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Metaparametric Neural Networks for Survival

Analysis
Fabio Luis de Mello, J Mark Wilkinson, and Visakan Kadirkamanathan

Abstract—Survival analysis is a critical tool for the modelling
of time-to-event data, such as life expectancy after a cancer
diagnosis or optimal maintenance scheduling for complex ma-
chinery. However, current neural network models provide an
imperfect solution for survival analysis as they either restrict
the shape of the target probability distribution or restrict the
estimation to pre-determined times. As a consequence, current
survival neural networks lack the ability to estimate a generic
function without prior knowledge of its structure. In this article,
we present the metaparametric neural network framework that
encompasses existing survival analysis methods and enables their
extension to solve the aforementioned issues. This framework
allows survival neural networks to satisfy the same independence
of generic function estimation from the underlying data structure
that characterizes their regression and classification counterparts.
Further, we demonstrate the application of the metaparametric
framework using both simulated and large real-world datasets
and show that it outperforms the current state-of-the-art methods
in (i) capturing nonlinearities, and (ii) identifying temporal
patterns, leading to more accurate overall estimations whilst
placing no restrictions on the underlying function structure.

Index Terms—metaparametric neural networks, survival anal-
ysis, time-dependent, basis functions, splines, hip replacement.

I. INTRODUCTION

S
URVIVAL analysis models estimate how the probability

of one or more events evolve with time, depending upon

a given set of input attributes. Survival models find wide

application across society. For example, in healthcare they are

used to estimate the influence of risk factors upon disease

[1], [2]; the effectiveness of vaccines [3] and medications [4];

and their associated risks [5], [6]. In economics, applications

include the modelling of unemployment duration [7] and

the detection of financial misconduct in stock markets [8].

In industry, applications include the estimation of remaining

useful lifetime for machinery [9], and in business to inform our

understanding of the timeframes over which new technologies

are adopted [10].

A key challenge in survival analysis that distinguishes it

from regression or classification problems is the requirement

to estimate the probability of an event over time in the presence

of censored data. Within a given timeframe, the event of

interest may not occur and is said to be censored. The task

of the model is to use all the available data to estimate the

event probability at any given time, as a function of the input

variables. The incorporation of censored data in the model is

critical to avoid estimation bias, and adds to the complexity of
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survival analysis. Traditional solutions to survival estimation

include semi-parametric or parametric models that rely on

assumptions about the structure of the survival probability

distribution [11], [12].

Given the broad range of practical applications, there is

substantial interest in applying machine learning techniques,

and neural networks in particular, to solve survival analysis

problems. This endeavour is inspired by previous success

in regression and classification tasks, in which almost any

scenario can be modelled generically without prior knowledge

of the underlying functional relationships. In these tasks, the

network output can be achieved with the appropriate choice

of activation function, such as linear activation in regression

[13], sigmoid activation in Boolean classification [14] or

softmax activation in multinomial classification [15]. Other

tools may also be applied within the generalized framework to

improve the extraction of hidden features from the input data,

such as convolutional neural networks in the case of images

[15] and long short-term memory for time series analysis

[16]. However, this neural network functional representation

cannot be used directly to represent time and input-dependent

probability distribution functions. Similarly, although current

survival analysis methodologies allow feature extraction from

the inputs, the target distribution is not generically parameter-

ized as a function of those features.

Currently, one of two frameworks are typically used for

subject-specific survival analysis: the proportional hazards

model [11] or the accelerated failure time (AFT) model [11],

[17]–[19]. The proportional hazards model is built upon the

assumption that the instantaneous probability of an event,

i.e. the hazard function, has a baseline time structure that

is similar for all subjects. This structure can be amplified

or attenuated by a factor that depends on the covariates, but

is time-constant. If one of the input covariates depends on

time or produces an effect on the hazard function that is

time-dependent, this can be taken into account using basis

functions [20]–[23]. In some problems more than one type of

event may occur. These are termed competing risks scenarios.

Competing risks extensions of the model have been proposed

by [24]–[26]. The AFT model is also based on the assumption

of a baseline time structure that is common to all subjects.

Here, instead of amplifying or attenuating the risk of an event,

the covariates accelerate or decelerate the failure process. A

competing risks extension of the AFT model has also been

proposed [27]. Early AFT models required the baseline hazard

function to be constrained to a specific family of functions,

making it less generic than the proportional hazard model

[17]. This was overcome with the use of quantile regression

[18], [19]. However, both the quantile regression AFT and the
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proportional hazards models remain limited by the required

linearity in the input covariates, and thus neither can represent

generic survival patterns.

