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ABSTRACT 26 

A substantial amount of phenotypic diversity results from changes in gene expression levels and 27 

patterns. Understanding how the transcriptome evolves is therefore a key priority in identifying 28 

mechanisms of adaptive change. However, in contrast to powerful models of sequence evolution, we 29 

lack a consensus model of gene expression evolution. Furthermore, recent work has shown that many 30 

of the comparative approaches used to study gene expression are subject to biases that can lead to 31 

false signatures of selection. Here, we first outline the main approaches for describing expression 32 

evolution and their inherent biases. Next, we bridge the gap between the fields of phylogenetic 33 

comparative methods and transcriptomics to reinforce the main pitfalls of inferring selection on 34 

expression patterns and use simulation studies to show that shifts in tissue composition can heavily 35 

bias inferences of selection. We close by highlighting the multi-dimensional nature of transcriptional 36 

variation and identifying major, unanswered questions in disentangling how selection acts on the 37 

transcriptome. 38 
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INTRODUCTION 51 

A growing body of evidence indicates that changes in patterns of gene expression play a key role in 52 

phenotypic divergence. Within species, a single genome can encode multiple distinct traits by varying 53 

expression levels of the underlying loci1,2. Similarly, across species, divergence in gene expression is 54 

implicated in major phenotypic differences that underlie adaptive change3–7. Given the importance of 55 

gene regulation in shaping phenotypic diversity, transcriptome analyses are widely used as a genomic 56 

tool to identify the genes that underlie phenotypic variation and the selective regimes acting on 57 

them1,7. However, the dominant mode of evolution acting on gene expression remains controversial. 58 

Current evidence supports the notion that global patterns of gene expression evolve predominantly 59 

under stabilizing selection but the extent of neutral evolution is heavily debated8–11.   60 

Much of this debate is driven by the lack of a consensus neutral model of transcriptome evolution. In 61 

contrast to established models of sequence evolution that allow us to scan coding sequence data for 62 

regions of adaptive evolution, gene expression can be complex and non-additive in its phenotypic 63 

effects. This complexity has resulted in a wide range of approaches to study the evolution of gene 64 

expression7,12,13. Importantly, these approaches make direct assumptions about how expression 65 

evolves across species, many of which have yet to be robustly validated, and these assumptions vary 66 

extensively across models. Over the last decade, statistical frameworks developed in the field of 67 

phylogenetic comparative methods have been applied to transcriptome data to infer selection12,14, 68 

and these have provided important insights into patterns of expression divergence. However, in recent 69 

years it has become clear that several of these phylogenetic comparative approaches suffer from 70 

biases that often lead to false inferences of stabilizing selection when applied to real phenotypic 71 

data15,16. Many of the root causes of these biases are even more pronounced in transcriptomic data, 72 

but the issues uncovered in the phylogenetic comparative literature15–17 are only rarely discussed in 73 

the genomics field18,19.  74 
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Finally, most studies make the explicit assumption that when differential gene expression is observed, 75 

it is the direct result of regulatory change. In reality, this fundamental assumption may often be flawed 76 

as most studies of expression evolution measure transcript abundance in bulk across heterogeneous 77 

tissue samples and so cannot distinguish changes in gene expression from differences in tissue 78 

composition20–22. This problem undermines our current understanding of the nature and abundance 79 

of variation in gene expression across species, and how it contributes to phenotypic divergence. 80 

Although the implications of varying tissue composition across species for measuring differential 81 

expression have been discussed20–22, the consequences of how it affects the inference of expression 82 

evolution have received less attention. 83 

Here, we examine our current understanding of the evolutionary processes generating variation in 84 

gene expression. First, we outline the main approaches for describing gene expression evolution, 85 

examine their inherent biases, and synthesize findings to provide new perspectives to the debate over 86 

how selection acts on the transcriptome. Second, we attempt to bridge the gap between the fields of 87 

comparative phylogenetic methods and transcriptomics to reinforce the main pitfalls of inferring 88 

selection on expression levels. Importantly, we discuss the consequences of changes in tissue 89 

composition across taxa for the study of expression evolution, and use simulation studies to show that 90 

this issue can heavily bias inferences of selection. We close by highlighting the multi-dimensional 91 

nature of transcriptional variation and identifying major, unanswered questions in disentangling how 92 

selection acts on the transcriptome. 93 

INFERRING THE MODE OF GENE EXPRESSION EVOLUTION 94 

Currently, a number of different approaches for analysing expression evolution have been proposed 95 

in the absence of a single consensus model. These can be divided into three broad categories; (i) 96 

contrasts between divergence and variation in expression (Fig 1A), (ii) phylogenetic comparative 97 

methods (Fig 1B) and (iii) fitness-based approaches (Fig 1C). Importantly, each makes different 98 

assumptions regarding the mode of expression divergence and are subject to distinct biases. With a 99 
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few exceptions18,19,23,24, studies rarely interrogate multiple approaches and so it remains unclear 100 

whether discrepancies between studies are biologically meaningful or caused by inherent 101 

methodological differences. Below we synthesise results from different analytical frameworks to 102 

provide an overview on the debate concerning the importance of selection versus genetic drift in 103 

shaping divergence in gene expression levels.  104 

Contrasting divergence and variation in expression 105 

Many early analyses of expression evolution tested for selection by contrasting expression divergence 106 

between species against diversity within species5,25–28. This method relies on the assumption that 107 

neutral changes are based solely on the underlying mutation rate29,30 and so divergence between 108 

species relative to polymorphism within species will be equal at neutral loci30. When applied to 109 

expression data, mutation leads to polymorphism, which can be inferred through variation in 110 

expression level amongst individuals. Therefore, a neutral model of evolution can be rejected when 111 

there are deviations from a balanced ratio of within to between species expression variation (Fig. 1A). 112 

