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Methodology

Predicting Survival for Chimeric Antigen Receptor T-Cell Therapy: A
Validation of Survival Models Using Follow-Up Data From ZUMA-1

Sachin Vadgama, MSc, Jess Mann, MSc, Zahid Bashir, MBBS, Clare Spooner, MBBS, Graham P. Collins, DPhil, Ash Bullement, MSc

A B S T R A C T

Objectives: Survival extrapolation for chimeric antigen receptor T-cell therapies is challenging, owing to their unique
mechanistic properties that translate to complex hazard functions. Axicabtagene ciloleucel is indicated for the treatment of
relapse or refractory diffuse large B-cell lymphoma after 2 or more lines of therapy based on the ZUMA-1 trial. Four data
snapshots are available, with minimum follow-up of 12, 24, 36, and 48 months. This analysis explores how survival
extrapolations for axicabtagene ciloleucel using ZUMA-1 data can be validated and compared.

Methods: Three different parametric modeling approaches were applied: standard parametric, spline-based, and cure-based
models. Models were compared using a range of metrics, across the 4 data snapshot, including visual fit, plausibility of long-
term estimates, statistical goodness of fit, inspection of hazard plots, point-estimate accuracy, and conditional survival
estimates.

Results: Standard and spline-based parametric extrapolations were generally incapable of fitting the ZUMA-1 data well. Cure-
based models provided the best fit based on the earliest data snapshot, with extrapolations remaining consistent as data
matured. At 48 months, the maximum survival overestimate was 8.3% (Gompertz mixture-cure model) versus the
maximum underestimate of 33.5% (Weibull standard parametric model).

Conclusions: Where a plateau in the survival curve is clinically plausible, cure-based models may be helpful in making
accurate predictions based on immature data. The ability to reliably extrapolate from maturing data may reduce delays in
patient access to potentially lifesaving treatments. Additional research is required to understand how models compare in
broader contexts, including different treatments and therapeutic areas.

Keywords: chimeric antigen receptor T-cell, mixture-cure model, non-Hodgkin lymphoma, survival extrapolation.
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Introduction

Axicabtagene ciloleucel (axi-cel) is an autologous anti–CD-19

chimeric antigen receptor T-cell (CAR T-cell) therapy, indicated for

the treatment of adult patients with relapsed or refractory (R/R)

non-Hodgkin lymphoma (including diffuse large B-cell lymphoma

[DLBCL] and primary mediastinal large B-cell lymphoma), after$2

lines of systemic therapy.1 CAR T-cell therapies have been

described as advanced cancer treatments belonging to a new

generation of cancer immunotherapies, which involve collecting

and genetically modifying patients’ immune cells to treat their

cancer.2,3

Axi-cel has been studied in the ZUMA-1 clinical trial: a single-

arm, multicenter, phase I/II study of adults with R/R aggressive

non-Hodgkin lymphoma (NCT02348216). Initial findings from

ZUMA-1 were published in 2017, with a minimum follow-up of 12

months and median follow-up of 15.4 months for 101 treated

patients.4 Three subsequent database locks (data snapshots) were

later published, with median follow-up of 27.1, 39.1, and 51.1

months.5-7 With the latest data snapshot, 43.6% of the treated

patients (n = 44/101) were still alive at 4 years and the median

overall survival (OS) was (25.8 months).7

Survival estimates from clinical trials are usually evaluated

using the Kaplan-Meier (KM) method, which estimates the pro-

portion of patients still alive over time while considering some

subjects are censored before the event of interest occurred. Where

data are incomplete, estimates of survival toward the end of

follow-up are typically based on a smaller “at risk” population and

are subject to greater uncertainty. This is especially challenging for

populations that may experience long-term survival benefits that

extend over many years, as is expected for a proportion of patients

receiving axi-cel.

The potential for the efficacy of cellular immunotherapy, such

as axi-cel, in R/R DLBCL is illustrated by the observation of a graft-

versus-lymphoma effect in a study by Bishop et al.8 In this study,

patients with R/R DLBCL were treated with donor lymphocyte

infusions after relapse after an allogeneic stem-cell transplant

(SCT), and long-term remissions were documented. Nevertheless,
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other factors may be important in contributing to long-term sur-

vival, including cellular factors (eg, cell dose, early expansion after

infusion) and patient factors (eg, extranodal sites of disease and

disease burden at infusion).9 In some cases and similar to an

allogeneic SCT, CAR T-cell therapy may lead to persistence of

antitumor T-cells (in this case autologous anti–CD-19 directed),

which may be important in contributing to durable progression-

free survival.10

The accurate estimation of lifetime survival outcomes for pa-

tients treated with a new health technology is especially impor-

tant for cost-effectiveness analysis as part of health technology

assessment (HTA). Nevertheless, trial-based estimates of costs and

benefits are only available for the relatively short period of follow-

up. Evaluating the technology in terms of its costs and benefits

only within the trial period would lead to biased cost-

effectiveness estimates. Hence, decision makers will often

require information on the intervention’s lifetime cost and bene-

fits, versus the established standard of care, to determine whether

the technology represents value for money if adopted.