Attempts have been made to incorporate neural networks

into traditional survival modelling frameworks. In the Faraggi

& Simon proportional hazards model [28] the proportionality

factor was modelled by the exponential of a single layer

perceptron, and more recently by a deep neural network in

[29]. A convolutional neural network was also used in [30]

to model survival functions based on image data. Despite

these recent advances, the proportional hazards framework

still requires the inclusion of time-dependencies to the pro-

portionality factor. A relevance vector machine extension of

the AFT model was proposed by [31]. In this model, the

survival time is restricted to a Weibull probability distribution.

A neural network extension of the AFT is given by [32] in

which the survival time is restricted to a log-normal probability

distribution.

Alternative machine learning methods that deconstruct the

single estimation problem into several sub-problems have also

been explored. First are cluster based methods that divide

subjects into small groups according to the values of the input

attributes, and for each group uses a method in which the

survival function does not depend on the attributes [33]–[35].

Second are discrete time-interval models, in which each time-

step corresponds to a different classification problem [36]–

[38]. The first approach relies on the availability of a large

dataset, since only a small part of the data is relevant to

the estimation of each sub-model. The second approach only

computes the event probability for a finite number of time

points.

Survival data may also be modelled within a generative

framework. Here the probability distribution for the time-to-

event is not directly modelled, but is sampled instead. This

sampling can be achieved by various methods, for example:

Gaussian processes [39]–[42]; deep exponential families [43],

[44]; and generative adversarial nets [32]. However, these

methods cannot be applied to problems that require explicit

modeling of the survival function.

In this paper, we propose a generic framework for integrat-

ing neural networks within statistical survival modeling. This

is achieved with a parametric function of time whose param-

eters are modelled as the output of a neural network. This is

referred to as a metaparametric framework that overcomes the

problems identified previously, and for the first time:

1) provides a non-linear extension of the proportional haz-

ards model;

2) includes a generic extension to time-dependencies of the

proportionality factor;

3) reduces the number of parameters required in discrete

time-interval models by aggregating data across infinite

time intervals;

4) allows existing neural network survival analysis methods

to fit into this single framework.

The proposed framework does not impose any “a priori”

restriction to the type of function that is being modelled. It

therefore extends to survival analysis one of the most impor-

tant capabilities that neural networks have in the regression

and classification domains, to represent any function without

prior knowledge of its structure.

The rest of this article is organized as follows. Section

II gives the definition of the metaparametric neural network

structure and how it can be used to extend existing neural

network models for survival analysis. Section III details the

estimation of each type of metaparametric neural network de-

scribed in section II. Sections IV and V show the application of

the proposed framework to simulated and real-world survival

datasets. Finally, the conclusions of the study are given in

Section VI.

II. METAPARAMETRIC STRUCTURE IN NEURAL NETWORK

SURVIVAL MODELS

The goal of a survival model is to estimate the probability

that an event will happen in a given time interval. The data

used for this estimation is in the form D = {xn;Tn; jn;En|
n ∈ {1, 2, . . . , N}}, where xn are the input attributes for

subject n, Tn is the time when subject n experienced an event

or stopped being observed, jn is the type of event experienced

by subject n, and En is 1 if subject n experienced an event

at time Tn or 0 if the subject stopped being observed at time

Tn before experiencing any event.

The instantaneous probability of the event may be repre-

sented through the hazard function: λ(t,x) = f [Tevent =
t|x, Tevent ≥ t]. Alternatively, the survival model can repre-

sent the probability of an event not happening until time t, and

is termed the survival function: S(t,x) = Pr[Tevent ≥ t|x].
It is possible to alternate between representations using the

cumulative hazard function: Λ(t,x) =
∫ t

ν=0
λ(t,x)dν; where:

S(t,x) = exp(−Λ(t,x)). All representations are compatible

with the possibility of the event never happening, in which case

limt→∞ S(t,x) > 0. However, both the survival function and

the hazard function can only describe single risk scenarios

in which only one type of event is possible. The hazard

function can be extended to account for multiple compet-

ing risks in the form of the cause-specific hazard function:

λj(t,x) = f [j, Tevent = t|x, Tevent ≥ t] [24]. In both single

and competing risks scenarios, one or more time-dependent

quantities are modelled as a function of the input covariates

x. A key challenge in building a generic neural network model

for survival analysis lies in the representation of these time-

dependent quantities as outputs of a neural network.

