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Title: The role of blue green infrastructure in the urban thermal environment across 

seasons and local climate zones in East Africa 

 

Highlights 

l Local climate zone (LCZ) classifications for East African cities were examined. 

l Significant Land Surface Temperature (LST) differences occurred between LCZs. 

l LST and Enhanced Vegetation Index (EVI) revealed seasonal variations across LCZs.  

l Possible cooling effects of urban green blue infrastructure were identified. 

 

Abstract 

Rapid urbanisation and climate change are two major trends in Africa in need of 

further investigation. In this paper, the urban thermal environment and vegetation 

abundance in four East African cities (Khartoum, Addis Ababa, Kampala and Dar es 

Salaam) were characterised, providing new insights into the role and potentials of blue 

green infrastructure in differing climate regions. The Local Climate Zone (LCZ) 

framework was employed to detect the seasonal Land Surface Temperature (LST) and 

Enhanced Vegetation Index (EVI) derived from Landsat-8 data. Significant LST 

differences between LCZs in dry and rainy seasons were confirmed using a Welch’s T 

test. The LCZs were found to offer potentially new approaches to investigating issues 

pertaining to urban heating in data-scarce regions. Greater surface urban heat island 

(SUHI) intensity during the rainy season was apparent in Khartoum and Addis Ababa, 

emphasising the importance of seasonality in urban thermal studies. Spatial 
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correlations between EVI and LST within each LCZ were analysed through Moran’s I 

and further illustrated the complex relationships of vegetation and thermal behaviour 

in urban areas. Despite these complexities, urban blue green infrastructure was found 

to moderate the SUHI, with different types of intervention required across different 

LCZs.  

 

Keywords 

Surface urban heat island; Enhanced vegetation index; Blue green infrastructure; 

Climate change; Urbanisation; Thermal environment 
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1. Introduction 

Urbanisation and climate change are two of the most important trends influencing 

global development (Rogers, 2012). The global population living in urban areas is 

expected to increase from today’s 55% to 68% by 2050 (United Nations, 2019). The 

fastest rates of urbanisation will occur in the least developed regions of Asia and Africa 

(United Nations, 2019). Cities serve as engines of change, dominating economic 

progress, and offering the potential to pull more people out of poverty (Demuzere et 

al., 2021; Rogers, 2012). Meanwhile, challenges in natural resource management 

exacerbated by climate change in rural areas can act as a push factor, causing people 

to move into cities. Despite potential economic advantages of urban living, many who 

move to urban areas are at risk from various environmental and social challenges, 

particularly as the climate changes and more of the urban population is exposed to 

heat stress (He, Zhao, et al., 2021; Van De Walle et al., 2022).  

 

Burgeoning urban populations require more land for housing and infrastructure (Boke-

Olén et al., 2017; Omumbo et al., 2005), driving land use/ land cover transformation. 

Large amounts of natural surface are replaced by impervious surfaces, changing the 

patterns of biodiversity and ecosystem services in different ways across different 

climate zones and contexts. One of the most significant challenges is transformation-

induced climate alteration; in particular, the urban heat island (UHI) effect. UHI refers 

to the temperature difference between an urban area and its surrounding rural area 

(Oke, 1982). UHI is caused by development and modification in urban infrastructure 
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(He, 2019), in areas where higher proportions of impervious surface store more heat 

and restrict natural radiative cooling potentials (Gunawardena et al., 2017; Kabano et 

al., 2021). UHI intensities are influenced by the local micro-climate, with important 

factors including urban morphology, biome, meteorological conditions, presence or 

absence of water bodies and vegetation cover (He, Wang, et al., 2021; Imhoff et al., 

2010; Li et al., 2021). As the climate changes and urbanisation proceeds at pace, it is 

important to understand differences in these relationships across different cities and 

climate zones.  

 

A lack of climatological observations and urban cover/use information has previously 

restricted the number and quality of systematic studies for African cities (Brousse et 

al., 2019; Brousse, Wouters, et al., 2020). This impediment has been gradually 

overcome by improved high-resolution remote-sensing data and enhanced modelling 

capacities (Brousse et al., 2019). Furthermore, observational approaches to 

investigating temperature heterogeneity between urban surfaces have improved 

through development of the concept of local climatic zones (LCZ). The LCZ framework 

provides a uniform and generally recognized classification of urban cover/use that 

allows the comparison of cities in terms of urban form and urban function (Geletič et 

al., 2019; Stewart et al., 2012). The LCZ framework classifies urban areas into 10 “built” 

and 7 “land cover” types, with a LCZ type defined as a region that is uniform in 

properties of surface cover, structure, material, and human activity. Each LCZ type 

characterises a particular surface thermal climate (Stewart and Oke, 2012). LCZs have 
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now been generated for cities globally (Bechtel et al., 2015; Ching et al., 2018), 

becoming a new standard for characterizing urban landscapes (Zhao et al., 2021), 

particularly following further simplification of the process of LCZ classification with the 

LCZ Generator (Demuzere et al., 2021). LCZs may offer the potential to better 

understand the role of blue and green areas within the landscape and their 

moderation of SUHI effects. Nevertheless, this has not yet been fully explored. This 

paper takes up this challenge and provides novel empirical insights that can guide 

planners on the use of blue green infrastructure (BGI) in different LCZs.  