Studies employing this approach are dominated by two competing viewpoints. One posits that gene 113 

expression is predominantly neutrally evolving13,25,26,31 and the other suggests widespread 114 

conservation and purifying selection of expression levels27,28,32,33 with evidence of positive selection 115 

acting on certain loci34–39.  116 

Analogous approaches using alternative neutral models of expression divergence have also found 117 

broad support for stabilizing selection7,10. One such approach uses mutation accumulation studies to 118 

estimate neutral expectations of expression divergence and infer selection through contrasts with 119 

natural populations40–42. Most recently, the distribution of expression levels of F2 offspring from a 120 

genetic cross has been used to estimate expected levels of neutral change43. Here, under neutrality, 121 

expression variance of the two parental populations should be equal to the F2 progeny as F2 122 

expression levels result from random combinations of segregating alleles. Following this logic, 123 

directional selection can be inferred when parental divergence is significantly greater than the neutral 124 
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expectation and stabilizing selection can be inferred when expression of parental populations is 125 

significantly less diverged than expected. This study found widespread stabilizing selection on 126 

expression level across a range of species, the magnitude of which was dependent on the species’ 127 

effective population size, consistent with population genetics theory that selection is more effective 128 

in species with larger effective population sizes. Selection has also been inferred through comparisons 129 

of additive genetic variance of expression (QST) with sequence divergence in neutral molecular markers 130 

(FST) across populations44. However, while QST:FST approaches have been successfully applied to gene 131 

expression variation in a few instances45–49 accurately estimating the additive genetic basis of gene 132 

expression level can be challenging50 and there is a tendency for dominance variance to bias QST 133 

estimates, potentially leading to incorrect inferences of neutrality44. 134 

Nonetheless, the broad approach of contrasting inter- and intra-specific expression variation offers a 135 

tractable method to investigate selective forces shaping expression levels. However, one drawback is 136 

that these tests assume species or populations are phylogenetically independent and do not account 137 

for shared and often complex evolutionary histories. Therefore, in cases where more than one pair of 138 

species are compared, these methods can produce evolutionary patterns that are generated by the 139 

structure of the underlying phylogeny51,52. Furthermore, the neutral expectation that expression 140 

divergence equals diversity tends to break down over longer evolutionary time periods. This is because 141 

gene expression divergence cannot accumulate indefinitely due to upper limits on the rate of 142 

transcription. With increasing genetic distance, changes in expression among taxa may become 143 

nonlinear, leading to instances of genetic drift being mistaken as directional selection13,19. To test for 144 

selection across multiple species and evolutionary distances, approaches that take a phylogenetic 145 

perspective are required. 146 

Phylogenetic comparative methods 147 

Phylogenetic comparative methods have been widely adopted to infer selection acting on phenotypic 148 

traits for a number of decades14,52–54. By incorporating phylogenetic information, these methods 149 
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account for shared ancestry and therefore can overcome issues of statistical non-independence. 150 

Recently, these approaches have been widely applied to transcriptome data to infer selection acting 151 

on gene expression by fitting a number of evolutionary models to expression data for a given 152 

gene12,55,56 (Fig. 1B). A commonly used model, Brownian Motion (BM), assumes that expression 153 

divergence between species will be a function of divergence time and evolutionary rate (𝜎2), and, as 154 

such, is often seen as analogous to genetic drift. A second model, the Ornstein-Uhlenbeck (OU) model, 155 

adds an ‘elastic band’ element (α) drawing expression values towards an optimum (θ) across the 156 

phylogeny, akin to stabilizing selection12,57. The OU model can be extended to allow for branch-specific 157 

events, such as shifts in optimum trait values12,58, analogous to directional selection in particular 158 

lineages.  159 

To date, comparative transcriptomic analyses have found overwhelming support for stabilizing 160 

selection on expression levels across a wide range of species, including Drosophila12,59, African 161 

cichlids60 and mammals61. While this appears consistent with past work27,28,32,33, using OU models to 162 

infer selection has received repeated criticism within the phylogenetic comparative literature (BOX 1). 163 

In essence, any factor that leads to a reduction of phylogenetic signal in species’ trait values will favour 164 

the inference of an OU process over BM, regardless of the underlying evolutionary process. 165 

Importantly, failing to account for biological intraspecific variance or methodological measurement 166 

error by running these models on a mean species expression value has been shown to erode 167 

phylogenetic signal and lead to false inferences of stabilizing selection15,16,18 or branch-specific 168 

selection19. These issues are particularly relevant to expression data, which can be noisy (i.e. subject 169 

to a high degree of measurement error), particularly when environmental and developmental variance 170 

is not strictly controlled for. The OU framework has been adapted to specifically include within-species 171 

expression variability as an error term18,58,62, and whilst it has been shown to reduce false inferences 172 

of stabilizing selection, this approach has only been employed by a handful of studies24,63.  173 

Recently, Rohlfs et al.19 built on this approach with the Expression Variance and Evolution (EVE) model 174 

for testing expression evolution. This approach is grounded in the OU framework but incorporates 175 
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contrasts of expression variance within versus between species, analogous to divergence-diversity 176 

ratio comparisons (Fig. 1A). This is a major advance as it accounts for evolutionary relationships 177 

between species as well as incorporating a neutral expectation for expression divergence that is 178 

dataset-specific. Interestingly, the few studies that have employed this approach have typically 179 

revealed a higher proportion of genes evolving under directional than under stabilizing selection19,24, 180 

and evidence for elevated rates of expression evolution consistent with adaptive evolution63–66. This 181 

contrasts with past evidence for stabilizing selection, outlined above, and may reveal the inherent 182 

biases of simpler OU models. However, it should be noted that the studies that employed EVE were 183 

primarily focused on contrasts of stabilizing versus directional selection not stabilizing versus neutral 184 

evolution and so do not explicitly rule out neutral processes. Finally, EVE also relies on accurately 185 

estimating parameters of the OU process, so it is still likely subject to similar pitfalls identified by the 186 

phylogenetic comparative literature (BOX 1).  187 

Fitness-based approaches 188 

Most recently, fitness-based approaches have been applied to study contemporary patterns of 189 

selection acting on gene expression67,68. One classical approach, which has been used to study a wide 190 

range of morphological traits, uses regression-based methods to estimate the strength of selection69. 191 