A. Foundations of the metaparametric framework

In order to satisfy the requirements of a truly generic

framework for survival analysis, the models must capture

the nonlinear associations to the input variables by allowing

parts that accept black box modelling, whilst satisfying the

constraints relevant to the class of models. Here, a neural net-

work is used to represent this black box nonlinear association

within the hierarchical setting. This framework is termed the

metaparametric neural network, and is defined as follows:

Definition. Let ψ(x, θ) be a parametric neural network with

input variables x and parameters θ and let g(y, ψ) be a

parametric function of y with parameters ψ, where y is a set of
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input variables disjunct from x. We define the metaparametric

neural network (MNN) g(y, ψ(x, θ)) where the output of ψ(·)
serves as the parameters of g(·). This is a hierarchical model

where the input variables are grouped into a set of implicit

variables x and another set of explicit variables y that allows

the outcome g(·) to be explicitly represented as a function of

y for any particular value of x.

In order to create a survival model with a MNN structure,

we choose time as the only explicit variable and g(·) to

represent the cause-specific hazard function. This structure is

illustrated in Fig. 1.

Neural network

ψj(x; θ)

Parametric function

gj(t;ψ)
ψ

t

x λj(t,x)

Fig. 1. Graphical description of a metaparametric neural network.

The MNN structure can be used as a generic framework

for survival analysis and current models can be described as

specific cases of it. The existing neural network extensions of

the proportional hazards model can be cast in the metapara-

metric form. This is achieved by making for each event type

j: λj(t;x) = gj(t;ψj(x; θ)) = λ0,j(t) exp(ψj(x; θ)), where

λ0,j(t) is the baseline hazard function for event type j and

ψj(x; θ) is the output of a neural network.

Similarly, the neural network versions of the AFT model

can also be expressed in a metaparametric form. This is done

by making g(t;ψ(x; θ)) a log-normal probability distribution

with parameters µ = ψ1(x; θ) and log σ = ψ2(x; θ), where

ψ[1,2](x; θ) are the outputs of a neural network.

The discrete time-interval models can also fit in a meta-

parametric structure, with the use of a series of Kronecker

delta functions. This results in a cause-specific hazard function

that is defined over a time interval, as follows: λj [κ;x] =
gj [κ;ψj,[0,...,K](x; θ)] = ψj,κ(x; θ), where κ is the index of a

time interval and ψj,[0,...,K](x; θ) are the outputs of a neural

network.

More importantly, the MNN framework can be used to

formulate more generic models. This requires:

1) showing how the output of the MNN will describe the

survival probability distribution, which is covered in

section II-B;

2) making a choice of parametric function gj(t;ψ(x; θ)),
which is covered in section II-C

3) estimating the parameters of the neural networks, which

is covered in section III.

B. Generic metaparametric neural networks

As shown in section II-A, the metaparametric structure

provides a formal generic framework for any neural network

based survival model. Here, we exploit this finding to derive

novel extensions for all three classes of survival models.

1) Proportional hazards metaparametric neural network

(PH-MNN): We define the PH-MNN with the expression:

λj(t,x) = λ0,j(t)ωj(t,x) (1)

where λ0,j(t) is the cause-specific baseline hazard function

and ωj(t,x) is the time-dependent hazard ratio, given by:

ωj(t,x) = h

(

K
∑

k=1

ψk,j(x)νk(t)

)

(2)

where νk(t) is a set of basis functions over time; ψk,j(x) are

outputs of a neural network; and h(·) is a strictly positive

function. Traditionally, h(·) is an exponential function. The

choice of the basis νk(t) and the function h(·) will strongly

influence the model estimation procedure and its computa-

tional requirements. If the basis νk(t) is localized in time,

being positive inside a finite interval and null outside it, the

following simplified structure is useful:

ωj(t,x) =
K
∑

k=1

h (ψk,j(x)) νk(t) (3)

Here, the time localization and non-negativity of the basis is

required to guarantee that ωj(t,x) ≥ 0. The variability in the

amount of data for each type of event may dictate that we

choose a different basis set νk(t) for each event type j.
2) Quantile regression metaparametric neural network

(QR-MNN): We define the QR-MNN quantile function as:

Q(τ,x) =

∫ − log τ

u=0

h

(

K
∑

k=1

ψk(x)νk(u)