 

Although LCZ classification has been used in some African cities to study UHI (Ochola 

et al., 2020), vegetation growing season length (Kabano et al., 2021) and urban health 

issues (Brousse, Wouters, et al., 2020), existing studies tend not to focus on the urban 

thermal environment in Africa there. Nor do studies consider the role of blue green 

infrastructure (BGI) in shaping thermal outcomes in different LCZ, while few take a 

comparative approach encompassing multiple cities in different climate zones within 

Africa. Indeed, land surface temperature (LST) variations among LCZ types are less 

studied under different microclimatological conditions in Africa, compared to land 

cover types within a single city, which have gained a lot of attention in the UHI 

literature (Geletič et al., 2019). 

 

The main aim of this study is to examine the suitability of the LCZ classification for 

urban thermal studies under varying microclimatological conditions in different 
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climate zones in Africa and to assess the role of BGI in explaining any thermal 

differences with a view to informing planning. By doing so, we advance knowledge into 

the role of BGI in the urban thermal environment within different LCZ. We address the 

following questions: (i) Does using LCZ classifications bring new understanding to 

quantifying UHI effects in African cities? (ii) How do LST and SUHI within LCZs change 

seasonally, and are seasonal variations similar between cities with different climates? 

(iii) What is the relationship between LST and EVI within LCZs in different seasons? (iv) 

What is the potential for the retention, restoration or construction of BGI to mitigate 

SUHI, and how does this potential vary in different cities and LCZ? 

  

2. Method 

 

2.1 Study areas 

Four cities in East Africa across different climate zones (Köppen classification): 

Khartoum, Addis Ababa, Kampala, and Dar es Salaam, were selected in this study (Fig. 

1). In general, these cities could be considered as the engines of their respective 

country’s economy and social development, and thus their rapid urbanisation could 

be expected to result in increased UHI intensity. The largest city in 2021 in terms of 

permanent residents among the study cities is Dar es Salaam (6.21 million), followed 

by Khartoum (5.99 million), Addis Ababa (5.01 million), and Kampala (3.47 million). 

These cities are characterised by highly fragmented vegetation surrounded by dense 

residential, commercial, and industrial areas. Further, the cities vary in the type and 

length of seasonal variations in temperature and rainfall that they experience, allowing 
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us to explore seasonality in more depth (Borhara et al., 2020; USAID, 2020).  

 

 

Fig. 1. Location of study cities in East Africa, with their climate zones (Köppen 

classification). 

2.2 Data sources and analysis 

2.2.1 LCZ classification 

To reflect the spatial continuity of the urban built-up area outside the administrative 

boundaries (Lemoine-Rodríguez et al., 2020), we mapped the urban area boundary 

from Copernicus Global Land Cover Layers: CGLS-LC100 Collection 3 (Copernicus, 

2021), downloaded via Google Earth Engine and processed in ARCGIS. Informal 

settlements, river channels and wetlands etc. were retained within the urban area 
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boundary. 

 

Following the “Guidelines for Digitizing Training Areas” and the WUDAPT LCZ 

classification method (Bechtel et al., 2015; World Urban Database and Access Portal 

Tools, 2021), we digitised the training areas and mapped the LCZ for the study cities. 

Due to the cloud contamination across different times in different cities, the 

comparatively clear and distinct year of 2018 was selected as a representative year. 

Based on previous LCZ research in Africa (Bechtel et al., 2016; Brousse, Georganos, et 

al., 2020; Kabano et al., 2021; Ndetto et al., 2015), the most common LCZ classes were 

selected in each city. Depending on the area covered by each LCZ class and the 

feasibility of digitisation, the number of training samples per LCZ class ranged between 

20 and 100. The overall process involved: (i) selecting and creating the training areas 

in Google Earth, (ii) submitting the training areas into the LCZ generator and getting 

results, (iii) using the results to revise the training areas, resubmitting and improving 

the accuracy to 70% or above in the final output. 

