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ABSTRACT 

This paper proposes feature vector generation based on signal fragmentation equipped with a model 

interpretation module to enhance glucose quantification from absorption spectroscopy signals. For this 

purpose, near-infrared (NIR) and mid-infrared (MIR) spectra collected from experimental samples of 

varying glucose concentrations are scrutinised. Initially, a given spectrum is optimally dissected into several 

fragments. A base-learner then studies the obtained fragments individually to estimate the reference glucose 

concentration from each fragment. Subsequently, the resultant estimates from all fragments are stacked, 

forming a feature vector for the original spectrum. Afterwards, a meta-learner studies the generated feature 

vector to yield a final estimation of the reference glucose concentration pertaining to the entire original 

spectrum. The reliability of the proposed approach is reviewed under a set of circumstances encompassing 

modelling upon NIR or MIR signals alone and combinations of NIR and MIR signals at different fusion 

levels. In addition, the compatibility of the proposed approach with an underlying preprocessing technique 

in spectroscopy is assessed. The results substantiate the utility of incorporating the designed feature vector 

generator into standard benchmarked modelling procedures under all considered scenarios. Finally, to 
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promote the transparency and adoption of the propositions, SHapley additive exPlanations (SHAP) is 

leveraged to interpret the quantification outcomes. 

Keywords: Glucose quantification; Near-infrared spectroscopy; Mid-infrared spectroscopy; Machine 

learning, SHAP 

1. Introduction 

In vitro glucose quantification has practical applications in a variety of areas, e.g., food science, 

biology, and botany [1–4] Consequently, continued research is underway to expand this area of knowledge 

[5]. 

In this context, two optical modalities of near-infrared (NIR) and mid-infrared (MIR) have been broadly 

pursued in glucose quantification studies [6,7]. NIR and MIR signals are within the wavelength range of  

750–2500 nm and 2500–10000 nm, respectively [8]. One advantage of using these technologies for glucose 

sensing is that the absence of reagents makes them economically appropriate for regular measurements [9]. 

NIR light possesses a high penetration rate enabling it to enter deeper parts of opaque compounds to 

seek the glucose trace [10–12]. On the other hand, the MIR region includes sharp peaks of glucose [13]. Of 

other merits of MIR spectroscopy for glucose sensing are the attenuated scattering phenomena and 

intensified absorption due to longer wavelengths [14]. Hence, there are stimuli to investigate glucose 

quantification from the combination of NIR and MIR spectra, as well. 

As NIR/MIR light is traversing through an object and as a result of the interaction with physiological 

compounds of the object, some beams frequencies get scattered and absorbed [15,16]. These absorption 

and scattering patterns could be scrutinised using appropriate tools to derive information concerning the 

analyte(s) of interest [8]. Specifically, machine learning (ML) multivariate calibration algorithms, in 

particular, partial least squares regression (PLSR), are typically suggested for quantifying glucose from 

recorded NIR/MIR spectra  [17,18]. 
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Notwithstanding the general suitability of such algorithms, further advancements in the analysis are 

necessary towards achieving decisive glucose quantifications from NIR/MIR spectra [19,20]. In this regard, 

scopes exist to enhance the accuracy of the analysis by exploiting state-of-the-art ML techniques such as 

stack learning. Stack learning is an ensemble method for improving the competence of ML models in which 

a meta-learner integrates outputs of multiple base-learner to produce a final output [21]. 

In conjunction with algorithms like stack learning, model interpretation frameworks could also be 

incorporated to expand the clarity of the analysis and further support the findings [22,23]. In this respect, 

SHapley additive exPlanations (SHAP) is an elaborate game-theoretic model agnostic approach to explain 

ML models [24]. SHAP joins optimal credit allocation with local explanations via the concept of Shapley 

values from cooperative game theory [25]. Resultant SHAP values designate the contribution of attributes 

to deviations from average estimations, a measurement to elucidate the effect of individual features on 

models’ outputs [24]. 