Lifetime survival estimates are factored into the determination

of the incremental cost-effectiveness ratio—a measure of cost-

effectiveness commonly used in HTA decision making. The selec-

tion of survival extrapolation techniques can have a profound

impact on the estimate of the incremental cost-effectiveness ra-

tio11-13 and indeed was the case in the National Institute for

Health and Care Excellence (NICE) assessment of axi-cel (TA559).14

The choice of one extrapolation method over another may mean

the difference between a positive or negative reimbursement

decision. Therefore, selecting the most plausible and appropriate

model in the context of the appraised intervention to extrapolate

estimates of survival is of paramount importance and is therefore

the focus of this study, with axi-cel being a case study.

A range of studies have previously explored possible means of

validating model estimates. Cope et al15 combined trial-based

estimates of survival with clinical expert opinion and referred to

the accuracy of projections based on annualized point estimates.

Ouwens et al16 focused instead on the “area-under-the-curve” to

compare different models, equivalent to estimating restricted

mean survival time, and also presented plots of the estimated

hazard function to inform model selection. Klijn et al17 compared

estimates of the conditional survival between models as an

alternative means of judging model fit. Nevertheless, there is no

established consensus on how to choose the best-fitting models,

in spite of there being a large number of studies concerning how

to undertake survival analysis for HTA.11,13,18-21

This study builds on the growing research for survival

extrapolation in cancer immunotherapy, focusing on the ZUMA-1

trial data. A variety of models to extrapolate survival estimates

over a lifetime horizon were considered and compared using a

range of possible metrics. We then aimed to identify which

methods may be considered the most appropriate to inform life-

time survival estimates for the purposes of cost-effectiveness

analysis and HTA of CAR T-cell therapy.

Methods

Inspection of Available Data

The ZUMA-1 trial comprises 111 patients enrolled in phase II, of

which 101 received axi-cel infusion, recruited from May 19, 2015,

to September 15, 2016, across 22 sites in the United States and

Israel.4 The primary endpoint for phase II of ZUMA-1 was overall

response rate, with secondary outcomes including safety, duration

of response, progression-free survival, and OS, the latter of which

is the focus of our study.

To date, 4 data snapshots have been reported with 12-, 24-,

36-, and 48-month minimum follow-up times. Figure 1 compares

the corresponding KM estimates for OS across each of the 4 data

snapshots. The KM estimates for each data snapshot are over-

layed to allow for an inspection of how the KM estimate changed

as further follow-up data were made available from ZUMA-1.

Median OS should be interpreted with care, because it may not

serve as an accurate reflection of the average outcome of treat-

ment. This is demonstrated in Figure 1 where median OS is

reached at 25.8 months, before which almost half of the trial

participants had an event and after which approximately the other

half was censored, leading to a plateau in the KM estimate. It is

also important to acknowledge the number of patients still at risk

after 48 months, after which there are limited numbers of patients

to inform the KM estimate.

Survival Models Considered

Guidance for the conduct and selection of survival extrapola-

tion methods for cost-effectiveness analysis has been previously

published, although the survival for patients treated with CAR T-

cell therapies warrants consideration of flexible methods given

the unique mechanism of action of CAR T-cell therapies.13,18 More

recently, the NICE Decision Support Unit (DSU) published a tech-

nical support document (TSD) 21: Flexible Methods for Survival

Analysis; which describes in more detail other options that may

also be important to consider in the presence of complex hazard

functions.19 Nevertheless, NICE DSU TSD 21 highlights that the

methods presented ought not to be considered as “an extended

list of survival methods to ‘try out’ on data.”19 Instead, the authors

encourage the consideration of the likely hazard/survival func-

tions and to then choose appropriate methods accordingly.

Therefore, we aimed to explore some of the methods noted in

previously published studies and guidelines, based on a range of

approaches that may be deemed suitable in the context of the

ZUMA-1 trial.