 

2.2.2 LST/SUHI processing and relationship within LCZs 

Rainy and dry seasons were defined based on previous research in East Africa (see 

supplementary document 1, Table 1). When mapping LST across different regions, 

finding clear images especially for the rainy season can be challenging. Cloud cover can 

mean that many Landsat tiles are required. To select the optimal images, we masked 
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out cloud and shadows from the images using pixel_qa band to get the 3-year periods’ 

seasonal image collection for each city considering the years 2017, 2018 and 2019. We 

used the ee.Reducer and ee.ImageCollection.median of Google Earth Engine (GEE) to 

produce a cloud-free composite image from image collection (Google Earth Engine, 

2022), for each season for each study city. Temporal aggregation and time series 

composition are two composition methods that have been widely used in multi-

temporal Landsat images to reduce contamination by cloud and other problems (Phan 

et al., 2020). Time series composition involved a composition of cloud free images in 

a time series, while the temporal aggregation method used the metrics (e.g., median, 

mean and min/max) derived from time series images. Pre-processing in traditional 

time series composition methods requires significant storage capacity and access to 

high power computing (Phan et al., 2020). Recent advances in the temporal 

aggregation method significantly reduces data volume and generates data of equally 

high accuracy (Flood, 2013; Frantz et al., 2017; Phan et al., 2020). Nevertheless, 

despite being widely used in recent research (Chen et al., 2021; Richards et al., 2020), 

one major disadvantage of this method is that composite images from multi-year data 

produce land cover maps with lower accuracy than those from a single year, due to 

land cover change and loss of phenological consistency (Frantz et al., 2017). While a 

common strategy for generating an annual cloud free composite is to use images 

acquired over three years (Hu et al., 2019; Nyland et al., 2018; Xie et al., 2019), this 

research tried to capture the temporal variability on a seasonal time scale, so this 

challenge was avoided but phenological consistency was retained. Three years (2017, 
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2018, 2019) of satellite imagery over the dry and rainy seasons were composited to 

produce composite images representing the desired period (Flood, 2013).  

 

Based on the USGS formulas (USGS, 2021b), the LST for the study areas was derived 

using the Mono-Window Algorithm (MWA) from Landsat data following five steps (Qin 

et al., 2001): (i) using the TIR band 10 to estimate brightness temperature; (ii) 

calculation of the Normalized Difference Vegetation Index (NDVI); (iii) obtaining 

proportional vegetation from NDVI values; (iv) calculation of land surface emissivity; 

and (v) calculation of the LST. 

 

With the hypothesis that each LCZ class represents a distinct thermal characteristic 

(Stewart & Oke, 2012), we compared LCZ and LST. Firstly, the LSTs obtained from GEE 

and LCZ classes retrieved from the LCZ-generator were analysed in ArcGIS. As our data 

did not conform to the assumptions of ANOVA (Levene’s test, p-value < 0.05) we ran 

Welch’s t tests to detect the significance of the difference between LST and LCZ groups 

and then a post hoc Games-Howell test to determine which group caused the 

difference when the variances were not equal. The spatial distribution and variability 

of LSTs within LCZ classes were demonstrated in boxplots (See section 3.2, Fig. 4). 

 

To investigate the seasonal variation of the SUHI in different LCZ classes, the SUHI 

intensity is defined as the difference between the LST value of a LCZ type when 
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compared with LCZ D (low plants) (Bechtel et al., 2019; Stewart & Oke, 2012). The 

formula for calculating SUHI intensity is as follows (Stewart & Oke, 2012): 

!"#$ !"#! =  '!(!"#! − '!(!"#"                                        (1) 

Where '-.$  represents a LCZ in study city, !"#$ !"#!  is SUHI intensity in 

'-.$,	 '!(!"#!  is LST value in '-.$, and '!(!"#"  is LST value in LCZ D. 

 

2.2.3 EVI processing and correlation with LST within LCZs 

We chose the Enhanced Vegetation Index (EVI) for characterising vegetation 

abundance as it retains sensitivity to the density of urban vegetation and also 

minimises canopy background variations (Kabano et al., 2021). EVI was calculated 

following USGS approaches (USGS, 2021a). The spatial variability influence of EVI on 

the performance of LST was analysed through spatial correlations between different 

study cities in the rainy and dry seasons. Through Geoda 1.20, the bivariate Moran’s I 

function was used to represent the overall spatial correlation between seasonal LST 

and EVI within each LCZ class for the study cities (Anselin, 1996, 2020). 
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3. Results 

3.1 LCZ classification 

 

Fig. 2. LCZ maps for four study cities (Khartoum, Addis Ababa, Kampala, Dar es Salaam) 

within their urban cluster boundary. The original LCZ documents (training area 

information and accuracy) are provided in supplementary document 1, Table 2. 

 

LCZ maps (Fig. 2) capture the morphological characteristics and the percentage of 

different LCZs across the four cities. Across all cities, the total areas of the built-up LCZs 

(LCZ 1-10) accounted for more than 50% of their area. Khartoum has the largest urban 

area among all the study cities. The urban area is dominated by compact commercial 

areas (LCZ 2) while residential areas (LCZ 3) have connected with adjacent cities, 

namely Khartoum North and Omdurman. These three cities have been integrated into 

a large urban cluster with no obvious boundary. The vegetation in southern Khartoum 
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is dominated by low plants (LCZ D) while the northern and north-western Khartoum 

megaregion are mainly bush and scrub (LCZ C).  

 

The city centre and central business district in Addis Ababa are highly dense and 

compact so they are mainly classified as LCZ 2–4. There are also many isolated built-

up areas in the southwestern part of Addis Ababa, which are mainly compact 

residential areas (LCZ 2) and factories (LCZ 8). This explains why the large low-rise LCZ 

account for 15.11% in Addis Ababa.  

