.7 and 2.6 for the elastic and Maxwell case, respectively. Applying those to the apparent 725 volume change rates we finally obtain 0.62 m³/s to 1.48 m³/s or 19 x 10⁶ m³/year to 47 x 10⁶ 726 m³/year for the elastic and Maxwell cases, respectively.

727 6.3 Link to SO₂ outgassing

Focussing on Pause 5 and the ongoing inflation of the island of Montserrat, another way to constrain the assumption of continuing magma influx as an explanation is a comparison with the outgassing of SO₂. Both traverse-based and network data acquisition place the amount of outgassed SO₂ in the range of 300 ± 130 tonnes/day (Stinton et al., 2020).

732 Crystallisation during cooling (second boiling) reduces the volume of melt and, therefore, 733 increases the vapour pressure forcing volatiles to exsolve and form bubbles. Even a partial 734 confinement of these exsolved volatiles results in pressurisation of the magma reservoir, and 735 hence, will contribute to the deformation field. If we assumed crystallisation as the sole 736 mechanism to explain the deformation data and made the rather extreme assumption of a closed system where no exsolved gas can escape, a source volume of 40 km³ would be 737 738 required (Caricchi & Simpson, 2015) to generate the amount of gas needed matching a 739 pressurisation of 1 - 6 MPa/year. While this volume is in agreement with the magma volume 740 suggested by Christopher et al. (2015), it is significantly larger than our modelled sources ranging from 1.26 km³ to 8 km³, and the amount of volume generated by a uniformly 741 742 degassing magma body of 40 km³ would have to be concentrated in the upper part of our

modelled intrusion in order to match the observed deformation data. Furthermore, the
assumption of a sealed system seems unrealistic given the constant outgassing of SO₂ at
300 tonnes/day during Pause 5, and we conclude that crystallisation induced degassing can
only account for a very small fraction of the observed deformation data.

747 If we assume an open system and hypothesise that the entire amount of sulphur originates 748 from a continuous influx of more mafic magma into a shallow intrusion we can obtain an 749 upper bound of magma influx that is constrained by the long-term average of SO₂ output. 750 Edmonds et al. (2014) estimated the amount of sulphur gases emitted continuously between 751 July 1995 and July 2011 at 4.0 \pm 0.6 x 10⁹ kg while the total amount of magma erupted in 5 752 phases during this time amounted to 1.1 km³ (Wadge et al., 2010). Having found very little 753 sulphur (<100 ppm) in melt inclusions, Edmonds et al. (2014) assumed that all of the sulphur 754 emitted continuously over these years had resided as a volatile phase in the andesitic 755 magma reservoir prior to the onset of eruption. Adopting the numbers by Edmonds et al. 756 (2014) above, and assuming a magma density of 2600 kg/m³, we estimate the sulphur 757 content at about 0.14 wt%. Using the postulated volume influx in the range d V/dt = [0.62,758 1.48] m³/s, this results in a magma mass influx of $dM/dt = [139, 332] \times 10^6$ kg/day, of which 759 sulphur contributes 0.14 wt%. Hence we derive [195, 465] x 10³ kg/day of sulphur or about 760 [390, 930] t/day of emitted SO₂ based on our purely elastic model or the visco-elastic 761 Maxwell model, respectively. These results are higher but overlap with the uncertainties of 762 the measured outgassing of 300 ± 130 tonnes/day and indicate that values of 1.48 m³/s or $47 \times 10^6 \text{ m}^3/\text{year}$ form indeed an upper bound of magma influx into the deep reservoir. 763

764 7. Summary and conclusions

We embarked on an attempt to explain the current deformation pattern on Montserrat showing since 2010 a continuous expansion of the entire island, which has important implications in terms of understanding the future eruption potential of the volcano. We made use of the remarkable similarity of deformation patterns that can be applied to both inflation and deflation, hence one source geometry can be used for the entire eruptive history. 770 Through numerical modelling we have matched GPS data sets to a deep source embedded 771 in an elastic half space. Unlike other studies it has not been our intention to match all details 772 of the deformation data which can be achieved by varying parameters like viscosity, 773 elasticity, temperature in three dimensions. In contrast, we have explored alternative models 774 as proof of concept. Prompted by the petrology study of McGee et al. (2019) that suggested 775 the end of an initial magma intrusion by 2003, we have explored a set of visco-elastic 776 models, testing whether the entire deformation pattern throughout the eruptive history can be 777 explained by a visco-elastic response of the volcanic system to an initial intrusion without 778 any further pressurisation during eruptive pauses. Rather than searching for one possible 779 explanation, we attempted throughout this study to capture the widest possible range of 780 modelling parameters in order to assess the range of possible solutions that could explain 781 the deformation pattern on Montserrat.