In addition to the selection of methods, it is noted that NICE

DSU TSD 21 recommends that background mortality be incor-

porated into survival models to avoid “extremely implausible”

projections and that incorporation of background mortality for

cure-based models is “essential.”19 Therefore, to account for

background population mortality consistently across the models,

all models in the present study were fitted within a relative

survival framework, which considers the age- and sex-matched

hazard rate of the general population when extrapolating sur-

vival. Relative survival is used extensively in the context of

population-based cancer registry analysis, where the outcome of

interest is often the difference in observed survival for the

population under consideration versus the expected survival of

the equivalent age- and sex-adjusted general population.22

Three broad categories of parametric models were considered

within the analysis: “standard” models, spline-based models, and

cure-based models. Further details of the models fitted, along with

the statistical software packages used and source of information

for background mortality, are provided within the Supplemental

Appendix in Supplemental Materials found at https://doi.org/1

0.1016/j.jval.2021.10.015.

Evaluation of Survival Models

There is no universally recognized “gold standard” approach to

definitively establish the most suitable survival extrapolation, and

so judgment of the most appropriate model has historically

involved consideration of several factors. With this in mind, we

considered a range of different approaches to compare the

different extrapolation methods. Furthermore, we elicited the
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opinion of an expert physician to determine which models were

most realistic.

The following approaches to compare models were

considered:

� Visual fit of the model to the KM estimator
� Plausibility of long-term estimates based on input from a clin-

ical expert
� Akaike’s and Bayesian information criteria
� Inspection of hazard plots
� Point-estimate accuracy versus the KM estimate at specific time

points
� Conditional survival estimates (ie, the probability of patients

surviving until t ¼ x1 d, given that they have survived up until

t ¼ x)

We also developed a pragmatic approach to ascertain which

methods seemed to provide a good fit to the ZUMA-1 data in

general, while accounting for the number of data cuts available. In

this approach, we calculated the sum of absolute errors of a given

parametric model fitted to each of the 4 data snapshots at a

specific time point (in the base-case analysis, we considered a

time point of 48 months); we term this the Vadgama Deviance

(VD).

VD¼
X

N

i

�

�

�
Sðt ¼ LOEÞKMi¼N2 Sðt ¼ LOEÞModel

i

�

�

�

where i is the data cut being used to inform the curve (ie, 12, 24,

36, or 48 months), N is the total number of data cuts (4 in this

case), LOE is the last observable exit time for the latest data cut N,

S(t)KM is the survival function evaluated at time t as determined by

the KM estimator, and S(t)Model is the survival function evaluated

at time t as estimated by the model. VD is given in terms of per-

centage. Nevertheless, it should be noted that this is intended to

merely serve as a summary of how the different models fared in

terms of their fit to the 4 data snapshots, as opposed to a fully

robust means of formally establishing goodness of fit.

Results

Description of Model Fits for Each Data Snapshot

Full model results are provided within the Supplemental

Appendix in Supplemental Materials found at https://doi.org/1

0.1016/j.jval.2021.10.015; nevertheless, for brevity, top-level find-

ings for each model type are discussed below.

The difference in projected survival at the latest, 48-month

data snapshot for each model fitted to the 12-month data snap-

shot is presented in Figure 2. Figure 2 shows that the mixture-cure

model (MCM) and non-mixture-cure models (NMCMs) better

predicted survival at 48 months versus the standard and spline-

based models. Some of the MCMs and NMCMs overestimate the

KM estimator slightly at 48 months, but all the standard and

spline-based models underestimate survival (maximum over-

estimate of 8.3% for the Gompertz MCM vs maximum underesti-

mate of 33.5% for the standard Weibull model).

The standard parametric models generally did not fit the

ZUMA-1 data well, across each data snapshot. These models were

shown to consistently underestimate OS even with more mature

data from ZUMA-1 (Supplemental Appendix in Supplemental

Materials found at https://doi.org/10.1016/j.jval.2021.10.015). This

finding suggests that these models are not capable of appropri-

ately reflecting the complex pattern of hazards associated with

axi-cel, with maybe the exception of the Gompertz model, which

was able to reflect a “plateau” in the OS curve in more mature data

snapshots.