 

The LCZ map of Kampala indicates that residential areas with green infrastructure (LCZ 

6) occupy most urban areas. A compact commercial centre (LCZ 2) and compact 

residential area (LCZ 3) are concentrated in the central downtown area. The rest of the 

areas are mostly classified as factories and sparsely built-up areas (LCZ 8 and LCZ 9). 

Scattered trees and farmland are interspersed in the urban areas. The total area of 

compact mid-rise and compact low-rise in Kampala accounted for only 0.13% and 

10.90%. However, the open low-rise (LCZ 6) accounted for 54.18%.  

 

A commercial centre (LCZ 2) and compact residential areas (LCZ3) are also found in Dar 

es Salaam. In addition, continuously connected factories are located in central and 

south-eastern areas. Scattered trees (LCZ B) accounted for 23.5% of the land area, an 

amount substantially greater than in Khartoum (3.05%), Addis Ababa (6.77%), and 

Kampala (16.23%).  
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3.2 LST and SUHI analysis 

 

In Khartoum, LST varied between 23.9 °C and 40.3 °C in the rainy season, while in the 

dry season, LST varied between 26.5 °C and 38.6 °C. LST in Addis Ababa ranged from 

13.1 °C to 33.0 °C in the rainy season, and from 17.4 °C to 35.5 °C in the dry season. 

For Kampala, LST varied from 19.4 °C to 30.9 °C in the rainy season, with this range 

expanding to 17.8 °C and 33.0 °C in the dry season. LST in Dar es Salaam was from 

13.4 °C to 32.4 °C in the rainy season, and from 21.5 °C to 32.4 °C in the dry season.  

 

 

Fig. 3 The spatial distribution of LST in the rainy (top row) and dry (bottom row) 

seasons 

 

For crosswise comparison among the LCZs, LST for all LCZ types in different season was 
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evaluated with the Welch’s one-way ANOVA test (Fig. 4). In addition, each LCZ type in 

different seasons was compared by a paired sample test (Fig.4). The Welch’s test 

results confirm the statistical significance of variances (p < 0.00) for all study cities in 

different seasons. The Games–Howell post hoc test was used for pairwise comparisons 

of mean LST value to identify their significant differences between LCZs (Fig. 5). 

Games-Howell test results indicate significant LST differences were observed in most 

LCZs during rainy and dry seasons.  
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Fig. 4 Boxplots of the LST distribution in different LCZ in different cities (a) Khartoum, (b) Addis Ababa, (c) Kampala and (d) Dar es Salaam.
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For the four cities considered in the research, the LSTs in the dry season are higher 

than in the rainy season, except for LCZ G (water) in Addis Ababa and Kampala. The 

LST of urban built-up LCZ classes (LCZ 2-9) was generally above that of the land cover 

classes (LCZ B-G) (Fig. 4). The differences in mean LST value across LCZ types varied 

greatly with the seasons. Even though there were relatively large variations in LST 

across different LCZ types, the general LST pattern was found to be similar during rainy 

and dry seasons. In particular, dense trees and water showed the coolest mean LST, 

and compact mid-rise buildings and large low-rise building presented more significant 

deviations from the mean LST for both seasons. 

 

 

Fig. 5. The Games-Howell test results of differences in the LSTs between LCZ types. 

Grey squares represent non-representative LCZ classes, white squares stand for 

significantly different classes (p < 0.05), and blue squares represent LCZ pairs whose 



 18 

are not significantly different (p > 0.05). 

 

In Khartoum, there are large variations in SUHI across LCZ classes, and greater 

differences can be observed in the two seasons. In Khartoum, sparsely built areas (LCZ 

9) during the rainy season have the highest SUHI (3.7 °C) among the built-up LCZ 

classes, followed by open low-rise built-up areas (LCZ 6) and large low-rise built areas 

(LCZ 8), with mean SUHI of 3.6 °C and 2.8 °C respectively. Scattered trees (LCZ B) and 

water (LCZ G) show the opposite trend in the two seasons with -1.6 °C and -5.6 °C 

mean SUHI. The pattern of SUHI in the dry season in Khartoum is similar to that of the 

rainy season: the highest SUHI was observed in LCZ 9 with 2.7 °C, with areas of 

scattered trees (LCZ B) and water (LCZ G) presenting stronger cooling by -2.7 °C and -

9.2 °C. 

 

Addis Ababa also has a higher SUHI intensity in the rainy season. During this season, 

compact mid-rise areas have the highest SUHI (2.3 °C), and second is the open high-

rise areas, LCZ 2 (1.3 °C). SUHI in the dense tree zone (LCZ A) was -3.9 °C SUHI and in 

water areas (LCZ G) was -2.5 °C. While positive SUHI intensity was only detected in 

large low-rise (LCZ 8) 0.1 °C and compact mid-rise areas 0.02 °C in the dry season, 

water (LCZ G) presented -7.5 °C while areas with dense trees showed (LCZ A) -6.2 °C.  