In our initial modelling attempts (Model I_S, I_D and I_F) we ruled out a dyke or fault to
 explain the deformation on Montserrat. Given the fact that there is little evidence for
 significant recent activity on the local faults as discussed in Section 4.2, we adopt a
 more realistic tectonic contribution of max. 3 mm/year in each direction (Wadge et al.,
 2014) which would correspond to a pressure reduction by only 1 MPa at the deep
 source geometry. Hence, we conclude that any tectonic contribution to the current
 deformation field has by comparison a very small impact.

789 We conclude that the ongoing deformation pattern (Pause 5) is best explained using • 790 a dual-source model (Model E_{2E}/E_{2Ex}) with a shallow deflating source and a deeper 791 inflating source. In terms of understanding the future eruption potential of the 792 volcano, continuous magma accumulation is the main consideration, therefore, it is 793 the deeper, inflating source which is more important. However, the deflating source suggests a depressurisation at shallow depths. The observation that the shallow 794 795 source is not evident in the GPS data for any other phase or pause, other than Pause 796 5, implies it represents either a change in source process, or an ongoing process, the effects of which were previously masked by the deeper source. Potential causes for
the deformation pattern close to the volcano and modelled as a shallow deflating
source could include cooling, crystallisation, outgassing and deposit loading. The
most viable explanation for deep source volume changes is magma accumulation,
whereas local and regional tectonics as well as crystallisation play a minor role, if any
at all.

803 We have tested the hypothesis that the inflation during pauses could be due the • 804 visco-elastic response of the volcanic system under constant pressure but without 805 further magma influx. By utilising the linear deformation trend of a Maxwell rheology we found a set of parameters that could indeed explain the saw-tooth pattern for a 806 807 simplified, homogeneous model (V_H). For more realistic, depth-dependent parameter 808 distributions (VZ), however, we reject the hypothesis explaining the saw-tooth pattern 809 without new magma influx. This is the case for all visco-elastic models we used 810 despite stretching the parameter space concerning temperature and viscosity as far 811 as possible.

Our modelling has shown that the deformation data captured by the GPS network are
 controlled by the upper surface of the source volume and extending the source
 vertically, whilst maintaining its footprint, does not significantly alter the horizontal or
 vertical displacements. Hence, the absolute volume of the magma body to which
 volume changes are applied is hard to constrain and our preferred source geometry
 is not incompatible with previously published source volumes (summarised in
 Elsworth et al., 2014).

By assuming a consistent source mechanism and geometry throughout the eruption,
 we have mapped the deformation field for all phases and pauses into volume
 changes at the deeper source, and conclusions can be drawn about magma supply
 and extrusion rates. We have calibrated our best-fit model parameters in Pause 5
 and have applied those to the GPS data in previous phases and pauses. By retracing

824 the entire eruptive history of SHV we have derived the total volume changes at the 825 deep source level. Fig. 8 summarises and compares the volume of erupted material 826 (DRE) and volume changes at depth based on the initial elastic models E_{1E}, while 827 Table 3 contains the corresponding values derived from the volumetric strain integral 828 for the depth-dependent, more realistic set of elastic and visco-elastic models VZ. 829 Regarding the timing of the start of Phases 2 - 5, it is significant that the volume 830 extruded has exceeded the volume of influx in each eruptive phase. This indicates 831 that the magma reservoir has not been replenished to its original pre-eruption volume 832 prior to the onset of the next eruptive phase. This fact demonstrates that the 833 sequence of eruptive phases is not merely controlled by the accumulation of a critical 834 magma volume, but another change in the system is required instigating an eruptive 835 phase. Following this apparent trend of onsets indicated in Fig. 8 an intriguing 836 interpretation could be made: the so-called ash-venting in the beginning of 2012 837 could be interpreted as a failed new eruptive phase.