The spline-based models provided a better visual fit to the KM

estimates versus the standard parametric models. This is likely

due to the ability for the spline-based models to better consider a

Figure 1. Kaplan-Meier estimates of overall survival from ZUMA-1 across 4 data snapshots. Shaded area represents the 95% confidence
interval around the Kaplan-Meier estimator, and tick marks represent censored observations.
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more complex hazard function with turning points (see

Supplemental Appendix in Supplemental Materials found at

https://doi.org/10.1016/j.jval.2021.10.015 for hazard plots). Still,

the ability for these models to accurately project survival based on

later data snapshots was limited, because the models did not seem

capable of reflecting the expected plateau, which was not fully

established in the earlier data snapshots of ZUMA-1.

Some of the MCMs reflected a plateau in the OS curve based on

the 12-month data (generalized gamma, Gompertz, and Weibull),

whereas others (exponential, log-logistic, and lognormal) did not

exhibit a clear plateau in the OS curve. For the later data snap-

shots, all the MCMs converged to produce similar projections to

those based on the generalized gamma, Gompertz, and Weibull

MCMs fitted to the 12-month data.

As part of the MCM model fitting process, a “cure fraction” (p)

is produced, which is a model parameter, as opposed to an

expectation of the proportion of patients that may be “cured” of

their disease. The MCMs fitted to the 12-month data snapshot that

provided the poorest fit to the 48-month KM had the lowest cure

fraction p of the MCMs considered. This implies that some choices

of parametric model for the “uncured fraction” (ie, 1 2 p) may

result in a predominantly “uncured” group when fitted to less

mature data, leading to unrealistically pessimistic extrapolations.

For the later data snapshots, estimates of the p were stable

regardless of the parametric form, implying that more mature

data allow for a clearer distinction between the “uncured” and

“cured” fractions regardless of the distributional choice.

The NMCMs provided generally similar fits to the MCMs;

nevertheless, there was slightly more variation between the

different NMCMs and the MCMs (though not to a large extent).

Importantly, the NMCM and MCM variations based on the same

distribution choice (eg, Weibull) exhibited similar fits, implying

that the choice of MCM or NMCM is unlikely to result in sub-

stantially dissimilar extrapolations—instead, the choice of distri-

bution is of greater influence on the model fit. This is aligned with

the findings of previous studies that have explored NMCMs and

MCMs.23,24

Outside the 48-month time point, all the standard parametric

model estimates were within the 95% confidence interval (CI) of

the KM estimator up until 18 months, but after 52 months none of

the estimates fell within the 95% CI (see Supplemental Appendix

in Supplemental Materials found at https://doi.org/10.1016/j.

jval.2021.10.015). This suggests a systematic underestimation of

survival for all the standard parametric models, which is aligned

with the results shown in Figure 2. The MCM estimates fell within

the 95% CI for all time points for all but the exponential and

lognormal MCMs fitted to the 12-month data snapshot, where the

estimates fell outside the 95% CI after 24- and 27-month time

points, respectively. Nevertheless, as the data matured, these

models converged to that of the other distributional forms.

Presentation of “Most Plausible” Models

For simplicity, we selected the “most plausible” models fitted

to the 12-month data, from each of the different classes of models:

standard, spline-based, and both types of cure-based models.

Models were selected according to visual and statistical goodness

of fit and clinical plausibility of projections. This was to avoid

comparing a large quantity of models, some of which produce

near-identical extrapolations, or extrapolations that are clearly

implausible. The resultant extrapolations for these models are

presented in Figure 3, with the reasons for selecting these models

provided in the Supplemental Appendix in Supplemental Mate-

rials found at https://doi.org/10.1016/j.jval.2021.10.015.

Figure 2. Point-estimate inaccuracy of models fitted to 12M data, versus the 48M Kaplan-Meier estimator evaluated at t = 48M. Models
ranked in order of smallest to highest deviance to last observed KM OS survival probability.

KM indicates Kaplan-Meier; M, month; MCM, mixture-cure model; NMCM, non-mixture-cure model; OS, overall survival; t, time.
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Comparison of “Most Plausible” Models

A summary of how the different models performed is provided

in Table 1. Based on the models fitted to the 12-month data

snapshot, the cure-based models provided the closest fit to the KM

estimate based on the 48-month data snapshot. Statistical

goodness-of-fit scores for all models are provided in the

Supplemental Appendix in Supplemental Materials found at

https://doi.org/10.1016/j.jval.2021.10.015.