In this approach, the covariance between fitness and gene expression is calculated to infer selection 192 

differentials at each locus, which signify the mode of selection67,68 (Fig. 1C). To reduce noise and 193 

computation time, as well as increase robustness of model prediction, expression data can be 194 

transformed to reduce dimensionality (i.e., by PCA) and selection gradients can then be obtained to 195 

estimate direct selection on suites of correlated transcripts. Recent studies have used these principles 196 

to measure selection on gene expression in experimental contexts (e.g. by quantifying flowering 197 

success and fecundity of rice grown in wet versus drought conditions67) and in natural settings (e.g. by 198 

measuring parasite load and survivorship of wild trout using mark-recapture68). In contrast to 199 

comparative approaches, neither of these studies found strong support for stabilizing selection, and 200 

in one case, the dominant mode of selection was disruptive68. Causes of this discrepancy require 201 
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further investigation, particularly whether or not this reflects methodological biases or difficulties in 202 

accurately estimating fitness. However, it is possible that selection pressures vary over short- versus 203 

long-term evolutionary time frames, and these approaches are capturing different snapshots of the 204 

evolutionary process. Furthermore, unlike these fitness-based approaches, comparative phylogenetic 205 

studies primarily rely on contrasting expression across highly-conserved orthologous genes, often 206 

between very distantly related species, which likely biases our understanding of how gene expression 207 

evolves. Gene duplicates are likely key to the evolution of tissue-specific expression patterns70 and so 208 

further work in this area might shed new light on how selection on gene expression varies across 209 

genes. 210 

DECOMPOSING TRANSCRIPTIONAL VARIATION 211 

Approaches designed to test for selection on gene expression all make the explicit assumption that 212 

differential expression is the direct result of regulatory change. However, in most cases, it is unclear 213 

whether this assumption is valid as processes other than regulatory evolution can generate apparent 214 

gene expression differences among taxa. For example, to date, studies have primarily used bulk 215 

sequencing approaches to measure expression across aggregate tissues or even entire body regions, 216 

which are often composed of many different cell types with variable expression profiles. In doing so, 217 

these ‘bulk’ expression values represent an average of expression across entire populations of distinct 218 

cell types. Here, we use existing single-cell expression data (scRNA-seq) for the developing chicken 219 

hypothalamus71 to illustrate this (Fig. 2A). The developing hypothalamus at Hamburger-Hamilton 220 

stage 10 is composed of three major cell types, where the FOXA1 cell type represents the greatest 221 

proportion of cells. Each cell type exhibits a distinct gene expression profile but average expression 222 

estimated across all cells, analogous to a bulk RNA-seq approach for the whole hypothalamus, is not 223 

reflective of genuine variation in gene expression. The magnitude of this effect varies across genes, 224 

consistent with recent work in the mouse gonad21 and primate heart tissue22. 225 
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Within species, dramatic changes in tissue composition are well documented throughout 226 

development71–73 and between the sexes72. This is exemplified by gonadal tissue, which exhibits sex-227 

specific cell types72 as well as a mix of haploid and diploid cells at various stages of differentiation73–76. 228 

Similarly, changes in cell type abundance between homologous tissues are common across species, 229 

particularly in the brain77–79 and testes21,80,81, the latter likely as a result of varying levels of sperm 230 

competition and sexual selection. For instance, New World Blackbird species under more intense 231 

sperm competition exhibit a greater proportion of sperm-producing tissue in the testes80. Importantly, 232 

this means that samples that vary in tissue composition can produce patterns of differential 233 

expression that are often mistaken as evidence of changes in gene regulation. Conversely, this 234 

approach can also dampen or mask genuine differences in expression within or between populations 235 

and species20–22. Of course, changes in tissue composition, which encompass both changes in cell type 236 

abundance within tissues and allometric scaling across them, are likely due to changes in gene 237 

expression across development. However, these changes in expression will not be detected if 238 

transcriptomes are measured after development is completed. Instead, the resulting differences in 239 

gene abundance will be mistaken as causative adaptive changes (Fig 2B).  240 

To our knowledge, only a handful of studies have directly accounted for the consequences of varying 241 

tissue allometry when studying modes of expression evolution20–22,82,83. Addressing this is a major 242 

priority for the field. Recent advances in single-cell transcriptomics permit direct comparisons of 243 

expression across homologous cell types in a comparative framework and so overcome issues of tissue 244 

composition variation. However, scRNA-seq currently presents its own set of challenges both in terms 245 

of expense and robustly identifying homologous cell types across species84 (BOX 2). Importantly, 246 

several fields, including cancer and developmental biology, have developed methods to deconvolve 247 

expression data from complex tissues, and these are likely to be extremely valuable to evolutionary 248 

genomics studies. We urge future studies to carefully consider these points in project design (BOX 2).  249 

 250 
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CHALLENGES OF INFERRING SELECTION 251 