 Another outcome of this study is the appreciation of how large the uncertainties in modelling parameters are, preventing the modelling results to be further constrained.
 This has been demonstrated in Elsworth et al. (2014) for purely elastic models and for visco-elastic models by Morales Rivera et al. (2019), as well as this study.
 Additional data sets like gravity measurements are needed to constrain the mass influx more directly.

Currently there are three criteria which are used to define the end of the eruption at
 the Soufrière Hills volcano (Wadge and Aspinall, 2014). These are (i) absence of low
 frequency seismic swarms, (ii) daily SO₂ fluxes below 50 tonnes/day, and (iii) no
 significant volcanic ground deformation from a deep source. Currently the latter two
 criteria are not being met. These two criteria are a proxy for continued input into the
 crustal magma storage system from depth of a hotter, volatile rich, more mafic
 magma. This input is thought to be necessary to sustain a long-lived, episodic

851 eruption such as observed at the Soufrière Hills volcano. An exploration of the effects 852 of a range of viscoelastic and elastic magma plumbing system models suggests that 853 the observed ground deformation is best described by a continued pressurisation of a 854 crustal reservoir thought to be due to input of mafic magma. As it is this input of mafic 855 magma into the shallow storage system that is thought to have initiated and 856 sustained the five extrusive phases of the Soufriere Hills Volcano (Devine et al., 857 2003), the implication is that another extrusive phase cannot be ruled out. We 858 conclude that the eruptive sequence of Montserrat's Soufrière Hills volcano is still 859 ongoing with magma trickling into a crustal reservoir. It remains an open question if 860 there is enough crystal-poor, melt-rich, eruptible magma that could reach the surface 861 in the near future. To evaluate the near-term threat for Montserrat the crucial problem 862 needs to be addressed why a new phase started in the past, when it started. 863 Processes like segregation and turnover processes in a crustal reservoir of melt and 864 crystal mush might hold the answer but are far from being understood. It also points 865 to the need for continued close monitoring of the volcano to identify any signs of the 866 beginning of a new phase of extrusion as early as possible.

867

868 Acknowledgements

869 Thanks to the staff of the MVO who continuously monitor and assess the risk posed by the 870 Soufrière Hills Volcano for access to the unique data explored in this study. We also thank 871 them for contributions and insights shared during discussions with the Scientific Advisory 872 Committee (SAC) which generated many of the ideas explored in this manuscript. We would 873 like to acknowledge further contributions by SAC members Jenni Barclay, Eleonora Rivalta, 874 and Fidel Costa, and thank Luca Caricchi for insightful discussions. The comments of two 875 reviewers that improved the manuscript are highly appreciated. This research was supported 876 by the Earth Observatory of Singapore via its funding from the National Research 877 Foundation Singapore and the Singapore Ministry of Education under the Research Centres

878 of Excellence initiative. This work comprises EOS contribution number 433. JN is partly 879 funded by NERC Centre for the Observation and Modelling of Earthquakes, Volcanoes and 880 Tectonics (COMET).

881

892

882 References

- 883 Caricchi, L. & Simpson, G. 2015. Assessment of potential effect of degassing on the 884 deformation observed at Soufriere Hills Montserrat since 1995. Appendix 10 in: 20th Report 885 of the Scientific Advisory Committee on Montserrat Volcanic Activity. http://www.mvo.ms/
- 886 Christopher, T.E., Blundy, J., Cashman, K., Cole, P., Edmonds, M., Smith, P.J., Sparks,
- 887 R.S.J., Stinton, A. 2015. Crustal-scale degassing due to magma system destabilization and
- 888 magma-gas decoupling at Soufrière Hills Volcano, Montserrat. Geochem. Geophy. Geosys.,
- 889 16 (9), 2797-2811. doi:10.1002/2015GC005791.
- 890 Del Negro, C., Currenti, G., Scandura, D. 2009. Temperature-dependent viscoelastic
- 891 modeling of ground deformation: Applications to Etna volcano during the 1993-1997 inflation period. Phys. Earth. Planet. Inter., 172 (3-4), 299-309. doi:10.1016/j.pepi.2008.10.019.
- 893 Devine, J.D., Rutherford, M.J., Norton, G.J. & Young, S.R. 2003. Magma storage region
- 894 processes inferred from geochemistry of Fe-Ti oxides in andesitic magma, Soufrière Hills
- 895 volcano, Montserrat, WI. Journal of Petrology, 44,1375-1400.
- 896 Dieterich, J.H., Decker, R.W. 1975. Finite element modelling of surface deformation
- 897 associated with volcanism, J. Geophys. Res. Solid Earth, 80, 4096-4102, doi
- 898 10.1029/JB080i029p04094.
- 899 Edmonds, M., Pyle, D.M., Oppenheimer, C. 2001. A model for degassing at Soufrière Hills 900 Volcano, Montserrat, West Indies, based on geochemical data. Earth. Planet. Sci. Lett., 186 901 (2) 159-173. doi: 10.1016/s0012-821X(01)00242-4.