 

In Kampala, SUHI in all built type LCZs in both seasons are positive. Dry season SUHI is 

higher than in the rainy season, typically with 3.8 °C in LCZ 2 and 3.5 °C in LCZ 3 but 
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the SUHI in the rainy season is still strong, at 3.0 °C in LCZ 3 and 2.8 °C in LCZ 2. Dense 

trees play the most important role in urban cooling, supported by -1.4 °C SUHI in the 

dry season and -1.2 °C SUHI in the rainy season. Water also plays a critical cooling role 

with -1.4 °C in dry season and -0.9 °C in rainy season.  

 

For Dar es Salaam, the LST in LCZs were statistically different between the two seasons, 

and SUHI was higher in the dry season. The city presented similar SUHI distribution 

patterns across different LCZs. The highest SUHI intensity was located in compact low 

rise (LCZ 3) areas with 1.6 °C in the dry season and 1.3 °C in the rainy season. Dense 

trees had a SUHI of -2.0 °C SUHI in the dry season and -2.1 °C in the rainy season. For 

water, SUHI was -1.7 °C in the dry season and -1.3 °C in the rainy season. 

 

3.3 The relationship between LST and EVI 
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Fig. 6 The spatial distribution of EVI in the rainy (top row) and dry (bottom row) 

seasons 

 

Fig. 6 shows the spatial distribution of EVI in the study cities. Differentiation of the 

vegetation cover across different macroclimate regions can be observed. The mean 

EVI value in Dar es Salaam (Tropical savanna climate) was similar to that of Kampala 

(Tropical rainforest climate), followed by Addis Ababa (Humid subtropical climate), and 

Khartoum (Warm desert climate). The mean EVI value is generally higher in the rainy 

season (1.04 in Kampala, 1.02 in Dar es Salaam, 0.81 in Addis Ababa, 0.21 in Khartoum), 

and decreases in the dry season (1.01 in Kampala, 0.57 in Addis Ababa, and 0.19 in 

Khartoum), except for an increase in Dar es Salaam which had a mean value of 1.13. 

 

The bivariate Moran's I between LST and EVI was measured for the study cities. In 

Khartoum, Moran's I was 0.357 in the rainy season and 0.439 in the dry season, 

denoting a positive spatial relationship among the values of the adjacent variables. On 

the contrary, a relatively high negative spatial correlation was found in Kampala (−0. 

54 in the rainy season and -0.43 in the dry season). Addis Ababa (−0. 18 in the rainy 

season and -0.06 in the dry season) and Dar es Salaam (−0.02 in the rainy season and 

-0.07 in the dry season) presented a weaker correlation. 

 

To observe the internal relationship between the LST and EVI, we calculated the 

bivariate Moran's I between EVI and LST for each LCZ (Fig. 7). In general, LST in dense 



 21 

trees (LCZ A) presents a negative correlation with EVI for all cities, while LST in scatted 

trees (LCZ B) and low plants (LCZ D) shows a variable correlation with EVI in the 

different cities and the different seasons. There were negative correlations between 

LST and EVI located in most LCZ types in Addis Ababa, Kampala and Dar es Salaam. In 

the dry season, highly negative correlations are found in Khartoum’s LCZ 2; Addis 

Ababa’s LCZ 3, LCZ D; Kampala’s LCZ 2, LCZ 3 and LCZ 6. Highly positive correlations are 

found in Khartoum’s LCZ B, LCZ D, LCZ F, LCZ G. As for the rainy season, highly negative 

correlations are found in Khartoum’s LCZ 2 and LCZ D; Addis Ababa’s LCZ 4; Kampala’s 

LCZ 2, LCZ 3, LCZ 4 and LCZ A; Dar es Salaam’s LCZ A. Highly positive correlations are 

found in Khartoum’s LCZ 6, LCZ 9, LCZ F, LCZ G. The weakest correlation was observed 

in Dar es Salaam’s LCZ 2 in the dry season with a value of -0.00. In Dar es Salaam, the 

bivariate Moran’s I values fluctuate over a relatively small range: the magnitude of 

correlation is between -0.26 and 0.01, which shows less correlation compared to the 

other study cities. 

 



 22 

 

Fig. 7 Heatmap of global bivariate Moran's I between EVI and LST for each LCZ in 

different seasons. (NA indicates there is no specific LCZ class in corresponding city. The 

detailed Moran scatter plots are provided in supplementary document 2. 

 

4. Discussion 

 

4.1 LCZ classification for African urban issues  

 

Local Climate Zones (LCZs) have been adopted as a standard way of analysing a wide 

variety of urban issues. While initial LCZ mapping procedures relied only on satellite 

data and software, which required time-consuming downloading and pre-processing, 

the cloud-based tool LCZ generator (Demuzere et al., 2021) addresses this 

shortcoming. The results of our analysis indicate that LCZ classification can be 

efficiently used across the different macroclimate regions and seasons in East Africa. 
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Significant LST differences between built and natural LCZs and within built types 

further support the suitability of LCZ for urban thermal environment analysis. 