DLBCL is a highly aggressive disease with patients relapsing

quickly if they do not respond to CAR T-cell therapy. Clinically, it is

believed that patients who survive past 12 months are substan-

tially more likely to benefit from long-term survival; hence, below

we calculate the proportion of patients projected to survive until

48 months (minimum follow-up in latest data snapshot) given

that they survived until 12 months (minimum follow-up in

earliest data snapshot). We find that cure-based models were able

to closely approximate the ZUMA-1 data and the noncure-based

Figure 3. Comparison of model fits to each data snapshot. The 36M plot is provided in the Supplemental Appendix for completeness,
but is not presented here in the interest of conciseness as it similar to the 24M plot.

Bgmort indicates background mortality; DBL, database lock; Gen, generalized; M, month; MCM, mixture-cure model; NMCM, non-mixture-cure model.

-- 5



models fitted to the more mature data seemed to underestimate

conditional survival to a greater extent than any of the cure

models (eg, the standard generalized F model fitted to the 48-

month data snapshot underestimated conditional survival by

approximately 6%).

In addition to the numerical results considered, hazard-based

plots were also produced (see Supplemental Appendix in Sup-

plemental Materials found at https://doi.org/10.1016/j.jval.2021.10.

015). Inspection of the hazard plots demonstrated that the cure-

based models were capable of better reflecting the shape of the

hazard function (ie, an initial peak followed by a fall, then an in-

crease due to all-cause mortality).

The findings from the pragmatic approach taken to provide an

overall measure of the goodness of fit for each model across each

data snapshot is provided in Table 1 (full results provided in

Supplemental Appendix in Supplemental Materials found at

https://doi.org/10.1016/j.jval.2021.10.015). These results further

corroborate that the cure-based models were overall more accu-

rate than the standard and spline-based models—in terms of the

VD.

Discussion

In this study, we set out to compare the accuracy of different

survival extrapolation methods based on data from the ZUMA-1

clinical trial. As a result of sequential data snapshots of ZUMA-1

being made available for analysis, we were able to explore how

extrapolations differed with increasingly maturing data. This type

of analysis has not been considered within the context of CAR

T-cell therapy previously and provides evidence of an initial

emergent (yet uncertain) plateau in the survival curve, which is

later shown to be robust with further follow-up data. It can also be

seen from our findings that some of the less flexible approaches

produce extrapolations that at face value seem similar to the cure-

based models; for example, the Gompertz model fitted to the later

data snapshots (see Supplemental Appendix in Supplemental

Materials found at https://doi.org/10.1016/j.jval.2021.10.015).

Nevertheless, inspection of hazard plots show that the underlying

hazard function from ZUMA-1 is expected to be nonmonotonic,

and so the Gompertz model is unlikely to provide both (1) a good

fit to the KM estimate and (2) a plausible long-term extrapolation.

Our analysis demonstrates that the cure-based models (MCMs

and NMCMs) provided the most accurate estimates of survival

compared with the other parametric approaches (standard and

spline-based models). The cure-based models produced the least

amount of variation of the models considered in our study, even

when using 12 months follow-up data. Previous research in the

topic of survival extrapolation for novel cancer therapies led to

similar conclusions.16,25 Nevertheless, relatively little research has

been conducted within the context of evaluating survival extrap-

olations for CAR T-cell therapy specifically, and so the generaliz-

ability of findings between different types of cancer

immunotherapy is yet to be established.

Although cure-based models may be criticized for appearing

overly optimistic based on immature data, the clinical rationale

and the shape of the hazard function provide further support for

the specification of these models in the case of axi-cel. Therefore,

cure-based models may provide a useful survival extrapolation

technique to account for the heterogeneity in outcomes seen in

CAR T-cell therapy clinical trials. Moreover, as the specification of a

cure-model based on the earlier data snapshot was shown to

project reasonable and accurate survival outcomes in the longer

term, these models should be seriously considered to guide earlier

decision making for patient access to these potentially lifesaving

treatments.

Although the additional follow-up data from ZUMA-1 reduces

the uncertainty in OS estimation, data are not available over a

lifetime horizon, and so the choice of the most appropriate

extrapolation is still subject to uncertainty. A recent study by

Grant et al24 showed that cure-based models fitted to complete

data are unlikely to provide a good fit. It may therefore be the case

that the cure models provide a reasonable fit to the currently

available data from ZUMA-1, but were complete data available, the

same models may not fit the data well. In our research, we

observed a good fit to the data and stabilization of cure models

after 24 months of follow-up data. Relatedly, cure models require

the strong assumption of a “statistically cured” population within

the cohort. Nevertheless, to date there are no long-term follow-up

studies for patients with DLBCL treated with CAR T-cell therapy.