- 902 Edmonds, M., Pyle, D.M., Oppenheimer, C. 2002. HCI emissions at Soufrière Hills Volcano,
- 903 Montserrat, West Indies, during a second phase of dome building: November 1999 to
- 904 October 2000. Bull. Volcanol., 64 (1), 21-30. doi: 10.1007/s00445-001-0175-0.
- 905 Edmonds, M., Humphreys, M.C.S., Hauri, E.H., Herd, R.A., Wadge, G., Rawson, H.,
- Ledden, R., Plail, M., Barclay, J., Aiuppa, A., Christopher, T.E., Giudice, G., Guida, R. 2014.
- 907 Pre-eruptive vapour and its role in controlling eruption style and longevity at Soufrière Hills
- 908 Volcano. In: Wadge, G., Robertson, R.E.A., Voight, B. (Eds.). The Eruption of Soufrière Hills
- 909 Volcano, Montserrat from 2000 to 2010. Mem. Geol. Soc. Lond., 39, 291-315.
- 910 doi:10.1144/M39.16.
- 911 Elsworth, D., Mattioli, G., Taron, J., Voight, B., Herd, R. 2008. Implications of magma
- 912 transfer between multiple reservoirs on eruption cycling. Science, 322 (5899), 246-248.
- 913 doi:10.1126/science.1161297.
- Elsworth, D., Foroozan, R., Taron, J., Mattioli, G.S., Voight, B. 2014. Geodetic imaging of
- 915 magma migration at Soufrière Hills Volcano 1995 to 2008. In: Wadge, G., Robertson, R.E.A.,
- 916 Voight, B. (Eds.). The Eruption of Soufrière Hills Volcano, Montserrat from 2000 to 2010.
- 917 Mem. Geol. Soc. Lond., 39, 219-227. doi:10.1144/M39.12.
- 918 Feuillet, N., Leclerc, F., Tapponnier, P., Beauducel, F., Boudon, G., Le Friant, A., Deplus, C.,
- 219 Lebrun, J-F., Nercessian, A., Saurel, J-M., Clément, V. 2010. Active fault induced by slip
- 920 partitioning in Montserrat and link with volcanic activity: New insights from the 2009
- 921 GWADASEIS marine cruise data. Geophys. Res. Lett., 37 (19), L00E15. doi:
- 922 10.1029/2010GL042556.
- 923 Foroozan, R., Elsworth, D., Voight, B., Mattioli, G.S. 2010. Dual reservoir structure at
- 924 Soufrière Hills Volcano inferred from continuous GPS observations and heterogeneous
- 925 elastic modeling. Geophys. Res. Lett., 37 (19), L00E12. doi:10.1029/2010GL042511.

Foroozan, R., Elsworth, D., Voight, B., Mattioli, G.S. 2011. Magmatic-metering controls the
stopping and restarting of eruptions. Geophys. Res. Lett., 38 (5), L05306.

928 doi:10.1029/2010GL046591.

929 Gottsmann, J., Odbert, H. 2014. The effects of thermomechanical heterogeneities in island

arc crust on time-dependent preeruptive stresses and the failure of an andesitic reservoir. J.