While the implications of varying tissue allometry for measuring gene expression change across 252 

species have been discussed20–22 (Fig. 2), the consequences of tissue composition on inferences of 253 

expression evolution have received less attention. Most studies that test for selection on the 254 

transcriptome use expression data generated from heterogeneous tissue, with the exception of recent 255 

work that used cell sorting to isolate distinct cell types in the mouse testes66. As discussed, there is a 256 

tendency for phylogenetic comparative methods to falsely infer stabilizing selection or more complex 257 

adaptive processes if non-evolutionary processes (such as measurement error) reduce phylogenetic 258 

signal. Perceived changes in expression that are driven by variation in tissue composition across 259 

species represent a prominent source of non-evolutionary expression variance and could therefore 260 

bias inferences of selection. This possibility has yet to be formally examined and so, using a series of 261 

simulated scenarios, we directly explore how shifts in tissue composition can bias the inference of 262 

evolutionary processes in a phylogenetic framework. 263 

We simulated three distinct scenarios to explore how asymmetry in tissue composition across a 264 

phylogeny can drive false model inferences of expression evolution when applying comparative 265 

methods (Fig. 3). We imagine a simple situation where a tissue is composed of two distinct cell types. 266 

We estimate bulk expression values as a function of expression level in each cell type and their relative 267 

abundances in the tissue, and fit a set of evolutionary models to this bulk expression.  268 

First, we describe a scenario of extreme stabilizing selection on gene expression of a single locus. This 269 

locus is highly expressed in one cell type and lowly expressed in the other, but importantly, expression 270 

values are identical (i.e. not evolving) across species. However, the relative abundance of each cell 271 

type is evolving under genetic drift and so varies across species (Fig. 3A, scenario i). As predicted, the 272 

composite expression value is not reflective of single-cell expression levels nor consistent with 273 

extreme stabilizing selection (Fig. 3B, scenario i). A phylogenetic comparative approach consistently 274 

rejects a ‘static’ model of expression evolution and finds the greatest support for genetic drift as the 275 
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dominant mode of evolution (Fig. 3C, scenario i). In this instance, the false positive rate is around ~86% 276 

relative to when these models are run on single-cell expression levels. This suggests that shifts in tissue 277 

composition can lead to false inferences of evolutionary processes acting on gene expression in the 278 

complete absence of any change in expression level within each cell type. 279 

Second, we assume that gene expression is evolving under genetic drift. The two cell types are of equal 280 

abundance in all species with one exception in which a lineage-specific change in cellular composition 281 

occurs so that one cell type dominates (Fig. 3A, scenario ii). After model fitting, we find that this type 282 

of composition shift in one lineage leads to false inferences of a shift in gene expression, consistent 283 

with adaptive evolution (Fig. 3B & C, scenario ii). The scale of this bias is highly dependent on the size 284 

of the allometric shift (Fig. 4A). Where the shift leads to a single cell type dominating, the actual mode 285 

of evolution (i.e. genetic drift), will be rejected in ~35% of instances. While this extreme situation is 286 

arguably biologically unrealistic, our simulations show that even marginal shifts in relative cell type 287 

proportion result in elevated type 1 error rates. For example, across New World Blackbirds, the 288 

proportion of seminiferous tissue in the testes ranges from 87% to 96%80. This equates to a shift in the 289 

proportion of ~9%. Even though our simulations use different starting conditions, it is clear that shifts 290 

of a similar magnitude can result in increased type 1 errors. 291 

Finally, we simulated a scenario where gene expression and cell type abundance both evolve under 292 

genetic drift (Fig. 3, scenario iii). Here, we recover the true signal of genetic drift more reliably (Fig. 3C, 293 

scenario iii). However, in all instances so far, we have assumed that gene expression at a single locus 294 

is evolving independently in each cell type. While this is likely a reasonable assumption for some loci 295 

that have evolved tissue- or cell-specific regulatory machinery85,86, expression changes are probably 296 

correlated in many instances. Interestingly, we find that this has implications for which evolutionary 297 

processes are inferred (Fig. 4B). When tissue composition evolves across the phylogeny, the type 1 298 

error rate is highly dependent on the level of expression covariance between the cellular components 299 

of that tissue. In particular, if expression across cell types negatively covaries, where an increase in 300 

expression in one cell type is associated with a decrease in expression in another cell type at a single 301 



12 

locus, the type 1 error rate can exceed 40% (Fig. 4B). The extent to which gene regulation is decoupled 302 

across cell types is, in and of itself, an interesting question. But here we have shown that gene 303 

expression covariation across cell types can also have profound implications for how we infer which 304 

selective processes are operating. 305 

These scenarios demonstrate the potential challenges of inferring selection on expression level using 306 

data from heterogeneous tissues. It is also worth noting that our simulations are conservative as we 307 

do not model other non-evolutionary sources of variation (such as measurement error and tree 308 

topology error) that are likely to be common in transcriptome studies. We believe this highlights an 309 

urgent need to reappraise our current understanding of expression evolution in light of these 310 

underlying methodological issues. In particular, establishing (i) how often and by what magnitude 311 

changes in tissue composition occur and (ii) the extent to which transcriptional variation is correlated 312 

across cell types are important factors to consider when studying expression evolution using 313 

phylogenetic comparative approaches with bulk RNA-seq. Unfortunately, we are not aware of a simple 314 

solution for correcting the biases we have uncovered, beyond recommending the use of single-cell 315 

data to study expression evolution where possible. However, while single-cell approaches are 316 

increasingly available, the technical demands of this approach mean that they remain challenging for 317 

many species. In the meantime, we urge caution when using phylogenetic comparative approaches 318 

with bulk RNA-seq and recommend some steps to minimise other sources of error (BOX 2).  319 