)

du (4)

where Q(τ,x) = inf{t : 1−S(t|x) ≥ τ}. The metaparametric

formulation must respect the constraint that Q(τ,x) should be

strictly increasing with time. A suitable basis set νk(t) should

provide an analytical expression for the integral in equation

(4). Analogous to the PH-MNN model, the function h(·) can

also be placed inside the summation resulting in the following

form:

Q(τ,x) =
K
∑

k=1

h (ψk(x))

∫ − log τ

u=0

νk(u)du (5)

This makes analytical integration more simple. A competing

risks extension can be achieved using a cause-specific quantile,

which we define as Qj(τ,x) = inf{t : 1− exp(−Λj(t;x)) ≥
τ}, where Λj(t;x) = Pr[Tevent < t; j|x] is the cause-specific

cumulative hazard function.

Note that either the quantile function or its competing risks

extension fully specifies the event probability distribution and

the correspondent hazard function can be retrieved from it:

λj(t,x) = −
d

dt
log
[

1−Q−1
j (t,x)

]

(6)

3) Direct hazard metaparametric neural network (DH-

MNN): We define the DH-MNN as a continuous time ex-

tension of the discrete time-interval models. This is achieved

with the following formulation:

λj(t,x) = h

(

K
∑

k=1

ψk,j(x)νk(t)

)

(7)
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where the function h(·) should be positive for the model to

be coherent, in the sense that the hazard function is never

negative. This is a direct functional representation of the

hazard function and; therefore, can be termed as a direct

hazard model.

An alternative formulation, as in the PH-MNN and QR-

MNN, is:

λj(t,x) =
K
∑

k=1

h (ψk,j(x)) νk(t) (8)

where the basis set νk(t) should be positive and localized in

time.

4) General remarks: In all the above models, an infinite set

of basis functions can represent any square integrable function

of time in a finite interval. Restricting the number of basis

functions to be finite has an effect analogous to eliminating

the high frequency components of the target function. In

practice, a sufficient approximation accuracy to any function

can be achieved by a suitable finite set of basis functions. This

approach provides a continuous and smooth representation of

the target function, whilst reducing the required number of

basis functions, and consequently the risk of overfitting. The

extension of the proportional hazards model has the additional

advantage of allowing the inclusion of high frequency com-

ponents of the hazard function that are common to all values

of x, via the baseline hazard function.

C. Choice of basis functions

This section contains a description of some of the possible

choices of basis functions for the generalizations proposed in

equations (2) to (8).

1) Piecewise constant basis functions: Given a set of time

knots [T̄0, T̄1, ..., T̄K ], the set of basis functions for a piecewise

constant model will be:

νk(t) =

{

1, T̄k−1 ≤ t < T̄k

0, otherwise
(9)

This set of basis functions is completely separated in time,

simplifying model computation.

For a PH-MNN model, this basis choice makes equations (2)

and (3) equivalent and removes the need to compute h(·) for

each time point separately in the objective function. Also, this

choice of basis functions allows analytical conversion between

different representations of the event probability distribution

for all MNN models, thereby reducing the computational cost

of the estimation.

Although the computation is simpler than with other choices

of basis functions, a smooth transition between intervals can-

not be achieved, with discontinuities in the modelled hazard

function despite the target function being smooth.

2) Piecewise linear basis functions: Given a set of time

knots [T̄0, T̄1, ..., T̄K ], the set of basis functions for a piecewise

constant model will be:

νk(t) =











(t− T̄k−1)/(T̄k − T̄k−1), T̄k−1 ≤ t < T̄k

(T̄k+1 − t)/(T̄k+1 − T̄k), T̄k ≤ t < T̄k+1

0, otherwise

(10)

In contrast to the piecewise constant models, the basis func-

tions are continuous. For the PH-MNN model, equations (2)

and (3) are no longer equivalent. Although both formulations

are possible, (3) will have smaller computational cost for

estimation, as discussed in section III. The same is true of QR-

MNN or DH-MNN models and computation will be simplified

with the use of equations (5) and (8) respectively. This

choice of basis functions also allow analytic conversion among

different representations of the event probability distribution,

analogous to the piecewise constant basis functions.

3) Other basis functions: Other choices of basis functions

are possible that make the resultant model smoother than in

the piecewise models. These include the Fourier, polynomial,

Chebyshev, and Legendre basis functions. In this case, it is not

possible to use the model formulations provided in equations

(3), (5) and (8). Instead, a similar effect is achieved by making

h(y) = y2 in equations (2), (4) and (7). Given a set of

unconstrained coefficients of y, a convolution property can

be used to compute a set of coefficients that will produce

y2 in the same basis either in Fourier or in polynomial

representations. If the convolution property is used, Λj(t,x)
can be computed analytically through the integration of each

basis function individually. For a QR-MNN model, the inverse

of the quantile function cannot be computed analytically,

requiring a numerical approximation to be used.