A particular area of future research should ascertain the

longevity of excess mortality of death experienced by patients

treated in later lines with CAR T-cell therapies. These patients

typically endure multiple prior lines of therapy, for example the

population in ZUMA-1 had a median of 3 prior lines of therapy and

21% of patients had relapsed post SCT. It is unclear whether these

patients would experience the same excess mortality if treated in

earlier lines. Nevertheless, in the context of HTA, this uncertainty

is usually adequately accounted for in the economic models.

Treatments given after axi-cel may also influence long-term sur-

vival; nevertheless, in the context of ZUMA-1, only 3 patients went

to receive an SCT post axi-cel.26 It was not possible to robustly

undertake meaningful survival analyses for this very small sub-

group of patients, and it would be unlikely to have a large effect on

Table 1. Model performance for “most plausible” models.

Model Error in point-estimate
of survival at 48-mo
when fitted to 12-mo data
snapshot, %

% Alive at 48-mo given alive at
12-mo, %

VD for “most plausible”
models fitted to each data
snapshot evaluated at
48-mo, % (rank)

Kaplan-Meier — 72.13 —

Gen F 28.36 56.82 15.7 (5)

3-knot normal 213.48 48.41 18.4 (6)

MCM: Weibull 5.09 78.52 13.0 (2)

MCM: Ggam 6.82 81.52 14.8 (4)

NMCM: Weibull 3.89 76.40 12.2 (1)

NMCM: Ggam 6.60 81.07 14.6 (3)

Gen indicates generalized; Ggam, generalized gamma; MCM, mixture-cure model; NMCM, non-mixture-cure model; VD, Vadgama Deviance.
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long-term survival estimates. Similarly, in the spirit of survival

analysis methods commonly used in HTA, we did not perform

statistical analysis to predict long-term survival at the individual

patient level because it requires granular data on prognostic fac-

tors and further reduces our sample size; nevertheless, this is an

area of future research. As we have showed, thus far, cure models

seem to provide a reasonable fit for the purposes of decision

making in the short term.

Further research is required to more conclusively ascertain

how to best extrapolate survival outcomes for patients treated

with CAR T-cell therapy. Our study focuses on methods to directly

estimate OS, through specifying a statistical model. Nevertheless,

other approaches may also be helpful to consider within the

context of informing HTA. For example, Batteson et al27 consid-

ered a range of approaches to both directly and indirectly estimate

OS for patients with melanoma treated with adjuvant nivolumab.

Repeating the analyses described in our study and those con-

ducted by others for different patient populations would further

increase the understanding of the most appropriate methods to

produce suitable survival estimates for HTA. Further research is

also needed to establish the “gold standard” metrics required to

demonstrate the accuracy of extrapolated models to the KM

estimator at increasingly mature data cuts.

Conclusions

In this study, we set out to establish which methods may be

appropriate to estimate the lifetime survival for patients with R/R

DLBCL treated with axi-cel, a novel CAR T-cell therapy, and which

methods may be deemed inappropriate. Paraphrasing George

Box,28 all of the models considered within our analysis are

inherently “wrong” (in the sense that they are a simplification of

reality), but the estimation of an accurate survival model is clearly

useful for HTA decision making.

Through our approach, we have shown that accurate modeling

is possible even when based on limited OS data in aggressive

lymphoma. This was made possible through the implementation

of a more flexible survival modeling approach, namely, cure

models that acknowledge the heterogeneity of patients and out-

comes through the specification of a “cure fraction.” Although cure

models were moderately optimistic, they provided the most ac-

curate estimation of long-term survival on several metrics. This

framework can provide HTA decision makers with a more realistic

tool to estimate the long-term benefit of innovative and poten-

tially transformative therapies such as axi-cel in 3-level R/R DLBCL

and therefore better inform cost-effective resource allocation de-

cision making in the presence of “immature” trial data.

Although our findings are consistent with similar studies per-

formed for different types of immunotherapy in other cancers,

further research is still required to understand how these different

modeling methods compare in other indications, with even more

mature data, across different types of cancer immunotherapy, and

whether a cure assumption still holds in the long-term for these

patients and standardization of metrics for reporting model ac-

curacy compared with the KM estimator. Although out of scope for

this piece of research, we acknowledge that cure models can be

used in a variety of disease; nevertheless, the pathophysiology of

the disease and mechanism of action of subsequent treatment

must be carefully considered before they are implemented.

Supplemental Material

Supplementary data associated with this article can be found in the
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