931 Geophys. Res. Solid Earth, 119, 4626-4639, doi:10.1002/2014JB011079.

Gudmundsson, A. 1990. Emplacement of dikes, sills and crustal magma chambers at
divergent plate boundaries. Tectonophysics, 176(3-4), 257–275. ttps://doi.org/10.1016/00401951(90)90073-H

Hautmann, S., Gottsmann, J., Sparks, R.S.J., Mattioli, G.S., Sacks, I.S., Strutt, M.H. 2010.

936 Effect of mechanical heterogeneity in arc crust on volcano deformation with application to

937 Soufrière Hills volcano, Montserrat, West Indies. J. Geophys. Res., Solid Earth, 115 (B9).
938 doi:10.1029/2009JB006909.

Hautmann, S., Witham, F., Christopher, T., Cole, P., Linde, A.T., Sacks, I.S., Sparks, R.S.J.
2014. Strain field analysis on Montserrat (W.I.) as tool for assessing permeable flow paths in
the magmatic system of Soufrière Hills Volcano. Geochem. Geophys. Geosys., 15, 676-690,
doi:10.1002/2013GC005087.

943 Head, M., Hickey, J., Gottsmann, J., Fournier, N. 2019. The influence of viscoelastic crustal

944 rheologies on volcanic ground deformation: Insights from models of pressure and volume

945 change. J. Geophys. Res. Solid Earth, 124, 8127–8146. doi:10.1029/2019JB017832

946 Herring, T. A., King, R.W., McClusky, S. C. 2010a. GAMIT: GPS Analysis at MIT Release

947 10.4, Internal Memorandum. Massachusetts Institute of Technology, Cambridge, MA.

948 Herring, T.A., King, R.W., McClusky, S. C. 2010b. GLOBK: Global Kalman filter VLBI and

949 GPS Analysis Program Release 10.4, Internal Memorandum. Massachusetts Institute of

950 Technology, Cambridge, MA.

- 951 Hickey, J., Gottsmann, J., Nakamichi, H., & Iguchi, M. 2016. Thermomechanical controls on
- 952 magma supply and volcanic deformation: Application to Aira caldera, Japan. Scientific
- 953 Reports, 6(1), 32691. https://doi.org/10.1038/srep32691
- Huppert, H.E., Woods, A.W. 2002. The role of volatiles in magma chamber dynamics.
- 955 Nature, 420, 493-495. doi:10.1038/nature01211.
- 956 Kokelaar, B.P. 2002. Setting, chronology and consequences of the eruption of Soufrière Hills
- 957 Volcano, Montserrat (1995-1999). In: Druitt, T.H., Kokelaar, B.P. (Eds). The Eruption of
- 958 Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Mem. Geol. Soc. Lond., 21, 1-21.
- 959 doi:10.1144/GSL.MEM.2002.021.01.02.
- 960 Le Mével, H., Gregg, P. M., & Feigl, K. L. 2016. Magma injection into a long-lived reservoir to
- 961 explain geodetically measured uplift: Application to the 2007–2014 unrest episode at Laguna
- del Maule volcanic field, Chile. J. Geophys. Res. Solid Earth, 121, 6092–6108.
- 963 https://doi.org/10.1002/2016JB013066
- 964 Lin, C.-Y. 2020 Alternative Form of Standard Linear Solid Model for Characterizing Stress
- 965 Relaxation and Creep: Including a Novel Parameter for Quantifying the Ratio of Fluids to
- 966 Solids of a Viscoelastic Solid. Front. Mater. 7:11. doi: 10.3389/fmats.2020.00011
- 967 Lopez, A.M., Stein, S., Dixon, T., Sella, G., Calais, E., Jansma, P., Weber, J., & LaFemina,
- 968 P. 2006. Is there a northern Lesser Antilles forearc block?, Geophys. Res. Lett. 33, 7,
- 969 doi.org/10.1029/2005GL025293
- 970 Manga M., Hornbach M.J., Le Friant A., Ishizuka O., Stroncik N., Adachi T., Aljahdali M.,
- 971 Boudon G., Breitkreuz C., Fraass A., Fujinawa A., Hatfield R., Jutzeler M., Kataoka K.,
- 972 Lafuerza S., Maeno F., Martinez-Colon M., McCanta M., Morgan S., Palmer M.R., Saito T.,
- 973 Slagle A., Stinton A.J., Subramanyam K.S.V., Tamura Y., Talling P.J., Villemant B., Wall-
- 974 Palmer D., Wang F. 2012. Heat flow in the Lesser Antilles island arc and adjacent back arc
- 975 Grenada basin, Geochem. Geophys. Geosyst., 13, Q08007, doi:10.1029/2012GC004260.