This article suggests signal fragmentation based feature vector generation (SFFVG) dressed with model 

interpretations for in vitro glucose estimation upon absorbance spectroscopy data. First, a given signal was 

efficiently segmented into a number of sub-signals. The sub-signals were then autonomously investigated 

using a base-learner to estimate the reference glucose concentration. These fragmentary estimations were 

thereafter concatenated, forming a feature vector for the given signal. A meta-learner, utilising the concept 

of stack learning, later aggregated the generated feature vector’s elements, creating an estimation related to 

the entire signal. The flexibility of the proposed approach was monitored by implementing it on NIR 

signals, MIR signals, and the fusion of NIR and MIR signals. Furthermore, the compatibility of the method 

with a conventional preprocessing technique in spectroscopy was examined. Finally, to spur the adoption 

of the propositions by increasing the clarity of the analysis, SHAP was carried out to delineate the influence 

of constructed features on the formation of final estimations.  
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2. Material and methods 

For glucose quantification, this research used a dataset consisting of NIR and MIR spectra related to100 

mixture solutions of various glucose concentrations of 5–500 mg dL-1, at 5 mg dL-1 intervals [26]. SFFVG 

was proposed to advance glucose quantification from these absorption spectroscopic data. The effectiveness 

of the proposed method was examined within six different modelling strategies and with and without 

including a classical preprocessing technique. Finally, to extend the transparency of the proposed method, 

SHAP was deployed to interpret the created models. The dataset and details of implementation steps are 

described in this section. 

2.1. Experimental data 

The experimental samples were prepared at the laboratories of the Department of Chemistry, University 

of Sheffield, Sheffield, UK. Two aqueous solutions were prepared with the same volume (0.5 l), pH (7.4), 

phosphate (0.01 M/dl), and human serum albumin (5 g/dl), where the first solution contained glucose as 

well (500 mg dL-1), but the second solution did not contain glucose. 5 ml of the first solution (with glucose) 

was extracted and preserved in a sealed tube, forming the first sample (glucose 500 mg dL-1). Then, 5 ml 

of the second solution (without glucose) was added to the first solution, reducing its glucose concentration 

to 495 mg dL-1. Similarly, storing 5 ml of the first solution in another sealed tube, the second sample 

(glucose 495 mg dL-1) was acquired. The removed amount from the first solution was again replaced with 

5 ml of the second solution, decreasing the glucose concentration of the first solution to 490 mg dL-1. The 

same stages were recured to obtain 100 samples with 5–500 mg dL-1 glucose concentrations in 5 mg dL-1 

increments. 

Spectra were collected using a Fourier transform infrared spectrometer (PerkinElmer Inc., USA) in 

uncontrolled laboratory conditions at the Department of Materials Science and Engineering, University of 

Sheffield, Sheffield, UK. The sensing lens of the device was cleaned utilising ethanol wipe prior to placing 

each sample for recording. After that, the entire surface of the lens was overlaid with a layer of the sample. 
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The spectrometer then recorded the absorption signals with the attenuated total reflection technique. The 

recorded spectra laid in the wavelength range of 2100–8000 nm (1.7 nm resolution). The wavelengths 

within 2100–2500 nm and 2500-8000 nm were part of the NIR and MIR region, respectively. To achieve 

authentic spectra, the spectrometer was configured to take four readings for each sample and return the 

average as the output [18]. Some of the collected raw spectra are displayed in Figure 1. 

  

Figure 1. 20 randomly selected raw spectra collected from chemical samples (a) NIR signals, (b) MIR signals. 

 

2.2. Calibration-validation split 

For creating quantitative models, 80% of the data points were randomly selected and allocated as the 

calibration set, and the remaining 20% were considered as the validation set. Table 1 summarises some 

statistical characteristics of the calibration and validation set. All subsequent model training and 

hyperparameter tuning operations were carried out using only the calibration set, whereas the validation set 

remained unseen for evaluation and model interpretation analysis. 

Table 1. Characteristics of the calibration and validation set. 
 Samples Mean (mg dL-1) Standard Deviation (mg dL-1) 

Calibration set 80 250.3 146.4 
Validation set 20 261.2 135.2 
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2.3. Feature vector generation 

Figure 2 depicts the block diagram of SFFVG consisting of a signal fragmentation, regression, and 

concatenation unit. In the first step, the fragmentation unit efficiently breaks signals into several intervals. 

After that, the regression unit studies the obtained fragments independently to produce a corresponding 

fragmentary estimation of the reference glucose concentration. It should be noted that this regression block 

is trained separately for each interval using the corresponding fragments from the calibration set. Finally, 

the concatenation unit stack the outputs of the regression unit, forming a feature vector for the original input 

signal. 

The fragmentation unit was optimised for three separate scenarios depending on input data: NIR 

signals, MIR signals, or concatenation of NIR and MIR signals (hereafter referred to as NIR-MIR signals). 