FUTURE DIRECTIONS 320 

Given the importance of changes in gene regulation to phenotypic divergence, studying transcriptome 321 

evolution is key to understanding adaptive change. As we discussed, we currently lack a consensus 322 

neutral model of transcriptome evolution and it is debatable whether we expect this to be universal 323 

across all loci due to the complex transcriptional architecture of many phenotypes. Here, we argue 324 

that our understanding of the evolution of gene expression will permit critical advances as we continue 325 

to link insights across layers of the genotype-to-phenotype map, developmental contexts, and 326 
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evolutionary timescales, with organismal ecology as our foundation. Below we identify major, 327 

unanswered questions in disentangling how selection acts on the entire transcriptome. We note that 328 

a complete understanding of how the transcriptome evolves also requires detailed knowledge of how 329 

regulatory elements combine to facilitate expression change and how selection acts on these non-330 

coding regions87,88, recently discussed elsewhere7.  331 

Transcriptional diversity and layers of gene regulation 332 

Variation in splicing, whereby the same gene can express different RNA variants that produce distinct 333 

proteins or isoforms, are a common source of transcriptional variation across species33,89–91 with 334 

important phenotypic effects (recently reviewed92,93). For genes with constraints on expression levels 335 

(e.g. because of pleiotropic effects) alternative splicing may act as another adaptive mechanism of 336 

gene regulation94. Long-read sequencing methods have the advantage of producing full-length 337 

transcript sequences95, which can be a more reliable way to identify alternatively spliced variants in 338 

transcriptomic datasets. Understanding the evolution of gene regulation will ultimately require an 339 

integrated understanding of how and when differences in expression level and splicing contribute to 340 

phenotypes under selection.  341 

For transcriptional variation – whether in terms of expression level or alternative splicing – to be 342 

selected upon, it must contribute to variation at the protein layer of the genotype-to-phenotype map. 343 

Due to difficulties in assaying proteins in comparison to RNA, the links between transcription and 344 

translation are underexplored, particularly in non-model organisms. Recent methodological advances 345 

that measure rates of protein synthesis to assay the translatome show that protein expression levels 346 

evolve under stronger evolutionary constraint than transcript levels96, and report a higher correlation 347 

between the translatome and proteome than between the transcriptome and proteome97. However, 348 

this effect tends to decrease for functionally relevant loci, such as differentially expressed genes98. 349 

This indicates that in many cases, mRNA abundance does not fully capture transcriptional variation, 350 
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and more work is needed to understand the complex relationship between transcription and 351 

translation (e.g. mechanisms of buffering, feedback, degradation)9,99. 352 

Regulatory and co-expression networks 353 

The intrinsically correlated nature of gene expression means that identifying selection at a single locus 354 

is hard to disentangle from the expression patterns at loci with shared architectures. To account for 355 

this, we must either take on network-based approaches and try to account for connectivity or 356 

covariance between loci, or we must reduce the dimensionality of our data. Furthermore, recent work 357 

identifying key nodes in gene regulatory networks of health and disease phenotypes between sexes 358 

also established that genes that appear architecturally central to a phenotype may also not appear 359 

differentially expressed100. Similarly, GWAS studies have revealed that complex phenotypes are often 360 

the product of many different loci where regulatory networks are likely highly interconnected and 361 

heritability is distributed across the entire genome101–104. Together, this means that studying 362 

expression on a locus by locus basis and not through inter-locus interactions may limit our ability to 363 

understand the transcriptional architectures underlying adaptive phenotypes, and how this impacts 364 

the mode and strength of selection on gene expression101. 365 

Developmental context  366 

Phenotypic variation is produced by dynamic developmental changes through space and time. While 367 

gene regulation is highly context-dependent in terms of tissue identity and developmental stage105–
368 

107, studies primarily test for expression evolution in a single snapshot, most often in adult tissues. 369 

Single-cell transcriptomic methods offer a promising path to better understanding how these sources 370 

of variation interface with gene expression through development and inform models of gene 371 

expression evolution.  372 

Genotype to phenotype to adaptation 373 

If our goal is to uncover how gene regulation underlies adaptation, we must link transcriptional 374 

variation with organismal ecology and natural history. This effort is twofold, as it requires 375 
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understanding when and how selection acts on organisms, and how transcriptional variation 376 

contributes to phenotypic responses to selection. Methods of surveying variation in gene expression 377 

offer increasing precision and resolution. However, our ability to identify the evolutionary processes 378 

causing this variation ultimately depends on our understanding of the organisms in question. Model 379 

systems like yeast continue to enable high-throughput analyses that have yielded pivotal insights into 380 

the evolution of the transcriptome7,108–111, but non-model systems also hold promise for studying how 381 

gene expression evolves under natural settings which may yield novel and more ecologically relevant 382 

findings68,112. Furthermore, it remains to be seen how results from microevolutionary studies within 383 

or across a single generation integrate with those from macroevolutionary studies comparing diverged 384 

lineages, and the relative roles of stabilizing versus directional selection across these scales.  385 

METHODS 386 

Single-cell transcriptomics 387 

We analysed existing single-cell expression data (scRNA-seq) for the developing chicken 388 

hypothalamus71. Cell types expressing ‘PAX6’, ‘FOXA1’ or ‘SIX6’ at Hamburger-Hamilton (HH)10 were 389 

used in this study. Methods to identify cell types and estimate expression levels are published 390 

previously71. Pseudo-bulk datasets were generated at HH10 by calculating the average expression 391 

across cells in the 3 cell types.  392 

Simulations 393 

For the first scenario (Fig 3Ai), expression values were set at one and two in two cell types (A,B) 394 

respectively. The relative proportion of each cell type (pr) was simulated under Brownian Motion (BM) 395 

for 1000 unique trees of either 25 or 100 tips, using fastBM from phytools113 in R v4.1.1.  The resultant 396 

values were normalised between 0 and 1. Composite expression values for each tip (i) were calculated 397 

as follows: (𝑒𝑞. 1)	𝑒𝑥𝑝! = (𝑝𝑟! × 1) + .(1− 𝑝𝑟!) × 20. 398 
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For the second scenario (Fig 3Aii), expression values were evolved under BM over 1000 unique 399 

phylogenies of 25 and 100 tips. The relative proportion of each cell type (pr) was set to 0.5 across the 400 

phylogeny except for one randomly-chosen tip (t). For this tip, the relative abundance of one cell type 401 

was shifted to an alternate value within the range 0 to 1 in 0.05 increments (Fig 4A). The composite 402 

expression value of the shifted tip (t) was calculated as follows: (𝑒𝑞. 2)	𝑒𝑥𝑝" = (𝑝𝑟" × 𝑒𝑥𝑝#") +403 