III. ESTIMATION

A. Proportional hazards metaparametric neural networks

The original estimation method for the proportional haz-

ards model is the partial likelihood maximization [11], with

competing risks extensions proposed by [24]–[26]. These

estimators are compatible with time-dependent hazard ratios

and require no further development for implementation with

the PH-MNN structure, regardless of the different forms of

the partial likelihood objective function. However, special

care is required in the implementation to avoid impractical

computational cost. We show here the estimation procedure

for the Cox partial likelihood estimator. The same procedure

can also be used for other objective functions.

The Cox partial log-likelihood is given by L =
∑

n Ln,

where:

Ln =

[

logω(t,xn)− log
N
∑

m=n

ω(t,xm)

]

En (11)

where En indicates if an event has occurred to subject n at

time Tn. For N subjects, the complexity of a training step

is O(N2NK + N(CF + CB)), where NK is the number

of basis functions, and CF and CB are respectively the

computational costs of feed-forward and back-propagation in

the chosen neural network architecture. This is impractical for

large datasets, and is avoided in traditional neural networks by

mini-batch approximation or by on-line training [47]. Here,

an extension of this technique is required since standard mini-

batch approximation would still lead to a computational cost

that grows linearly with N . This is achieved by training the

data with two independent sets of mini batches:
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1) the first containing an arbitrary set of subjects with size

Nb;

2) and the second containing only uncensored subjects with

size Ñb.

The mini batch approximation of log
∑N

m=n ω(t,xm) is

achieved by replacing the summation with the average of

ω(t,xm) for all xm in the mini batch 1. The approximation

of L is given as the average of all Ln in mini batch 2. For

simplicity, we normalize the log-likelihood by the number of

uncensored subjects. Note that for each subject in mini batch

2, it is necessary to make an independent estimation within

mini batch 1. Then, the cost of one training iteration becomes

O(NKNbÑb + (Nb + Ñb)(CF + CB)).

The estimation of the baseline hazard function requires

consideration of time variation. The Kalbfleish & Prentice

estimator [48] and the Breslow estimator [49] both provide

an analytical expression for the baseline hazard function, but

assume a time-invariant proportionality factor and a single

risk. However, Kalbfleish & Prentice can be extended with

the cumulative cause-specific baseline hazard function taking

the form:

Λ0,j(t) =
∑

Tn<t;En=1;jn=j

−
log
[

1−
ωj(xn,Tn)∑

Tm≥Tn
ωj(xm,Tn)

]

ωj(xn, Tn)

(12)

Note that if the model is based in equation (2), the computa-

tional cost of estimating the survival probability for one single

subject after the model has been trained grows linearly with

the training dataset size. If the model is based on equation

(3), the product in equation (12) can be rearranged so that it

only needs to be computed once and the computation of the

survival function for each new subject can be performed with

complexity O(CF + logN).

B. Quantile regression metaparametric neural networks

Estimation in the QR-MNN model is performed by maxi-

mizing its log-likelihood, given by:

L =
N
∑

n=1



log(λjn(xn, Tn))En −
J
∑

j=1

Λj(xn, Tn)



 (13)

where Λj(x, t) =
∫ t

0
λj(x, ν)dν and the cause-specific hazard

function λj(x, t) can be retrieved from the cause-specific

quantile function in equation (6). Here, standard mini-batch

approximation can be performed. Note that the estimation

of this likelihood requires the computation of the inverse of

the quantile function, so estimation will be impacted by the

choice of basis functions as highlighted in section II-C. If the

basis function is chosen to be piecewise constant or piecewise

linear, the inverse of the quantile function can be computed

analytically and the computational complexity of training a

single batch will be O(Nb(CF + CB)), where Nb is the size

of the mini-batch, and CF and CB are respectively the costs

of feed-forward and back-propagation in the chosen neural

network architecture.

C. Direct hazard metaparametric neural networks

We estimate the DH-MNN model by maximizing its log-

likelihood, given by equation (13) in section III-B. The compu-

tation of the likelihood is simplified if the version of the model

in equation (8) is used, since the integral can be computed

analytically. Here, the standard mini-batch approximation can

also be performed. If the basis functions are chosen to be

piecewise constant or piecewise linear, as detained in section

II-C, the computational complexity of training a single batch

will be O(Nb(CF + CB)), as with the QR-MNN model.