- 976 Mattioli, G.S., Herd, R.A., Strutt, M.H., Ryan, G., Widiwijayanti, C., Voight, B. 2010. Long
- 977 term surface deformation of Soufrière Hills Volcano, Montserrat from GPS geodesy:
- 978 Inferences from simple elastic inverse models. Geophys. Res. Lett., 37 (19) (L00E13).
- 979 doi:10.1029/2009GL042268.
- 980 Marsden, L.H., Neuberg, J.W., Thomas, M.E. 2019. Topography and Tilt at Volcanoes.
- 981 Frontiers in Earth Science. 7, doi:10.3389/feart.2019.00317.
- 982 McGee, L., Reagan, M., Handley, H., Turner, S., Sparks, R.S., Berlo, K., Barclay, J., Turner,
- 983 M. 2019. Volatile behaviour in the 1995-2010 eruption of the Soufrière Hills Volcano,
- 984 Montserrat recorded by U-series disequilibria in mafic enclaves and andesite host, Earth and
- 985 Planetary Science Letters, 524, 115730.
- 986 McTigue, D.F. 1987. Elastic stress and deformation near a finite spherical magma body:
- 987 Resolution of the point source paradox. J. Geophys. Res., 92 (B12), 12931-12940.
- 988 doi:10.1029/JB092iB12p12931.
- 989 Mogi, K. 1958. Relations between the Eruptions of Various Volcanoes and the Deformation
- of the Ground Surfaces around them. B. Earthq. Res. I. Tokyo., 36, 99-134.
- 991 Morales Rivera, A. M., Amelung, F., Albino, F., Gregg, P. M. 2019. Impact of crustal
- 992 rheology on temperature-dependent viscoelastic models of volcano deformation: Application
- to Taal volcano, Philippines. J. Geophys. Res. Solid Earth, 124, 978–994.
- 994 https://doi.org/10.1029/2018JB016054
- 995 Neuberg, J., O'Gorman, C. 2002. A model of the seismic wavefield in gas-charged magma:
- application to Soufrière Hills Volcano, Montserrat. Mem. Geol. Soc. Lond., 21, 603-609. doi:
- 997 10.1144/GSL.MEM.2002.021.01.29.
- 998 Odbert, H., Taisne, B., Gottsmann, J. 2015. Deposit loading and its effect on co-eruptive
- 999 volcano deformation. Earth. Planet. Sci. Lett., 413, 186-196. doi:
- 1000 10.1016/j.epsl.2015.01.005.

- 1001 Okada, Y. 1985. Surface deformation due to shear and tensile faults in a half-space. Bull.
 1002 Seismol. Soc. Am., 75 (4), 1135-1154.
- 1003 Okada, Y. 1992. Internal deformation due to shear and tensile faults in a half-space. Bull.
 1004 Seismol. Soc. Am., 82 (2), 1018-1040.
- 1005 Paulatto, M. 2011. Probing the interior of an active volcano: Three-dimensional seismic
- 1006 tomography at Montserrat, School of Ocean and Earth Science, University of Southampton,1007 PhD thesis, pp. 261.
- 1008 Paulatto, M., Moorkamp, M., Hautmann, S., Hooft, E., Morgan, J. V., Sparks, R. S. J. 2019.
- 1009 Vertically extensive magma reservoir revealed from joint inversion and quantitative
- 1010 interpretation of seismic and gravity data. J. Geophys. Res. Solid Earth, 124, 11,170–
- 1011 11,191. https://doi.org/10.1029/2019JB018476
- 1012 Ryan, G. A., Shalev, E. 2014, Seismic Velocity/Temperature Correlations and a Possible
- 1013 New Geothermometer: Insights from Exploration of a High-Temperature Geothermal System
- 1014 on Montserrat, West Indies: Energies, 7, 6689-6720.
- Segall, P. 2010. Earthquake and Volcano Deformation. Princeton, N.J.: Princeton UniversityPress, p.213.
- 1017 Segall, P. 2016. Repressurization following eruption from a magma chamber with a
- 1018 viscoelastic aureole. J. Geophys. Res. Solid Earth, 121, 8501-8522,
- 1019 doi:10.1002/2016JB013597.
- 1020 Stinton, A.J., Cole, P.D., Stewart, R.C., Odbert, H.M., Smith, P. 2014. The 11 February 2010
- 1021 partial dome collapse at Soufrière Hills Volcano, Montserrat. In: Wadge, D., Robertson,
- 1022 R.E.A., Voight, B. (Eds.). The Eruption of Soufrière Hills Volcano, Montserrat from 2000 to
- 1023 2010. Mem. Geol. Soc. Lond., 39, 133-152. doi:10.1144/M39.7.