For simplicity, equidistant fragmentation was considered, and signals were inputted in raw form. Values of 

1 to 20 were explored as the number of intervals, and the one resulting in estimations (by the regression 

unit) with the lowest root mean square error (RMSE) of five-fold cross-validation on the calibration set was 

selected. 

For the regressors block, PLSR was assigned, which previously has demonstrated to be an excellent 

method in spectroscopic data analysis [27,28]. For tunning the number of PLSR components, values of 1 

to max (10, the length of the input variable) were sought, and the one delivering the minimum RMSE of 

glucose quantification based on five-fold cross-validation on the calibration set was decided. 

 

Figure 2. The general scheme of the proposed signal fragmentation based feature vector generation (SFFVG) method consists of 

signal fragmentation, regression, and concatenation. The input spectrum is optimally divided into a number of fragments. Next, 
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each fragment is used as the input of a regressor (partial least square regression) to estimate the glucose concentration. Outputs 

of regressors were then stacked according to the order of the relevant fragments to form a generated feature vector. 

 

2.4. Chemometric 

In this work, for creating glucose quantification models, we assigned six different modelling strategies 

with the general block diagrams exhibited in Figure 3 [29–32]. As can be observed, SFFVG was a building 

block of all considered strategies. 

For preprocessing units in the structure of the strategies shown in the figure, Savitzky-Golay (SG) 

smoothing filter was considered with a second-order polynomial and a five-point window [33,34]. Including 

preprocessing was to examine the compatibility of SFFVG with this prominent stage in spectroscopy. For 

regression units, PLSR was appointed with the same tuning process described in subsection 2.2. 

It is distinguishable from the block diagram that the first two modelling strategies were unimodal, where 

only NIR or MIR spectra took part in the modelling process. In contrast, the other four strategies were 

bimodal, utilising both NIR and MIR signals. Also, each dashed block in Figure 3 signifies two possible 

model creation scenarios for the associated modelling strategy by incorporating or not incorporating that 

particular block. Therefore, the working mechanism of modelling strategies was as follows. 

a) NIR Modelling (Figure 3a): the raw or preprocessed form of a given NIR signal or their feature 

vector were input to a regression unit for making a final glucose estimation. 

b) MIR Modelling (Figure 3b): this strategy was akin to NIR Modelling, except MIR signals were 

studied instead of NIR. 

c) Raw Spectra Fusion Modelling (Figure 3c): a given NIR and MIR signal was first concatenated, 

forming an NIR-MIR signal. Raw or preprocessed form of the NIR-MIR signal or their feature 

vector was then fed to a regressor, creating a final estimation. 
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d) Preprocessed Spectra Fusion Modelling (Figure 3d): initially, a given NIR and MIR signal were 

separately preprocessed and then mixed. The resultant NIR-MIR signal or its feature vector were 

then given to a regressor to accomplish a final estimation. 

e) Feature Fusion Modelling (Figure 3e): first, feature vectors were generated distinctly from the raw 

or preprocessed form of a given NIR and MIR signal and thereafter coupled. The obtained 

combined feature vector was then input to a regressor, making a final quantification. 

f) Decision Fusion Modelling (Figure 3f): estimations created individually using a given NIR and 

MIR signal were ensembled by a regressor to generate a final estimation. 

The goal of including different strategies was to comprehensively investigate the robustness of SFFVG 

under diverse circumstances. The idea was to generate quantitative models according to all possible 

permutations for each strategy and later perform intra-strategy comparisons between models with SFFVG 

and those without SFFVG as benchmarks. Thus, by incorporating or skipping preprocessing and SFFVG 

blocks each, four models were constructed using each of NIR Modelling, MIR Modelling, Raw Spectra 

Fusion Modelling, and Decision Fusion Modelling. On the other hand, two models were created through 

each of Preprocessed Spectra Fusion Modelling and Feature Fusion Modelling by incorporating or not 

incorporating their sole dashed unit. It is worth clarifying that the preprocessing unit in Preprocessed 

Spectra Fusion Modelling and SFFVG unit in Feature Fusion Modelling was not skippable due to the 

essence of these strategies.  
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Figure 3. The general block diagram of the six considered strategies for creating glucose estimation models. 

Note. For the preprocessing and regression blocks, the Savitzky-Golay filter and partial least square regression were used, 

respectively. SFFVG (signal fragmentation based feature vector generation) block’s internal architecture is shown in Figure 2. 