IV. APPLICATION TO SYNTHETIC DATA MODELING

In this section, we provide an example of the application

of the proposed models to estimate the cause-specific survival

probability distribution in a synthetic dataset. The synthetic

data used has two input covariate and two possible events,

with the cause-specific hazard function being: λ1(t,x) =
0.03(1 + 0.5 cos(2πt/10)) exp(tan−1(2x[0])✶(t < 5) +
tan−1(2x[1])✶(t > 5)); λ2(t,x) = 0.03(1 + 0.5 sin(2πt/10))
exp(sin(x[1])✶(t < 5) + sin(x[0])✶(t > 5)), where x[0] and

x[1] are have independent normal distributions and ✶(·) is

the indicator function, which takes the value of 1 when the

argument is true and 0 otherwise.

The following models were compared:

• PH-MNN: with piecewise linear basis functions and time

knots equally distributed in intervals of 2.

• QR-MNN: with piecewise linear basis functions and

quantile knots given by exp(−Λk) with Λk ∈
{0.01, 0.03, 0.06, 0.1, 0.2}.

• DH-MNN: with piecewise linear basis functions and time

knots equally distributed in intervals of 2.

• Cox: the proportional hazard model [11] with the baseline

hazard function being estimated using the Kalbfleish-

Prentice estimator [48]. Competing risks were accounted

for as in [24].

• QR: the quantile regression model with Lasso type

penalty, as in [51].

• DeepSurv: a neural network adaptation of the Cox model

[29], which is equivalent to a restricted version of the PH-

MNN model with a single time constant basis function.

• DeepHit: a discrete time-interval model proposed in [37],

which can be viewed as a direct hazard model. Two

different time discretization intervals of 2 and 0.1 were

used to study the effect of a large discretization interval

on the model. Being a discrete time model, the conversion

between cumulative incidence function and cause-specific

representations is only fully specified at the limit for an

infinitely small discretization step. This might lead to a

greater estimation error when a large discretization step

is used.

In the PH-MNN, QR-MNN, DH-MNN, DeepSurv and Deep-

Hit models, the same structure was used for the neural

network, which included Gaussian dropout [52]. This structure

is described in Fig. 2.

Fig. 3 shows how the averaged integrated squared error of

the survival function varies with training dataset size. All of

the MNN models performed better than previous state of the
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Fig. 2. Graphical description of the neural network structure applied in all
models.

art. With the exception of the PH-MNN, all models reached

a saturation point where the error ceases to improve at the

same rate as a function of the dataset size. This shows that

the PH-MNN has more flexibility given the same number of

parameters as the other models, consistent with it’s use of

a nonparametric baseline hazard function. Fig. 4 shows how

the averaged integrated squared error of the survival function

evolves with model training time. Although in neural networks

the training time is flexible and comparing training times of

algorithms can be misleading, Fig. 4 shows that all the pro-

posed metaparametric neural network models have a shorter

convergence curve than their respective existing state-of-the-

art models. This means that the improvement achieved by the

proposed models does not require a higher computational time

to be achieved. Fig. 5 shows how each model estimates the

event type 1 in the synthetic data with x[0] = 0 as a function

of time and x[1]. Note that all MNN models and also the

DeepHit model are capable of representing the nonlinearities

and time-dependencies in the model with different accuracies,

as measured in Figs. 3 and 4. However, the DeepSurv, Cox

and QR models are incapable of fully representing the target

probability distribution, and so they would never converge to

the underlying true probability distribution.

V. APPLICATION TO A CLINICAL DATASET

The proposed methodology was applied to the estimation

of the risks of death and revision surgery for patients who

undergo hip replacement surgery, using data collected by the

National Joint Registry in the United Kingdom. This dataset

contains outcomes information from 1132875 hip replacement

surgeries performed from 2003 to 2019. Here, modeling was

restricted to procedures performed from April 2009 to March

2019. Within this period, 855044 hip replacements were

performed. The data was filtered to include only surgeries with

complete data and only those where the reason for surgery was

osteoarthritis, resulting in a total of 612914 procedures.
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DH-MNN

QR
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Fig. 3. Averaged integrated squared error of the survival function for different
dataset sizes. The results are the average of 100 independent models trained
with independently generated datasets.
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Fig. 4. Averaged integrated squared error of the survival function over
training time using a single synthetic dataset with 100000 data points.
Computation was performed with a RTX 2070 graphics card and the models
were implemented with TensorFlow 2.3.1.