 

The LCZ maps illustrate clear variation in urban form across the study cities. Khartoum 

and Addis Ababa had a spatial structure that lies somewhere between fragmented and 

compact patterns, which is characteristic of cities undergoing rapid transformation 

(Lemoine-Rodríguez et al., 2020), dominated by diverse initial patterns and differential 

development trajectories (Lemoine-Rodríguez et al., 2020). Kampala and Dar es 

Salaam were characterized by a low-density and dispersed spatial pattern, which is 

closer to a fragmented urban form. This can be a consequence of sprawled urban 

development. Moderately fragmented urban forms can be beneficial in terms of a less 

intense UHI and higher accessibility to BGI (Schwarz et al., 2015). In contrast high 

urban fragmentation exacerbates impacts on the wider landscape and can increase 

urban pollution and exacerbate ecosystem services degeneration (Degefu et al., 2021; 

Huang et al., 2018; Tratalos et al., 2007). Africa is projected to experience rapid urban 

transformation in the coming decades (Oecd et al., 2020). Comparisons via 

spatiotemporal analysis of urban land densities have pointed out that urban forms in 

African cities are less compact than in China, Europe, and India (Xu et al., 2019). LCZ 

classification incorporates urban morphology into a mapping protocol, generating 

sufficient heterogeneity and design flexibility in the urban fabric (Perera et al., 2018; 

Stewart & Oke, 2012). Climate sensitive and data-scarce urban areas could harness 

such advantages, supporting the development of dynamic strategies for urban 
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development design and monitoring. 

 

4.2 LST and SUHI differences in LCZ 

Statistically significant LST differences in the study cities during different seasons 

further support the hypothesis that LCZs represent distinct surface temperatures 

(Stewart & Oke, 2012). The highest LST/SUHI intensities were generally located in LCZ 

2, LCZ 3, LCZ 8, major commercial and industrial areas. The lowest LST/SUHI intensities 

were found in LCZ A and LCZ G, represented by dense trees and water. This 

corresponds with previous research findings in African cities (Brousse et al., 2019; 

Brousse, Wouters, et al., 2020; Kabano et al., 2021; Ochola et al., 2020). Generally, the 

temperature differences between cities can be expected to be related to the macro-

climate, geographic region and urban area (Bechtel et al., 2019; Geletič et al., 2019; 

Potgieter et al., 2021). Even in different climate zones, there were statistically 

significant differences in mean LSTs between most LCZ. In this study, large low-rise (LCZ 

8) LST in most cities was considerably higher than the other LCZ types. This may 

correspond to the large roof surfaces that frequently occur in LCZ 8. Surprisingly, LCZ 

2 and LCZ 5 in Addis Ababa and Dar es Salaam, characterised by high-rise buildings, 

were the coolest built types, perhaps due to the shading effects of buildings. Similar 

distributions at certain time scales have also been observed in Toulouse, France (Kwok 

et al., 2019), Beijing, China (Zheng et al., 2019). The possible reasons for this can be 

summarised as follows: (i) The number of training areas for LCZ 2 and LCZ 5 affected 

the classification accuracy; (ii) Vegetation in LCZ 5 and shading effects from the high-
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rise/mid-rise buildings provided cooler thermal environments (Kwok et al., 2019); (iii) 

The high proportion of vertical surfaces may affect the LST by preventing solar and 

surface interactions (Cilek et al., 2021; Zheng et al., 2019). This should nevertheless be 

further tested with more observations for high-rise buildings. Dense trees (LCZ A) and 

water (LCZ G) were identified as a lower LST zone, and the high LST variability of water 

would be expected, since temperature variation reflect the characteristics (depth, rate 

of flow, etc.) of individual water bodies (Geletiˇc et al., 2019). Considerable 

temperature differences between agriculture (LCZ D) and other zones were apparent. 

These might be due to the lower proportions of vegetation and the more robust 

radiation response of bare soil in different seasons (Geletiˇc et al., 2019). 

 

4.3 LST/EVI correlation in different cities 

Previous research has demonstrated that differences in LST depend on: i) variation in 

radiation intensity; ii) influences of evapotranspiration processes; iii) higher albedo of 

tree crowns during the vegetation period (Geletič et al., 2019; Gombe et al., 2017; 

Gunawardena et al., 2017; Stewart & Oke, 2012; Sun et al., 2019; Zhao et al., 2014). 