The dashed blocks indicate that both conditions with or without including the block were investigated separately. (a, b) NIR 

Modelling and MIR Modelling, two unimodal strategies where glucose concentrations were estimated from NIR or MIR signals 

alone. (c) Raw Spectra Fusion Modelling where NIR and MIR data were fused in their raw format and then used to create 

quantitative models, (d) Preprocessed Spectra Fusion Modelling where NIR and MIR signals were fused after the preprocessing 

and then used for constructing quantitative models, (e) Feature Fusion Modelling where features generated from NIR and MIR 

signal were fused and used to create quantitative models, and (f) Decision Fusion Modelling where quantitative models created 

from NIR and MIR signals were ensembled to form a combined model. 

 

2.5. Model evaluation 

The developed models were evaluated considering three frequently used regression metrics for 

estimations one the evaluation set; RMSE as Eq. (1) and mean absolute percentage deviation (MAPD) as 

Eq. (2)  to reflect the error of quantifications [35], [36], and coefficient of determination (r2) as Eq. (3) as a 

statistical measure to indicate correlations between the reference and estimated values [37].  
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  𝑅𝑀𝑆𝐸 = √(∑ (𝑦𝑖 − 𝑓𝑖)2)𝑁𝑖=1 /𝑁 (1) 

 𝑀𝐴𝑃𝐷 = ((∑ |(𝑦𝑖 − 𝑓𝑖) 𝑦𝑖⁄ |𝑁𝑖=1 ) 𝑁) × 100⁄   (2) 

 𝑟2 = 1 − (𝑅𝑆𝑆 𝑇𝑆𝑆)⁄  (3) 

where, in Eqs. (1) and (2),  N, yi, and fi are respectively the size of the evaluation set, actual value, and 

estimated value; and in Eq. (3), RSS and TSS respectively represent the residual sum of squares and the total 

sum of squares. 

2.6. Model interpretation  

SHAP is a game-theoric ML explainability technique. It stimulates how an ML model produces an 

estimation for a data instance as a game between input variables. Then, using the Shapley value concept 

from game theory [25], each input variable’s contribution to generated estimation for the data instance is 

quantified as Eq. (4)  [24]. 

 

𝑆𝐻𝐴𝑃𝑥(𝑓) = ∑ (|𝐹| × ( 𝑓|𝐹|))−1 × (𝑥𝐹 − 𝑥𝐹\𝑓)𝐹:𝑓∈𝐹  (4) 

where f is a given input variable; x is a given instance of data; 𝑆𝐻𝐴𝑃𝑥(𝑓) represents the quantified 

contribution level of variable f in the generated estimation for x (SHAP value of variable f for x); F 

represents all possible subsets of variables with f included; |𝐹| is the size of F (number of variables in F); 𝑥𝐹 represents the model’s estimation for x from F; 𝑥𝐹\𝑓 is the model’s estimation for x from F excluding f 

Following the evaluation analysis, SHAP was deployed to globally interpret models assimilating 

SFFVG, i.e., explaining the impact of the features generated from sub-signals in producing the estimations 

across the entire validation set. For this purpose, the mean absolute of features’ SHAP values presented in 

Eq. (4) was used.  

This analysis allows analogies to be drawn between the importance of the segregated intervals, thereby 

increasing the transparency of investigations utilising SFFVG. For conciseness, interpretation was 

https://en.wikipedia.org/wiki/Residual_sum_of_squares
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undertaken only for the best model generated by each modelling strategy according to their evaluation 

results presented later in subsection 4.1. 

3. Results and discussion 

This section reports the evaluation and model interpretation results alongside the corresponding 

discussion. 

3.1. Signal fragmentation 

Based on optimisation for the number of intervals, NIR signals were divided into four equal fragments 

(100 nm wide apiece), MIR signals into six equal fragments (≈ 916 nm wide apiece), and NIR-MIR signals 

into ten equal fragments (590 nm wide apiece). The results of spectra fragmentation are summarised in 

Table 2. 

Consequently, for NIR Modelling, the fragmentation module divided signals into the four NIR intervals 

represented in the table and then the corresponding NIR features were extracted from these intervals. 

Similarly, for MIR Modelling, the signals were divided into the six MIR intervals shown in the table, and 

then the corresponding MIR features were generated. For Raw Spectra Fusion Modelling and Preprocessed 

Spectra Fusion Modelling, signals were divided into the ten NIR-MIR intervals shown in the table and then 

the associated NIR-MIR features were constructed. Finally, for Feature Fusion Modelling and Decision 

Fusion Modelling, NIR and MIR signals were separately fragmented into respectively the four NIR 

intervals and the six MIR intervals presented in the table, and then the relevant features were created. 