The observed population survival curves are shown in

the Kaplan-Meier estimate [50]. The performance of the

proposed MNN models, together with those of benchmark

and current state-of-the-art approaches were compared against

the observed Kaplan-Meier estimate. The models used for

comparison were the same as in section IV. For the PH-MNN,

the time knots used were 2, 4, and 7. For the DH-MNN and

DeepHit, time knots were equally distributed in intervals of 6

months.

The models were evaluated with plots of the estimated

cumulative hazard ratio (CHR) marginalized as a function of

age and BMI. We chose age and BMI as example predictor

variables as they demonstrate a nonlinear relationship with

survival, which the proposed methods should be able to

capture. The marginalized CHR estimation as a function of

either the age or the BMI used a sliding window with width

equal to 4 in respective units and centered successively in each
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Fig. 5. Cumulative cause-specific hazard function for event type 1 in the
synthetic data as a function of time and variable x[1] when x[0] = 0. The
values estimated are the averaged over 100 independent models trained with
independently generated datasets, each one with 100000 data points.

target value, where:

• the Kaplan-Meier estimate of the survival function within

the window was performed, SKM (t|x ∈ ξ(w)), where

ξ(w) is a window centered in w;

• the marginal model estimate within the window is com-

puted as the average of the estimated survival function

for each patient within the window, Smodel(t|x ∈ ξ(w));
• the Kaplan-Meier estimate was computed for the entire

test population, SKM (t);
• the Kaplan-Meier estimation of the marginal CHR was

given by:
log(SKM (t|x∈ξ(w)))

log(SKM (t)) .

• the model estimation of the marginal CHR was given by:
log(Smodel(t|x∈ξ(w)))

log(SKM (t)) .

This process was repeated 250 times, for each model in a

group of 50 random repetitions of 5-fold cross validation.

The results of the estimated marginal CHR as a function of

age or BMI averaged for all 250 runs are shown in Figs.

6-9. The results are evaluated according to the accuracy of

representation of nonlinearities, adaptability of the shape as

a function of time, and calibration. These three aspects are

captured by the root mean square error of the model estimate

of the log marginal CHR relative to the Kaplan-Meier estimate

of the same quantity. For a given time t, this RMSE is given

by:

RMSE =

∫

p(x ∈ ξ(w)) log2
(

log(Smodel(t|x∈ξ(w)))
log(SKM (t|x∈ξ(w)))

)

dw
∫

p(x ∈ ξ(w))dw
(14)

where p(x) is the population density inside the window ξ(w)
centered in w, and w is either the age or the BMI. This

RMSE represents an integrated measure of two factors: first,

the difference between the relationship of the model estimate

and the observed data as a function of the attribute; and

second the systematic bias between the two that is common

for all values of the attribute. By estimating a bias that will

minimize this RMSE, the two components can be identified as

the unbiased RMSE (URMSE) and the bias. The model were

evaluated through the computation of the RMSE, URMSE and

absolute bias in the time interval from 6 months to 8 years

with steps of 1 month. Tables I, II and III present for each type

of model the maximum value over time of each evaluation

criteria with their 95% confidence interval. To highlight the

improvement achieved with the metaparametric neural network

structure, the results were grouped by type of model. For the

direct hazards models, evaluation was performed in 6 months

intervals to allow a fair comparison between both the discrete

and continuous-time models.
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Fig. 6. Estimated cumulative hazard ratio for the mortality risk marginalized
as a function of the age.

TABLE I
MAXIMUM VALUE OVER TIME OF EACH ERROR COMPONENT IN

PROPORTIONAL HAZARDS MODELS

Cox DeepSurv PH-MNN

Revision
by Age

RMSE 0.225± 0.002 0.213± 0.002 0.154± 0.003

URMSE 0.221± 0.003 0.209± 0.002 0.146± 0.002

abs. bias 0.060± 0.003 0.057± 0.003 0.070± 0.002

Mortality
by Age

RMSE 0.567± 0.002 0.313± 0.004 0.189± 0.004

URMSE 0.522± 0.002 0.279± 0.003 0.181± 0.004

abs. bias 0.243± 0.002 0.159± 0.003 0.071± 0.004

Revision
by BMI

RMSE 0.148± 0.002 0.140± 0.002 0.124± 0.002

URMSE 0.140± 0.001 0.130± 0.002 0.107± 0.002

abs. bias 0.074± 0.003 0.068± 0.003 0.081± 0.002

Mortality
by BMI

RMSE 0.197± 0.002 0.135± 0.002 0.133± 0.003

URMSE 0.193± 0.001 0.127± 0.002 0.121± 0.003

abs. bias 0.053± 0.003 0.052± 0.003 0.061± 0.003
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Fig. 7. Estimated cumulative hazard ratio for the mortality risk marginalized
as a function of the BMI.