The present study demonstrated that LST/SUHI dynamics in different LCZs also vary 

between seasons. For example, both rainy and dry seasons EVI were negatively 

correlated with LST in LCZ 2, and LCZ 3 for Khartoum, Addis Ababa and Kampala, 

indicating a cooling potential of increasing green space cover percentage in these LCZ 

types. Positive correlations were found in LCZ 6, LCZ 8, LCZ 9 during Khartoum’s rainy 

season, also a higher SUHI was detected in this period. For Dar es Salaam, the most 
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negative correlation between LST and EVI was observed in the rainy season in compact 

low-rise areas (LCZ 3), but in the dry season it was located in areas with dense trees 

areas (LCZ A) and low plants (LCZ D). The interactions between seasonal UHI and urban 

vegetation phenology could limit the provision of beneficial ecosystem services, such 

as urban agricultural productivity and the regulation of human thermal comfort 

(Kabano et al., 2021). For year-long effectiveness, greening strategies should account 

for seasonal effects (Chun et al., 2018). Such variability provides theoretical and 

practical information for urban planners on maximising the BGI efficiency in mitigating 

the UHI (Guo et al., 2019), as an integral part of sustainable urban planning and as an 

adaptation to higher temperatures under climate change.  

 

4.4 Implications for urban development 

 

African cities have been shown to be the most dynamic in terms of expansion and 

change in urban form (Lemoine-Rodríguez et al., 2020), offering many potential 

opportunities to ensure these cities develop more sustainably (Lemoine-Rodríguez et 

al., 2020; Xu et al., 2019). Climate change has been recognised as one of the most 

pervasive and challenging issues to the sustainable development of this region (Du Toit 

et al., 2018). To ameliorate the expected overheating problem under a changing 

climate in the East African cities, cooling strategies could take advantage of urban 

morphological information through LCZ classification. The effects of solar radiation 

shading in mid- and high-rise buildings may lower LST (Yang, Ren, et al., 2021); 
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controlling the wind movements through the streetscape, as wind breezes are affected 

by buildings (Yang et al., 2019); enhancing ventilation through linear parks and wind 

corridors (Ochola et al., 2020; Yang, Wang, et al., 2021). Meanwhile, greater attention 

could be paid to the potential applications of BGI to microclimate regulation. LCZs have 

been used to classify the urban areas and help to select target locations to develop 

BGI (Emmanuel et al., 2015; Wang et al., 2021). Findings from the present research 

indicate which types of BGI could maximise cooling effects across seasons. 

 

The cooling island effect of water (LCZ G) was confirmed by our results and ranges from 

-9.2 °C to -0.9 °C. The precise magnitude of the cooling effect depends on surrounding 

environmental conditions such as microclimate, urban development, wind conditions, 

temperature and humidity. Water is a core feature of urban blue spaces. Hence, to 

enhance cooling performance of LCZ G, city planners and policy makers should take 

advantage of seasonal variations in blue space (Völker et al., 2013); the quantity and 

spatial distribution of water bodies (Yang et al., 2015); and how cooling effects are 

distributed with distance from, and flow rates within, rivers (Geletič et al., 2019; Wood 

et al., 2013). Considering increasing flood-drought risks in East African cities (Kalantari 

et al., 2018), urban water retention and flood regulation functions need to cope with 

the seasonal variation and climate changes. These factors should be accounted for in 

blue infrastructure design (Douglas, 2018; Kalantari et al., 2018). 

 

The cooling effect of dense trees (LCZ A) has also been demonstrated in the results, 
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ranging from -6.2 °C to -1.4 °C, indicating the necessity to retain and add areas of dense 

tree cover in urban areas. However, when planning such programmes, prioritising 

indigenous species can help avoid the detrimental effects of homogenization of urban 

biodiversity (Lemoine-Rodríguez et al., 2020; Mckinney, 2006). In general, indigenous 

trees also consume less water and can enhance groundwater recharge relative to 

faster-growing exotic species (Kagawa et al., 2009; Singh et al., 2022). The greater 

water use of exotic species is enhanced in hotter, wetter climates (Cavaleri et al., 2010). 

In South Africa, Australian Acacia invasions have significantly reduced surface water 

runoff, impacting ecosystem services and water security (De Lange et al., 2010; Morris 

et al., 2020). Conserving dense tree cover for their cooling effects should therefore 

focus on promoting preservation and restoration of local indigenous species 

(Mckinney, 2006), while future research should aim to understand differences in 

cooling effects between exotic and indigenous trees.  

 

Compact built-up areas (LCZ 2, LCZ 3) were characterised by densely built 

environments with little or no vegetation (Van De Walle et al., 2022), and 

comparatively high temperatures. To mitigate SUHI by planting more vegetated areas, 

urban planners could take advantage of improving the evapotranspiration-based 

cooling influence of green space through urban canopy-layer conditions (Emmanuel & 

Loconsole, 2015; Gunawardena et al., 2017). Street trees, green roofs and green walls 

could improve evapotranspiration and the shadowing effect of vegetation for compact 

LCZ types in Khartoum, Addis Ababa and Kampala. Cool roofs with lower albedo 



 29 

material to prevent sunlight radiation caused by reflection could be considered in Dar 

es Salaam (Cilek & Cilek, 2021), as slight correlations between LST and EVI were 

observed in most built-up LCZs. Sparsely built areas (LCZ 9) with high SUHI and a low 

vegetation index were observed in all our study cities. Such underdeveloped lands 

within urban areas could be considered a valuable commodity for dynamic urban 

development.  