.(1− 𝑝𝑟") × 𝑒𝑥𝑝$"0. Expression for the other tips (i) was calculated as above using equation (1). 404 

For the third scenario (Fig 3Aiii), expression values were evolved under BM with varying covariances 405 

between cell types A and B, with covariance values varying from -1 to 1 in increments of 0.05. In all 406 

cases, 𝜎2 was set to 1.0001 and we examined trees of 25 and 100 tips. Simulations for each covariance 407 

value were run 1000 times on unique trees. This scenario was run with both a fixed cell type proportion 408 

(pr), where pr = 0.5 in A and B at all tips, and with proportion values evolving under BM (Fig 4B). The 409 

composite expression value at each tip (i) was calculated as follows: (𝑒𝑞. 3)	𝑒𝑥𝑝! 	= 	 (𝑝𝑟! × 𝑒𝑥𝑝#!) 	+410 

	.(1− 𝑝𝑟!) × 𝑒𝑥𝑝$!0.  411 

Fitting evolutionary models to composite expression levels 412 

We fit evolutionary models in R using phylolm114 for scenario one (Fig 3Ai) and OUwie115 for scenario 413 

two (Fig 3Aii) and three (Fig 3Aiii). For the first scenario (Fig 3Ai), a static evolutionary model was 414 

rejected if the 95% bootstrapped confidence interval for 𝜎2 crossed 0. If rejected, a BM, an OU 415 

(Ornstein-Uhlenbeck), and a WN (White Noise) model were fit and their Akaike weights calculated. 416 

The WN model was fitted by suppressing phylogenetic signal by fixing Pagel’s λ to 0. We calculated 417 

the type 1 error rate for scenario one (Fig 3Ai) as the rate at which a non-static model was accepted 418 

in favour of the static model, relative to when the same set of models were applied to a single-cell 419 

type simulation. For scenarios two (Fig 3Aii) and three (Fig 3Aiii), we fit a BM, an OU and an OU-shift 420 

model, where in the latter the optimum value of the trait is allowed to vary on a single tip. For scenario 421 

two (Fig 3Aii), the OU-shift model was fit so that the tip with the proportion shift was allowed the 422 

alternate optima, whereas for scenario three (Fig 3Aiii), a random tip was allocated. For scenario two 423 
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(Fig 3Aii) and three (Fig 3Aiii), the type 1 error rate was calculated as the rate at which a non-BM model 424 

was favoured (i.e. where ΔAICc > 2) relative to BM, relative to when the same set of models were 425 

applied to a single-cell type simulation. 426 
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BOX 1: Common pitfalls of inferring selection using Ornstein-Uhlenbeck models 447 

Recent work from the phylogenetic comparative methods field has revealed inherent biases in 448 

estimating OU processes, often leading to false inferences of stabilizing selection. As these have 449 

already been discussed elsewhere15–17, we summarise the main pitfalls in relation to transcriptome 450 

studies. 451 

Small phylogenetic samples 452 

Recent work has shown that the ability to accurately estimate parameters of the OU model is strongly 453 

influenced by the number of species. Cooper et al15 simulated a range of phylogenies of varying size 454 

under Brownian Motion and compared the fit of BM and OU models to test how often stabilizing 455 

selection was falsely inferred. They found a high type 1 error rate, especially when the number of 456 

sampled taxa was limited. For example, with a phylogeny of 25 species, stabilizing selection was falsely 457 

inferred ~10% of the time. This is especially concerning for transcriptomic studies, which are 458 

frequently comprised of far fewer species due to sampling and computational costs and employ 459 

thousands of model comparisons in order to infer selection at each orthologous locus separately. We 460 

do anticipate this concern will lessen as expression data becomes available for more species. However, 461 

even with phylogenies of 100 species, Cooper et al15 still estimate a type 1 error rate > 0.05.  462 

Measurement error 463 

Here, we use the term measurement error to broadly refer to any factor that adds noise to heritable 464 

expression values. This includes (i) data quality problems, such as RNA degradation, sequencing and 465 

assembly issues, (ii) low sample sizes and (iii) unwanted biological variance arising from the failure to 466 

control for environmental variation across samples. Measurement error across lineages can erode 467 

phylogenetic signal in the data, falsely biasing model selection away from BM models and towards OU 468 

processes and the inference of stabilizing selection15,16. Recent work has shown that even small 469 

amounts of measurement error can be problematic, particularly when the number of taxa sampled is 470 

small. For instance, Cooper et al15 estimate that with a phylogeny of 25 species and a 10% trait 471 
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measurement error, stabilizing selection will be falsely concluded ~50% of the time. This is a particular 472 

concern for gene expression studies, as the environment can strongly influence gene regulation. 473 

Studies should endeavour to control environmental conditions so that differences in expression across 474 

samples reflects the heritable, genetic component of expression, as has been discussed previously8,116. 475 

Second, it is clear that using a single mean expression value for each species can lead to spurious 476 

inferences of selection18, making multiple replicates essential. Importantly, the OU framework has 477 

been extended to parameterise within-species variance as an error term18,58,62 and appears to be a 478 

promising approach. Finally, there are methods to control for technical problems that can introduce 479 

noise into measurements of expression, such as controlling for batch effects117–119. 480 