Table 2. Signal fragmentation process outcomes including the generated intervals their associated name and feature. 
Region Interval Interval name Generated feature 

NIR 

2100–2200 nm NIR interval 1 NIR feature 1 
2200–2300 nm NIR interval 2 NIR feature 2 
2300–2400 nm NIR interval 3 NIR feature 3 
2400–2500 nm NIR interval 4 NIR feature 4 

MIR 

2500–3416 nm MIR interval 1 MIR feature 1 
3416–4333 nm MIR interval 2 MIR feature 2 
4334–5250 nm MIR interval 3 MIR feature 3 
5250–6166 nm MIR interval 4 MIR feature 4 
6166–7084 nm MIR interval 5 MIR feature 5 
7084–8000 nm MIR interval 6 MIR feature 6 

NIR-MIR 
2100–2690 nm NIR-MIR interval 1 NIR-MIR feature 1 
2690–3280 nm NIR-MIR interval 2 NIR-MIR feature 2 
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3280–3870 nm NIR-MIR interval 3 NIR-MIR feature 3 
3870–4460 nm NIR-MIR interval 4 NIR-MIR feature 4 
4460–5050 nm NIR-MIR interval 5 NIR-MIR feature 5 
5050–5640 nm NIR-MIR interval 6 NIR-MIR feature 6 
5640–6230 nm NIR-MIR interval 7 NIR-MIR feature 7 
6230–6820 nm NIR-MIR interval 8 NIR-MIR feature 8 
6820–7410 nm NIR-MIR interval 9 NIR-MIR feature 9 
7410–8000 nm NIR-MIR interval 10 NIR-MIR feature 10 

Note. NIR: near-infrared; MIR: mid-infrared; NIR-MIR: the combination of near- and mid-
infrared. 

 

3.2. Model evaluation 

Table 3 lists the results of RMSE, MAPD and r2 for all created models. The table is compartmentalised 

with the results of the modelling strategies to facilitate intra-strategy comparisons of SFFVG-included 

models versus non-SFFVG models.  

Each improvement ratio in Table 3 compares the result of an evaluation metric achieved by an SFFVG-

included model versus the model with the same strategy and preprocessing but without SFVG 

(benchmarked model), reported in the raw above. According to the table, in all pair-wise comparisons, the 

majority of improvement ratios convey the efficacy of SFFVG-included models over non-SFFVG 

counterparts. 

The values in bold in Table 3 are the best result(s) obtained for evaluation metrics through each 

modelling strategy. Grey cells in the table highlight the model(s) with the highest number of best values for 

the evaluation metrics amongst the models created using the same modelling strategy. These highlights 

indicate that the best model of all strategies was SFFVG-included. Explicitly, applying SFFVG without 

preprocessing granted the highest overall performance with the best MAPD and r2 values for the NIR 

Modelling, whilst applying SFFVG with preprocessing gave the lowest RMSE in this case. In MIR 

Modelling, SFFVG without preprocessing yielded the best overall results and for all evaluation metrics. 

Moreover, for Raw Spectra Fusion Modelling, Preprocessed Data Fusion Modelling, and Feature Fusion 

Modelling, SFFVG joined with preprocessing conferred the best performance overall and according to each 

evaluation criterion. Finally, the best performance for Decision Fusion Modelling was achieved by SFFVG 
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without preprocessing, the best RMSE and r2, whilst the best MAPD was for non-SFFVG with 

preprocessing. 

Overall, incorporating SFFVG in the six modelling strategies enhanced the accuracy of glucose 

estimation. Moreover, SFFVG maintained its effectiveness when a preprocessing step was also present in 

the modelling process. Such attainments underpin the functionality and flexibility of the proposed SFFVG 

approach. The coordinating power of stack learning could justify such fulfilments; deriving glucose 

information from fragments of a signal and then aggregating the outcomes dominated studying the whole 

signal at once. Finally, it is noteworthy that pre-partitioning procedures have recently found successful 

applications in image processing tasks, supporting the relevance of the core idea involved in this work to 

other areas where further exploration would be desirable [38,39]. 

Comparing bimodal strategies with MIR Modelling reveals that Raw Spectra Fusion Modelling, 

Preprocessed Data Fusion Modelling, and Feature Fusion Modelling produced results on par with MIR 

modelling whilst not conclusively outperforming it. Nevertheless, rather than taking advantage of 

synergistic effects, the object of including bimodal strategies in this work was to test SFFVG’s capability 

under a broader range of spectra with different data fusion strategies. 