TABLE II
MAXIMUM VALUE OVER TIME OF EACH ERROR COMPONENT IN DIRECT

HAZARDS MODELS

DeepHit DH-MNN

Revision
by Age

RMSE 0.456± 0.003 0.260± 0.004

URMSE 0.162± 0.002 0.148± 0.002

abs. bias 0.430± 0.002 0.217± 0.004

Mortality
by Age

RMSE 1.008± 0.004 0.228± 0.005

URMSE 0.194± 0.003 0.180± 0.004

abs. bias 0.990± 0.004 0.144± 0.005

Revision
by BMI

RMSE 0.444± 0.002 0.242± 0.003

URMSE 0.111± 0.002 0.107± 0.002

abs. bias 0.431± 0.002 0.218± 0.004

Mortality
by BMI

RMSE 0.990± 0.003 0.184± 0.005

URMSE 0.133± 0.002 0.120± 0.002

abs. bias 0.981± 0.003 0.140± 0.005

The PH-MNN, DH-MNN, QR-MNN, DeepSurv and Deep-

Hit models captured the nonlinearities, while the Cox did

not. The QR model partially captured some nonlinearities

through the variation of coefficients with the quantile, but they

were not entirely captured since this variation is shared to

represent both nonlinearities and time variations. This can be

seen in the figures and is reflected by a smaller URMSE for

the neural network models in most cases. The nonlinearities

of the CHR could be adapted as a function of time for

all the metaparametric neural networks and for the DeepHit

model. The model structure for the others does not permit this
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Fig. 8. Estimated cumulative hazard ratio for the revision risk marginalized
as a function of the age.

TABLE III
MAXIMUM VALUE OVER TIME OF EACH ERROR COMPONENT IN QUANTILE

REGRESSION MODELS

QR QR-MNN

Revision
by Age

RMSE 0.697± 0.005 0.596± 0.052

URMSE 0.341± 0.003 0.171± 0.005

abs. bias 0.609± 0.005 0.570± 0.053

Mortality
by Age

RMSE 1.379± 0.005 0.576± 0.044

URMSE 0.730± 0.006 0.280± 0.011

abs. bias 1.364± 0.005 0.500± 0.045

Revision
by BMI

RMSE 0.595± 0.006 0.598± 0.054

URMSE 0.187± 0.002 0.154± 0.007

abs. bias 0.566± 0.006 0.578± 0.054

Mortality
by BMI

RMSE 1.682± 0.007 0.557± 0.039

URMSE 0.237± 0.003 0.176± 0.005

abs. bias 1.665± 0.007 0.515± 0.042

variation of nonlinearities over time.

In the case of the proportional hazards models, the PH-

MNN overall performance measured by the RMSE was better

than the established methods. When this RMSE measure is

broken down into its components, URMSE and absolute bias,

the DeepSurv model had a slightly smaller bias. However the

PH-MNN bias was still small and stable across the different

risks and attributes. For the direct hazards models, the DH-

MNN overall performance, URMS and bias were all consis-

tently better than DeepHit. Finally, for the quantile regression

models, the QR-MNN model overall performance was also
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Fig. 9. Estimated cumulative hazard ratio for the revision risk marginalized
as a function of the BMI.

consistently better than the QR method, apart from revision

by BMI in which the two methods were equivalent.

VI. CONCLUSION

In this article, we propose a novel and generic framework

for incorporating machine learning into survival modeling

that resolves the established limitations of neural network

application to this field. This MNN framework results in a

structure that encompasses existing neural network models.

This framework enables the generic representation of any

survival probability distribution without prior knowledge of its

functional form. The MNN framework can be applied to both

parametric and semi-parametric modeling scenarios providing

unification in this domain. Special instances of this class of

models were formulated based on three different heritage

structures: the proportional hazards, the quantile regression

and the direct hazard. Both conventional and the novel frame-

work models were evaluated using both a synthetic and a large

real-world dataset, with best overall fit to the observed data

being demonstrated by the proposed MNN framework.
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