Complex patterns of trait evolution 481 

Many phenotypic traits exhibit complex patterns of evolution and evolve at different rates across 482 

lineages120. While few studies have directly tested the tempo of expression change across species60, it 483 

seems likely that gene expression does not evolve at a constant rate but instead shifts as mutation 484 

rate, selective pressures and pleiotropic constraints vary47,121,122. However, many evolutionary models, 485 

including BM and OU, assume a homogeneous process of trait change across lineages and/or through 486 

time. This is analogous to fitting a fixed dN/dS across all branches when estimating selection on coding 487 

sequences. Recent work has shown that fitting single-process models masks complexity and leads to 488 

inaccurate inferences about the underlying evolutionary process120. Comparative methods that 489 

account for rate heterogeneity are available (discussed in120), analogous to allowing dN/dS to vary 490 

across branches, but to our knowledge have not been widely applied in the context of gene expression 491 

evolution.  492 

 493 

 494 

 495 

 496 
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BOX 2: Best practises for inferring selection in a comparative framework 497 

Best practises for inferring selection on traits using comparative approaches have been discussed in 498 

length in the phylogenetic literature15–17. Briefly, to avoid false inferences of stabilizing selection (BOX 499 

1), studies should (i) strive to minimise measurement error, (ii) maximise the number of species 500 

sampled and (iii) use comparative approaches that parameterise within-species variance as an error 501 

term. Below, we discuss additional recommendations. 502 

Validation of model fit 503 

As discussed, many factors can bias model inference to conclude stabilizing selection over genetic 504 

drift. The best fitting model is often chosen by comparing the relative fit of different models. However, 505 

studies rarely examine the absolute model fit120. This simple step, performed using existing methods 506 

such as ARBUTUS123 or in RevBayes124, can be used to assess confidence in model selection. This 507 

approach relies on the process of posterior predictive simulations, in which datasets are simulated on 508 

the estimated parameters, and then a series of test-statistics are run on the simulated data. Similarly, 509 

parametric bootstrapping approaches can be applied, resampling the data to generate a bootstrapped 510 

sampling distribution from which test statistics are calculated. These results can then be compared to 511 

the empirical data to assess the adequacy of the model. Using such approaches for model estimation 512 

has been shown to outperform maximum likelihood approaches in specific cases125.  513 

Multiple testing and False Discovery Rate  514 

Comparative transcriptomics studies perform multiple statistical tests across thousands of genes 515 

making them susceptible to the effects of multiple testing. Procedures including False Discovery Rate 516 

(FDR) and Bonferroni corrections can easily manage this phenomenon126,127 yet are frequently not 517 

included as standard in phylogenetic comparative transcriptomic approaches. Neutral simulations 518 

under predicted parameters permits the estimation of the false discovery rate to account for the 519 

inflation of false positives and can be implemented in EVE65. 520 

Single-cell transcriptomics 521 
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By directly comparing gene expression level across equivalent cell types, comparative single-cell 522 

transcriptomics (scRNA-seq) can circumvent problems arising when expression is measured from 523 

heterogeneous tissue (Fig. 2). However, scRNA-seq is more challenging for many non-model 524 

organisms, especially those sampled from the wild, as scRNA-seq performs optimally when single cells 525 

are isolated and processed immediately after harvesting tissue. Although tissue dissociation and 526 

storage techniques are being developed, such as methanol fixation and cryopreservation, there are 527 

concerns that these can either bias expression profiles128 or lead to cell death. However, we anticipate 528 

that these challenges will be overcome as the field progresses and the costs of scRNA-seq will 529 

decrease.  530 

Consider tissue composition 531 

We suggest that where possible, studies should quantify cellular composition of the tissue in question 532 

and how this varies across species. For instance, if a single cell type dominates or expression level is 533 

dominated by one cell type, then our simulations suggest that the potential for bias is reduced. 534 

Importantly, if scRNA-seq data is available for the tissue, it is possible to use this to directly test for 535 

biases in cellular composition in bulk RNA-seq data83,129. Deconvolution methods, such as Decon2130, 536 

BayesPrism131 or ABIS132, can be used to estimate cell type abundances and subsequently resolve 537 

expression profiles closer to those observed from purified cell subpopulations or scRNA-seq. Such 538 

methods have been widely implemented22,133,134, and may prove valuable if they are able to be co-539 

opted into evolutionary genomic studies. Finally, we urge the use of sampling techniques to directly 540 

isolate specific regions or cells of interest using microdissection or cell sorting to greatly reduce cell 541 

composition complications, as discussed by Hunnicutt et al21. 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 
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FIGURES 550 

 551 

Figure 1. Approaches to detect selection on gene expression. 552 

 553 

Panel (a) Gene expression evolution has been inferred by contrasting levels of variation within a focal 554 

species to divergence across species in a pairwise framework. This principle is analogous to the Hudson 555 

Kreitman Aguadé (HKA) test used to detect selection at the DNA level. The neutral expectation is that 556 

divergence covaries linearly with intra-specific variance, at least over shorter evolutionary distances. 557 

Loci with the highest or lowest levels of intra-specific expression variation relative to neutrality are 558 

the best candidates for balancing or directional selection respectively. Loci under stabilizing selection 559 

should exhibit limited biological variance and divergence. Panel (b) Phylogenetic comparative analyses 560 

enable comparisons across species to distinguish between evolutionary processes. Brownian Motion 561 

models neutral trait evolution via an unconstrained random walk. It assumes that divergence time 562 

between species will describe the diversity across the phylogeny with only one parameter 𝞼2, the drift 563 

rate, and that variance at the tips of the phylogeny will equal T𝞼2. The Ornstein-Uhlenbeck (OU) model 564 

assumes that gene regulation follows a stochastic process that is attracted towards a single optimum 565 

value, consistent with stabilizing selection. The additional parameters are therefore ɑ, the strength of 566 

pull, and θ, the evolutionary optima. This framework has been extended to test for branch specific 567 