 

The temperature-regulation capacity of BGI can potentially reduce heat stress in urban 

areas, but the choice and design of BGI type and distribution should be coordinated 

across different LCZs. The effects of BGI on temperature regulation have not however 

been quantified sufficiently, and so remain underrepresented in research and in 

recommendations for action and planning. For example, strategic planning for UHI 

mitigation and energy savings has faced the practical concern of the trade-off between 

energy and water use, as the cooling effect of some vegetation types, such as grassland 

in an arid city, is highly dependent on the water supply (Bencheikh et al., 2012; Wang 

et al., 2016). Moreover, inappropriately designed bluespaces come with the risk of 

exacerbating heat stress during oppressive conditions (Gunawardena et al., 2017) and 

present other potential risks under climate change linked to flooding and vector-borne 

diseases. Incorporating public health awareness and interventions into urban planning 

at the earliest stages could help ensure that BGI achieves its full potential for public 

health (Lõhmus et al., 2015). 
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Rapid urbanisation inevitably results in a loss of natural land covers, an increase in the 

amount of vertical surfaces that are present associated with a densification of existing 

built infrastructure; something that is apparent across many LCZ classes. If urban 

populations continue to grow as projected (United Nations, 2019), current scattered 

trees (LCZ B), low plants (LCZ D) and water (LCZ G) in urban areas will be gradually 

replaced by compact mid-rise (LCZ 2), compact low-rise (LCZ 3), open low-rise (LCZ 6), 

and dense trees (LCZ A) will be in danger of disappearing. It is notable that LCZ 2, 3 

and 6 have higher temperatures than LCZ A (dense tree). Therefore, urban planners 

and policymakers should optimise both the spatial configuration and the cooling 

effects of BGI when working with limited land resources, taking into account seasonal 

differences.  

 

5. Conclusion 

Under the LCZ framework, this study conducted several statistical analyses for 

comparative study in four East African cities. It revealed the LST/SUHI dynamics and 

the complex relationship between LST and EVI in different LCZ across seasons. The 

results supported the assertion that the LCZ classification and LCZ-generator can be 

efficiently used in future urban thermal studies in a more spatially explicit way. 

Suggestions were also given as to how BGI could potentially facilitate the 

implementation of UHI mitigating strategies to support sustainable urban 

development, as urbanisation and climate change continue at pace within Africa’s 

cities. 
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Table 2. LCZ classed selected in this study 

City name LCZ type 

City Rainy Season Processed in 

this study 

Dry Season Processed in 

this study 

Khartoum July-September 01-07-2017 to 

01-10-2017 

01-07-2018 to 

01-10-2018 

01-07-2019 to 

01-10-2019 

September-

July 

01-10-2017 to 

01-07-2018 

01-10-2018 to 

01-07-2019 

01-10-2019 to 

01-07-2020 

Addis Ababa June-September 01-06-2017 to 

01-10-2017 

01-06-2018 to 

01-10-2018 

01-06-2019 to 

01-10-2019 

November-

January 

01-11-2017 to 

01-02-2018 

01-11-2018 to 

01-02-2019 

01-11-2019 to 

01-02-2020 

Kampala March-

November 

01-03-2017 to 

01-12-2017 

01-03-2018 to 

01-12-2018 

01-03-2019 to 

01-12-2019 

December-

February 

01-12-2017 to 

01-03-2018 

01-12-2018 to 

01-03-2019 

01-12-2019 to 

01-03-2020 

Dar es 

Salaam  

December-

January-

February (peak) 

March- May 

01-12-2017 to 

01-03-2018 

01-12-2018 to 

01-03-2019 

01-12-2019 to 

01-03-2020 

June-August 01-06-2017 to 

01-08-2017 

01-06-2018 to 

01-08-2018 

01-06-2019 to 

01-08-2019 
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Built series Land cover series 

Khartoum LCZ 2, LCZ 3, LCZ 6, LCZ 8, 

LCZ 9 

LCZ 12 (B), LCZ 13 (C), LCZ 14 (D), LCZ 16 

(F), LCZ 17 (G) 

Addis 

Ababa 

LCZ 2, LCZ 3, LCZ 4, LCZ 5, 

LCZ 6, LCZ 8, LCZ 9 

LCZ 11 (A), LCZ 12 (B), LCZ 14 (D), LCZ 17 

(G) 

Kampala LCZ 2, LCZ 3, LCZ 6, LCZ 8, 

LCZ 9 

LCZ 11 (A), LCZ 12 (B), LCZ 14 (D), LCZ 17 

(G) 

Kampala LCZ 2, LCZ 3, LCZ 5, LCZ 6, 

LCZ 8, LCZ 9 

LCZ 11 (A), LCZ 12 (B), LCZ 14 (D), LCZ 17 

(G) 
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