Table 3. Evaluation results for all generated quantitative models. 

Strategy Preprocessing SFFVG 
RMSE 

(mg dL-1) 

RMSE 

IR (%) 
MAPD (%) 

MAPD IR 

(%) 
r2 r2 IR (%) 

NIR Modelling 
No 

No 98.1 — 66.6 — 0.47 — 
Yes 91.0 +7.2  46.5 +30.1 0.58 +23.4 

Yes 
No 98.7 — 67.3 — 0.46 — 
Yes 89.7 +9.1 48.0 +28.6 0.55 +19.5 

MIR Modelling 
No 

No 36.3 — 28.0 — 0.92 — 
Yes 24.5 +32.5 24.4 +12.8 0.96 +4.3 

Yes 
No 36.2 — 27.8 — 0.92 — 
Yes 24.6 +32.0 24.7 +11.1 0.96 +4.3 

Raw Spectra 
Fusion Modelling 

No 
No 34.4 — 28.8 — 0.93 — 
Yes 32.3 +6.1 26.8 +6.9 0.94 +1.0 

Yes 
No 34.5 — 29.0 — 0.93 — 
Yes 32.1 +6.6 25.6 +11.7 0.94 +1.0 

Preprocessed 
Spectra Fusion 

Modelling 
Yes 

No 34.2 — 28.7 — 0.93 — 

Yes 32.2 +5.8 25.7 +10.4 0.94 +1.0 

Feature Fusion 
Modelling 

No Yes 27.7 — 25.1 — 0.95 — 
Yes Yes 26.6 +3.9 24.1 +3.9 0.96 +1.0 

Decision Fusion 
Modelling 

No 
No 60.1 — 35.2 — 0.80 — 
Yes 47.0 +21.7 37.0 -5.1 0.87 +8.7 

Yes 
No 60.0 — 35.0 — 0.81 — 
Yes 49.6 +17.3 38.3 -8.6 0.86 +5.8 
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Note. SFFVG: signal fragmentation based feature vector generation; RMSE: root mean square error; IR: improvement ratio (comparing the 
results of an SFFVG-included model versus the benchmarked non-SFFVG model reported in the raw above.); MAPD: mean absolute percentage 
deviation; r2: coefficient of determination; NIR: near-infrared; MIR: mid-infrared. The values in bold font indicate the best result for each 
evaluation metric in each strategy. The grey cells indicate the model(s) with the highest number of best-obtained evaluation metrics amongst 
models developed using the same modelling strategy. 

 

3.3. Model interpretation 

Figure 4 represents the variable importance graphs for the best model of each strategy (marked with 

grey cells in Table 3). The length of each bar in the graphs expresses the importance rate of the 

corresponding feature according to mean absolute SHAP values over the entire validation set. 

As presented in Figure 4a, NIR feature 4 (associated with interval 2400–2500 nm) was the most 

informative variable for the best model from NIR Modelling. NIR features 1, 3, and 2 (intervals 2100–2200 

nm, 2300–2400 nm, and 2200–2300 nm, respectively) in order placed in ranks 2 to 4. 

According to Figure 4b, MIR feature 1 (interval 2500–3416 nm)  had the dominant influence on the 

best model of MIR Modelling with a mean absolute SHAP value remarkably superior to others. In contrast, 

MIR feature 2 (interval 3416–4333 nm)   carried the most inferior influence with a mean absolute SHAP 

value considerably lower than others. In comparison, MIR features 3, 4, 5, and 6 (intervals 4333–5250 nm, 

5250–6166 nm, 6166–7084 nm, and 7084–8000 nm, respectively) induced comparable and medium 

impacts on the model. 

For the best model of Raw Spectra Fusion Modelling (Figure 4c) and Preprocessed Spectra Fusion 

Modelling (Figure 4d), NIR-MIR feature 1 (interval 2100–2690 nm) supplied the maximum impact on the 

model with a mean absolute SHAP value appreciably higher than others. NIR-MIR features 2 and 8 

(intervals 2690–3280 nm and 6230–6820 nm, respectively) placed the second and third rank. Other features 

had relatively subordinate effects. 

Based on Figure 4e, for the best model of Feature Fusion Modelling, the impact of MIR feature 1  

(interval 2500–3416 nm)  outweighed that of other MIR and NIR features with a  mean absolute SHAP 

value markedly higher than others. MIR feature 3 (interval 4333–5250 nm) and NIR feature 4 (interval 
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2400–2500 nm) placed in the second and third rank. The other three NIR features (1, 2, and 3) had the 

weakest impact on the model. 