- 1024 Stinton, A.J., Bass, V., Christopher, C., Fergus, M., Miller, V., Pascal, K., Rostant, D., Ryan,
- 1025 G.A., Stewart, R., Syers, R., Wade, V., Williams, P. 2020. MVO Open File Report OFR 20-
- 1026 01. Montserrat Volcano Observatory, Flemmings, Montserrat.
- 1027 Voight, B., Widiwijayanti, C., Mattioli, G., Elsworth, D., Hidayat, D., Strutt, M. 2010. Magma-
- 1028 sponge hypothesis and stratovolcanoes: Case for a compressible reservoir and quasi-steady
- 1029 deep influx at Soufrière Hills Volcano, Montserrat. Geophys. Res. Lett., 37 (19).
- 1030 doi:10.1029/2009GL041732.
- 1031 Wadge, G., Herd, R., Ryan, G., Calder, E.S., Komorowski, J.-C. 2010. Lava production at
- 1032 Soufrière Hills Volcano, Montserrat: 1995-2009. Geophys. Res. Lett., 37(19), L00E03.
- 1033 doi:10.1029/2009GL041466.
- 1034 Wadge, G., & Aspinall, W.P. 2014. A review of volcanic risk-assessment praxis at the
- 1035 Soufrière Hills volcano from 1997 to 2011, In: Wadge, D., Robertson, R.E.A., Voight, B.
- 1036 (Eds.). The Eruption of Soufrière Hills Volcano, Montserrat from 2000 to 2010. Mem. Geol.
- 1037 Soc. Lond., 39, 1-40. doi:10.1144/M39.24.
- 1038 Wadge, G., Voight, B., Sparks, R.S.J., Cole, P.D., Loughlin, S.C., Robertson, R.E.A. 2014.
- 1039 An overview of the eruption of Soufrière Hills Volcano, Montserrat from 2000 to 2010. In:
- 1040 Wadge, D., Robertson, R.E.A., Voight, B. (Eds.). The Eruption of Soufrière Hills Volcano,
- 1041 Montserrat from 2000 to 2010. Mem. Geol. Soc. Lond., 39, 1-40. doi:10.1144/M39.1.
- 1042 Watts, R.B., Herd, R.A., Sparks, R.S.J., Young, S.R. 2002. Growth patterns and
- 1043 emplacement of the andesitic laval dome at Soufrière Hills Volcano, Montserrat. In: Druitt,
- 1044 T.H., Kokelaar, B.P. (Eds). The Eruption of Soufrière Hills Volcano, Montserrat, from 1995 to
- 1045 1999. Mem. Geol. Soc. Lond., 21, 115-152. doi:10.1144/GSL.MEM.2002.021.01.06.
- 1046 Yamasaki, T., Kobayashi T., Wright, T.J., Fukahata, Y. 2017. Viscoelastic crustal
- 1047 deformation by magmatic intrusion: A case study in the Kutcharo caldera, eastern Hokkaido,
- 1048 Japan., J. Volc. Geotherm. Res., 349 128-145. doi.org/10.1016/j.jvolgeores.2017.10.011

- 1049 Zellmer, G.F., Sparks, R.S., Hawksworth, C.J., Wiedenbeck, M. 2003. Magma emplacement
- 1050 and remobilization timescales beneath Montserrat: Insights from Sr and Ba profiles across
- 1051 plagioclase phenocrysts. J. Petr., 44, 1413-1432.