processes by incorporating multiple optima to test for expression divergence in specific lineages (red 568 

line). Panel (c) Phenotypic selection analyses have been applied to gene expression data to infer the 569 

mode and strength of selection. These employ multiple regression of relative fitness on multiple traits 570 

to calculate selection differentials that estimate total selection (direct and indirect) on gene 571 

expression. The covariance between fitness and expression is calculated to infer linear (S) and 572 

quadratic (C) selection differentials at each locus, which signify directional, stabilizing, or disruptive 573 

selection. The linear selection differential estimates positive versus negative directional selection, 574 

while the quadratic selection differential estimates disruptive versus stabilizing selection. This panel 575 

is adapted from Groen et al (2020)67, which used this approach to measure selection on gene 576 

expression in rice. Rice was grown under wet (blue) and dry (yellow) environmental conditions, and 577 

organism traits and fitness were measured.  578 

 579 

 580 

 581 
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Figure 2. Variation in tissue composition can lead to the perception of differential expression.  582 

 583 

Schematic illustrating how variation in tissue composition can bias perception of expression measured 584 

from bulk RNA-Seq within (panel a) and across species (panel b). Panel (a) The chicken hypothalamus 585 

is comprised of 3 major cell types at developmental stage HH10. Pie chart (top) shows the proportion 586 

of cells in each cell type. Heatmap (bottom) shows gene expression measured across cells in each cell 587 

type and average ‘bulk’ expression estimated across all cells, equivalent to generating RNA-seq data 588 

from the whole tissue. Each cell type exhibits a distinct gene expression profile and bulk expression 589 

does not accurately reflect this. Data from71. Panel (b) shows how differences in tissue composition 590 

between species can lead to the false perception of differential expression. Here we illustrate a single 591 

tissue comprised of two cell types, type 1 (blue) and type 2 (yellow), in two species. During 592 

development in Species 1 (left panel), cell type 1 and 2 have the same rate of cell proliferation. The 593 

resulting tissue is evenly comprised of each cell type. Cell type 1 only expresses gene 1 and cell type 2 594 

only expresses gene 2. Bulk RNA-Seq expression reflects single cell expression. In Species II (right 595 

panel), an increase in the rate of cellular proliferation for cell type 1 results in a greater proportion of 596 

cells of type 1 in the resulting adult tissue. Even though there has been no change in per cell expression 597 

of either gene 1 or 2, the relative expression from bulk RNA-Seq of the entire tissue results in the 598 

perception of higher expression of gene 1 and lower expression of gene 2 compared to Species 1. 599 

 600 

Figure 3. Inferring selection when expression level is measured from a heterogeneous tissue. 601 

 602 

Three scenarios illustrating potential pitfalls of inferring selection on gene expression level at a single 603 

locus using phylogenetic approaches when expression is measured from bulk sequencing. Panel (a) 604 

The first column shows the expression level of a single gene in two different cell types across a 605 

phylogeny. High levels of expression are in dark pink and low expression in light pink. The relative 606 

proportion of each cell type is indicated by the size of the rectangle where cell type A is on the left and 607 

cell type B is on the right. Panel (b) This column shows the composite expression level of the gene as 608 

a function of cell type proportion and gene expression in each species. This would be analogous to 609 

measuring expression in bulk from a heterogeneous tissue. Panel (c) Results of simulated phylogenetic 610 

comparative analyses for each scenario with a phylogeny of 25 (blue) or 100 (yellow) tips on 1000 611 

unique trees. Abbreviations of phylogenetic models are BM (Brownian Motion), WN (White noise), 612 

OU (Ornstein-Uhlenbeck model) and BS (OU model with a branch shift). These models were fitted on 613 
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the simulated bulk expression values and the relative support for each model is calculated using Akaike 614 

weights. Error bars show standard deviation around the mean across simulations. Type 1 error rates 615 

for each scenario relative to when these models are fit to expression at the single-cell level are shown. 616 

In scenario (i), expression values are static across the phylogeny for each cell type but cell type 617 

abundance is evolving under BM. However, phylogenetic approaches falsely infer that expression is 618 

evolving under BM. For (ii), expression in both cell types is evolving under BM, whereas tissue 619 

composition is stable across the phylogeny with the exception of one tip which has undergone an 620 

allometric shift. Here, phylogenetic approaches falsely infer an adaptive shift in expression on a single 621 

branch. For (iii), gene expression in both cell types, as well as cell-type abundance, is evolving under 622 

BM. However, phylogenetic approaches increasingly falsely infer stabilizing selection on expression 623 

level. 624 

 625 

Figure 4. The magnitude of allometric shift and covariance of expression level biases the inference 626 

of selection. 627 

 628 

Panel (a) The probability that regulatory selection is incorrectly inferred increases substantially with 629 

the magnitude of an allometric shift. This plot is a more detailed representation of Fig. 3ii, where one 630 

species undergoes a shift in tissue composition, ranging from when a tissue is composed of two cell 631 

types at equal proportion to when only a single cell type is present. All other species have a tissue 632 

composition of 50:50 and expression is evolving under Brownian Motion (BM) in each cell type. Panel 633 

(b) Covariance of expression between cell types biases inferences of selection. This plot is an extension 634 

of Fig. 3iii. Expression is evolving under BM but cell type composition is either static (dotted lines) or 635 

also evolving under BM (solid lines). We varied the extent to which gene expression is correlated 636 

between cell types, ranging from negative covariance, where expression levels increase in one cell 637 

type at the same time as decreasing in the other cell type, to positive covariance, where expression 638 

levels decrease or increase in both cell types in a correlated manner. The relative type 1 error rate was 639 

calculated as the rate at which a BM model was not best fit to the composite expression value relative 640 

to the equivalent error rate when models are fit to single cell simulations.  641 

 642 

 643 

 644 

 645 

 646 
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