Figure 4f displays the variable importance plot for the best model of Decision Fusion Modelling. In 

this case, since decisions of NIR and MIR models were combined at the final stage, the effect of NIR and 

MIR decisions on the final estimations were compared. The results illustrate that the influence of MIR 

decisions on the models’ outcomes surpassed NIR decisions. 

According to the interpretation analysis, potential associations between the most informative intervals 

detected and the nearest glucose-informative bands according to the ordinary glucose signature in NIR and 

MIR regions could be inferred [40]. For instance, information possessed by the most influential features in 

different regions were potentially connected to the following vibrations in glucose molecules bonds: a 

combination of vibrations in CH and CH2 bonds for NIR feature 4, stretching vibrations in OH and CH 

bonds for MIR feature 1, a combination of vibrations in OH, CH, and CH2 bonds for NIR-MIR feature 1. 
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Figure 4. Feature importance plots which indicate the influence of variables upon collective absolute (SHapley Additive 

exPlanations) SHAP values for the best model from each modelling strategy (a) NIR modelling, (b) MIR modelling, (c) raw spectra 

fusion modelling, (d) preprocessed spectra fusion modelling, (e) feature fusion modelling, and (f) decision fusion modelling. 

Note. 𝑓𝑠𝑖: feature generated from the ith fragment of s signals. 𝑑𝑠: decision from s signals. 

 

3.4. Complementary analysis 

3.4.1. Comparative analysis 

Interval partial least squares (iPLS) is a well-known variable selection technique in spectroscopy data 

analysis [40]. The technique starts with breaking signals into several intervals. Then, some of these intervals 

are selected for subsequent modelling analysis, where the selected intervals are stacked and inputted into a 

prediction model. 

We conducted a basic comparative analysis between iPLS and the proposed SFFVG method. To this 

end, using the same block diagram shown in Figure 3, for each model with SFFVG, a comparator model 

with iPLS was constructed. The building blocks of each comparator model was similar to its reference 

model, except the SFFVG unit was replaced with an iPLS unit. For the sake of fair comparisons, the units 

of each comparator model underwent the same optimisation process performed for its reference model’s 

units. As a result of identical fragmentation optimisation, the same intervals represented in Table 2 were 

utilised for comparator models with iPLS. 

In iPLS analysis, first, an autonomous glucose quantification model was created for each interval. The 

interval providing the lowest RMSE of five-fold cross-validation on the calibration set was selected. Then, 
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the selected interval combined with the remaining intervals, one at a time, were used to build quantitative 

models. The combination of intervals that produced the model with the lowest RMSE of five-fold cross-

validation on the calibration set was selected. This successive interval selection cycle was repeated until 

adding a new interval could not lower the RMSE of five-fold cross-validation on the calibration set. 

Table 4 presents the results of the comparative analysis of SFFVG and the iPLS. Values in bold and 

grey cells indicate the same information as explained in subsection 3.2 for Table 3. According to the grey 

cells in the table, four of the models with the dominant number of best-obtained evaluation metrics (amongst 

the models generated using each modelling strategy) were with SFFVG. These outcomes further support 

the capability of SFFVG. 

Table 4. Evaluation results for the comparision analysis between SFFVG and iPLS. 
Strategy Preprocessing Feature enineeing RMSE (mg dL-1) MAPD (%) r2 

NIR Modelling 

No 
SFFVG 91.0 46.5 0.58 

iPLS 99.9 69.7 0.45 

Yes 
SFFVG 89.7 48.0 0.55 

iPLS 99.9 71.3 0.44 

MIR Modelling 

No 
SFFVG 24.5 24.4 0.96 

iPLS 29.3 18.5 0.95 

Yes 
SFFVG 24.6 24.7 0.96 

iPLS 28.7 18.4 0.96 

Raw Spectra Fusion 
Modelling 

No 
SFFVG 32.3 26.8 0.94 

iPLS 33.7 19.2 0.93 

Yes 
SFFVG 32.1 25.6 0.94 

iPLS 31.8 17.7 0.94 
Preprocessed 

Spectra Fusion 
Modelling 

Yes 
SFFVG 32.2 25.7 0.94 

iPLS 31.8 17.7 0.94 

Feature Fusion 
Modelling 

No 
SFFVG 27.7 25.1 0.95 

iPLS 29.5 16.8 0.95 

Yes 
SFFVG 26.6 24.1 0.96 

iPLS 29.1 16.1 0.95 

Decision Fusion 
Modelling 

No 
SFFVG 47.0 37.0 0.87 

iPLS 49.6 38.4 0.86 

Yes 
SFFVG 49.6 38.3 0.86 

iPLS 49.5 38.5 0.86 
Note. iPLS: interval partial least squares; SFFVG: signal fragmentation based feature vector generation; RMSE: root mean square error; IR: 
improvement ratio (comparing the results of an SFFVG-included model versus the benchmarked non-SFFVG model reported in the raw 
above.); MAPD: mean absolute percentage deviation; r2: coefficient of determination; NIR: near-infrared; MIR: mid-infrared. The values in 
bold font indicate the best result for each evaluation metric in each strategy. The grey cells indicate the model(s) with the highest number of 
best-obtained evaluation metrics amongst models developed using the same modelling strategy. 

 

3.4.2. Reevaluation analysis 

To further examine the functionality of SFFVG, after reshuffling the data and performing another 80-

20 calibration and validation split, we reconducted the model generation and evaluation analysis. The 
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results of this extra analysis are summarised in Table 5. Values in bold and grey cells in the table denote 

the same information as explained in subsection 3.2 for Table 3. Overall, according to Table 5, intra-strategy 

analogies reaffirmed the principal outcomes reported in subsection 3.2. Explicitly, again, models with 

SFFVG outperformed their counterparts without SFFVG in most scenarios. Also, in all strategies, the 

model(s) with the highest number of best-obtained evaluation metrics included SFFVG. 

Table 5. Results of reevaluation analysis for all investigated scenarios. 
Strategy Preprocessing SFFVG RMSE (mg dL-1) MAPD (%) r2 

NIR Modelling 

No 
No 101.4 83.3 0.48 
Yes 97.4 53.7 0.52 

Yes 
No 103.4 77.6 0.46 
Yes 95.4 52.6 0.54 

MIR Modelling 

No 
No 37.4 31.7 0.93 
Yes 35.6 21.3 0.94 

Yes 
No 37.3 30.9 0.93 
Yes 35.0 21.4 0.94 

Raw Spectra Fusion 
Modelling 

No 
No 33.0 25.0 0.94 
Yes 32.8 17.3 0.95 

Yes 
No 33.1 22.1 0.94 
Yes 31.1 17.4 0.95 

Preprocessed 
Spectra Fusion 

Modelling 

Yes 
No 32.8 22.0 0.94 

Yes 31.0 17.3 0.95 

Feature Fusion 
Modelling 

No 
Yes 36.7 36.9 0.94 
Yes 37.1 35.7 0.93 

Decision Fusion 
Modelling 

No 
No 57.6 49.3 0.83 
Yes 54.2 30.3 0.85 

Yes 
No 101.4 83.3 0.48 
Yes 97.4 53.7 0.52 

Note. SFFVG: signal fragmentation based feature vector generation; RMSE: root mean square error; IR: improvement ratio (comparing the 
results of an SFFVG-included model versus the benchmarked non-SFFVG model reported in the raw above.); MAPD: mean absolute 
percentage deviation; r2: coefficient of determination; NIR: near-infrared; MIR: mid-infrared. The values in bold font indicate the best 
result for each evaluation metric in each strategy. The grey cells indicate the model(s) with the highest number of best-obtained evaluation 
metrics amongst models developed using the same modelling strategy. 

 

4. Summary and conclusion 

Feature vector generation based on signal partitioning and framed with model interpretation analysis 

enhanced in vitro glucose quantification from absorption spectroscopy. First, a given spectrum was sliced 

into some fragments. A base-regressor then analysed these fragments individually, forming preliminary 

glucose concentration estimations. These estimations were then stacked, generating a feature vector for the 

original spectrum. Later, leveraging the concept of stack learning, a meta-regressor investigates this feature 

vector to produce a final estimation of the reference glucose concentration. The versatility of the proposed 
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method was tested under an array of modelling strategies. Moreover, the compatibility of the proposed 

method with a standard preprocessing technique was investigated. Overall, the results obtained accentuated 

the efficacy of the proposed method in improving glucose quantifications for all modelling strategies. The 

method maintained its functionality when a preprocessing step was also incorporated in the modelling 

process. Finally, SHAP was employed to interpret the outcomes of the quantitative analysis. Such 

interpretation encourages the adoption of the proposed method by extending the transparency of the 

analysis. For future work, applying the proposed methodology with ununiformed spectra fragmentation is 

recommended. 
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